JP2018148031A - Copper nitride semiconductor and method for manufacturing the same - Google Patents

Copper nitride semiconductor and method for manufacturing the same Download PDF

Info

Publication number
JP2018148031A
JP2018148031A JP2017041774A JP2017041774A JP2018148031A JP 2018148031 A JP2018148031 A JP 2018148031A JP 2017041774 A JP2017041774 A JP 2017041774A JP 2017041774 A JP2017041774 A JP 2017041774A JP 2018148031 A JP2018148031 A JP 2018148031A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
thin film
copper nitride
fluorine
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017041774A
Other languages
Japanese (ja)
Other versions
JP6951734B2 (en
Inventor
功佑 松崎
Kosuke MATSUZAKI
功佑 松崎
細野 秀雄
Hideo Hosono
秀雄 細野
史康 大場
Fumiyasu Oba
史康 大場
悠 熊谷
Yu Kumagai
悠 熊谷
航 原田
Wataru Harada
航 原田
日出也 雲見
Hideya Kumomi
日出也 雲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2017041774A priority Critical patent/JP6951734B2/en
Publication of JP2018148031A publication Critical patent/JP2018148031A/en
Application granted granted Critical
Publication of JP6951734B2 publication Critical patent/JP6951734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper nitride semiconductor having high crystallinity and high hole effect mobility, preferably such a copper nitride semiconductor of p-type.SOLUTION: A copper nitride semiconductor comprises fluorine as an impurity. A method for manufacturing the copper nitride semiconductor comprises the step of performing a thermal treatment on a copper nitride semiconductor thin film at a temperature of 200-450°C in the presence of ammonia and fluorine-containing gas to form a copper nitride semiconductor thin film showing a p-type conductivity under the following condition: Fluorine-containing gas/(Ammonia+Fluorine-containing gas) is 0.1-10 vol.%. The method enables the formation of a copper nitride semiconductor thin film improved in crystallinity.SELECTED DRAWING: Figure 1

Description

本発明は、薄膜太陽電池の光吸収体材料等として有用である窒化銅半導体およびその製造方法に関する。   The present invention relates to a copper nitride semiconductor that is useful as a light absorber material for thin film solar cells and a method for producing the same.

無毒性でありふれた元素のみで構成される両極性半導体は、低環境負荷のデバイス開発において特に関心が寄せられている。pn接合素子を用いた薄膜太陽電池は、典型的にp型半導体(例えば、CdTeまたは銅インジウムガリウム硫化物/セレン化物(CIGS))を光エネルギー吸収体材料として使用する。カドミウムの毒性およびインジウム、ガリウム、テルルの限られた入手可能性のため、代替材料の開発が求められている。p型半導体の光吸収層は、発電効率に影響する少数キャリア寿命の観点から高い結晶性が求められている。またpnホモ接合素子を用いた場合、ヘテロ接合素子と比較しバンドの不連続性がないことから発電効率がさらに向上する。したがって高品質なp型半導体、好ましくは高品質なp型、n型の極性が制御できる両極性半導体であることが望ましい。   Bipolar semiconductors composed of only non-toxic and common elements are of particular interest in the development of low environmental load devices. Thin film solar cells using pn junction elements typically use a p-type semiconductor (eg, CdTe or copper indium gallium sulfide / selenide (CIGS)) as the light energy absorber material. Due to the toxicity of cadmium and the limited availability of indium, gallium and tellurium, the development of alternative materials is sought. The light absorption layer of the p-type semiconductor is required to have high crystallinity from the viewpoint of the minority carrier lifetime that affects the power generation efficiency. In addition, when a pn homojunction element is used, power generation efficiency is further improved because there is no band discontinuity compared to a heterojunction element. Therefore, a high-quality p-type semiconductor, preferably a high-quality p-type and n-type bipolar semiconductor capable of controlling the polarity is desirable.

窒化銅はありあふれた元素のみで構成され、有毒元素を含まない。バンドギャップは間接遷移で1.0〜1.4eVであり(非特許文献1、2、3)、単接合素子としてはShockley−Queisserモデルの最大変換効率が得られる1.4eVに近い。また2.2eV以上では光吸収係数が10cm−1以上と高いことから光吸収層の薄膜化が可能となる。よって、窒化銅薄膜の高品質なp型半導体と異種物質n型半導体とのヘテロ接合、または窒化銅薄膜のpn極性制御、pnホモ接合ができれば半導体材料として薄膜太陽電池への応用が期待できる。 Copper nitride is composed only of overflowing elements and does not contain toxic elements. The band gap is 1.0 to 1.4 eV by indirect transition (Non-Patent Documents 1, 2, and 3), and is close to 1.4 eV at which the maximum conversion efficiency of the Shockley-Queisser model can be obtained as a single junction element. Moreover, since the light absorption coefficient is as high as 10 5 cm −1 or more at 2.2 eV or more, the light absorption layer can be made thin. Therefore, if a heterojunction of a high-quality copper nitride thin film p-type semiconductor and a heterogeneous material n-type semiconductor, or a pn polarity control and a pn homojunction of a copper nitride thin film, application to a thin film solar cell as a semiconductor material can be expected.

古くからp型半導体として知られているCu2Oに代表されるCu+の化合物は、価電子帯上端はCu3d軌道とアニオンp軌道による混成軌道から構成され、Cu欠損により正孔を生成する材料群である。これまでCu+の2元系化合物の多く(Cu2O,Cu2S,Cu2Se,Cu2Te,CuSCNなど)は、p型半導体材料として知られている。窒化銅(CuN)はCu化合物であるにもかかわらず、p型伝導のみならずn型伝導についての報告もあり(非特許文献1、2、3、4)、他には薄膜の形態では金属、半導体、絶縁体(非特許文献5)、単結晶バルクでは絶縁体(非特許文献6)などの報告があり、その電子特性は高品質な結晶が作製できないため不明な点が多い。密度汎関数理論計算ではp型伝導の起源は銅欠損、またn型伝導は格子間銅または窒素サイトの酸素置換である(非特許文献4)。 Cu + compounds represented by Cu 2 O, which have long been known as p-type semiconductors, are materials in which the upper end of the valence band is composed of a hybrid orbital of Cu3d orbitals and anion p orbitals, and generates holes due to Cu deficiencies. A group. Until now, many of the binary compounds of Cu + (Cu 2 O, Cu 2 S, Cu 2 Se, Cu 2 Te, CuSCN, etc.) are known as p-type semiconductor materials. Although copper nitride (Cu 3 N) is a Cu + compound, there are reports on not only p-type conduction but also n-type conduction (Non-Patent Documents 1, 2, 3, 4). There are reports of metals, semiconductors, insulators (Non-Patent Document 5) in the form, and insulators (Non-Patent Document 6) in the single crystal bulk, and there are many unclear points because the electronic characteristics cannot produce high-quality crystals. . In the density functional theory calculation, the origin of p-type conduction is copper deficiency, and n-type conduction is oxygen substitution at interstitial copper or nitrogen sites (Non-patent Document 4).

従来、CuNは、たとえばCuF等の前駆体とアンモニアを280〜325℃で熱処理して得られる方法が知られている(非特許文献7、8)が、粉末の形態でしか得られていないこと、また熱処理温度が325℃以下に制限されることから、高い結晶性を有し、バルク体または薄膜の形態でキャリア極性、濃度および移動度の制御性に優れたCuNが望まれている。 Conventionally, Cu 3 N has been known to be obtained by heat-treating a precursor such as CuF 2 and ammonia at 280 to 325 ° C. (Non-Patent Documents 7 and 8), but it can be obtained only in powder form. In addition, since the heat treatment temperature is limited to 325 ° C. or less, Cu 3 N having high crystallinity and excellent controllability of carrier polarity, concentration and mobility in the form of a bulk body or a thin film is desired. It is rare.

A. Zakutayev et al., J. Phys. Chem. Lett. 5, 1117 (2014)A. Zakutayev et al., J. Phys. Chem. Lett. 5, 1117 (2014) K. Matsuzaki et al., Appl. Phys. Lett. 5, 1117 (2014)K. Matsuzaki et al., Appl. Phys. Lett. 5, 1117 (2014) N. Yamada et al., Chem. Mater. 27, 8076 (2015)N. Yamada et al., Chem. Mater. 27, 8076 (2015) A. N. Fioretti et al., J. Appl. Phys. 119, 181508 (2016)A. N. Fioretti et al., J. Appl. Phys. 119, 181508 (2016) Nosaka et al., Thin Solid Films 348, 8 (1999)Nosaka et al., Thin Solid Films 348, 8 (1999) Zachwieja et al., J. Less-Common Met. 161, 175 (1990)Zachwieja et al., J. Less-Common Met. 161, 175 (1990) Yuza et al., Z. Anorg. Allg. Chem. 239, 282 (1938)Yuza et al., Z. Anorg. Allg. Chem. 239, 282 (1938) Paniconi et al., Solid State Sci. 9, 907 (2007)Paniconi et al., Solid State Sci. 9, 907 (2007)

本発明は、高い結晶性を有し、高いホール効果移動度を有する窒化銅半導体を提供することを目的とする。さらに、本発明は、窒化銅半導体薄膜をフッ素ドープ処理することにより、p型の伝導型を示し、結晶性の改良された窒化銅半導体薄膜の製造方法を提供する。   An object of the present invention is to provide a copper nitride semiconductor having high crystallinity and high Hall effect mobility. Furthermore, the present invention provides a method for producing a copper nitride semiconductor thin film that exhibits p-type conductivity and improved crystallinity by fluorine-doping the copper nitride semiconductor thin film.

本発明は上記の問題を解決するために、以下の発明を提供するものである。
(1)フッ素を不純物として含有する窒化銅半導体。
(2)フッ素がアクセプター準位を形成している上記(1)に記載の窒化銅半導体。
(3)フッ素が窒化銅結晶格子の格子間原子として含まれる上記(1)または(2)に記載の窒化銅半導体。
(4)フッ素が0.1〜5.0mol%の濃度で含まれる上記(1)〜(3)のいずれかに記載の窒化銅半導体。
(5)窒化銅半導体が薄膜である上記(1)に記載の窒化銅半導体。
(6)窒化銅半導体薄膜がp型の伝導型を示す上記(5)に記載の窒化銅半導体。
(7)窒化銅半導体薄膜をアンモニアおよびフッ素含有ガスの存在下に、200〜450℃の温度で、フッ素含有ガス/(アンモニア+フッ素含有ガス)が0.1〜3.0の条件下で熱処理することにより、p型の伝導型を示す窒化銅半導体薄膜を形成させることを特徴とする上記(1)に記載の窒化銅半導体の製造方法。
(8)フッ素含有ガスがClF、ClOF、OF、FNO、FNO、NF、N、N、CF、CHF、CH、CHF、C、C、C、C、SF、またはFである上記(7)に記載の窒化銅半導体の製造方法。
(9)上記(6)記載のp型窒化銅半導体薄膜とホモ接合をなすn型窒化銅半導体薄膜とを積層してなるpn接合素子。
(10)上記(9)記載のpn接合素子を含む薄膜太陽電池。
(11)上記(6)記載のp型窒化銅半導体薄膜とヘテロ接合をなすn型半導体薄膜とを積層してなるpn接合素子。
(12)p型窒化銅半導体薄膜を光吸収層として、上記(11)記載のpn接合素子を含む薄膜太陽電池。
(13)上記(6)記載のp型窒化銅半導体薄膜を用いて、n型半導体薄膜との間に絶縁層を設けてなるpin接合素子。
The present invention provides the following inventions in order to solve the above problems.
(1) A copper nitride semiconductor containing fluorine as an impurity.
(2) The copper nitride semiconductor according to (1), wherein fluorine forms an acceptor level.
(3) The copper nitride semiconductor according to (1) or (2), wherein fluorine is contained as an interstitial atom of a copper nitride crystal lattice.
(4) The copper nitride semiconductor according to any one of (1) to (3), wherein fluorine is contained at a concentration of 0.1 to 5.0 mol%.
(5) The copper nitride semiconductor according to (1), wherein the copper nitride semiconductor is a thin film.
(6) The copper nitride semiconductor according to (5), wherein the copper nitride semiconductor thin film exhibits a p-type conductivity.
(7) The copper nitride semiconductor thin film is heat-treated in the presence of ammonia and a fluorine-containing gas at a temperature of 200 to 450 ° C. under a condition of fluorine-containing gas / (ammonia + fluorine-containing gas) of 0.1 to 3.0. By doing so, the copper nitride semiconductor thin film which shows a p-type conductivity type is formed, The manufacturing method of the copper nitride semiconductor as described in said (1) characterized by the above-mentioned.
(8) The fluorine-containing gas is ClF 3 , ClO 3 F, OF 2 , FNO, F 3 NO, NF 3 , N 2 F 2 , N 2 F 4 , CF 4 , CH 3 F, CH 2 F 2 , CHF 3 , C 2 F 6, C 3 F 8, C 4 F 8, C 4 F 6, SF 6 , or F 2 in the above (7) the method of manufacturing the copper nitride semiconductor described.
(9) A pn junction element formed by laminating an n-type copper nitride semiconductor thin film forming a homojunction with the p-type copper nitride semiconductor thin film according to (6).
(10) A thin film solar cell including the pn junction element according to (9).
(11) A pn junction element formed by laminating a p-type copper nitride semiconductor thin film according to (6) above and an n-type semiconductor thin film forming a heterojunction.
(12) A thin-film solar cell including the pn junction element according to (11) above, using a p-type copper nitride semiconductor thin film as a light absorption layer.
(13) A pin junction element in which an insulating layer is provided between an n-type semiconductor thin film and the p-type copper nitride semiconductor thin film according to (6).

本発明によれば、高い結晶性を有し、高いホール効果移動度を有する窒化銅半導体、好適にはp型の窒化銅半導体を提供し得る。   According to the present invention, a copper nitride semiconductor having high crystallinity and high Hall effect mobility, preferably a p-type copper nitride semiconductor can be provided.

大気暴露した高温・脱酸素処理した窒化銅(CuN)薄膜の真空下におけるキャリア濃度の経時変化および真空下紫外線(UV)照射による吸着種脱離処理後の電子濃度(〜1014cm-3)を示す図である。Change in carrier concentration over time of high-temperature, deoxygenated copper nitride (Cu 3 N) thin film exposed to the atmosphere and electron concentration after adsorption species desorption treatment by ultraviolet (UV) irradiation under vacuum (up to 10 14 cm It is a figure which shows 3 ). (a)250℃、(b)300℃における銅多結晶薄膜のNH/NFガスによる直接窒化反応のNF濃度依存性および(c)酸化剤の効果を示すX線回折図形である。(A) X-ray diffraction pattern showing NF 3 concentration dependency of direct nitridation reaction by NH 3 / NF 3 gas of copper polycrystalline thin film at 250 ° C. and (b) 300 ° C. and (c) effect of oxidizing agent. (a)NH/NFガス、(b)Ar/NFガスで後熱処理したCuNエピタキシャル薄膜のX線回折図形である。(c)面直、(d)面内および面内020回折ロッキングカーブの高分解能X線回折図形である。(e)250℃、フッ素ドープ処理した面直、面内の格子定数、(f)結晶性の指標となる面直200、面内020回折のロッキングカーブのピーク半値幅のNF濃度依存性を示す図である。4A is an X-ray diffraction pattern of a Cu 3 N epitaxial thin film post-heat treated with (a) NH 3 / NF 3 gas and (b) Ar / NF 3 gas. (C) Straight plane, (d) High resolution X-ray diffraction pattern of in-plane and in-plane 020 diffraction rocking curves. (E) NF 3 concentration dependency of the peak half-value width of the rocking curve of 250 ° C., fluorine-treated surface straightness, in-plane lattice constant, (f) straightness 200 serving as an index of crystallinity, and in-plane 020 diffraction. FIG. 電子線マイクロアナライザ(EPMA)による、NH/NFガス熱処理したCuNエピタキシャル薄膜中のフッ素濃度を示す図である。According to electron microprobe (EPMA), a diagram showing a fluorine concentration of NH 3 / NF 3 Cu 3 N epitaxial thin film which is gas heat treatment. フッ素ドープ処理前後のCuN薄膜のHO(M/Z=18)、F(M/Z=19)、HF(M/Z=20)、窒素(M/Z=28)の昇温脱離ガス分析を示す図である。Temperature increase of H 2 O (M / Z = 18), F (M / Z = 19), HF (M / Z = 20), nitrogen (M / Z = 28) of the Cu 3 N thin film before and after the fluorine doping treatment It is a figure which shows a desorption gas analysis. 真空UV照射前後のフッ素ドープしたCuNエピタキシャル薄膜のHall効果測定によって得られた(a)キャリア濃度、(b)移動度の温度依存性を示す図である。It is a figure which shows the temperature dependence of (a) carrier concentration and (b) mobility obtained by Hall effect measurement of the fluorine-doped Cu 3 N epitaxial thin film before and after vacuum UV irradiation. 真空UV照射後のフッ素ドープしたCuNエピタキシャル薄膜のHall効果測定によって得られた300Kにおける(a)キャリア濃度、(b)移動度のNF濃度依存性を示す図である。(A) the carrier concentration at 300K obtained by Hall effect measurement of Cu 3 N epitaxial thin films doped with fluorine after the vacuum UV radiation is a diagram showing the NF 3 concentration dependence of (b) mobility. 真空100℃熱処理の吸着種脱離処理で得られたn型(電子濃度〜1014cm−3)、真空175℃の熱処理で得られたn型(電子濃度〜1017cm−3)、フッ素ドープ処理で得られたp型(正孔濃度〜1016cm−3)CuNエピタキシャル薄膜の(a)キャリア濃度、(b)Hall効果移動度の温度依存性を示す図である。N-type (electron concentration of 10 14 cm −3 ) obtained by adsorption species desorption treatment of vacuum 100 ° C. heat treatment, n-type (electron concentration of 10 17 cm −3 ) obtained by heat treatment at vacuum 175 ° C., fluorine doped obtained p-type processing (hole concentration ~10 16 cm -3) Cu 3 N epitaxial thin film (a) the carrier concentration is a diagram showing the temperature dependence of the (b) Hall effect mobility. n型(電子濃度〜1014cm−3)、n型(電子濃度〜1017cm−3)、p型(正孔濃度1017cm−3)CuNエピタキシャル薄膜の硬X線光電子分光スペクトルを示す図である。Hard X-ray photoelectron spectroscopy spectra of n-type (electron concentration of 10 14 cm −3 ), n-type (electron concentration of 10 17 cm −3 ), p-type (hole concentration of 10 17 cm −3 ) Cu 3 N epitaxial thin film FIG. (a)フッ素ドープ処理前(高温・脱酸素処理後)、(b)フッ素ドープ処理後のCuNエピタキシャル薄膜の光吸収係数を示す図である。(A) fluorine-doping treatment before (hot-deoxygenated later) is a graph showing the light absorption coefficient of the Cu 3 N epitaxial thin film after (b) fluorine-doping treatment.

本発明の窒化銅半導体は、フッ素を不純物として含有する。好適にはフッ素は0.1〜5.0mol%の濃度、さらに好適には0.5〜2.0mol%の濃度で含まれる。   The copper nitride semiconductor of the present invention contains fluorine as an impurity. Preferably, fluorine is contained at a concentration of 0.1 to 5.0 mol%, more preferably 0.5 to 2.0 mol%.

本発明の1実施態様において、本発明の窒化銅半導体は、好適には500〜700℃で高品質化熱処理を施した、窒化銅半導体をアンモニアおよびフッ素含有ガスの存在下に、200〜450℃、好適には250〜350℃の温度で熱処理することにより、得られる。   In one embodiment of the present invention, the copper nitride semiconductor of the present invention is preferably subjected to high-quality heat treatment at 500 to 700 ° C., and the copper nitride semiconductor is 200 to 450 ° C. in the presence of ammonia and a fluorine-containing gas. It is preferably obtained by heat treatment at a temperature of 250 to 350 ° C.

窒化銅半導体の形状は制限されず、粒状、板状または薄膜から選択される。たとえば、粒径が好適には100μm以下、さらに好ましくは10μm以下の銅粉末、厚さが10〜100μm程度の銅板、膜厚10〜5000nm程度の薄膜が挙げられる。   The shape of the copper nitride semiconductor is not limited and is selected from a granular shape, a plate shape, or a thin film. For example, a copper powder having a particle size of preferably 100 μm or less, more preferably 10 μm or less, a copper plate having a thickness of about 10 to 100 μm, and a thin film having a thickness of about 10 to 5000 nm can be used.

薄膜が形成される基板は、特に制限されず、アルカリガラス、無アルカリガラス、チタン酸ストロンチウム、石英、サファイア、SiC、シリコン、酸化マグネシウム、酸化亜鉛、酸化ジルコニウム、ランタンアルミネート(LaAlO3)、LSAT([LaAlO3])0.3−[SrAl0.5Ta0.53]0.7)、ポリイミド、ステンレス鋼等から選ばれるが、ガラス、チタン酸ストロンチウム、ランタンアルミネート(LaAlO3)、LSAT([LaAlO3])0.3−[SrAl0.5Ta0.53]0.7)、MgF、CaF、SrF、BaF等が好適に用いられる。 The substrate on which the thin film is formed is not particularly limited, and alkali glass, alkali-free glass, strontium titanate, quartz, sapphire, SiC, silicon, magnesium oxide, zinc oxide, zirconium oxide, lanthanum aluminate (LaAlO 3 ), LSAT ([LaAlO 3]) 0.3 - [SrAl 0.5 Ta 0.5 O 3] 0.7), polyimide, and are selected from stainless steel, glass, strontium titanate, lanthanum aluminate (LaAlO 3), LSAT ([ LaAlO 3]) 0.3 - [SrAl 0.5 Ta 0.5 O 3] 0.7), MgF 2, CaF 2, SrF 2, BaF 2 and the like are suitably used.

フッ素含有ガスとしては、ClF、ClOF、OF、FNO、FNO、NF、N、N、CF、CHF、CH、CHF、C、C、C、C、SF、またはFが好適に用いられ得る。 Examples of the fluorine-containing gas include ClF 3 , ClO 3 F, OF 2 , FNO, F 3 NO, NF 3 , N 2 F 2 , N 2 F 4 , CF 4 , CH 3 F, CH 2 F 2 , CHF 3 , C 2 F 6 , C 3 F 8 , C 4 F 8 , C 4 F 6 , SF 6 , or F 2 can be suitably used.

本発明の好適な1実施態様において、窒化銅半導体薄膜をアンモニアおよびフッ素含有ガスの存在下に、200〜450℃の温度で熱処理することにより、p型の伝導型を示す窒化銅半導体薄膜を形成し得る。   In one preferred embodiment of the present invention, a copper nitride semiconductor thin film exhibiting p-type conductivity is formed by heat-treating the copper nitride semiconductor thin film at a temperature of 200 to 450 ° C. in the presence of ammonia and a fluorine-containing gas. Can do.

アンモニアおよびフッ素含有ガスの使用量、すなわち(フッ素含有ガス/(アンモニア+フッ素含有ガス)は、フッ素含有ガスの種類、加熱温度、銅金属前駆体の表面積、ガス流体分布等により異なるが、爆発限界内かつCuFの生成しない範囲で通常0.1〜10vol%、好ましくは0.1〜3vol%程度から選ばれる。 The amount of ammonia and fluorine-containing gas used, that is, (fluorine-containing gas / (ammonia + fluorine-containing gas) varies depending on the type of fluorine-containing gas, heating temperature, copper metal precursor surface area, gas fluid distribution, etc., but the explosion limit Usually 0.1~10Vol% in inner and range not generating the CuF 2, preferably selected from about 0.1~3vol%.

アンモニアおよびフッ素含有ガスの総流量レートは、通常10〜1000mL/分程度から選ばれる。   The total flow rate of ammonia and fluorine-containing gas is usually selected from about 10 to 1000 mL / min.

高温熱処理に供される窒化銅半導体薄膜は、その銅源および窒素源としては、特に制限されず、採用する堆積法に応じて決定され得る。堆積法としては、分子線エピタキシー法(MBE法)、スパッタ法、パルスレーザー堆積法(PLD法)、化学蒸着法(CVD法)、電子線蒸着法、抵抗加熱蒸着法、原子層堆積法(ALD法)等が挙げられる。粒子エネルギーの大小にかかわらず、採用し得るが、これらのうち、複数の原料を独立に制御して原子比組成の厳密な制御しやすく、粒子のエネルギーが小さいMBE法が最も好適であり、薄膜成長レートの観点からはスパッタ法またはCVD法が好適である。   The copper nitride semiconductor thin film subjected to the high-temperature heat treatment is not particularly limited as the copper source and the nitrogen source, and can be determined according to the deposition method employed. The deposition methods include molecular beam epitaxy (MBE), sputtering, pulsed laser deposition (PLD), chemical vapor deposition (CVD), electron beam vapor deposition, resistance heating vapor deposition, and atomic layer deposition (ALD). Law). The MBE method is most suitable because it is easy to strictly control the atomic ratio composition by independently controlling a plurality of raw materials, and the particle energy is small. From the viewpoint of the growth rate, the sputtering method or the CVD method is preferable.

フッ素ドープ処理に供される高温熱処理の窒化銅薄膜は、その熱処理条件としては、アンモニアおよび酸化剤(O、O、NO、NO、Cl、NF、Fなど)の混合ガス中で、500〜800℃の温度で熱処理することにより、高品質な窒化銅半導体薄膜が得られる。酸化剤をフッ素系ガスとした場合、高温熱処理による高品質化およびフッ素ドープが同時に可能であり、基板がフッ化され得るためフッ化物基板が好適である。酸素系または塩素系ガスの酸化剤では、ドナーとなる酸素や塩素不純物が混入するため、高温熱処理後に100〜350℃の温度、NH雰囲気下で酸素・塩素の除去処理を施すのが好適である。 The copper nitride thin film subjected to high temperature heat treatment used for fluorine doping treatment is mixed with ammonia and an oxidizing agent (O 2 , O 3 , N 2 O, NO, Cl 2 , NF 3 , F 2, etc.) as the heat treatment conditions. A high-quality copper nitride semiconductor thin film can be obtained by heat treatment in gas at a temperature of 500 to 800 ° C. When the oxidizing agent is a fluorine-based gas, a high-quality heat treatment and fluorine doping can be simultaneously performed, and a fluoride substrate is preferable because the substrate can be fluorinated. Oxygen-based or chlorine-based gas oxidants contain oxygen and chlorine impurities that serve as donors. Therefore, it is preferable to perform oxygen / chlorine removal treatment at a temperature of 100 to 350 ° C. in an NH 3 atmosphere after high-temperature heat treatment. is there.

好適には、本発明の窒化銅半導体は薄膜であり、その膜厚は通常10〜5000nm程度から選ばれる。窒化銅半導体薄膜の主成分の組成比が、CuNであり、金属銅の析出は許容されるが、伝導型の制御しやすさの観点からは、金属銅の相を含まないのが好適である。0価のPdを加えたPdxCu3N(x=0-1)でもバンドギャップが狭くなるだけで、フッ素ドープによりp型になるので、PdxCu3Nも本発明の窒化銅半導体に包含され得る。 Suitably, the copper nitride semiconductor of this invention is a thin film, The film thickness is normally chosen from about 10-5000 nm. The composition ratio of the main component of the copper nitride semiconductor thin film is Cu 3 N, and precipitation of metallic copper is allowed, but from the viewpoint of easy control of the conductivity type, it is preferable not to contain a metallic copper phase. It is. Even if Pd x Cu 3 N (x = 0-1) with zero-valent Pd is added, the band gap is narrowed and becomes p-type by fluorine doping. Therefore, Pd x Cu 3 N is also included in the copper nitride semiconductor of the present invention. Can be included.

本発明の好適な態様において、MBE法で作製した窒化銅半導体薄膜を、n型伝導に寄与する酸素の混入を抑制し得るアンモニア及び三フッ化窒素ガス中で上記熱処理によりフッ素ドープを行うことにより、ガス吸着を排除し得る真空下においてもp型伝導を示す高品質の窒化銅半導体薄膜を作製し得る。   In a preferred embodiment of the present invention, a copper nitride semiconductor thin film prepared by MBE is fluorine-doped by the above heat treatment in ammonia and nitrogen trifluoride gas capable of suppressing the mixing of oxygen contributing to n-type conduction. In addition, a high-quality copper nitride semiconductor thin film exhibiting p-type conduction can be produced even under a vacuum that can eliminate gas adsorption.

得られる結晶性の改良された窒化銅半導体薄膜は、1.0度以下、好適には0.5度以下のXRD回折ピークの面直かつ面内ロッキングカーブ半値幅を有する。   The obtained crystalline copper nitride semiconductor thin film having improved crystallinity has a full width at half maximum of an XRD diffraction peak of 1.0 degrees or less, preferably 0.5 degrees or less, and an in-plane rocking curve half width.

さらに、得られる結晶性の改良された窒化銅半導体薄膜は、光子エネルギー0.5eVで5×10−3cm−1以下、好適には3×10−3cm−1以下のサブギャップ吸収係数、かつバンド端の1.80eV〜1.90eVにピークを有する。 Furthermore, the obtained copper nitride semiconductor thin film with improved crystallinity has a subgap absorption coefficient of 5 × 10 −3 cm −1 or less, preferably 3 × 10 −3 cm −1 or less at a photon energy of 0.5 eV, And it has a peak at 1.80 eV to 1.90 eV at the band edge.

本発明の窒化銅半導体は、電子・正孔移動度が1cm/Vs以上であるのが好適である。 The copper nitride semiconductor of the present invention preferably has an electron / hole mobility of 1 cm 2 / Vs or more.

本発明の窒化銅半導体薄膜は、さらに以下のような特性を有する。
(キャリア輸送特性)
電気伝導度が10-3S・cm-1〜10S・cm-1、正孔濃度が1016〜1017cm-3、正孔移動度が1cm/Vs以上、好適には10〜200cm/Vs。
The copper nitride semiconductor thin film of the present invention further has the following characteristics.
(Carrier transport characteristics)
Electrical conductivity is 10 −3 S · cm −1 to 10 1 S · cm −1 , hole concentration is 10 16 to 10 17 cm −3 , hole mobility is 1 cm 2 / Vs or more, preferably 10 200 cm 2 / Vs.

(光吸収スペクトル)
光吸収係数は1.8eV以上で10cm−1以上を超え、間接バンドギャップ〜1.0eVで吸収係数は5〜10×10cm−1
(Light absorption spectrum)
The light absorption coefficient is 1.8 eV or more and more than 10 5 cm −1 , the indirect band gap is 1.0 eV, and the absorption coefficient is 5 to 10 × 10 3 cm −1 .

得られるp型窒化銅半導体薄膜は、CuNよりワイドギャップのn型半導体薄膜を積層してヘテロpn接合素子、またホモ接合をなすn型窒化銅半導体薄膜とを積層してなるpnホモ接合素子を形成し得る。得られるヘテロpn接合素子は、CuNのバンドギャップの大きさが太陽光のもっとも強い強度を持つエネルギーに良く対応しているため、得られる窒化銅半導体薄膜を光吸収層として薄膜太陽電池に用いることにより発電効率に優れた発電層を提供し得る。 The obtained p-type copper nitride semiconductor thin film is a pn homojunction in which an n-type semiconductor thin film having a wider gap than Cu 3 N is laminated and a hetero pn junction element or an n-type copper nitride semiconductor thin film forming a homojunction is laminated. An element can be formed. Since the obtained hetero pn junction element corresponds well to the energy having the strongest intensity of sunlight with the size of the band gap of Cu 3 N, the obtained copper nitride semiconductor thin film can be used as a light absorption layer in a thin film solar cell. By using it, a power generation layer having excellent power generation efficiency can be provided.

さらに、本発明で得られるp型窒化銅半導体薄膜を用いて、n型半導体薄膜との間に、絶縁層を設けてなるpin接合素子を形成し得る。絶縁層としては、高温・酸素除去処理より得られる絶縁層(電子濃度〜1014cm−3)を用いることができる。 Furthermore, a pin junction element in which an insulating layer is provided between the n-type semiconductor thin film and the p-type copper nitride semiconductor thin film obtained in the present invention can be formed. As the insulating layer, an insulating layer (electron concentration: 10 14 cm −3 ) obtained by high temperature / oxygen removal treatment can be used.

以下、実施例により、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

窒化銅(CuN)薄膜を作製した製膜条件は基板温度140℃であり、基板には市販品のSrTiO(100)単結晶を用いた。窒素ラジカル発生用の高周波プラズマ装置の出力500W、窒素の流量3.50SCCMを一定にし、Cuの供給源にはエフュージョンセルを用い、窒化銅薄膜が得られる成長レート30〜50nm/hでCuN(100)エピタキシャル薄膜を作製した。薄膜作製後電気炉に薄膜を搬送し、600℃、NH/O雰囲気の高温熱処理により高品質結晶を作製し、350℃、NH雰囲気熱処理によりドナーとなる残留酸素を除去した。 The film forming conditions for producing the copper nitride (Cu 3 N) thin film were a substrate temperature of 140 ° C., and a commercially available SrTiO 3 (100) single crystal was used for the substrate. The output of a high-frequency plasma apparatus for generating nitrogen radicals is 500 W, the flow rate of nitrogen is 3.50 SCCM, an effusion cell is used as a Cu supply source, and Cu 3 N is obtained at a growth rate of 30 to 50 nm / h to obtain a copper nitride thin film. An (100) epitaxial thin film was produced. After forming the thin film, the thin film was transferred to an electric furnace, a high-quality crystal was prepared by high-temperature heat treatment at 600 ° C. in an NH 3 / O 2 atmosphere, and residual oxygen serving as a donor was removed by heat treatment at 350 ° C. in NH 3 atmosphere.

高温・酸素除去処理後、大気暴露したCuNエピタキシャル薄膜の真空におけるホール(Hall)効果測定により得られるキャリア極性、濃度の経時変化を図1に示す。真空引き開始から2時間後までホール起電圧が正であることからキャリア極性はp型であり、3時間後にホール起電圧が負となりキャリア極性がn型に反転した。したがって大気暴露したCuNでは酸素分子などが表面に負電荷吸着し、結晶中の電子を引き抜き、正孔が生成されることがわかった。 FIG. 1 shows changes in carrier polarity and concentration over time obtained by measuring the Hall effect in a vacuum of a Cu 3 N epitaxial thin film exposed to the air after high temperature / oxygen removal treatment. Since the Hall electromotive voltage was positive until 2 hours after the start of evacuation, the carrier polarity was p-type, and after 3 hours the Hall electromotive voltage became negative and the carrier polarity was inverted to n-type. Therefore, it was found that in Cu 3 N exposed to the atmosphere, oxygen molecules and the like adsorb negatively on the surface, extract electrons in the crystal, and generate holes.

高温・酸素除去処理、不活性Ar雰囲気下の試料搬送後の真空UV照射(300K)により、ドナーとなる残留酸素や吸着種を可能な限り除去したCuNはn型半導体(電子濃度1×1014cm−3、Hall移動度5〜8cm−1−1)であることから、Cu/Nの欠陥制御だけでは安定なp型伝導を示すCuNの作製は困難と考えられる。 Cu 3 N, which removes residual oxygen and adsorbed species as much as possible by high-temperature / oxygen removal treatment and vacuum UV irradiation (300 K) after sample transport in an inert Ar atmosphere, is an n-type semiconductor (electron concentration 1 × 10 14 cm −3 , Hall mobility 5 to 8 cm 2 V −1 s −1 ), it is considered difficult to produce Cu 3 N exhibiting stable p-type conduction only by defect control of Cu / N. .

HSE06型のハイブリッド汎関数を用いた第一原理計算により、フッ素不純物の安定位置(CuNのN置換位置または格子間位置)及び不純物準位を評価した結果、フッ素不純物は格子間位置を優先的に占有することで主に格子間原子として存在し、アクセプター準位を形成することがわかった。 As a result of first-principles calculations using hybrid functionals of HSE06 type, the stable position of fluorine impurities (N substitution position of Cu 3 N or interstitial position) and impurity levels were evaluated. Occupied as a result, it was found to exist mainly as interstitial atoms and form acceptor levels.

フッ素系ガスを酸化剤に用いた銅の直接窒化反応を確認するために、NHおよび酸化性ガスである三フッ化窒素(NF)ガスの混合雰囲気下でソーダライムガラス上に電子線蒸着法で作製した膜厚約140nmの多結晶銅薄膜を熱処理した。NH/NF、NHガス、NH/Oガス中で熱処理した薄膜の高出力X線回折(XRD)(薄膜法、出力:50kV−300mA)を図2(a)〜(c)に示す。図2(a)よりNH/NF雰囲気(NF:1vol%)では250℃以上で銅が完全に窒化したのに対して、NH/O雰囲気(O:1vol%)、250℃では銅は未反応であり、300℃で部分的に窒化した。またNH/NF雰囲気下、250℃および300℃の熱処理でNF濃度がそれぞれ1.0vol%、0.5vol%で銅薄膜が完全に窒化しCuN相のみが得られた。 In order to confirm the direct nitridation reaction of copper using a fluorine-based gas as an oxidizing agent, electron beam evaporation is performed on soda lime glass in a mixed atmosphere of NH 3 and oxidizing gas nitrogen trifluoride (NF 3 ) gas. A polycrystalline copper thin film having a thickness of about 140 nm prepared by the method was heat-treated. High power X-ray diffraction (XRD) (thin film method, output: 50 kV-300 mA) of a thin film heat-treated in NH 3 / NF 3 , NH 3 gas, NH 3 / O 2 gas is shown in FIGS. Shown in From FIG. 2 (a), in the NH 3 / NF 3 atmosphere (NF 3 : 1 vol%), copper was completely nitrided at 250 ° C. or higher, whereas in the NH 3 / O 2 atmosphere (O 2 : 1 vol%), 250 Copper was unreacted at ℃ and was partially nitrided at 300 ℃. In addition, the copper thin film was completely nitrided by heat treatment at 250 ° C. and 300 ° C. in an NH 3 / NF 3 atmosphere at NF 3 concentrations of 1.0 vol% and 0.5 vol%, respectively, and only the Cu 3 N phase was obtained.

フッ素ドープの手法を検討するために、CuNエピタキシャル薄膜(基板:SrTiO(100)単結晶)をNH/NF雰囲気(NF:0.1vol%)およびAr/NF雰囲気(NF:0.1vol%)で後熱処理したXRDパターンを図3(a)、(b)に示す。NH/NF雰囲気では、275℃〜400℃で窒化銅が得られるが、350℃以上でSrTiO(100)単結晶基板とNFとの反応生成物が検出され、さらに450℃では銅金属相と他の生成物に分解した。またAr/NF雰囲気では150℃までCuN単相であり、NFが熱分解により活性となる200℃以上ではCuF相が検出された。したがってAr/NF雰囲気ではフッ素ドープの制御は困難であり、NH/NF雰囲気によりフッ素ドープ処理を行った。 In order to study the fluorine doping method, a Cu 3 N epitaxial thin film (substrate: SrTiO 3 (100) single crystal) is mixed with an NH 3 / NF 3 atmosphere (NF 3 : 0.1 vol%) and an Ar / NF 3 atmosphere (NF 3 : 0.1 vol%), the XRD pattern subjected to post-heat treatment is shown in FIGS. In an NH 3 / NF 3 atmosphere, copper nitride is obtained at 275 ° C. to 400 ° C., but a reaction product of SrTiO 3 (100) single crystal substrate and NF 3 is detected at 350 ° C. or higher. Decomposed into metal phase and other products. Further, in the Ar / NF 3 atmosphere, a Cu 3 N single phase was obtained up to 150 ° C., and a CuF 2 phase was detected at 200 ° C. or higher where NF 3 becomes active by thermal decomposition. Therefore, it is difficult to control fluorine doping in an Ar / NF 3 atmosphere, and fluorine doping treatment was performed in an NH 3 / NF 3 atmosphere.

図3(c)、(d)にフッ素ドープ処理後のCuN薄膜(基板:SrTiO(100))の高分解能X線回折図形を示す。フッ素ドープ処理後においても薄膜と基板はcube-on-cubeのエピタキシャル関係が保たれており、NF濃度に対して面直の格子定数は小さく、またロッキングカーブ半値幅は大きくなる傾向があった。 FIGS. 3C and 3D show high-resolution X-ray diffraction patterns of a Cu 3 N thin film (substrate: SrTiO 3 (100)) after fluorine doping treatment. Even after the fluorine doping treatment, the thin film and the substrate maintained a cube-on-cube epitaxial relationship, and the lattice constant perpendicular to the NF 3 concentration was small, and the half-width of the rocking curve tended to be large. .

NH/NF雰囲気でフッ素ドープ処理したCuNエピタキシャル薄膜のフッ素濃度を電子線マイクロアナライザー(EPMA)により測定した。フッ素ドープ処理により生成されるフッ化アンモニウムは純水の超音波洗浄により除去した。図4(a)、(b)に熱処理温度およびNF濃度に対するフッ素濃度を示す。熱処理温度250〜300℃ではフッ素濃度が0.5〜1.5mol%であった。また350〜400℃においては、SrTiO単結晶基板中にフッ素が検出されたため、薄膜中のフッ素濃度は最大でも2mol%と見積もられた。 The fluorine concentration of the Cu 3 N epitaxial thin film treated with fluorine in an NH 3 / NF 3 atmosphere was measured by an electron beam microanalyzer (EPMA). Ammonium fluoride produced by the fluorine doping treatment was removed by ultrasonic cleaning of pure water. 4A and 4B show the fluorine concentration with respect to the heat treatment temperature and the NF 3 concentration. The fluorine concentration was 0.5 to 1.5 mol% at a heat treatment temperature of 250 to 300 ° C. Further, at 350 to 400 ° C., fluorine was detected in the SrTiO 3 single crystal substrate, so the fluorine concentration in the thin film was estimated to be 2 mol% at the maximum.

以下、フッ素ドープ処理は、高温処理(600℃、NH/O雰囲気)および酸素除去処理(350℃、NH雰囲気)後に、NH/NF雰囲気下、基板との反応が抑制される250℃で熱処理を施した。 Hereinafter, in the fluorine doping treatment, the reaction with the substrate is suppressed in the NH 3 / NF 3 atmosphere after the high temperature treatment (600 ° C., NH 3 / O 2 atmosphere) and the oxygen removal treatment (350 ° C., NH 3 atmosphere). Heat treatment was performed at 250 ° C.

図5(a)、(b)にフッ素ドープ処理前後のCuN薄膜のHO(M/Z=18)、F(M/Z=19)、HF(M/Z=20)およびN(M/Z=28)の真空下における昇温脱離ガス分析を示す。フッ素ドープ処理により生成されるフッ化アンモニウムは純水で超音波洗浄により除去した。フッ素ドープ処理前の薄膜ではCuNの分解温度380℃でN(M/Z=28)脱離ガスおよび酸素不純物はHO(M/Z=18)などとして放出され、フッ素に起因するF(M/Z=19)、HF(M/Z=20)の信号は検出されなかった。フッ素ドープ処理後(350℃、NF:0.1vol%)の薄膜ではCuNの分解温度380℃でN(M/Z=28)、HO(M/Z=18)脱離ガスの他にF(M/Z=19)、HF(M/Z=20)の信号強度が大きく変化したことから、CuN結晶格子中のフッ素の存在が確認された。 FIGS. 5A and 5B show H 2 O (M / Z = 18), F (M / Z = 19), HF (M / Z = 20) and N of the Cu 3 N thin film before and after the fluorine doping treatment. 2 shows thermal desorption gas analysis under vacuum of (M / Z = 28). The ammonium fluoride produced by the fluorine doping treatment was removed by ultrasonic cleaning with pure water. In the thin film before fluorine doping treatment, N 2 (M / Z = 28) desorption gas and oxygen impurities are released as H 2 O (M / Z = 18), etc. at a decomposition temperature of Cu 3 N of 380 ° C. F (M / Z = 19) and HF (M / Z = 20) signals were not detected. In the thin film after fluorine doping (350 ° C., NF 3 : 0.1 vol%), N 2 (M / Z = 28) and H 2 O (M / Z = 18) desorption at a decomposition temperature of Cu 3 N of 380 ° C. In addition to the gas, the signal intensity of F (M / Z = 19) and HF (M / Z = 20) changed greatly, confirming the presence of fluorine in the Cu 3 N crystal lattice.

図6にフッ素ドープ処理および酸素吸着したp型CuN(エピタキシャル)薄膜のキャリア濃度、Hall効果移動度の温度特性を示す。フッ素ドープ処理(250℃、NF:0.5vol%)後薄膜試料を大気暴露し、フッ化アンモニウムを純水の超音波洗浄により除去後真空チャンバーに搬送し真空中で測定した。またp型に反転したCuNは高温熱処理(600℃、NH/O雰囲気)により得られた(n型)CuN薄膜を大気暴露により酸素吸着させヘリウム1気圧下で測定した。 FIG. 6 shows temperature characteristics of carrier concentration and Hall effect mobility of a p-type Cu 3 N (epitaxial) thin film subjected to fluorine doping and oxygen adsorption. After the fluorine doping treatment (250 ° C., NF 3 : 0.5 vol%), the thin film sample was exposed to the atmosphere, and ammonium fluoride was removed by ultrasonic cleaning of pure water, and then transferred to a vacuum chamber and measured in a vacuum. In addition, Cu 3 N inverted to p-type was measured under 1 atm of helium by adsorbing (n-type) Cu 3 N thin film obtained by high-temperature heat treatment (600 ° C., NH 3 / O 2 atmosphere) by exposure to air.

酸素吸着させたCuN薄膜では、正孔濃度が150K以下でほぼ一定であり、正孔移動度の対数は温度の逆数に対して線形的に減少した。フッ素ドープ処理したCuN薄膜では、正孔濃度の対数が温度の逆数に対して単調減少するが、150K以下で特に傾きが小さくなり、酸素吸着の影響が示唆される。325K、真空中のキセノンランプによる紫外線(UV)照射後、正孔濃度の温度依存性は直線的に変化することから、酸素吸着の影響はほとんど無視でき、典型的な熱活性型(活性化エネルギー:60meV)を示した。また正孔移動度は酸素吸着試料と異なり250Kで最大となることから半導体固有の散乱機構が観測され、UV照射前後でその傾向はほとんど変わらなかった。 In the Cu 3 N thin film adsorbed with oxygen, the hole concentration was almost constant at 150 K or less, and the logarithm of hole mobility decreased linearly with the inverse of temperature. In the fluorine-doped Cu 3 N thin film, the logarithm of the hole concentration monotonously decreases with respect to the reciprocal of the temperature, but the slope becomes particularly small at 150 K or less, suggesting the influence of oxygen adsorption. Since the temperature dependence of the hole concentration changes linearly after irradiation with ultraviolet light (UV) by a xenon lamp in vacuum at 325K, the influence of oxygen adsorption is almost negligible, and a typical thermal activation type (activation energy) : 60 meV). Further, since the hole mobility is maximum at 250 K unlike the oxygen adsorption sample, a scattering mechanism unique to the semiconductor was observed, and the tendency was almost unchanged before and after UV irradiation.

325Kの真空下UV照射により吸着酸素の影響を取り除き、300KのHall効果によりキャリア極性、濃度、移動度を測定した。フッ素ドープ処理のNF濃度を0.1〜3.0vol%変化させたCuN(エピタキシャル)薄膜の正孔濃度、移動度を図7(a)、(b)に示す。図4(b)よりNF濃度の増加(0.1〜1.0vol%)によりフッ素濃度は線形的に増加(0.9〜1.5mol%)し、同様に正孔濃度は2〜9×1017cm−3の範囲で単調増加した。さらにNF濃度3.0vol%ではフッ素濃度(1.9mol%)および正孔濃度(7×1017cm−3)は飽和する傾向にあることから、フッ素濃度と正孔濃度には相関関係が認められた。300Kにおける正孔移動度は40〜80cm−1−1であった。 The influence of adsorbed oxygen was removed by UV irradiation under a vacuum of 325K, and the carrier polarity, concentration and mobility were measured by the Hall effect of 300K. 7A and 7B show the hole concentration and mobility of a Cu 3 N (epitaxial) thin film obtained by changing the NF 3 concentration of fluorine doping treatment by 0.1 to 3.0 vol%. As shown in FIG. 4B, the fluorine concentration increases linearly (0.9 to 1.5 mol%) by increasing the NF 3 concentration (0.1 to 1.0 vol%). Similarly, the hole concentration is 2 to 9%. It increased monotonously in the range of × 10 17 cm −3 . Further, since the fluorine concentration (1.9 mol%) and the hole concentration (7 × 10 17 cm −3 ) tend to be saturated at an NF 3 concentration of 3.0 vol%, there is a correlation between the fluorine concentration and the hole concentration. Admitted. The hole mobility at 300K was 40 to 80 cm 2 V −1 s −1 .

図8に真空中の熱処理やUV照射により吸着種脱離処理したn型CuN(電子濃度:〜1014および〜1017cm−3)およびp型CuN(正孔濃度:〜1016cm−3)のキャリア濃度、Hall移動度の温度依存性を示す。350℃NH雰囲気の酸素除去処理によりn型CuN(電子濃度:〜1014cm−3、移動度:5〜20cm−1−1)、さらに175℃の真空(真空度〜10−3Pa)熱処理によりn型CuN(電子濃度:〜1017、移動度:〜200cm−1−1)が得られた。 FIG. 8 shows n-type Cu 3 N (electron concentration: −10 14 and −10 17 cm −3 ) and p-type Cu 3 N (hole concentration: −10) subjected to adsorption species desorption treatment by heat treatment in vacuum or UV irradiation. The temperature dependence of the carrier concentration of 16 cm −3 ) and the Hall mobility is shown. By removing oxygen in a 350 ° C. NH 3 atmosphere, n-type Cu 3 N (electron concentration: 10 14 cm −3 , mobility: 5-20 cm 2 V −1 s −1 ) and vacuum at 175 ° C. (vacuum degree: 10 −3 Pa) n-type Cu 3 N (electron concentration: 10 17 , mobility: −200 cm 2 V −1 s −1 ) was obtained by heat treatment.

図9にn型CuN(電子濃度:〜1014および〜1017cm−3)およびp型CuN(正孔濃度:〜1017cm−3)の硬X線光電子分光(HAXPES)スペクトル(6keV)を示す。HAXPESは他の光電子分光と比較しより深い領域の評価が可能であるが、表面吸着種の影響が無視できないCuNでは、試料搬送はAr不活性雰囲気下で行った。価電子帯上部のスペクトルはp型、n型(〜1014cm−3)、n型(〜1017cm−3)の順に高結合エネルギー側にシフトしていることから、フェルミ準位のシフトはHall効果測定で得られたキャリア極性・濃度と矛盾しない。 FIG. 9 shows hard X-ray photoelectron spectroscopy (HAXPES) of n-type Cu 3 N (electron concentration: −10 14 and −10 17 cm −3 ) and p-type Cu 3 N (hole concentration: 10 17 cm −3 ). A spectrum (6 keV) is shown. Although HAXPES can evaluate a deeper region than other photoelectron spectroscopy, in Cu 3 N where the influence of surface adsorbed species cannot be ignored, sample transport was performed in an Ar inert atmosphere. Since the spectrum of the upper part of the valence band is shifted to the high bond energy side in the order of p-type, n-type (−10 14 cm −3 ), and n-type (−10 17 cm −3 ), the Fermi level shift Is consistent with the carrier polarity and concentration obtained by the Hall effect measurement.

図10にフッ素ドープ処理前後のCuN薄膜の光吸収スペクトルから得られる光吸収係数を示す。パラレルビーム式の分光光度計に5°正反射治具を用いて試料直径約5mmの同一箇所の透過率(T)および反射率(R)を測定し、吸収係数(α)は膜厚dとすると、−ln(T/(1−R))/dの計算式で算出した。 FIG. 10 shows the light absorption coefficient obtained from the light absorption spectrum of the Cu 3 N thin film before and after the fluorine doping treatment. A parallel beam spectrophotometer is used to measure the transmittance (T) and reflectance (R) at the same location with a sample diameter of about 5 mm using a 5 ° regular reflection jig, and the absorption coefficient (α) is the film thickness d. Then, it calculated with the formula -ln (T / (1-R)) / d.

フッ素ドープ処理後の光吸収係数は1.8eV以上で10cm−1以上を越え、間接バンドギャップ〜1.0eVで吸収係数は6〜7×10cm−1であった。 The light absorption coefficient after the fluorine doping treatment was 1.8 eV or more and exceeded 10 5 cm −1 or more, the indirect band gap was 1.0 eV, and the absorption coefficient was 6 to 7 × 10 3 cm −1 .

本発明によれば、高い結晶性を有し高いホール効果移動度を有する窒化銅半導体薄膜等の窒化銅半導体を提供し得る。   According to the present invention, a copper nitride semiconductor such as a copper nitride semiconductor thin film having high crystallinity and high Hall effect mobility can be provided.

Claims (13)

フッ素を不純物として含有する窒化銅半導体。   A copper nitride semiconductor containing fluorine as an impurity. フッ素がアクセプター準位を形成している請求項1に記載の窒化銅半導体。   The copper nitride semiconductor according to claim 1, wherein fluorine forms an acceptor level. フッ素が窒化銅結晶格子の格子間原子として含まれる請求項1または2に記載の窒化銅半導体。   The copper nitride semiconductor according to claim 1 or 2, wherein fluorine is contained as an interstitial atom of a copper nitride crystal lattice. フッ素が0.1〜5.0mol%の濃度で含まれる請求項1〜3のいずれか1項に記載の窒化銅半導体。   The copper nitride semiconductor according to any one of claims 1 to 3, wherein fluorine is contained at a concentration of 0.1 to 5.0 mol%. 窒化銅半導体が薄膜である請求項1に記載の窒化銅半導体。   The copper nitride semiconductor according to claim 1, wherein the copper nitride semiconductor is a thin film. 窒化銅半導体薄膜がp型の伝導型を示す請求項5に記載の窒化銅半導体。   The copper nitride semiconductor according to claim 5, wherein the copper nitride semiconductor thin film exhibits a p-type conductivity. 窒化銅半導体薄膜をアンモニアおよびフッ素含有ガスの存在下に、200〜450℃の温度で、フッ素含有ガス/(アンモニア+フッ素含有ガス)が0.1〜10vol%の条件下で熱処理することにより、p型の伝導型を示す窒化銅半導体薄膜を形成させることを特徴とする請求項1に記載の窒化銅半導体の製造方法。   By heat-treating the copper nitride semiconductor thin film in the presence of ammonia and a fluorine-containing gas at a temperature of 200 to 450 ° C. under a condition of fluorine-containing gas / (ammonia + fluorine-containing gas) of 0.1 to 10 vol%, 2. The method for producing a copper nitride semiconductor according to claim 1, wherein a copper nitride semiconductor thin film exhibiting a p-type conductivity is formed. フッ素含有ガスがClF、ClOF、OF、FNO、FNO、NF、N、N、CF、CHF、CH、CHF、C、C、C、C、SF、またはFである請求項7に記載の窒化銅半導体の製造方法。 Fluorine-containing gas is ClF 3 , ClO 3 F, OF 2 , FNO, F 3 NO, NF 3 , N 2 F 2 , N 2 F 4 , CF 4 , CH 3 F, CH 2 F 2 , CHF 3 , C 2 The method for producing a copper nitride semiconductor according to claim 7, wherein the method is F 6 , C 3 F 8 , C 4 F 8 , C 4 F 6 , SF 6 , or F 2 . 請求項6記載のp型窒化銅半導体薄膜とホモ接合をなすn型窒化銅半導体薄膜とを積層してなるpn接合素子。   A pn junction element formed by laminating an n-type copper nitride semiconductor thin film forming a homojunction with the p-type copper nitride semiconductor thin film according to claim 6. 請求項9記載のpn接合素子を含む薄膜太陽電池。   A thin film solar cell comprising the pn junction element according to claim 9. 請求項6記載のp型窒化銅半導体薄膜とヘテロ接合をなすn型半導体薄膜とを積層してなるpn接合素子。   A pn junction element formed by stacking the p-type copper nitride semiconductor thin film according to claim 6 and an n-type semiconductor thin film forming a heterojunction. p型窒化銅半導体薄膜を光吸収層として、請求項11記載のpn接合素子を含む薄膜太陽電池。   The thin film solar cell containing the pn junction element of Claim 11 by using a p-type copper nitride semiconductor thin film as a light absorption layer. 請求項6記載のp型窒化銅半導体薄膜を用いて、n型半導体薄膜との間に絶縁層を設けてなるpin接合素子。   A pin junction element comprising the p-type copper nitride semiconductor thin film according to claim 6 and an insulating layer provided between the p-type copper nitride semiconductor thin film and the n-type semiconductor thin film.
JP2017041774A 2017-03-06 2017-03-06 Copper nitride semiconductor and its manufacturing method Active JP6951734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017041774A JP6951734B2 (en) 2017-03-06 2017-03-06 Copper nitride semiconductor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017041774A JP6951734B2 (en) 2017-03-06 2017-03-06 Copper nitride semiconductor and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018148031A true JP2018148031A (en) 2018-09-20
JP6951734B2 JP6951734B2 (en) 2021-10-20

Family

ID=63590003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017041774A Active JP6951734B2 (en) 2017-03-06 2017-03-06 Copper nitride semiconductor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6951734B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111009589A (en) * 2019-11-13 2020-04-14 浙江师范大学 Copper nitride thin film solar cell and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111009589A (en) * 2019-11-13 2020-04-14 浙江师范大学 Copper nitride thin film solar cell and preparation method thereof

Also Published As

Publication number Publication date
JP6951734B2 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
Baneto et al. Effect of precursor concentration on structural, morphological and opto-electric properties of ZnO thin films prepared by spray pyrolysis
Suemasu et al. Band diagrams of BaSi2/Si structure by Kelvin probe and current–voltage characteristics
Lokhande et al. Fabrication of pulsed laser deposited Ge doped CZTSSe thin film based solar cells: Influence of selenization treatment
Agawane et al. Fabrication of Cu2 (ZnxMg1-x) SnS4 thin films by pulsed laser deposition technique for solar cell applications
Ren et al. Quasi-vertical GaN heterojunction diodes with p-NiO anodes deposited by sputtering and post-annealing
Singh et al. Effect of hydrogen peroxide treatment on the electrical characteristics of Au/ZnO epitaxial Schottky diode
Nakagawa et al. On the mechanism of BaSi2 thin film formation on Si substrate by vacuum evaporation
JP6712798B2 (en) Copper nitride semiconductor and manufacturing method thereof
Lee et al. Band structure of amorphous zinc tin oxide thin films deposited by atomic layer deposition
Sathyamoorthy et al. Fabrication of p-n junction diode using SnO/SnO 2 thin films and its device characteristics
Arepalli et al. Growth and device properties of ALD deposited ZnO films for CIGS solar cells
Ynineb et al. Morphological and optoelectrical study of ZnO: In/p-Si heterojunction prepared by ultrasonic spray pyrolysis
Pedapudi et al. High temperature annealing on vertical pn junction p-NiO/n-β-Ga2O3 nanowire arrays for high performance UV photodetection
Hussein et al. Effect of copper on physical properties of CdO thin films and n-CdO: Cu/p-Si heterojunction
Ali et al. Study the properties of Cu2Se thin films for optoelectronic applications
Tanaka et al. Improved Open-Circuit Voltage and Photovoltaic Properties of ZnTeO-Based Intermediate Band Solar Cells With n-Type ZnS Layers
Zhang et al. A combined experimental-computational study on nitrogen doped Cu2O as the wide-spectrum absorption material
Chate et al. Nanocrystalline CdSe: Structural and photoelectrochemical characterization
JP6951734B2 (en) Copper nitride semiconductor and its manufacturing method
Shin et al. Low temperature epitaxial growth and characterization of Ga-doped ZnO thin films on Al2O3 (0 0 0 1) substrates prepared with different buffer layers
Chi et al. Solar-blind UV Schottky barrier photodetectors formed by Au/Ni on β-(Al x Ga 1− x) 2 O 3/AlGaN heterostructures
Ji et al. A simple method for preparing a TiO 2-based back-gate controlled N-channel MSM–IGFET UV photodetector
Rakhshani et al. Preparation and characterization of nitrogen doped ZnO films and homojunction diodes
Chander et al. Effect of thickness on structural, optical and electrical properties of In2S3 thin films grown by thermal evaporation for solar cell buffer layer applications
Gundogan et al. The Effect of Ar Gas Flow Rate on Structure and Optical Properties of Magnetron Sputtered Sb 2 Se 3 Thin Films for Solar Cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210916

R150 Certificate of patent or registration of utility model

Ref document number: 6951734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150