JP2018147882A - Solvent for coating positive electrode active material of secondary cell, positive electrode active material slurry containing the same, and secondary cell manufactured therefrom - Google Patents
Solvent for coating positive electrode active material of secondary cell, positive electrode active material slurry containing the same, and secondary cell manufactured therefrom Download PDFInfo
- Publication number
- JP2018147882A JP2018147882A JP2018038536A JP2018038536A JP2018147882A JP 2018147882 A JP2018147882 A JP 2018147882A JP 2018038536 A JP2018038536 A JP 2018038536A JP 2018038536 A JP2018038536 A JP 2018038536A JP 2018147882 A JP2018147882 A JP 2018147882A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- material slurry
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、二次電池の正極活物質コーティング用溶媒、それを含む正極活物質スラリー、およびそれから製造された二次電池に関する。 The present invention relates to a positive electrode active material coating solvent for a secondary battery, a positive electrode active material slurry containing the same, and a secondary battery produced therefrom.
電子産業、移動通信を含む各種情報通信などのコミュニケーション産業の急速な発展とともに、電子機器の軽薄短小化の要求に応えるべく、ノート型パソコン、ネットブック、タブレットPC、携帯電話、スマートフォン、PDA、デジタルカメラ、カムコーダなどのような携帯用電子製品および通信端末機器が広く普及されている。これに伴い、これらの機器の駆動電源である電池の開発に関する関心も高まっている。 Along with the rapid development of the communication industry such as the electronic industry and various information communications including mobile communications, in order to meet the demands for electronic devices to be lighter, thinner and smaller, notebook computers, netbooks, tablet PCs, mobile phones, smartphones, PDAs, digital Portable electronic products such as cameras and camcorders and communication terminal devices are widely used. Along with this, there is an increasing interest in the development of batteries that are the driving power sources for these devices.
また、水素電気自動車やハイブリッド自動車、燃料電池自動車などの電気自動車の開発に伴い、高性能、大容量、高密度、高出力、および高安定性を有する電池の開発に大きい関心が集中されており、速い充放電速度特性を有する電池の開発も大きいイッシュとなっている。 In addition, with the development of electric vehicles such as hydrogen electric vehicles, hybrid vehicles, and fuel cell vehicles, great interest is focused on the development of batteries with high performance, large capacity, high density, high output, and high stability. The development of batteries having fast charge / discharge rate characteristics has also become a major issue.
このような傾向に伴い、現在、高いエネルギー密度および電圧を有し、長いサイクル寿命および低い自己放電率を有するリチウム二次電池が商用化されて広く用いられており、上述の効果を極大化するために、リチウム二次電池に関する研究が活発に行われている。 Along with this trend, lithium secondary batteries having a high energy density and voltage, a long cycle life and a low self-discharge rate have been commercialized and widely used, thereby maximizing the above effects. Therefore, research on lithium secondary batteries has been actively conducted.
二次電池は、正極(positive electrode)、負極(negative electrode)、セパレータ(separator)、および電解質(electrolyte)を基本的構成要素とする。前記正極および負極は、酸化・還元などのエネルギーの変換と貯蔵が起こる電極であって、それぞれ正と負の電位を有する。前記セパレータは、正極と負極との間に位置し、電気的な絶縁を保持し、且つ電荷の移動通路を提供する。また、前記電解質は電荷伝達の媒介体の役割を果たす。 The secondary battery includes a positive electrode, a negative electrode, a separator, and an electrolyte as basic components. The positive electrode and the negative electrode are electrodes in which energy conversion and storage such as oxidation and reduction occur, and have positive and negative potentials, respectively. The separator is located between the positive electrode and the negative electrode, maintains electrical insulation, and provides a charge transfer path. In addition, the electrolyte serves as a mediator of charge transfer.
二次電池の一例であるリチウム二次電池において、電池の性能(例えば、容量など)は、用いられる正極活物質に最も大きく影響される。かかるリチウム二次電池の性能を向上させるためには、正極活物質が適切に高い数値でローディング可能でありながらも、集電体上に均一且つ安定した厚さの層として形成されなければならない。このような課題を解決するためには、前記正極活物質スラリーの固形分含量、粘度などを調節することが容易ではなければならない。 In a lithium secondary battery that is an example of a secondary battery, the performance (for example, capacity) of the battery is greatly influenced by the positive electrode active material used. In order to improve the performance of such a lithium secondary battery, the positive electrode active material must be formed as a layer having a uniform and stable thickness on the current collector while being able to be loaded with an appropriately high numerical value. In order to solve such a problem, it must be easy to adjust the solid content, viscosity, and the like of the positive electrode active material slurry.
この際、前記リチウム二次電池の正極は、正極活物質を含む正極活物質スラリーを正極集電体上に塗布し、乾燥することで製造することができる。前記正極活物質スラリーは、正極活物質にバインダーおよび有機溶媒を添加して混合した、流動性を有する混合物であることができる。 At this time, the positive electrode of the lithium secondary battery can be manufactured by applying a positive electrode active material slurry containing a positive electrode active material on a positive electrode current collector and drying it. The positive electrode active material slurry may be a fluid mixture in which a binder and an organic solvent are added to and mixed with the positive electrode active material.
通常の正極活物質は、粒子サイズが小さく、炭素コーティングされた比表面積が広いため、それを含む正極活物質スラリー中に低い固形分濃度(固形分45%水準)を有するように多量の有機溶媒(例えば、N‐メチル‐2‐ピロリドン(NMP)など)を添加して粘度を適切に調節することで、上記の課題を解決している。しかし、多量の有機溶媒を用いる場合、乾燥後にも未乾燥の部分が生じ得るため、高い含量のローディング(high‐loading)が不可能であり、乾燥速度などの工程速度が増加することとなって生産性が低下するという問題を誘発する。また、低い固形分濃度を有する正極活物質スラリーは、分散安定性の低下により、正極活物質層の形成時に層の厚さおよびローディングのばらつきを引き起こす恐れがあるという問題がある。特に、前記有機溶媒の有害性によって、環境にやさしくないという問題がある。 Since a normal positive electrode active material has a small particle size and a large carbon-coated specific surface area, a large amount of an organic solvent has a low solid content concentration (45% solid content level) in the positive electrode active material slurry containing the normal positive electrode active material. The above problem is solved by adding (for example, N-methyl-2-pyrrolidone (NMP) or the like) and adjusting the viscosity appropriately. However, when a large amount of organic solvent is used, an undried portion may be formed even after drying, so that high-loading is impossible and process speed such as drying speed is increased. Triggers the problem of reduced productivity. Further, the positive electrode active material slurry having a low solid content concentration has a problem in that dispersion of the positive electrode active material layer may cause variation in layer thickness and loading due to a decrease in dispersion stability. In particular, there is a problem that it is not environmentally friendly due to the harmfulness of the organic solvent.
上記のような背景下で、本発明者らは上述の問題を改善するために鋭意研究した結果、N‐エチルホルムアミド(N‐ethylformamide)を含むコーティング溶媒を用いることで、正極活物質を含むスラリーの分散性を著しく向上させることができるだけでなく、均一な厚さで正極活物質層を安定して形成することで、向上した容量特性および寿命特性を有する正極、およびそれを含む二次電池を提供することができることを確認し、本発明を完成した。 Under the background as described above, the present inventors diligently studied to improve the above-mentioned problems. As a result, a slurry containing a positive electrode active material is obtained by using a coating solvent containing N-ethylformamide. A positive electrode having improved capacity characteristics and life characteristics by stably forming a positive electrode active material layer with a uniform thickness, and a secondary battery including the same can be remarkably improved. The present invention has been completed by confirming that it can be provided.
本発明の目的は、高い固形分の濃度にもかかわらず、低い粘度を有するとともに、正極活物質に対して優れた分散安定性を示す二次電池の正極活物質コーティング用溶媒、およびそれを含む正極活物質スラリーを提供することにある。 An object of the present invention includes a positive electrode active material coating solvent for a secondary battery that has a low viscosity and exhibits excellent dispersion stability with respect to the positive electrode active material despite the high solid content concentration, and the same The object is to provide a positive electrode active material slurry.
本発明の他の目的は、前記正極活物質スラリーから形成された正極活物質層を含む正極、およびそれを含む二次電池を提供することにある。 Another object of the present invention is to provide a positive electrode including a positive electrode active material layer formed from the positive electrode active material slurry, and a secondary battery including the positive electrode.
上記の課題を解決するために、本発明は、N‐エチルホルムアミドを含む二次電池の正極活物質コーティング用溶媒を提供する。 In order to solve the above problems, the present invention provides a solvent for coating a positive electrode active material of a secondary battery containing N-ethylformamide.
また、本発明は、正極活物質、バインダー、およびN‐エチルホルムアミドを含む正極活物質スラリーを提供する。 The present invention also provides a positive electrode active material slurry containing a positive electrode active material, a binder, and N-ethylformamide.
本発明の一実施形態による正極活物質スラリーにおいて、前記正極活物質は下記化学式1で表されるものであってもよい。 In the positive electrode active material slurry according to an embodiment of the present invention, the positive electrode active material may be represented by the following Chemical Formula 1.
[化学式1]
Li1+x[NiaCobMnc]O2
(前記化学式1中、−0.5≦x≦0.6、0≦a、b、c≦1、x+a+b+c=1である。)
[Chemical Formula 1]
Li 1 + x [Ni a Co b Mn c ] O 2
(In the chemical formula 1, −0.5 ≦ x ≦ 0.6, 0 ≦ a, b, c ≦ 1, and x + a + b + c = 1.)
本発明の一実施形態による正極活物質スラリーにおいて、前記バインダーは、フッ素系バインダーおよびゴム系バインダーから選択されるものであってもよい。 In the positive electrode active material slurry according to an embodiment of the present invention, the binder may be selected from a fluorine-based binder and a rubber-based binder.
本発明の一実施形態による正極活物質スラリーは、正極活物質スラリーの総重量を基準として、固形分含量が30〜80重量%であってもよい。 The positive active material slurry according to an embodiment of the present invention may have a solid content of 30 to 80% by weight based on the total weight of the positive active material slurry.
本発明の一実施形態による正極活物質スラリーは、正極活物質スラリーの総固形分含量を基準として、前記正極活物質の含量が55〜99重量%であってもよい。 The positive active material slurry according to an embodiment of the present invention may have a content of the positive active material of 55 to 99% by weight based on the total solid content of the positive active material slurry.
本発明の一実施形態による正極活物質スラリーは、導電材をさらに含んでもよい。 The positive electrode active material slurry according to an embodiment of the present invention may further include a conductive material.
本発明の一実施形態による正極活物質スラリーにおいて、前記導電材は炭素系物質から選択されてもよい。 In the positive electrode active material slurry according to an embodiment of the present invention, the conductive material may be selected from carbonaceous materials.
また、本発明は、前記正極活物質スラリーから形成された正極活物質層を含む正極を提供する。 The present invention also provides a positive electrode including a positive electrode active material layer formed from the positive electrode active material slurry.
また、本発明は、前記正極と、負極と、前記正極と前記負極との間のセパレータと、を含む二次電池であって、前記正極は、正極集電体の一面に正極活物質層が10〜100μmの厚さで形成されたものである、二次電池を提供する。 The present invention is a secondary battery including the positive electrode, a negative electrode, and a separator between the positive electrode and the negative electrode, wherein the positive electrode has a positive electrode active material layer on one surface of the positive electrode current collector. A secondary battery having a thickness of 10 to 100 μm is provided.
本発明の一実施形態による二次電池は、初期放電容量が200mAh/g以上であり、50サイクルでの容量維持率が90%以上であってもよい。 The secondary battery according to the embodiment of the present invention may have an initial discharge capacity of 200 mAh / g or more and a capacity maintenance rate of 50% or more in 50 cycles.
本発明の一実施形態による二次電池は、下記式1で表されるC‐rate効率が90%以上であってもよい。 The secondary battery according to the embodiment of the present invention may have a C-rate efficiency represented by the following formula 1 of 90% or more.
[式1]
C‐rate(%)=[(2C放電容量)/(0.1C放電容量)]×100
[Formula 1]
C-rate (%) = [(2C discharge capacity) / (0.1C discharge capacity)] × 100
本発明によると、高い固形分の濃度でも低い粘度特性を有し、正極活物質に対する高いローディング含量を容易に実現することができ、正極活物質との混和時に優れた分散性を示すため、長期間の使用または保管中にも非常に安定した相を維持することができる。 According to the present invention, it has a low viscosity characteristic even at a high solid content concentration, can easily realize a high loading content with respect to the positive electrode active material, and exhibits excellent dispersibility when mixed with the positive electrode active material. A very stable phase can be maintained during period use or storage.
また、本発明によると、従来のように環境有害性の高い有機溶媒(例えば、NMPなど)を用いないため、正極活物質およびそれを含む正極を環境にやさしく提供することができる。 In addition, according to the present invention, since an organic solvent having a high environmental hazard (such as NMP) is not used as in the prior art, the positive electrode active material and the positive electrode including the same can be provided friendly to the environment.
また、本発明によると、向上した容量特性および寿命特性を有する二次電池を提供することができる。特に、本発明によると、高い初期放電容量だけでなく、50サイクル後にも高い放電容量を示し、著しく改善された容量維持率を示す。 Further, according to the present invention, a secondary battery having improved capacity characteristics and life characteristics can be provided. In particular, according to the present invention, not only a high initial discharge capacity but also a high discharge capacity after 50 cycles is exhibited, and a significantly improved capacity maintenance rate is exhibited.
本発明の利点および特徴、そしてそれらを果たす方法は、添付図面とともに詳細に後述される実施形態を参照すると明確になるであろう。しかし、本発明は以下で開示される実施形態に限定されず、相異なる多様な形態で具現されることができる。但し、本実施形態は、本発明の開示が完全になるようにするとともに、本発明が属する技術分野において通常の知識を有する者に発明の範疇を完全に伝達するために提供されるものであって、本発明は請求範囲によってのみ定義される。以下、本発明による二次電池の正極活物質コーティング用溶媒、それを含む正極活物質スラリー、およびそれから製造された二次電池について詳細に説明する。 Advantages and features of the present invention and methods for accomplishing them will become apparent with reference to the embodiments described in detail below in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, and can be embodied in various different forms. However, this embodiment is provided in order to make the disclosure of the present invention complete, and to completely convey the scope of the invention to those having ordinary knowledge in the technical field to which the present invention belongs. Thus, the present invention is defined only by the claims. Hereinafter, a positive electrode active material coating solvent for a secondary battery according to the present invention, a positive electrode active material slurry containing the same, and a secondary battery manufactured therefrom will be described in detail.
本発明は、N‐エチルホルムアミドを含む二次電池の正極活物質コーティング用溶媒を提供する。本発明によるコーティング用溶媒は、正極活物質との混和時に向上した分散性を示すことを特徴とする。正確な理由は明らかではないが、本発明によるN‐エチルホルムアミドと正極活物質との相互作用によることであると予想される。前記相互作用は、水素結合、疎水性相互作用を始めとする共有、および非共有相互作用に起因する物理的な絡み合いの特性などが一時的または長期的に影響を与えることであると判断される。 The present invention provides a positive electrode active material coating solvent for a secondary battery containing N-ethylformamide. The coating solvent according to the present invention is characterized by exhibiting improved dispersibility when mixed with a positive electrode active material. Although the exact reason is not clear, it is expected to be due to the interaction between the N-ethylformamide according to the present invention and the positive electrode active material. The interaction is judged to be temporary or long-term influence of physical entanglement characteristics caused by hydrogen bond, covalent interaction including hydrophobic interaction, and non-covalent interaction. .
このような現象は、N‐エチルホルムアミドを含むことによる驚くべき相乗効果であり、前記N‐エチルホルムアミドと類似の構造的特徴を有するホルムアミド系化合物(例えば、ホルムアミド、N‐メチルホルムアミドなど)では全く確認されないという点から、大きい意味を有する。 Such a phenomenon is a surprising synergistic effect due to the inclusion of N-ethylformamide, and is completely absent in formamide-based compounds (for example, formamide, N-methylformamide, etc.) having structural characteristics similar to those of N-ethylformamide. It has a big meaning in that it is not confirmed.
また、本発明による二次電池の正極活物質コーティング用溶媒は、通常用いられるN‐メチル‐2‐ピロリドン(NMP)などのような有害な有機溶媒を用いないため、より環境にやさしい方法で正極活物質層およびそれを含む電極を提供することができる。 In addition, the positive electrode active material coating solvent of the secondary battery according to the present invention does not use a harmful organic solvent such as N-methyl-2-pyrrolidone (NMP), which is usually used, so that the positive electrode is more environmentally friendly. An active material layer and an electrode including the same can be provided.
また、本発明は、N‐エチルホルムアミドを含む正極活物質スラリーを提供する。 The present invention also provides a positive electrode active material slurry containing N-ethylformamide.
具体的に、前記正極活物質スラリーは、正極活物質、バインダー、およびN‐エチルホルムアミドなどを含んでもよい。 Specifically, the positive electrode active material slurry may include a positive electrode active material, a binder, N-ethylformamide, and the like.
本発明の一実施形態による正極活物質スラリーは、下記化学式1で表される正極活物質を含んでもよい。 The positive electrode active material slurry according to an embodiment of the present invention may include a positive electrode active material represented by the following chemical formula 1.
[化学式1]
Li1+x[NiaCobMnc]O2
(前記化学式1中、−0.5≦x≦0.6、0≦a、b、c≦1、x+a+b+c=1である。)
[Chemical Formula 1]
Li 1 + x [Ni a Co b Mn c ] O 2
(In the chemical formula 1, −0.5 ≦ x ≦ 0.6, 0 ≦ a, b, c ≦ 1, and x + a + b + c = 1.)
本発明の一実施形態による正極活物質スラリーは、前記正極活物質の容量減少を効果的に抑えることができるだけでなく、残留リチウムの含量の上昇によるガスの発生などに起因する電池の膨れなどのような問題を防止することができるという点から、LiCoO2、LiNiO2、およびLiMnO2などから選択される少なくとも1つを含んでもよい。 The positive electrode active material slurry according to an embodiment of the present invention can not only effectively suppress the capacity decrease of the positive electrode active material, but also the battery swelling due to the generation of gas due to the increase in the residual lithium content. In view of preventing such a problem, at least one selected from LiCoO 2 , LiNiO 2 , LiMnO 2 and the like may be included.
また、本発明の一実施形態による正極活物質スラリーは、追加の正極活物質をさらに含んでもよい。例えば、追加の正極活物質は、LiFePO4、LiFeMnPO4、LiFeMgPO4、LiFeNiPO4、LiFeAlPO4、およびLiFeCoNiMnPO4などから選択される1つまたは2つ以上であってもよいが、これに限定されるものではない。 In addition, the positive electrode active material slurry according to an embodiment of the present invention may further include an additional positive electrode active material. For example, the additional positive electrode active material may be one or more selected from LiFePO 4 , LiFeMnPO 4 , LiFeMgPO 4 , LiFeNiPO 4 , LiFeAlPO 4 , and LiFeCoNiMnPO 4 , but is not limited thereto. It is not a thing.
本発明の一実施形態による正極活物質スラリーにおいて、前記バインダーは、正極活物質の表面に形成される金属酸化物コーティング層の結合を助けるか、追加される導電材などとの結合を助ける成分であって、当業界で通常用いられる物質であれば制限されないが、具体的には、フッ素系バインダーおよびゴム系バインダーなどから選択される1つまたは2つ以上であってもよい。 In the positive electrode active material slurry according to an embodiment of the present invention, the binder is a component that assists the bonding of the metal oxide coating layer formed on the surface of the positive electrode active material or the bonding with the added conductive material. In addition, the substance is not limited as long as it is a substance usually used in the art, but specifically, it may be one or two or more selected from a fluorine-based binder and a rubber-based binder.
例えば、前記フッ素系バインダーとしては、ポリビニリデンフルオリド(PVDF)、ビニリデンフルオリド‐ヘキサフルオロプロピレンコポリマー(PVDF‐co‐HEP)、クロロトリフルオロエチレン(CFTF)、およびポリテトラフルオロエチレン(PTFE)などが挙げられる。 Examples of the fluorine-based binder include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HEP), chlorotrifluoroethylene (CFTF), and polytetrafluoroethylene (PTFE). Is mentioned.
例えば、前記ゴム系バインダーとしては、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、ニトリルブタジエンゴム(NBR)、およびイソプレンゴム(IR)などが挙げられる。 For example, examples of the rubber-based binder include styrene butadiene rubber (SBR), butadiene rubber (BR), nitrile butadiene rubber (NBR), and isoprene rubber (IR).
また、本発明の一実施形態による正極活物質スラリーにおいて、前記バインダーは、ポリアクリロニトリル、ポリメチルメタクリレート、ポリアクリル酸などのアクリル系バインダー;ポリビニルアルコール、ポリビニルピロリドン、ポリエチレン、ポリプロピレン、オレフィン系バインダー;およびカルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、再生セルロースなどのセルロース系バインダー;から選択される1つまたは2つ以上をさらに含んでもよい。 In the positive electrode active material slurry according to one embodiment of the present invention, the binder is an acrylic binder such as polyacrylonitrile, polymethyl methacrylate, polyacrylic acid; polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene, polypropylene, olefin binder; and One or more selected from cellulosic binders such as carboxymethylcellulose, hydroxypropylmethylcellulose, and regenerated cellulose may be further included.
本発明の一実施形態による正極活物質スラリーは、正極活物質スラリーの総重量を基準として、固形分含量が30〜80重量%であってもよい。この際、残部はN‐エチルホルムアミドである。 The positive active material slurry according to an embodiment of the present invention may have a solid content of 30 to 80% by weight based on the total weight of the positive active material slurry. In this case, the balance is N-ethylformamide.
上述のように、本発明による正極活物質スラリーは、N‐エチルホルムアミドを分散媒、すなわち、正極活物質コーティング用溶媒として採用することで、高い固形分含量にもかかわらず低い粘度を実現することができるだけでなく、その分散安定性を著しく高めることができる。 As described above, the positive electrode active material slurry according to the present invention uses N-ethylformamide as a dispersion medium, that is, a positive electrode active material coating solvent, thereby realizing a low viscosity despite a high solid content. As well as the dispersion stability can be remarkably enhanced.
本発明の一実施形態による正極活物質スラリーは、正極活物質スラリーの総重量を基準として、固形分含量が具体的には30〜70重量%であり、より具体的には40〜60重量%であってもよい。 The positive electrode active material slurry according to an embodiment of the present invention has a solid content of specifically 30 to 70% by weight, more specifically 40 to 60% by weight, based on the total weight of the positive electrode active material slurry. It may be.
また、本発明の一実施形態による正極活物質スラリーは、5,000〜30,000g/cm・s(23℃でブルックフィールド回転型粘度計を用いて20rpmで測定)の粘度を有してもよく、具体的には8,000〜30,000g/cm・s、より具体的には10,000〜25,000g/cm・sの粘度を有してもよい。上述の粘度の範囲は、通常のNMPなどを溶媒として用いる場合に比べて30〜60%水準の低い粘度に相当する。 Further, the positive electrode active material slurry according to one embodiment of the present invention may have a viscosity of 5,000 to 30,000 g / cm · s (measured at 23 ° C. using a Brookfield rotary viscometer at 20 rpm). Well, specifically, it may have a viscosity of 8,000 to 30,000 g / cm · s, more specifically 10,000 to 25,000 g / cm · s. The above-mentioned viscosity range corresponds to a low viscosity of 30 to 60% compared to the case where ordinary NMP or the like is used as a solvent.
例えば、45重量%の固形分含量を有する正極活物質スラリー(正極活物質:バインダー=98:2(wt:wt))は、11,000〜20,000g/cm・sの粘度を有することができる。この際、前記正極活物質スラリーの粘度変化率(1日高温保管後の粘度/初期粘度×100、高温保管の条件は45℃である)は1〜5%の範囲を有する。 For example, a positive electrode active material slurry having a solid content of 45% by weight (positive electrode active material: binder = 98: 2 (wt: wt)) may have a viscosity of 11,000 to 20,000 g / cm · s. it can. At this time, the rate of change in viscosity of the positive electrode active material slurry (viscosity after high temperature storage for 1 day / initial viscosity × 100, high temperature storage condition is 45 ° C.) has a range of 1 to 5%.
例えば、50重量%の固形分含量を有する正極活物質スラリー(正極活物質:バインダー=98:2(wt:wt))は、15,000〜23,000g/cm・sの粘度を有することができる。この際、前記正極活物質スラリーの粘度変化率(1日高温保管後の粘度/初期粘度×100)は1〜5%の範囲を有する。 For example, a positive electrode active material slurry (positive electrode active material: binder = 98: 2 (wt: wt)) having a solid content of 50% by weight may have a viscosity of 15,000 to 23,000 g / cm · s. it can. At this time, the viscosity change rate of the positive electrode active material slurry (viscosity after high temperature storage for 1 day / initial viscosity × 100) has a range of 1 to 5%.
本発明の一実施形態による正極活物質スラリーにおいて、前記正極活物質スラリーの総固形分含量を基準として、前記正極活物質は55〜99重量%で含まれてもよく、具体的には60〜99重量%、より具体的には65〜99重量%で含まれてもよい。この際、残部はバインダーである。 In the positive electrode active material slurry according to an embodiment of the present invention, the positive electrode active material may be included in an amount of 55 to 99% by weight based on the total solid content of the positive electrode active material slurry. It may be included at 99% by weight, more specifically 65-99% by weight. At this time, the balance is a binder.
本発明の一実施形態による正極活物質スラリーは、上述のような高い固形分含量でも安定した分散相を形成することができるため、比較的低い粘度にもかかわらず、物性変化(例えば、粘度)の恐れがない。このように、安定した分散相を形成する前記正極活物質スラリーは、長期使用または保管中にも非常に安定した相を維持することができ、工程上利点を提供することができる。 Since the positive electrode active material slurry according to an embodiment of the present invention can form a stable dispersed phase even at a high solid content as described above, a change in physical properties (eg, viscosity) despite a relatively low viscosity. There is no fear of. Thus, the positive electrode active material slurry that forms a stable dispersed phase can maintain a very stable phase even during long-term use or storage, and can provide advantages in terms of process.
本発明の一実施形態による正極活物質スラリーは導電材をさらに含んでもよい。前記導電材は、具体的に炭素系物質であって、正極活物質層の表面粗さを実現し、導電性を提供するものである。前記導電材としては、該電池に化学的変化を誘発することなく、且つ導電性を有するものであれば特に制限されず、例えば、天然黒鉛、人造黒鉛などの黒鉛;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック;および炭素繊維;などが挙げられる。 The positive electrode active material slurry according to an embodiment of the present invention may further include a conductive material. The conductive material is specifically a carbon-based material, which realizes the surface roughness of the positive electrode active material layer and provides conductivity. The conductive material is not particularly limited as long as it does not induce a chemical change in the battery and has conductivity. For example, graphite such as natural graphite and artificial graphite; acetylene black, ketjen black, And carbon black such as channel black, furnace black, lamp black, and thermal black; and carbon fiber.
また、前記導電材は、上述の炭素系物質に追加の導電性物質をさらに含んでもよい。例えば、銅、ニッケル、アルミニウム、銀、亜鉛、チタンなどの金属系物質;前記金属の繊維系物質;ポリアニリン(polyaniline)、ポリアセチレン(poly acetylene)、ポリピロール(polypyrrole)、ポリチオフェノン(polythiophenone)などの導電性ポリマー;などが挙げられるが、これに限定されない。 The conductive material may further include an additional conductive material in addition to the carbon-based material described above. For example, metallic materials such as copper, nickel, aluminum, silver, zinc and titanium; fibrous materials of the metals; polyaniline, polyacetylene, polypyrrole, polythiophenone, etc. Examples thereof include, but are not limited to, conductive polymers.
この際、前記導電材の使容量は制限されないが、正極活物質スラリーの総固形分含量を基準として0.01〜10重量%で含まれてもよい。この際、向上した容量特性を実現するという点から、具体的には0.1〜8重量%、より具体的には0.5〜5重量%で含まれてもよいが、これに限定されない。 At this time, the usage capacity of the conductive material is not limited, but may be included at 0.01 to 10% by weight based on the total solid content of the positive electrode active material slurry. At this time, the content may be specifically 0.1 to 8% by weight, more specifically 0.5 to 5% by weight from the viewpoint of realizing improved capacity characteristics, but is not limited thereto. .
本発明は、上述の正極活物質スラリーから形成された正極活物質層を含む正極を提供する。 The present invention provides a positive electrode including a positive electrode active material layer formed from the positive electrode active material slurry described above.
本発明の一実施形態による正極は、前記正極活物質スラリーから均一な組成で形成された正極活物質層を含む。また、前記正極活物質層は高密度で形成されることができる。すなわち、本発明による正極活物質層を含む正極を採用した二次電池は、向上したイオン伝導度によって電解液中におけるリチウムイオンの移動性を著しく向上させることができる。これにより、追加の導電材の量を減らしながらも、向上した電池特性を実現することができる。 A positive electrode according to an embodiment of the present invention includes a positive electrode active material layer formed with a uniform composition from the positive electrode active material slurry. In addition, the positive electrode active material layer may be formed with a high density. That is, the secondary battery employing the positive electrode including the positive electrode active material layer according to the present invention can remarkably improve the mobility of lithium ions in the electrolytic solution due to the improved ionic conductivity. Thereby, improved battery characteristics can be realized while reducing the amount of the additional conductive material.
本発明の一実施形態による正極は、下記方法により製造されることができる。 The positive electrode according to an embodiment of the present invention can be manufactured by the following method.
具体的に、N‐エチルホルムアミドにバインダーおよび正極活物質を投入して正極活物質スラリーを製造するステップと、前記正極活物質スラリーを正極集電体に塗布して乾燥するステップと、を含んでもよい。 Specifically, the method includes the steps of: adding a binder and a positive electrode active material to N-ethylformamide to produce a positive electrode active material slurry; and applying and drying the positive electrode active material slurry on a positive electrode current collector. Good.
前記正極集電体としては、該二次電池に化学的変化を誘発することなく、且つ高い導電性を有するものであれば特に制限されず、例えば、銅、ステンレス鋼、アルミニウム、ニッケル、チタン、焼成炭素、またはアルミニウムやステンレス鋼の表面に炭素、ニッケル、チタンまたは銀などで表面処理を施したものが使用可能である。この際、前記正極集電体は、3〜500μmの厚さを有するものが使用できる。 The positive electrode current collector is not particularly limited as long as it does not induce a chemical change in the secondary battery and has high conductivity. For example, copper, stainless steel, aluminum, nickel, titanium, It is possible to use baked carbon or aluminum or stainless steel whose surface is treated with carbon, nickel, titanium or silver. At this time, the positive electrode current collector having a thickness of 3 to 500 μm can be used.
前記塗布は、特に制限されず、当業界において通常の公知方法により行うことができる。 The application is not particularly limited, and can be performed by an ordinary known method in the art.
例えば、前記塗布は、前記正極活物質スラリーを前記正極集電体の少なくとも一面上に噴射または分配させた後、ドクターブレード(doctor blade)などを用いて均一に分散させて行ってもよい。 For example, the application may be performed by spraying or distributing the positive electrode active material slurry onto at least one surface of the positive electrode current collector, and then uniformly dispersing it using a doctor blade or the like.
例えば、前記塗布は、ダイキャスティング(die casting)、コンマコーティング(comma coating)、スクリーン印刷(screen printing)などの方法により行ってもよい。 For example, the application may be performed by die casting, comma coating, screen printing, or the like.
前記乾燥は、正極活物質層を形成し、工程中に残留している水分を除去する工程である。この際、前記乾燥は、残留水分が除去される程度の温度範囲で行い、具体的には50〜200℃で行ってもよく、より具体的には80〜200℃で行ってもよい。 The drying is a process of forming a positive electrode active material layer and removing moisture remaining in the process. Under the present circumstances, the said drying is performed in the temperature range which is a grade from which a residual water | moisture content is removed, may be specifically performed at 50-200 degreeC, and may be specifically performed at 80-200 degreeC.
この際、前記乾燥の時間は、温度によって異なって適用されるため、一律的に決定することはできないが、1時間以上行ってもよく、好ましくは5〜24時間、より好ましくは5〜12時間であってもよい。 At this time, since the drying time is applied differently depending on the temperature, it cannot be uniformly determined, but it may be performed for 1 hour or more, preferably 5 to 24 hours, more preferably 5 to 12 hours. It may be.
上述の方法により製造された正極活物質層は、前記正極集電体の少なくとも一面に10〜100μmの厚さで形成されてもよい。具体的には10〜80μm、より具体的には10〜50μmの厚さで形成されてもよい。 The positive electrode active material layer manufactured by the above method may be formed to a thickness of 10 to 100 μm on at least one surface of the positive electrode current collector. Specifically, it may be formed with a thickness of 10 to 80 μm, more specifically 10 to 50 μm.
本発明の一実施形態によると、ローディングばらつきが著しく減少されるため、均一性が確保された正極活物質層を含む正極を非常に簡単な工程で提供することができるだけでなく、高密度の正極活物質層を提供する。これにより、本発明による正極を採用した二次電池は、向上したイオン伝導度によって電解液中におけるリチウムイオンの移動性を著しく向上させ、優れた充・放電特性および寿命特性を示すことができる。 According to an embodiment of the present invention, since the loading variation is significantly reduced, it is possible not only to provide a positive electrode including a positive electrode active material layer with ensured uniformity in a very simple process, but also a high-density positive electrode. Providing an active material layer. Thereby, the secondary battery employing the positive electrode according to the present invention can remarkably improve the mobility of lithium ions in the electrolytic solution due to the improved ionic conductivity, and can exhibit excellent charge / discharge characteristics and life characteristics.
また、本発明は、前記正極を含む二次電池を提供する。 The present invention also provides a secondary battery including the positive electrode.
具体的に、前記二次電池は、本発明の一実施形態による正極と、負極と、前記正極と前記負極との間のセパレータと、を含み、前記正極が、正極集電体の一面に正極活物質層が10〜100μmの厚さで形成されたものである、リチウム二次電池である。 Specifically, the secondary battery includes a positive electrode according to an embodiment of the present invention, a negative electrode, and a separator between the positive electrode and the negative electrode, and the positive electrode is disposed on one surface of the positive electrode current collector. It is a lithium secondary battery in which an active material layer is formed with a thickness of 10 to 100 μm.
前記リチウム二次電池は、本発明による正極を採用することで、電解液中において向上したリチウムイオンの移動性を付与し、優れた充・放電特性および寿命特性を示す。 By adopting the positive electrode according to the present invention, the lithium secondary battery imparts improved lithium ion mobility in the electrolyte, and exhibits excellent charge / discharge characteristics and life characteristics.
本発明の一実施形態による二次電池は初期放電容量が200mAh/g以上であることができる。具体的に、初期放電容量が200〜300mAh/g、より具体的には200〜250mAh/gであることができる。 The secondary battery according to an embodiment of the present invention may have an initial discharge capacity of 200 mAh / g or more. Specifically, the initial discharge capacity may be 200 to 300 mAh / g, more specifically 200 to 250 mAh / g.
特に、本発明の一実施形態による二次電池は、50サイクル(50th cycle)使用後にも放電容量の変化が最小化される。具体的に、前記二次電池は、50サイクルでの容量維持率が90%以上であることができる。 In particular, a secondary battery according to an embodiment of the present invention, 50 cycles (50 th cycle) the change in discharge capacity even after use is minimized. Specifically, the secondary battery may have a capacity maintenance rate of 90% or more at 50 cycles.
例えば、前記二次電池は、初期放電容量が200mAh/g以上であり、50サイクルでの容量維持率が90〜99%であることができる。 For example, the secondary battery may have an initial discharge capacity of 200 mAh / g or more and a capacity maintenance rate of 50 to 90% in 50 cycles.
例えば、前記二次電池は、初期放電容量が200mAh/g以上であり、50サイクルでの容量維持率が95〜99%であることができる。 For example, the secondary battery may have an initial discharge capacity of 200 mAh / g or more and a capacity maintenance rate of 50 to 95% at 50 cycles.
また、本発明の一実施形態による二次電池は、下記式1で表されるC‐rate効率が90%以上であることができる。 In addition, the secondary battery according to the embodiment of the present invention may have a C-rate efficiency of 90% or more represented by the following formula 1.
[式1]
C‐rate(%)=[(2C放電容量)/(0.1C放電容量)]×100
[Formula 1]
C-rate (%) = [(2C discharge capacity) / (0.1C discharge capacity)] × 100
例えば、前記二次電池は、初期放電容量が200mAh/g以上であり、50サイクルでの容量維持率が90〜99%であり、C‐rate効率が90%〜99%であることができる。 For example, the secondary battery may have an initial discharge capacity of 200 mAh / g or more, a capacity maintenance ratio of 50 to 90%, and a C-rate efficiency of 90% to 99%.
例えば、前記二次電池は、初期放電容量が200mAh/g以上であり、50サイクルでの容量維持率が95〜99%であり、C‐rate効率が90%〜95%であることができる。 For example, the secondary battery may have an initial discharge capacity of 200 mAh / g or more, a capacity maintenance rate of 50 to 95%, and a C-rate efficiency of 90% to 95%.
以下、本発明の一実施形態によるリチウム二次電池について説明する。 Hereinafter, a lithium secondary battery according to an embodiment of the present invention will be described.
本発明によるリチウム二次電池は、正極と、負極と、セパレータと、を含む。 The lithium secondary battery according to the present invention includes a positive electrode, a negative electrode, and a separator.
前記正極は、上述の正極活物質スラリーから正極集電体の少なくとも一面に形成された正極活物質層を含むものであってもよい。この際、本発明によるリチウム二次電池は、前記正極活物質層を含むことで、上述のような優れた充・放電特性および寿命特性を示すことができる。 The positive electrode may include a positive electrode active material layer formed on at least one surface of a positive electrode current collector from the positive electrode active material slurry described above. Under the present circumstances, the lithium secondary battery by this invention can show the above-mentioned outstanding charging / discharging characteristics and lifetime characteristics by including the said positive electrode active material layer.
前記負極は、負極活物質を含む負極活物質スラリー溶液を負極集電体上に塗布した後、乾燥することで製造されることができる。この際、前記負極活物質スラリー溶液は、必要に応じて、以下の成分を含んでもよい。前記負極活物質としては、通常用いられる物質であれば制限されず、例えば、難黒鉛化炭素、黒鉛系炭素などの炭素;LixFe2O3(0≦x≦1)、LixWO2(0≦x≦1)、SnxMe1−xMe´yOz(Me:Mn、Fe、Pb、Ge;Me´:Al、B、P、Si、周期律表の1族、2族、3族の元素、ハロゲン;0<x≦1;1≦y≦3;1≦z≦8)などの金属複合酸化物;リチウム金属;リチウム合金;ケイ素系合金;スズ系合金;SnO、SnO2、PbO、PbO2、Pb2O3、Pb3O4、Sb2O3、Sb2O4、Sb2O5、GeO、GeO2、Bi2O3、Bi2O4、およびBi2O5などの金属酸化物;ポリアセチレンなどの導電性高分子;Li‐Co‐Ni系金属複合物;などが挙げられる。また、前記負極集電体としては、該二次電池に化学的変化を誘発することなく、且つ高い導電性を有するものであれば特に制限されず、例えば、銅、ステンレス鋼、アルミニウム、ニッケル、チタン、焼成炭素、銅やステンレス鋼の表面に炭素、ニッケル、チタン、銀などで表面処理を施したもの、アルミニウム‐カドミウム合金などが挙げられる。前記負極集電体は、正極集電体と同様に、表面に微細な凹凸を形成することで負極活物質の結合力を強化させてもよく、フィルム、シート、箔、網、多孔質体、発泡体、不織布体などの様々な形態に形成されてもよいことはいうまでもない。この際、前記負極集電体としては、3〜500μmの厚さを有するものが使用できる。 The negative electrode can be manufactured by applying a negative electrode active material slurry solution containing a negative electrode active material onto a negative electrode current collector and then drying. Under the present circumstances, the said negative electrode active material slurry solution may also contain the following components as needed. The negative electrode active material is not limited as long as it is a commonly used material. For example, carbon such as non-graphitizable carbon and graphite-based carbon; Li x Fe 2 O 3 (0 ≦ x ≦ 1), Li x WO 2 (0 ≦ x ≦ 1), Sn x Me 1- x Me ′ y O z (Me: Mn, Fe, Pb, Ge; Me ′: Al, B, P, Si, Groups 1 and 2 of the periodic table) Group 3 elements, halogens; metal composite oxides such as 0 <x ≦ 1; 1 ≦ y ≦ 3; 1 ≦ z ≦ 8); lithium metals; lithium alloys; silicon alloys; tin alloys; SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO 2, Bi 2 O 3, Bi 2 O 4, and Bi 2 metal oxides such as O 5; conductive polymers such as polyacetylene; Li-Co-N System metal composites; and the like. The negative electrode current collector is not particularly limited as long as it does not induce a chemical change in the secondary battery and has high conductivity. For example, copper, stainless steel, aluminum, nickel, Examples include titanium, calcined carbon, copper or stainless steel whose surface is treated with carbon, nickel, titanium, silver or the like, and an aluminum-cadmium alloy. The negative electrode current collector, like the positive electrode current collector, may reinforce the binding force of the negative electrode active material by forming fine irregularities on the surface, film, sheet, foil, net, porous body, Needless to say, it may be formed in various forms such as foam and nonwoven fabric. At this time, a negative electrode current collector having a thickness of 3 to 500 μm can be used.
前記セパレータは正極と負極との間に介在されるものであって、高いイオン透過度および機械的強度を有する絶縁性の薄い薄膜が使用可能である。例えば、前記セパレータは、その気孔径が0.01〜10μmであり、厚さが5〜300μmであってもよい。このようなセパレータとしては、通常用いられる物質であれば制限されず、例えば、耐薬品性および疎水性のポリプロピレンなどのオレフィン系ポリマー;ガラス繊維またはポリエチレンなどからなるシートや不織布;などが挙げられる。また、前記電解質としてポリマーなどの固体電解質が用いられる場合には、固体電解質がセパレータの役割を兼ねることもできる。 The separator is interposed between the positive electrode and the negative electrode, and an insulating thin film having high ion permeability and mechanical strength can be used. For example, the separator may have a pore diameter of 0.01 to 10 μm and a thickness of 5 to 300 μm. Such a separator is not limited as long as it is a substance that is usually used, and examples thereof include chemical-resistant and hydrophobic olefin polymers such as polypropylene; sheets and nonwoven fabrics made of glass fiber or polyethylene; and the like. When a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte can also serve as a separator.
また、前記リチウム二次電池は電解液をさらに含んでもよい。 The lithium secondary battery may further include an electrolytic solution.
前記電解液は、リチウム塩含有非水系電解液であってもよい。例えば、前記リチウム塩含有非水系電解液は、非水系有機溶媒およびリチウム塩を含んでもよい。前記非水系有機溶媒としては、例えば、N‐メチル‐2‐ピロリジノン、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ガンマ‐ブチロラクトン、1,2‐ジメトキシエタン、テトラヒドロキシフラン(franc)、2‐メチルテトラヒドロフラン、ジメチルスルホキシド、1,3‐ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、ギ酸メチル、酢酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3‐ジメチル‐2‐イミダゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エーテル、プロピオン酸メチル、プロピオン酸エチルなどの非プロトン性有機溶媒が挙げられる。この際、前記非水系有機溶媒は、上述の非プロトン性有機溶媒から選択される1つまたは2つ以上の混合溶媒であってもよい。 The electrolyte solution may be a lithium salt-containing non-aqueous electrolyte solution. For example, the lithium salt-containing nonaqueous electrolytic solution may contain a nonaqueous organic solvent and a lithium salt. Examples of the non-aqueous organic solvent include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran (franc) 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1 , 3-Dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, methyl propionate, propionic acid Aprotic organic solvents such as chill and the like. In this case, the non-aqueous organic solvent may be one or two or more mixed solvents selected from the above-mentioned aprotic organic solvents.
前記リチウム塩としては、前記非水系有機溶媒に溶解されやすい物質であれば制限されない。例えば、LiCl、LiBr、LiI、LiClO4、LiBF4、LiB10Cl10、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiAlCl4、CH3SO3Li、CF3SO3Li、(CF3SO2)2NLi、クロロボランリチウム、低級脂肪族カルボン酸リチウム、4‐フェニルホウ酸リチウムなどが挙げられ、LiPF6が最も好ましい。 The lithium salt is not limited as long as it is a substance that is easily dissolved in the non-aqueous organic solvent. For example, LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium 4-phenylborate and the like can be mentioned, and LiPF 6 is most preferable.
また、前記電解液は有機固体電解質であってもよい。例えば、ポリエチレン誘導体、ポリエチレンオキシド誘導体、ポリプロピレンオキシド誘導体、リン酸エステルポリマー、ポリアジテーションリシン(agitation lysine)、ポリエステルスルフィド、ポリビニルアルコール、ポリフッ化ビニリデンなどから選択される1つまたは2つ以上のイオン性解離基を含むポリマーであってもよい。 The electrolyte solution may be an organic solid electrolyte. For example, one or more ionic dissociation selected from polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate polymer, polyagitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, etc. It may be a polymer containing groups.
また、前記電解液は無機固体電解質であってもよい。例えば、Li3N、LiI、Li5NI2、Li3N‐LiI‐LiOH、LiSiO4、LiSiO4‐LiI‐LiOH、Li2SiS3、Li4SiO4、Li4SiO4‐LiI‐LiOH、Li3PO4‐Li2S‐SiS2などのLiの窒化物、ハロゲン化物、硫酸塩などが挙げられる。 The electrolyte solution may be an inorganic solid electrolyte. For example, Li 3 N, LiI, Li 5 NI 2, Li 3 N-LiI-LiOH, LiSiO 4, LiSiO 4 -LiI-LiOH, Li 2 SiS 3, Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, Examples include Li nitride such as Li 3 PO 4 -Li 2 S-SiS 2 , halides, sulfates, and the like.
また、前記リチウム二次電池は追加の添加剤をさらに含んでもよい。 The lithium secondary battery may further include an additional additive.
例えば、充・放電特性、難燃性などの改善を目的で、ピリジン、トリエチルホスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n‐グライム(glyme)、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N‐置換オキサゾリジノン、N,N‐置換イミダゾリジン、エチレングリコールジアルキルエーテル、アンモニウム塩、ピロール、2‐メトキシエタノール、三塩化アルミニウムなどから選択される1つまたは2つ以上をさらに含んでもよい。 For example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphate triamide, nitrobenzene derivatives, sulfur, quinoneimine dyes for the purpose of improving charge / discharge characteristics and flame retardancy , N-substituted oxazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol, aluminum trichloride, and the like.
例えば、不燃性を付与する目的で、四塩化炭素、三フッ化エチレンなどのハロゲン含有溶媒から選択される1つまたは2つ以上をさらに含んでもよい。 For example, for the purpose of imparting incombustibility, one or more selected from halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included.
例えば、高温保存特性を向上させる目的で、二酸化炭素ガスなどをさらに含んでもよい。 For example, carbon dioxide gas may be further included for the purpose of improving high temperature storage characteristics.
本発明によるリチウム二次電池は、小型デバイスの電源として用いられる電池セルに用いられることができるだけでなく、多数の電池セルを含む中大型電池モジュールに単位電池としても好ましく用いられることができる。 The lithium secondary battery according to the present invention can be used not only for a battery cell used as a power source of a small device, but also preferably used as a unit battery for a medium-sized battery module including a large number of battery cells.
また、本発明による前記電池モジュールは、中大型デバイスの電源として含む電池パックを提供し、前記中大型デバイスは、電気自動車(Electric Vehicle、EV)、ハイブリッド電気自動車(Hybrid Electric Vehicle、HEV)、プラグインハイブリッド電気自動車(Plug‐in Hybrid Electric Vehicle、PHEV)などを含む電気自動車および電力貯蔵装置などを提供することができるが、これに限定されるものではない。 In addition, the battery module according to the present invention provides a battery pack that is included as a power source for a medium-sized device, and the medium-sized device includes an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug. An electric vehicle including a plug-in hybrid electric vehicle (PHEV), a power storage device, and the like can be provided, but is not limited thereto.
以下、実施例を挙げて本発明をより詳細に説明する。しかし、下記の実施例は本発明をより具体的に説明するためのものであって、本発明の範囲が下記の実施例によって限定されるものではない。下記の実施例は、本発明の範囲内で当業者により適切に修正、変更可能であることはいうまでもない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are for explaining the present invention more specifically, and the scope of the present invention is not limited by the following examples. It goes without saying that the following examples can be appropriately modified and changed by those skilled in the art within the scope of the present invention.
また、本発明で特に言及しない限り、温度の単位は何れも℃であり、他の単位の定義がない限り、各成分の使用量の単位はgである。 Unless otherwise specified in the present invention, the unit of temperature is ° C., and unless otherwise defined, the unit of the amount used for each component is g.
(評価方法)
1.充・放電容量の評価
下記実施例および比較例で製造された二次電池モノセル(電池容量4.3mAh)を用いて、25℃で3〜4.5Vの電圧区間で充・放電(0.5Cで充電し、1Cで放電)を行った。
(Evaluation method)
1. Evaluation of Charging / Discharging Capacity Using the secondary battery monocell (battery capacity 4.3 mAh) manufactured in the following examples and comparative examples, charging / discharging (0.5C) in a voltage interval of 3 to 4.5 V at 25 ° C. And discharged at 1C).
2.C‐rate効率の評価
下記実施例および比較例で製造された二次電池モノセル(電池容量4.3mAh)を用いて、高温環境(45℃)でC‐rate効率を測定した。この際、C‐rate効率は、下記式1のように、0.5Cで充電された二次電池を0.1Cで放電した時の容量と、2Cで放電した時の容量との割合として定義した。
2. Evaluation of C-rate efficiency C-rate efficiency was measured in a high temperature environment (45 ° C.) using the secondary battery monocell (battery capacity 4.3 mAh) manufactured in the following examples and comparative examples. At this time, the C-rate efficiency is defined as the ratio of the capacity when a secondary battery charged at 0.5 C is discharged at 0.1 C and the capacity when discharged at 2 C as shown in the following formula 1. did.
[式1]
C‐rate(%)=[(2C放電容量)/(0.1C放電容量)]×100
[Formula 1]
C-rate (%) = [(2C discharge capacity) / (0.1C discharge capacity)] × 100
3.寿命特性の評価
前記充・放電容量の評価で測定した充・放電50サイクル(50th放電容量)後の放電容量と初期放電容量(1st放電容量)との割合として定義した(下記式2参照)。
3. It was defined as the ratio of the discharge capacity after measured in Evaluation of the charging and discharging capacity of the life characteristics charging and discharging for 50 cycles (50 th discharging capacity) and the initial discharge capacity (1 st discharge capacity) (See Formula 2 reference ).
[式2]
容量維持率(%)=[(50サイクル後の放電容量)/(初期放電容量)]×100
[Formula 2]
Capacity retention rate (%) = [(discharge capacity after 50 cycles) / (initial discharge capacity)] × 100
表面コーティングされたLiCoO2正極活物質、導電材(カーボンブラック)、およびバインダー(ポリビニリデンフルオリド、PVdF)を95:3:2の重量比で混合して20gを製造し、N‐エチルホルムアミド20gに投入して正極活物質スラリー(粘度:20,000g/cm・s、粘度変化率:1%)を製造した。厚さ20μm程度の正極集電体であるアルミニウム(Al)薄膜に前記正極活物質スラリーを塗布し、130℃で2時間乾燥した後、ロールプレス(roll press)を施すことで正極を製造した。負極としては、リチウム金属箔(foil)を使用した。電解質として、エチレンカーボネート(EC)およびエチルメチルカーボネート(EMC)を1:2の体積比で混合して製造した非水系有機溶媒にLiPF6を添加することで、1MのLiPF6非水系電解液を製造した。前記正極と負極との間にポリエチレンセパレータ(東燃社製、F2OBHE、厚さ=20μm)を含ませ、前記非水系電解液を注入することで、ポリマーセルタイプの試験用二次電池モノセルを製作した。 A surface-coated LiCoO 2 cathode active material, a conductive material (carbon black), and a binder (polyvinylidene fluoride, PVdF) are mixed at a weight ratio of 95: 3: 2 to produce 20 g, and N-ethylformamide 20 g The positive electrode active material slurry (viscosity: 20,000 g / cm · s, viscosity change rate: 1%) was produced. The positive electrode active material slurry was applied to an aluminum (Al) thin film as a positive electrode current collector having a thickness of about 20 μm, dried at 130 ° C. for 2 hours, and then subjected to a roll press to produce a positive electrode. Lithium metal foil (foil) was used as the negative electrode. By adding LiPF 6 to a non-aqueous organic solvent prepared by mixing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) at a volume ratio of 1: 2 as an electrolyte, a 1M LiPF 6 non-aqueous electrolyte is obtained. Manufactured. A polymer cell type secondary battery monocell was manufactured by including a polyethylene separator (F2OBHE, thickness = 20 μm) between the positive electrode and the negative electrode and injecting the non-aqueous electrolyte. .
前記方法により製造された二次電池モノセルの初期充・放電容量、C‐rate効率、および寿命特性(容量維持率)を評価し、下記表1に示した。 The initial charge / discharge capacity, C-rate efficiency, and life characteristics (capacity retention ratio) of the secondary battery monocell manufactured by the above method were evaluated and are shown in Table 1 below.
(比較例1)
正極活物質スラリーの製造において、N‐エチルホルムアミドの代わりにN‐メチル‐2‐ピロリドン(NMP)を溶媒として使用して正極活物質スラリー(粘度:50,000g/cm・s、粘度変化率:15%)を製造した。その後、実施例1の方法と同様の方法によりポリマーセルタイプの試験用二次電池モノセルを製作した。
(Comparative Example 1)
In the production of the positive electrode active material slurry, positive electrode active material slurry (viscosity: 50,000 g / cm · s, viscosity change rate: N-methyl-2-pyrrolidone (NMP) instead of N-ethylformamide) is used as a solvent. 15%). Thereafter, a polymer cell type test secondary battery monocell was manufactured in the same manner as in Example 1.
前記方法により製造された二次電池モノセルの初期充・放電容量、C‐rate効率、および寿命特性(容量維持率)を評価し、下記表1に示した。 The initial charge / discharge capacity, C-rate efficiency, and life characteristics (capacity retention ratio) of the secondary battery monocell manufactured by the above method were evaluated and are shown in Table 1 below.
本発明による二次電池は、著しい充電容量を示すだけでなく、初期放電容量も200mAh/g以上であり、容量維持率にも優れていた。 The secondary battery according to the present invention not only showed a remarkable charge capacity, but also had an initial discharge capacity of 200 mAh / g or more and an excellent capacity maintenance rate.
具体的に、本発明による二次電池は、高い初期放電容量(203.9mAh/g)を示すとともに、C‐rate効率が91%であることが確認された。特に、本発明による二次電池は容量維持率が97%であることが確認された。このような本発明による二次電池の高い容量維持率は、比較例に比べて114%以上に達する著しい効果である。 Specifically, the secondary battery according to the present invention showed a high initial discharge capacity (203.9 mAh / g) and a C-rate efficiency of 91%. In particular, it was confirmed that the secondary battery according to the present invention has a capacity retention rate of 97%. Such a high capacity retention rate of the secondary battery according to the present invention is a remarkable effect of reaching 114% or more as compared with the comparative example.
以上、本発明の好ましい実施形態について説明したが、本発明はこれに限定されるものではなく、特許請求の範囲と発明の詳細な説明および添付図面の範囲内で多様な変形実施が可能であり、これも本発明の範囲に属するということはいうまでもない。
The preferred embodiments of the present invention have been described above. However, the present invention is not limited to these embodiments, and various modifications can be made within the scope of the claims, the detailed description of the invention, and the accompanying drawings. Needless to say, this also belongs to the scope of the present invention.
Claims (12)
[化学式1]
Li1+x[NiaCobMnc]O2
(前記化学式1中、−0.5≦x≦0.6、0≦a、b、c≦1、x+a+b+c=1である。) The positive electrode active material slurry according to claim 2, wherein the positive electrode active material is represented by the following chemical formula 1.
[Chemical Formula 1]
Li 1 + x [Ni a Co b Mn c ] O 2
(In the chemical formula 1, −0.5 ≦ x ≦ 0.6, 0 ≦ a, b, c ≦ 1, and x + a + b + c = 1.)
前記正極は、正極集電体の一面に正極活物質層が10〜100μmの厚さで形成されたものである、二次電池。 A secondary battery comprising the positive electrode according to claim 9, a negative electrode, and a separator between the positive electrode and the negative electrode,
The positive electrode is a secondary battery in which a positive electrode active material layer is formed with a thickness of 10 to 100 μm on one surface of a positive electrode current collector.
[式1]
C‐rate(%)=[(2C放電容量)/(0.1C放電容量)]×100 The secondary battery according to claim 10 or 11, wherein the C-rate efficiency represented by the following formula 1 is 90% or more.
[Formula 1]
C-rate (%) = [(2C discharge capacity) / (0.1C discharge capacity)] × 100
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0027406 | 2017-03-03 | ||
KR20170027406 | 2017-03-03 | ||
KR1020180021771A KR102548586B1 (en) | 2017-03-03 | 2018-02-23 | Solvent for coating positive electrode material of secondary battery, positive electrode material slurry comprising the same and secondary battery prepared therewith |
KR10-2018-0021771 | 2018-02-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018147882A true JP2018147882A (en) | 2018-09-20 |
JP7138455B2 JP7138455B2 (en) | 2022-09-16 |
Family
ID=63486387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018038536A Active JP7138455B2 (en) | 2017-03-03 | 2018-03-05 | Positive electrode active material coating solvent for secondary battery, positive electrode active material slurry containing same, and secondary battery produced therefrom |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7138455B2 (en) |
CN (1) | CN108539198B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201815076D0 (en) * | 2018-09-17 | 2018-10-31 | Johnson Matthey Plc | Lithium metal phosphate, its preparation and use |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008060060A (en) * | 2006-08-04 | 2008-03-13 | Kyoritsu Kagaku Sangyo Kk | Coating liquid for manufacturing electrode plate, undercoating agent, and use thereof |
WO2009147989A1 (en) * | 2008-06-02 | 2009-12-10 | 大日精化工業株式会社 | Coating liquid, coating liquid for manufacturing electrode plate, undercoating agent, and use thereof |
JP2012048892A (en) * | 2010-08-25 | 2012-03-08 | Nippon Shokubai Co Ltd | Conductive layer for lithium ion secondary battery |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004047487A (en) * | 1995-01-25 | 2004-02-12 | Ricoh Co Ltd | Cathode for lithium secondary battery and lithium secondary battery using the same |
JP4819342B2 (en) * | 2004-11-08 | 2011-11-24 | エレクセル株式会社 | Positive electrode for lithium battery and lithium battery using the same |
CN100470917C (en) * | 2005-10-31 | 2009-03-18 | 比亚迪股份有限公司 | Lithium secondary battery, and preparation method |
CN100511821C (en) * | 2005-11-17 | 2009-07-08 | 比亚迪股份有限公司 | A lithium ion battery and preparing method thereof |
CN1988218A (en) * | 2005-12-19 | 2007-06-27 | 比亚迪股份有限公司 | Anode, lithium secondary battery including said anode and their preparing method |
CN101174682A (en) * | 2006-10-30 | 2008-05-07 | 比亚迪股份有限公司 | Anode and method for producing the same and lithium ion secondary battery |
CN101174684B (en) * | 2006-11-02 | 2010-12-22 | 比亚迪股份有限公司 | Battery anode and lithium ion battery using the same and their production method |
CN101312243B (en) * | 2007-05-24 | 2012-10-17 | 上海比亚迪有限公司 | Battery anode slurry, anode using same and battery manufacture method |
CN101355151A (en) * | 2007-07-25 | 2009-01-28 | 比亚迪股份有限公司 | Battery anode and primary cell as well as preparation method thereof |
CN101471435B (en) * | 2007-12-25 | 2010-12-22 | 比亚迪股份有限公司 | Lithium ion secondary battery anode and lithium ion secondary battery including the same |
US20100107509A1 (en) * | 2008-11-04 | 2010-05-06 | Guiselin Olivier L | Coated abrasive article for polishing or lapping applications and system and method for producing the same. |
WO2015033566A1 (en) * | 2013-09-09 | 2015-03-12 | パナソニックIpマネジメント株式会社 | Electricity storage device, manufacturing method therefor, and separator |
JP2016178060A (en) * | 2015-03-23 | 2016-10-06 | 東洋インキScホールディングス株式会社 | Electricity storage material, electrode for electricity storage device and electricity storage device |
-
2018
- 2018-03-02 CN CN201810175705.5A patent/CN108539198B/en active Active
- 2018-03-05 JP JP2018038536A patent/JP7138455B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008060060A (en) * | 2006-08-04 | 2008-03-13 | Kyoritsu Kagaku Sangyo Kk | Coating liquid for manufacturing electrode plate, undercoating agent, and use thereof |
WO2009147989A1 (en) * | 2008-06-02 | 2009-12-10 | 大日精化工業株式会社 | Coating liquid, coating liquid for manufacturing electrode plate, undercoating agent, and use thereof |
JP2012048892A (en) * | 2010-08-25 | 2012-03-08 | Nippon Shokubai Co Ltd | Conductive layer for lithium ion secondary battery |
Also Published As
Publication number | Publication date |
---|---|
CN108539198A (en) | 2018-09-14 |
JP7138455B2 (en) | 2022-09-16 |
CN108539198B (en) | 2023-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110062973B (en) | Prelithiation method for silicon oxide negative electrode for secondary battery | |
JP4717847B2 (en) | Positive electrode active material and lithium secondary battery including the same | |
JP6651240B2 (en) | Electrode for lithium secondary battery with improved adhesion and method of manufacturing the same | |
KR101123057B1 (en) | Cathode Active Material for Lithium Secondary Battery | |
KR102095930B1 (en) | Positive Electrode Active Material Comprising High-voltage Lithium Cobalt Oxide Having Doping element for Lithium Secondary Battery and Method of Manufacturing the Same | |
US10256462B2 (en) | Negative electrode for secondary battery comprising CMC-Li salt and lithium secondary battery comprising the same | |
CN110268557B (en) | Prelithiation using lithium metal and inorganic composite layers | |
CN111771300A (en) | Multi-layer anode comprising silicon-based compound and lithium secondary battery comprising the same | |
CN110010859B (en) | Secondary battery, battery module, battery pack, and device | |
KR20160128014A (en) | Positive Electrode Mix Comprising Lithium Metal Sulfur Compound and Positive Electrode Prepared from the Same | |
CN109417165B (en) | Positive active material particles including a core containing lithium cobalt oxide and a shell containing lithium cobalt phosphate, and method for preparing same | |
US10249874B2 (en) | Composite negative active material, negative electrode including composite negative active material, and lithium secondary battery including negative electrode | |
KR102120271B1 (en) | Positive Electrode Active Material Comprising High-voltage Lithium Cobalt Oxide Having Doping element for Lithium Secondary Battery and Method of Manufacturing the Same | |
CN104380520A (en) | Electrode assembly for sulfur-lithium ion battery and sulfur-lithium ion battery comprising same | |
US10411254B2 (en) | Negative electrode active material and secondary battery including the same | |
JP2016517155A (en) | Secondary battery electrode with improved energy density and lithium secondary battery including the same | |
KR100781051B1 (en) | Mixture for Anode of Improved Adhesive Strength and Lithium Secondary Battery Containing the Same | |
KR101588624B1 (en) | Electrode of Improved Electrode Conductivity and Method For Manufacturing The Same | |
JP6808948B2 (en) | Negative electrode for non-aqueous lithium-ion secondary battery, its manufacturing method and non-aqueous lithium-ion secondary battery | |
KR20140095999A (en) | Anode active material for lithium secondary battery and anode comprising the same | |
KR101796344B1 (en) | Positive electrode material for lithium secondary battery, preparation thereof, and lithium secondary battery comprising the same | |
KR102311052B1 (en) | Preparation method of positive electrode slurry composition and positive electrode slurry composition for secondary battery by manufactured thereof | |
KR102277227B1 (en) | Negative Electrode Mix for Secondary Battery Comprising CMC-Li Salt and Lithium Secondary Battery Comprising the Same | |
CN108539198B (en) | Solvent for coating positive electrode active material for secondary battery, positive electrode active material slurry containing same, and secondary battery manufactured therefrom | |
KR102548586B1 (en) | Solvent for coating positive electrode material of secondary battery, positive electrode material slurry comprising the same and secondary battery prepared therewith |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220314 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220906 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7138455 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |