JP2018148292A - Distribution and synthetic circuit - Google Patents

Distribution and synthetic circuit Download PDF

Info

Publication number
JP2018148292A
JP2018148292A JP2017038976A JP2017038976A JP2018148292A JP 2018148292 A JP2018148292 A JP 2018148292A JP 2017038976 A JP2017038976 A JP 2017038976A JP 2017038976 A JP2017038976 A JP 2017038976A JP 2018148292 A JP2018148292 A JP 2018148292A
Authority
JP
Japan
Prior art keywords
dielectric
distribution
dielectric lens
input signal
signal line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017038976A
Other languages
Japanese (ja)
Inventor
麻希 新井
Maki Arai
麻希 新井
健 平賀
Takeshi Hiraga
健 平賀
加保 貴奈
Takana Kaho
貴奈 加保
山口 陽
Akira Yamaguchi
陽 山口
智弘 関
Tomohiro Seki
智弘 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Nippon Telegraph and Telephone Corp
Original Assignee
Nihon University
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, Nippon Telegraph and Telephone Corp filed Critical Nihon University
Priority to JP2017038976A priority Critical patent/JP2018148292A/en
Publication of JP2018148292A publication Critical patent/JP2018148292A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a distribution and synthetic circuit capable of constituting a Butler matrix feeding circuit with a single layered substrate and capable of constituting two power supply circuits with one feed circuit.SOLUTION: The distribution and synthetic circuit includes: a dielectric lens 10 which has a plurality of 3 types holes each having different depth formed toward the center of a dielectric body from the outer periphery of a three-dimensional dielectric body which has smooth surface in the entire outer periphery at an appropriate distance from each other in a circumferential direction so as not to interfere with each other; plural input signal lines 20 each connected to the surface of the dielectric lens 10; and plural output signal lines 30 each connected to the surface of the dielectric lens 10 at the positions other than the connection positions of the input signal lines 20.SELECTED DRAWING: Figure 1

Description

本発明は、例えばフェーズドアレーアンテナ等の給電回路に用いる分配合成回路に関する。   The present invention relates to a distribution / synthesis circuit used in a power feeding circuit such as a phased array antenna.

フェーズドアレーアンテナに用いる給電回路としては、例えば非特許文献1に開示された4ポートバトラーマトリクス給電回路が知られている。また、例えば非特許文献2に開示されたロットマンレンズ給電回路が知られている。   As a power feeding circuit used for a phased array antenna, for example, a 4-port Butler matrix power feeding circuit disclosed in Non-Patent Document 1 is known. Further, for example, a Rotman lens feeding circuit disclosed in Non-Patent Document 2 is known.

K.Uehara, T. Seki, and K. Kagoshima, “A Planar Sector Antenna for Indoor High-Speed Wireless Communication Systems” , IEICE Trans. Commun., Vol. E79-B, No.12, pp.1773-1777, Dec. 1996.K. Uehara, T. Seki, and K. Kagoshima, “A Planar Sector Antenna for Indoor High-Speed Wireless Communication Systems”, IEICE Trans. Commun., Vol. E79-B, No. 12, pp.1773-1777, Dec. 1996. W. Rotman and R. F. Turner, “Wide-angle microwave lens for line source applications,” IEEE Trans. Antennas Propag., Vol. AP-11, No.11, pp. 623-632, Nov 1963.W. Rotman and R. F. Turner, “Wide-angle microwave lens for line source applications,” IEEE Trans. Antennas Propag., Vol. AP-11, No. 11, pp. 623-632, Nov 1963.

従来の4ポートバトラーマトリクス給電回路は、複数のハイブリッド回路と移相器とで構成され、ポート数が4ポートを超えると高周波信号を伝達する信号線を交差させる部分が必要である。よって、1層のみの基板では製造できない課題がある。また、ロットマンレンズ給電回路は、水平面成型用と垂直面形成用の2系統の平面レンズから成る多ポート入出力分配器が必要であることから、周波数が高い場合に回路損失が大きくなるという課題がある。   A conventional 4-port Butler matrix power supply circuit is composed of a plurality of hybrid circuits and phase shifters, and when the number of ports exceeds 4 ports, a portion for crossing signal lines for transmitting high-frequency signals is required. Therefore, there is a problem that cannot be manufactured with a single-layer substrate. In addition, since the Rotman lens feeding circuit requires a multi-port input / output distributor consisting of two plane lenses for horizontal plane molding and vertical plane formation, there is a problem that circuit loss increases when the frequency is high. is there.

本発明は、これらの課題に鑑みてなされたものであり、バトラーマトリクス給電回路を1層の基板で構成でき、また、1個の給電回路でも2系統の給電回路が構成できる分配合成回路を提供することを目的とする。   The present invention has been made in view of these problems, and provides a distribution and synthesis circuit in which a Butler matrix power supply circuit can be configured with a single-layer substrate and two power supply circuits can be configured with a single power supply circuit. The purpose is to do.

本実施形態の一態様に係る分配合成回路は、外周面が円滑な曲面を呈する立体の誘電体の外周部から、深さの異なる3種以上の孔が、当該誘電体の中心に向けて互いに干渉しないように周方向に適宜間隔を保持して前記外周部の全体に複数空けられた誘電体レンズと、前記誘電体レンズの表面に接続される複数の入力信号線路と、前記誘電体レンズの表面における前記入力信号線路の接続位置以外の位置に接続される複数の出力信号線路とを備えることを要旨とする。   In the distribution and synthesis circuit according to one aspect of the present embodiment, three or more types of holes having different depths are formed from the outer peripheral portion of a three-dimensional dielectric whose outer peripheral surface has a smooth curved surface toward the center of the dielectric. A plurality of dielectric lenses that are spaced apart from each other by an appropriate distance in the circumferential direction so as not to interfere with each other, a plurality of input signal lines connected to the surface of the dielectric lens, and a dielectric lens The gist of the present invention is to include a plurality of output signal lines connected to positions other than the connection positions of the input signal lines on the surface.

本発明によれば、バトラーマトリクス給電回路を1層の基板で構成でき、また、1個の給電回路でも2系統の給電回路が構成できる分配合成回路を提供することができる。   According to the present invention, it is possible to provide a distribution / synthesis circuit in which a Butler matrix power supply circuit can be configured with a single-layer substrate, and two power supply circuits can be configured with a single power supply circuit.

本発明の実施形態に係る分配合成回路の斜視図を示す図である。It is a figure which shows the perspective view of the distribution combination circuit which concerns on embodiment of this invention. 図1に示す分配合成回路のx−y断面を示す図である。It is a figure which shows the xy cross section of the distribution synthetic | combination circuit shown in FIG. 図1に示す分配合成回路の誘電体レンズの断面を示す図である。It is a figure which shows the cross section of the dielectric lens of the distribution synthetic | combination circuit shown in FIG. 図3に示す誘電体レンズの信号の透過特性を示す図であり、(a)は孔径が3mm、(b)は孔径が2mmの透過特性を示す図である。FIGS. 4A and 4B are diagrams illustrating signal transmission characteristics of the dielectric lens illustrated in FIG. 3. FIG. 4A illustrates transmission characteristics with a hole diameter of 3 mm, and FIG. 図3に示す誘電体レンズの透過特性を、有限要素法で解析した結果を示す図である。It is a figure which shows the result of having analyzed the transmission characteristic of the dielectric material lens shown in FIG. 3 by the finite element method. 本発明の実施形態に係る分配合成回路の変形例のx−y断面を示す図である。It is a figure which shows the xy cross section of the modification of the distribution synthetic | combination circuit which concerns on embodiment of this invention.

以下、本発明の実施の形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、本発明の実施形態に係る分配合成回路1の斜視図を示す。分配合成回路1は、誘電体レンズ10、入力信号線路20、及び出力信号線路30を備える。   FIG. 1 is a perspective view of a distribution / synthesis circuit 1 according to an embodiment of the present invention. The distribution / synthesis circuit 1 includes a dielectric lens 10, an input signal line 20, and an output signal line 30.

入力信号線路20と出力信号線路30のそれぞれの本数は、9本の例で示す。なお、入力信号線路20と出力信号線路30の本数は、それぞれ1本以上であれば何本でもよい。   The number of each of the input signal line 20 and the output signal line 30 is shown by nine examples. The number of the input signal lines 20 and the number of the output signal lines 30 may be any number as long as the number is one or more.

入力信号線路20は、誘電体レンズ10の表面に接続される複数の信号線路であり、例えば高周波信号を、誘電体レンズ10に入力する。入力信号線路20は、例えば導波管である。また、入力信号線路20は、マイクロストリップ線路、ストリップ線路、サスペンデット線路、コプレーナ線路、の何れであってもよい。   The input signal line 20 is a plurality of signal lines connected to the surface of the dielectric lens 10. For example, a high frequency signal is input to the dielectric lens 10. The input signal line 20 is, for example, a waveguide. Further, the input signal line 20 may be any of a microstrip line, a strip line, a suspended line, and a coplanar line.

また、入力信号線路20は、これらの線路から同軸導波変換器などを用いて誘電体線路へ接続する構成、または、導波管と誘電体線路とを組み合わせた構成であってもよい。出力信号線路30についても同様である。   Further, the input signal line 20 may have a configuration in which these lines are connected to a dielectric line using a coaxial waveguide converter or the like, or a structure in which a waveguide and a dielectric line are combined. The same applies to the output signal line 30.

誘電体レンズ10は、例えばルーネベルグレンズ等のレンズであり、入力信号線路20で入力される高周波信号を、内部で屈折・反射させるものである。図1は、誘電体レンズ10を例えば球体で示す。   The dielectric lens 10 is a lens such as a Luneberg lens, for example, and refracts and reflects a high-frequency signal input through the input signal line 20 inside. FIG. 1 shows the dielectric lens 10 as a sphere, for example.

誘電体レンズ10は、例えばテフロン(登録商標)樹脂の半径30mmの球体の外周部から、深さの異なる3種以上の孔が、当該誘電体の中心に向けて互いに干渉しないように周方向に適宜間隔を保持して外周部の全体に複数空けられたものである。よって、入力信号線路20から誘電レンズ10に入力された高周波信号は、比誘電率2.1のテフロン樹脂層と、比誘電率1.0の空気層の2つの部分を通過して出力信号線路30に到達することになる。   The dielectric lens 10 is arranged in the circumferential direction so that, for example, three or more holes having different depths do not interfere with each other toward the center of the dielectric from the outer peripheral portion of a Teflon (registered trademark) sphere having a radius of 30 mm. A plurality of spaces are provided in the entire outer peripheral portion with appropriate intervals. Therefore, the high-frequency signal input from the input signal line 20 to the dielectric lens 10 passes through the two parts of the Teflon resin layer having a relative permittivity of 2.1 and the air layer having a relative permittivity of 1.0 and reaches the output signal line 30. It will be.

球体には、深さの異なる3種以上の孔がお互いに干渉しないように外周部の全体に空けられているので、球体の外周部に近いほど空気層の密度が高く、球体の中心部に近いほど空気層の密度は低くなる。したがって、テフロン樹脂と空気層を足し合わせた比誘電率は、誘電体レンズ10の中心部で最も大きく、表面に向けて小さくなる。   Since three or more kinds of holes having different depths are formed in the sphere so that they do not interfere with each other, the air layer has a higher density near the outer periphery of the sphere. The closer it is, the lower the density of the air layer. Therefore, the relative dielectric constant obtained by adding the Teflon resin and the air layer is the largest at the center of the dielectric lens 10 and decreases toward the surface.

なお、図1では、誘電体レンズ10を挟んで入力信号線路20と対向する位置に出力信号線路30を配置している。また、入力信号線路20と出力信号線路30との配置は、この例に限定されない。出力信号線路30は、誘電体レンズ10の表面における入力信号線路20の接続位置以外の位置に接続すればよい。   In FIG. 1, the output signal line 30 is disposed at a position facing the input signal line 20 with the dielectric lens 10 interposed therebetween. Further, the arrangement of the input signal line 20 and the output signal line 30 is not limited to this example. The output signal line 30 may be connected to a position other than the connection position of the input signal line 20 on the surface of the dielectric lens 10.

以上のように構成される分配合成回路1は、例えばバトラーマトリクス給電回路を1層の基板で構成できる。つまり、高周波信号を伝達する信号線を交差させる作用を誘電体レンズ10が担うので、信号線を交差する必要があっても入力信号線路20と出力信号線路30を一層の基板上に配置することができる。   In the distribution and synthesis circuit 1 configured as described above, for example, a Butler matrix power supply circuit can be configured with a single-layer substrate. That is, since the dielectric lens 10 is responsible for intersecting signal lines for transmitting high-frequency signals, the input signal line 20 and the output signal line 30 are arranged on a single substrate even if the signal lines need to be intersected. Can do.

また、分配合成回路1によれば、水平面成型用と垂直面成型用の2系統の給電回路を容易に構成することができる。例えば、図1のz軸方向に、入力信号線路20と出力信号線路30を配置すれば1個の誘電体レンズ10の作用によって、水平面と垂直面の2系統に、高周波信号を分配合成することが可能である。   Further, according to the distribution and synthesis circuit 1, it is possible to easily configure two power supply circuits for horizontal plane molding and vertical plane molding. For example, if the input signal line 20 and the output signal line 30 are arranged in the z-axis direction of FIG. 1, the high frequency signal is distributed and synthesized in two systems of the horizontal plane and the vertical plane by the action of one dielectric lens 10. Is possible.

図2に、図1のx−y断面で切断した分配合成回路1の断面図を示す。x軸上の3本の入力信号線路20と出力信号線路30が確認できる。図2を参照して更に詳しく本実施形態の分配合成回路1を説明する。   FIG. 2 is a cross-sectional view of the distribution and synthesis circuit 1 cut along the xy cross section of FIG. Three input signal lines 20 and output signal lines 30 on the x-axis can be confirmed. With reference to FIG. 2, the distribution / synthesis circuit 1 of the present embodiment will be described in more detail.

図2において、誘電体レンズ10の中心から表面に向けて一点鎖線の円で示す階層構造は、比誘電率が階層的に異なることを表している。入力信号線路20から誘電体レンズ10に入力された例えば高周波信号は、テフロン樹脂層と空気層の界面で屈折・反射して出力信号線路30から出力される。反射には、誘電体レンズ10の内側表面で反射するものも含まれる。したがって、入力信号線路20から誘電体レンズ10に入力された高周波信号は分散して出力信号線路30から出力される。   In FIG. 2, the hierarchical structure indicated by a dashed-dotted circle from the center of the dielectric lens 10 toward the surface indicates that the relative dielectric constants are hierarchically different. For example, a high-frequency signal input from the input signal line 20 to the dielectric lens 10 is refracted and reflected at the interface between the Teflon resin layer and the air layer and output from the output signal line 30. The reflection includes a reflection on the inner surface of the dielectric lens 10. Therefore, the high-frequency signal input from the input signal line 20 to the dielectric lens 10 is dispersed and output from the output signal line 30.

(誘電体レンズ)
図3に、誘電体レンズ10の断面図を示す。図3は、図2の分配合成回路1から誘電体レンズ10を取り出した図である。
(Dielectric lens)
FIG. 3 shows a cross-sectional view of the dielectric lens 10. FIG. 3 is a diagram showing the dielectric lens 10 taken out from the distribution / synthesis circuit 1 of FIG.

誘電体レンズ10は、90度の中心角ごとに半径の6分の5の深さの孔、45度の中心角ごとに半径の6分の4の深さの孔、22.5度の中心角ごとに半径の6分の3の深さの孔、11.25度の中心角ごとに半径6分の2の深さの孔、及び5.625度の中心角ごとに半径の6分の1の深さの孔を備える。これらの孔は、階段状に変化する比誘電率の変化を形成する。この例では、6段階の比誘電率の層が形成される。   Dielectric lens 10 has a hole with a depth of 5/6 radius for every 90 degree central angle, a hole with a depth of 4/6 radius for every 45 degree central angle, and a center angle of 22.5 degrees. A hole with a depth of 3/6 of the radius, a hole with a depth of 2/6 for each central angle of 11.25 degrees, and a hole with a depth of 1/6 of a radius for each central angle of 5.625 degrees Is provided. These holes form a change in the dielectric constant that changes stepwise. In this example, a layer having a dielectric constant of 6 levels is formed.

図3に示す5種類の孔は、約2.94mmの間隔を空けて円周上に64個設けられる。例えば、孔の深さを4種類とした場合の孔の間隔は、約5.88mmである。このように孔の間隔は、その孔(深さ)の種類数に応じて適宜決定される。   The five types of holes shown in FIG. 3 are provided on the circumference at intervals of about 2.94 mm. For example, when the depth of the hole is four types, the interval between the holes is about 5.88 mm. As described above, the interval between the holes is appropriately determined according to the number of types of the holes (depths).

図4に、孔径と周波数特性の関係を示す。図4(a)は孔径=3mm、(b)は孔径=2mmである。図4の横軸は周波数、縦軸はSパラメータS21[dB]である。誘電体レンズ10の半径は30mm、材料はテフロン樹脂を用いた。 FIG. 4 shows the relationship between the hole diameter and the frequency characteristics. FIG. 4A shows a hole diameter = 3 mm, and FIG. 4B shows a hole diameter = 2 mm. In FIG. 4, the horizontal axis represents frequency, and the vertical axis represents S parameter S 21 [dB]. The radius of the dielectric lens 10 was 30 mm, and the material used was Teflon resin.

図4に示すように高周波数信号の透過率は、周波数の上昇と共に徐々に低下し、33GHzを越えると透過率の値が急激に悪化する周波数が出現するようになる。透過率の値が急激に悪化する33GHzの波長λは、約9.1mmである。よって、図4(a)の特性(孔径=3mm)から、孔径は、使用する周波数信号の波長λの3分の1の大きさにする必要があると考えられる。   As shown in FIG. 4, the transmittance of the high frequency signal gradually decreases as the frequency increases, and when the frequency exceeds 33 GHz, a frequency at which the transmittance value rapidly deteriorates appears. The wavelength λ of 33 GHz at which the transmittance value deteriorates rapidly is about 9.1 mm. Therefore, from the characteristics of FIG. 4A (hole diameter = 3 mm), it is considered that the hole diameter needs to be one third of the wavelength λ of the frequency signal to be used.

このことは、図4(b)に示す特性(孔径=2mm)でも確認できる。孔径=2mmは、波長λに換算すると50GHzである。したがって、図4(b)に示すように40GHzまでなだらかに減衰する透過特性を示す。   This can also be confirmed by the characteristics shown in FIG. 4B (hole diameter = 2 mm). The pore diameter = 2 mm is 50 GHz in terms of wavelength λ. Therefore, as shown in FIG. 4 (b), the transmission characteristic gently attenuates to 40 GHz.

図5に、図3に示した誘電体レンズ10の電磁波の透過特性を有限要素法で解析した結果を示す。図5の縦方向はz軸方向の電界分布、横方向はy軸方向の電界分布を示す。   FIG. 5 shows the result of analyzing the electromagnetic wave transmission characteristics of the dielectric lens 10 shown in FIG. 3 by the finite element method. The vertical direction in FIG. 5 indicates the electric field distribution in the z-axis direction, and the horizontal direction indicates the electric field distribution in the y-axis direction.

電界強度は、細かい左斜線のハッチで示す部分が5.0〜3.3kV/m、クロスハッチで示す部分が3.3〜1.7 kV/m、右下がりハッチで示す部分が1.7〜1.0 kV/m、荒い左斜線のハッチで示す部分が1.0〜0.7 kV/m、白で示す部分が0.7〜0 kV/mである。   The electric field strength is 5.0 to 3.3 kV / m for the hatched area with fine left diagonal lines, 3.3 to 1.7 kV / m for the cross hatch area, 1.7 to 1.0 kV / m for the lower right hatch area, and rough left oblique line The hatched portion is 1.0 to 0.7 kV / m, and the white portion is 0.7 to 0 kV / m.

図5(a)から、誘電体レンズ10のy軸上の−方向から入射した高周波信号は、誘電体レンズ10の反対側の外周面の曲面の3カ所に分配されて出力されている様子が分かる。また、図5(b)から、誘電体レンズ10の中心角45度付近に入射した高周波信号は、誘電体レンズ10の内部で曲げられ反対側の曲面のおおよそy軸付近の上から、−z方向に出力されている様子が分かる。   From FIG. 5A, it can be seen that the high frequency signal incident from the negative direction on the y-axis of the dielectric lens 10 is distributed and outputted to three curved surfaces on the outer peripheral surface on the opposite side of the dielectric lens 10. I understand. Also, from FIG. 5B, the high frequency signal incident near the central angle of 45 degrees of the dielectric lens 10 is bent inside the dielectric lens 10 and is approximately −y from above the curved surface on the opposite side. You can see how it is output in the direction.

このように本実施形態の誘電体レンズ10の高周波信号に対するレンズ効果を確認することができた。このような高周波信号に対する分配合成特性等は、深さの異なる3種以上の孔を空けることで確認することができる。   Thus, the lens effect with respect to the high frequency signal of the dielectric lens 10 of this embodiment was able to be confirmed. Such distribution / synthesis characteristics for high-frequency signals can be confirmed by making three or more holes having different depths.

(変形例)
図6に、変形例の分配合成回路2を示す。図6は、図1と図2の関係と同様に分配合成回路2をx−y断面で切断した断面図である。分配合成回路2の誘電体レンズ11は、例えばラグビーボールに似た立体形状である。
(Modification)
FIG. 6 shows a modified distribution / synthesis circuit 2. FIG. 6 is a cross-sectional view of the distribution and synthesis circuit 2 taken along the xy cross section in the same manner as the relationship between FIGS. 1 and 2. The dielectric lens 11 of the distribution / synthesis circuit 2 has, for example, a three-dimensional shape similar to a rugby ball.

誘電体レンズ11のx−y断面は、楕円形である。このように誘電体レンズの形状は、球体に限られない。   The xy cross section of the dielectric lens 11 is elliptical. Thus, the shape of the dielectric lens is not limited to a sphere.

また、誘電体レンズ11は、球状、ラグビーボール状の立体で無くてもよい。例えば、断面が円の円板形状であってもよい。例えば、図1の例では、誘電体レンズ10を球の例を示したが、図1に示す入力信号線路20と出力信号線路30の例では、誘電体レンズ10の形状は円板でよい。つまり、1方向のみに信号を分散させる場合の誘電体レンズ10は、入力信号線路20と出力信号線路30の厚みを持つ円板でよい。また、円柱形状でもよい。この場合、比誘電率は、z軸方向において変化しない。   The dielectric lens 11 may not be a spherical or rugby ball-shaped solid. For example, the disk may have a circular cross section. For example, in the example of FIG. 1, the dielectric lens 10 is an example of a sphere, but in the example of the input signal line 20 and the output signal line 30 illustrated in FIG. 1, the shape of the dielectric lens 10 may be a disk. That is, the dielectric lens 10 in the case of dispersing a signal only in one direction may be a disk having the thickness of the input signal line 20 and the output signal line 30. Moreover, a cylindrical shape may be sufficient. In this case, the relative dielectric constant does not change in the z-axis direction.

(製造方法)
誘電体レンズ10,11は、例えば、テフロン樹脂、液晶ポリマー樹脂などの誘電体材料を用いて形成する。誘電体レンズ10,11は、3次元彫像装置(3Dプリンター)による成型で容易に形成することが可能である。なお、入力信号線路20と出力信号線路30も同時に形成することが可能である。
(Production method)
The dielectric lenses 10 and 11 are formed using a dielectric material such as Teflon resin or liquid crystal polymer resin, for example. The dielectric lenses 10 and 11 can be easily formed by molding with a three-dimensional image apparatus (3D printer). The input signal line 20 and the output signal line 30 can also be formed at the same time.

本実施形態の分配合成回路の製造方法は、分配合成回路1,2が、外周面が円滑な曲面を呈する立体の誘電体の外周部から、深さの異なる3種以上の孔が、当該誘電体の中心に向けて互いに干渉しないように周方向に適宜間隔を保持して外周部の全体に複数空けられた誘電体レンズ10,11と、誘電体レンズ10,11の表面に接続される複数の入力信号線路20と、誘電体レンズ10,11の表面における入力信号線路20の接続位置以外の位置に接続される複数の出力信号線路30とを備え、その製造は、誘電体レンズ10,11、入力信号線路20、及び出力信号線路30を3次元彫像装置を用いて一体成型する。   In the manufacturing method of the distribution / synthesis circuit according to the present embodiment, the distribution / synthesis circuits 1 and 2 have three or more types of holes having different depths from the outer peripheral portion of the solid dielectric whose outer peripheral surface has a smooth curved surface. A plurality of dielectric lenses 10 and 11 that are spaced apart from each other in the circumferential direction so as not to interfere with each other toward the center of the body, and a plurality of dielectric lenses 10 and 11 connected to the surfaces of the dielectric lenses 10 and 11 The input signal line 20 and a plurality of output signal lines 30 connected to positions other than the connection position of the input signal line 20 on the surface of the dielectric lenses 10 and 11 are manufactured. The input signal line 20 and the output signal line 30 are integrally formed using a three-dimensional image apparatus.

以上説明したように本実施形態の分配合成回路によれば、誘電体レンズ10の表面にアレーアンテナのアンテナ素子と対応する入力信号線路20と出力信号線30とを配置した簡易な構造で、例えばフェーズドアレーアンテナ用給電回路を実現することができる。また、水平垂直成型用の給電回路を一体で実現することができるため小型化が可能であり、回路による損失も低減させることができる。   As described above, according to the distribution and synthesis circuit of the present embodiment, a simple structure in which the input signal line 20 and the output signal line 30 corresponding to the antenna elements of the array antenna are arranged on the surface of the dielectric lens 10, for example, A feeding circuit for a phased array antenna can be realized. Further, since the power feeding circuit for horizontal and vertical molding can be realized integrally, the size can be reduced, and the loss due to the circuit can also be reduced.

なお、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。例えば、図1に示す入力信号線路20と出力信号線路30は、y軸方向に設ける例を示したが、z軸方向の外周面に配置するようにしてもよい。このように本発明は、上記した実施形態に限定されるものではなく、その要旨の範囲内で変形が可能である。   In addition, although the content of this invention was demonstrated along embodiment, it is obvious to those skilled in the art that this invention is not limited to these description and various deformation | transformation and improvement are possible. For example, although the input signal line 20 and the output signal line 30 illustrated in FIG. 1 are provided in the y-axis direction, they may be arranged on the outer peripheral surface in the z-axis direction. Thus, the present invention is not limited to the above-described embodiment, and can be modified within the scope of the gist thereof.

1、2:分配合成回路
10、11:誘電体レンズ
20:入力信号線路
30:出力信号線路
1, 2: Distribution / synthesis circuit 10, 11: Dielectric lens 20: Input signal line 30: Output signal line

Claims (3)

外周面が円滑な曲面を呈する立体の誘電体の外周部から、深さの異なる3種以上の孔が、当該誘電体の中心に向けて互いに干渉しないように周方向に適宜間隔を保持して前記外周部の全体に複数空けられた誘電体レンズと、
前記誘電体レンズの表面に接続される複数の入力信号線路と、
前記誘電体レンズの表面における前記入力信号線路の接続位置以外の位置に接続される複数の出力信号線路と
を備えることを特徴とする分配合成回路。
Three or more types of holes with different depths from the outer peripheral portion of the three-dimensional dielectric having a smooth curved outer peripheral surface are appropriately spaced in the circumferential direction so as not to interfere with each other toward the center of the dielectric. A plurality of dielectric lenses spaced over the entire outer periphery;
A plurality of input signal lines connected to the surface of the dielectric lens;
And a plurality of output signal lines connected to positions other than the connection positions of the input signal lines on the surface of the dielectric lens.
前記誘電体レンズの形状が球体の場合において、
前記孔の深さは、前記球体の半径の6分のn、但しnは5以下の整数であることを特徴とする請求項1に記載の分配合成回路。
In the case where the shape of the dielectric lens is a sphere,
2. The distribution and synthesis circuit according to claim 1, wherein the depth of the hole is n / 6th of the radius of the sphere, wherein n is an integer of 5 or less.
前記孔の直径は、使用する周波数の波長の3分の1以下の長さであることを特徴とする請求項1又は2に記載の分配合成回路。   3. The distribution / synthesis circuit according to claim 1, wherein the diameter of the hole is one-third or less of a wavelength of a frequency to be used.
JP2017038976A 2017-03-02 2017-03-02 Distribution and synthetic circuit Pending JP2018148292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017038976A JP2018148292A (en) 2017-03-02 2017-03-02 Distribution and synthetic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017038976A JP2018148292A (en) 2017-03-02 2017-03-02 Distribution and synthetic circuit

Publications (1)

Publication Number Publication Date
JP2018148292A true JP2018148292A (en) 2018-09-20

Family

ID=63591585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017038976A Pending JP2018148292A (en) 2017-03-02 2017-03-02 Distribution and synthetic circuit

Country Status (1)

Country Link
JP (1) JP2018148292A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220120940A1 (en) * 2020-10-16 2022-04-21 National Chiao Tung University Spherical gradient-index lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220120940A1 (en) * 2020-10-16 2022-04-21 National Chiao Tung University Spherical gradient-index lens

Similar Documents

Publication Publication Date Title
JP6555675B2 (en) Metamaterial-based transmit array for multi-beam antenna array assembly
CN109742556B (en) Broadband circularly polarized millimeter wave multi-feed-source multi-beam lens antenna
US7423604B2 (en) Waveguide horn antenna array and radar device
CN111262044B (en) Cylindrical luneberg lens antenna and cylindrical luneberg lens antenna array
CN106532274B (en) Dual-frequency circularly polarized planar reflective array antenna based on split ring metamaterial unit
CN111786090B (en) Planar broadband transmission array antenna based on liquid crystal adjustable material
JPWO2016121375A1 (en) Frequency selection surface, radio communication device and radar device
CN102122762A (en) Millimeter-wave 360-DEG omnidirectional-scan dielectric cylinder lens antenna
JP6638866B2 (en) Dielectric lens
JP2018148292A (en) Distribution and synthetic circuit
US8729511B2 (en) Electromagnetic wave beam splitter
KR102279931B1 (en) Planar linear phase array antenna with enhanced beam scanning
JP6534950B2 (en) Distribution synthesis circuit
US9331393B2 (en) Front feed satellite television antenna and satellite television receiver system thereof
CN113036426A (en) Antenna housing and frequency selective surface thereof
CN103094711A (en) Lens antenna
US20220077589A1 (en) Leaky Wave Antenna
Wang et al. High-efficiency electromagnetic wave controlling with all-dielectric Huygens’ metasurfaces
CN117175220B (en) Long Bo lens antenna with continuously gradual-changed holes
KR100447680B1 (en) Two-dimensional multilayer disk radiating structure for shaping flat-topped element pattern
TWI785658B (en) A composition antenna unit and array thereof
CN102780095B (en) High-directivity antenna
WO2023273600A1 (en) Lens unit, lens array, and array antenna
KR102468584B1 (en) Antenna and communication device
JP6457350B2 (en) Distribution / synthesis circuit and method for manufacturing distribution / synthesis circuit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170306