JP2018147677A - Lithium ion secondary battery - Google Patents
Lithium ion secondary battery Download PDFInfo
- Publication number
- JP2018147677A JP2018147677A JP2017040862A JP2017040862A JP2018147677A JP 2018147677 A JP2018147677 A JP 2018147677A JP 2017040862 A JP2017040862 A JP 2017040862A JP 2017040862 A JP2017040862 A JP 2017040862A JP 2018147677 A JP2018147677 A JP 2018147677A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- material layer
- lithium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery.
リチウムイオン二次電池は、積層体を有してなり、積層体は、第1集電体の少なくとも一方の面上に正極活物質層を配置してなる正極と、第2集電体の少なくとも一方の面上に負極活物質層を配置してなる負極とを、電解質層を介して積層してなる(特許文献1参照)。 The lithium ion secondary battery includes a laminate, and the laminate includes a positive electrode in which a positive electrode active material layer is disposed on at least one surface of the first current collector, and at least a second current collector. A negative electrode formed by disposing a negative electrode active material layer on one surface is laminated via an electrolyte layer (see Patent Document 1).
リチウムイオン二次電池は、電気自動車の駆動用電源としての利用等から、近年高容量化が求められている。また、充放電レート特性の高いリチウムイオン二次電池、すなわち、充放電レートを高くしたときでも充放電量の低下量が少ないリチウムイオン二次電池が求められている。 Lithium ion secondary batteries have recently been required to have higher capacities because of their use as power sources for driving electric vehicles. There is also a need for a lithium ion secondary battery with high charge / discharge rate characteristics, that is, a lithium ion secondary battery with a small decrease in charge / discharge amount even when the charge / discharge rate is increased.
電池の容量は、主に、電池に含まれる活物質全体の容量によって定まる。よって、電池の容量を増やす方法として、活物質層の各々に含まれる活物質の量を増やす方法が考えられる。 The capacity of the battery is mainly determined by the capacity of the entire active material contained in the battery. Therefore, as a method for increasing the capacity of the battery, a method for increasing the amount of the active material contained in each of the active material layers is conceivable.
しかしながら、活物質層の各々に含まれる活物質の量が増えると、活物質層におけるリチウムイオンの拡散移動距離が増えるため、リチウムイオンの拡散移動に起因した過電圧が大きくなる。そのため、リチウムイオン二次電池全体の内部抵抗が大きくなり、充放電レート特性が低下するという問題がある。 However, when the amount of the active material contained in each of the active material layers increases, the diffusion transfer distance of lithium ions in the active material layer increases, so the overvoltage due to the lithium ion diffusion transfer increases. Therefore, there is a problem that the internal resistance of the entire lithium ion secondary battery is increased and the charge / discharge rate characteristics are deteriorated.
近年、負極活物質として、比較的容量の大きな物質、例えばシリコンなどを使用することによって、負極活物質の量を増やすことなく、電池に含まれる負極活物質全体の容量を増やすことが可能になってきている。 In recent years, by using a material having a relatively large capacity, such as silicon, as the negative electrode active material, it has become possible to increase the capacity of the entire negative electrode active material included in the battery without increasing the amount of the negative electrode active material. It is coming.
一方で、正極活物質として使用可能な物質の中に、シリコンに匹敵するような容量の高い物質がなく、正極活物質全体の容量を増やすためには、正極活物質の量を増やさざるを得ない状況にある。そのため、上述した問題は、リチウムイオン二次電池に含まれる正極活物質全体の容量を増やそうとする際に顕著である。 On the other hand, there is no high-capacity material comparable to silicon among the materials that can be used as the positive electrode active material, and in order to increase the total capacity of the positive electrode active material, the amount of the positive electrode active material must be increased. There is no situation. Therefore, the above-described problem is remarkable when trying to increase the capacity of the entire positive electrode active material included in the lithium ion secondary battery.
本発明は、上記課題を解決するためになされたものであり、充放電レート特性の低下を抑制しつつ、電池の容量を増やすことが可能なリチウムイオン二次電池を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a lithium ion secondary battery capable of increasing the capacity of the battery while suppressing a decrease in charge / discharge rate characteristics. .
上記目的を達成するための本発明のリチウムイオン二次電池は、第1集電体の少なくとも一方の面上に、正極活物質を含む正極活物質層を配置してなる複数の正極と、第2集電体の少なくとも一方の面上に、負極活物質を含む負極活物質層を配置してなる負極とを、電解質層を介して積層してなる積層体を、外装体内部に封止してなる。そして、複数の正極のうち積層体の積層方向の中心側に配置された一または複数の中心側の正極における第1集電体の単位面積当たりの正極活物質の量は、中心側の正極よりも積層方向の中心から遠い側に配置された複数の外方側の正極における第1集電体の単位面積当たりの正極活物質の量よりも大きい。 In order to achieve the above object, a lithium ion secondary battery of the present invention includes a plurality of positive electrodes each having a positive electrode active material layer including a positive electrode active material disposed on at least one surface of a first current collector, (2) A laminate formed by laminating a negative electrode formed by disposing a negative electrode active material layer containing a negative electrode active material on at least one surface of a current collector through an electrolyte layer is sealed inside the outer package. It becomes. And the quantity of the positive electrode active material per unit area of the 1st electrical power collector in the positive electrode of the one or some center side arrange | positioned at the center side of the lamination direction of a laminated body among several positive electrodes is from the positive electrode of a center side. Is larger than the amount of the positive electrode active material per unit area of the first current collector in the plurality of outer side positive electrodes arranged on the side far from the center in the stacking direction.
本発明に係るリチウムイオン二次電池によれば、充放電レート特性の低下を抑制しつつ、電池の容量を増やすことが可能なリチウムイオン二次電池を提供できる。 The lithium ion secondary battery according to the present invention can provide a lithium ion secondary battery capable of increasing the capacity of the battery while suppressing a decrease in charge / discharge rate characteristics.
以下、添付した図面を参照しながら、本発明の実施形態とその改変例について説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面における各部材の大きさや比率は、説明の都合上誇張され実際の大きさや比率とは異なる場合がある。なお、図中において、Xは、リチウムイオン二次電池100の短手方向を示し、Yは、リチウムイオン二次電池100の長手方向を示し、Zは、積層体110の積層方向を示している。 Hereinafter, embodiments of the present invention and modifications thereof will be described with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. The size and ratio of each member in the drawings are exaggerated for convenience of explanation and may be different from the actual size and ratio. In the figure, X indicates the short direction of the lithium ion secondary battery 100, Y indicates the longitudinal direction of the lithium ion secondary battery 100, and Z indicates the stacking direction of the stacked body 110. .
本実施形態に係るリチウムイオン二次電池100を図1〜図4を参照しつつ説明する。 A lithium ion secondary battery 100 according to this embodiment will be described with reference to FIGS.
図1は、本実施形態に係るリチウムイオン二次電池100の斜視図である。図2は、図1の2−2線に沿う断面図である。図3は、図2の破線部3を拡大して示す図である。図4は、正極活物質層12の単位体積当たりの正極活物質の密度ρと電池全体の内部抵抗Rとの関係を示す図である。 FIG. 1 is a perspective view of a lithium ion secondary battery 100 according to this embodiment. FIG. 2 is a cross-sectional view taken along line 2-2 of FIG. FIG. 3 is an enlarged view of the broken line portion 3 of FIG. FIG. 4 is a diagram illustrating the relationship between the density ρ of the positive electrode active material per unit volume of the positive electrode active material layer 12 and the internal resistance R of the entire battery.
図1〜図3を参照して、本実施形態に係るリチウムイオン二次電池100は、概説すれば、第1集電体11の両面11a、11b(図3参照)上に、正極活物質を含む正極活物質層12を配置してなる複数の正極10と、第2集電体21の両面21a、21b(図3参照)上に、負極活物質を含む負極活物質層22を配置してなる負極20とを、電解質層30を介して積層してなる積層体110を、外装体120内部に封止してなる(図2参照)。そして、複数の正極10のうち積層体110の積層方向Zの中心側Z1に配置された複数の中心側の正極(以下、中心側正極という)10Aにおける第1集電体11の単位面積当たりの正極活物質の量Qaは、中心側正極10Aよりも積層方向Zの中心から遠い側Z2に配置された複数の外方側の正極(以下、外方側正極という)10Bにおける第1集電体11の単位面積当たりの正極活物質の量Qbよりも大きい。以下、本実施形態に係るリチウムイオン二次電池100について詳説する。 With reference to FIGS. 1 to 3, the lithium ion secondary battery 100 according to the present embodiment can be summarized as follows: a positive electrode active material is placed on both surfaces 11 a and 11 b (see FIG. 3) of the first current collector 11. A negative electrode active material layer 22 containing a negative electrode active material is arranged on a plurality of positive electrodes 10 having a positive electrode active material layer 12 containing them and on both surfaces 21a and 21b (see FIG. 3) of the second current collector 21. The laminated body 110 formed by laminating the negative electrode 20 formed through the electrolyte layer 30 is sealed inside the exterior body 120 (see FIG. 2). And per unit area of the 1st electrical power collector 11 in the some positive electrode 10A of the center side (henceforth a center side positive electrode) arrange | positioned among the some positive electrodes 10 at the center side Z1 of the lamination direction Z of the laminated body 110. FIG. The amount Qa of the positive electrode active material is the first current collector in a plurality of outer positive electrodes (hereinafter referred to as outer positive electrodes) 10B disposed on the side Z2 farther from the center in the stacking direction Z than the central positive electrode 10A. 11 is larger than the amount Qb of the positive electrode active material per unit area. Hereinafter, the lithium ion secondary battery 100 according to the present embodiment will be described in detail.
<積層体>
図2および図3を参照して、積層体110は、電解質層30を介して正極10と負極20とを積層してなる。図2および図3では、正極10、負極20および電解質層30の一部を省略して示しているが、正極10、負極20および電解質層30は、積層体110の積層方向Zの全体にわたって積層されている。正極10と負極20とは、電解質層30を挟んで対向した状態で積層されている。積層体110は、電解液とともに、外装体120内部に封止されている。
<Laminate>
Referring to FIGS. 2 and 3, laminate 110 is formed by laminating positive electrode 10 and negative electrode 20 with electrolyte layer 30 interposed therebetween. In FIGS. 2 and 3, a part of the positive electrode 10, the negative electrode 20, and the electrolyte layer 30 is omitted, but the positive electrode 10, the negative electrode 20, and the electrolyte layer 30 are stacked over the entire stacking direction Z of the stacked body 110. Has been. The positive electrode 10 and the negative electrode 20 are laminated in a state of facing each other with the electrolyte layer 30 interposed therebetween. The laminate 110 is sealed inside the exterior body 120 together with the electrolytic solution.
<電解液>
電解液の種類は特に限定されず、従来公知のものを適宜利用することができる。本実施形態では、電解液として、液体電解質を用いたものを使用するが、ゲル電解質を用いた電解液を使用してもよい。
<Electrolyte>
The kind of electrolyte solution is not specifically limited, A conventionally well-known thing can be utilized suitably. In the present embodiment, an electrolyte solution using a liquid electrolyte is used as the electrolyte solution, but an electrolyte solution using a gel electrolyte may be used.
液体電解質は、溶媒に支持塩であるリチウム塩が溶解したものである。 The liquid electrolyte is obtained by dissolving a lithium salt as a supporting salt in a solvent.
リチウム塩の種類は特に限定されず、例えば、Li(CF3SO2)2N、Li(C2F5SO2)2N、LiPF6、LiBF4、LiAsF6、LiTaF6、LiClO4、LiCF3SO3などの従来公知のものを適宜使用できる。 Type of lithium salt is not particularly limited, for example, Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiAsF 6, LiTaF 6, LiClO 4, LiCF Conventionally known ones such as 3 SO 3 can be used as appropriate.
溶媒の種類は特に限定されず、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)などの従来公知のものを適宜使用できる。 The type of the solvent is not particularly limited. For example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate. Conventionally known materials such as (EMC) and methylpropyl carbonate (MPC) can be used as appropriate.
<外装体>
外装体120は、積層体110を電解液とともに収容する。
<Exterior body>
The exterior body 120 accommodates the stacked body 110 together with the electrolytic solution.
外装体120は、3層構造のラミネートシートから構成される。1層目は、熱融着性樹脂に相当し、例えばポリエチレン(PE)、アイオノマー、またはエチレンビニルアセテート(EVA)を用いて形成している。1層目の材料は、負極20に隣接させている。2層目は、金属を箔状に形成したものに相当し、例えばAl箔またはNi箔を用いて形成している。3層目は、樹脂性のフィルムに相当し、例えば剛性を有するポリエチレンテレフタレート(PET)またはナイロンを用いて形成している。3層目の材料は、正極10に隣接させている。 The exterior body 120 is composed of a laminate sheet having a three-layer structure. The first layer corresponds to a heat-fusible resin and is formed using, for example, polyethylene (PE), ionomer, or ethylene vinyl acetate (EVA). The first layer material is adjacent to the negative electrode 20. The second layer corresponds to a metal foil formed, for example, an Al foil or Ni foil. The third layer corresponds to a resinous film and is formed using, for example, rigid polyethylene terephthalate (PET) or nylon. The third layer material is adjacent to the positive electrode 10.
<正極>
正極10は、第1集電体11の両面11a、11b上に正極活物質層12を配置してなる。
<Positive electrode>
The positive electrode 10 is formed by disposing a positive electrode active material layer 12 on both surfaces 11 a and 11 b of a first current collector 11.
第1集電体11は、薄膜状の形状を備える。第1集電体11を構成する材料は特に限定されず、例えば、アルミニウムとすることができる。第1集電体11には、充放電用の正極タブ13(図1参照)が接続されている。 The first current collector 11 has a thin film shape. The material which comprises the 1st electrical power collector 11 is not specifically limited, For example, it can be set as aluminum. A positive electrode tab 13 (see FIG. 1) for charging / discharging is connected to the first current collector 11.
正極活物質層12は、正極活物質を含む。正極活物質の種類は特に限定されず、例えば、LiNiCoAlO2とすることができる。 The positive electrode active material layer 12 includes a positive electrode active material. Type of the positive electrode active material is not particularly limited, for example, be a LiNiCoAlO 2.
正極活物質層12は、導電材料を含む。導電材料の種類は特に限定されず、例えば、アセチレンブラックとすることができる。 The positive electrode active material layer 12 includes a conductive material. The kind of conductive material is not particularly limited, and can be, for example, acetylene black.
正極10の製造方法は特に限定されないが、本実施形態では、第1集電体11の両面11a、11b上に正極スラリーを塗工してから乾燥させることによって正極活物質層12を第1集電体11の両面11a、11b上に形成する。乾燥した正極活物質層12は、第1集電体11の両面に結着させている状態で、第1集電体11の両側からプレス加工している。 Although the manufacturing method of the positive electrode 10 is not particularly limited, in the present embodiment, the positive electrode active material layer 12 is applied to the first current collector 11 by coating the positive electrode slurry on both surfaces 11a and 11b of the first current collector 11 and then drying. It is formed on both surfaces 11 a and 11 b of the electric body 11. The dried positive electrode active material layer 12 is pressed from both sides of the first current collector 11 while being bonded to both surfaces of the first current collector 11.
正極スラリーは、正極活物質、導電材料、バインダーおよび粘度調整溶媒を含む。バインダーとして、PVDFを使用し得る。 The positive electrode slurry includes a positive electrode active material, a conductive material, a binder, and a viscosity adjusting solvent. PVDF may be used as a binder.
<負極>
負極20は、第2集電体21の両面21a、21b上に負極活物質層22を配置してなる。
<Negative electrode>
The negative electrode 20 is formed by disposing a negative electrode active material layer 22 on both surfaces 21 a and 21 b of a second current collector 21.
第2集電体21は、薄膜状の形状を備える。第2集電体21を構成する材料は特に限定されず、例えば、銅とすることができる。第2集電体21には、充放電用の負極タブ23(図1参照)が接続されている。 The second current collector 21 has a thin film shape. The material which comprises the 2nd electrical power collector 21 is not specifically limited, For example, it can be set as copper. A negative electrode tab 23 (see FIG. 1) for charging / discharging is connected to the second current collector 21.
負極活物質層22の面積は、正極活物質層12の面積よりも大きい。 The area of the negative electrode active material layer 22 is larger than the area of the positive electrode active material layer 12.
これにより、正極活物質層12および負極活物質層22の位置が相対的にずれた場合であっても正極活物質層12と負極活物質層22との対向面積を一定に維持できる。そのため、正極活物質層12と負極活物質層22との対向面積が変化することに起因して発電容量が変動することを抑制できる。 Thereby, even if the positions of the positive electrode active material layer 12 and the negative electrode active material layer 22 are relatively shifted, the facing area between the positive electrode active material layer 12 and the negative electrode active material layer 22 can be maintained constant. Therefore, it is possible to suppress a change in power generation capacity due to a change in the facing area between the positive electrode active material layer 12 and the negative electrode active material layer 22.
負極活物質層22は、負極活物質を含み、負極活物質の少なくとも1種は、シリコン単体(Si)、シリコン合金およびシリコン酸化物からなる群から選択される。 The negative electrode active material layer 22 includes a negative electrode active material, and at least one of the negative electrode active materials is selected from the group consisting of silicon simple substance (Si), silicon alloy, and silicon oxide.
シリコンは、単位体積当たりのリチウムイオンの吸蔵能力が黒鉛等と比較して高い。そのため、上述した材料を負極活物質に使用することによって、負極活物質の量を増やすことなく、リチウムイオン二次電池100に含まれる負極活物質全体の容量を大きくできる。 Silicon has a higher lithium ion storage capacity per unit volume than graphite. Therefore, by using the above-described material for the negative electrode active material, the capacity of the entire negative electrode active material included in the lithium ion secondary battery 100 can be increased without increasing the amount of the negative electrode active material.
負極活物質層22は、導電材料を含む。導電材料の種類は特に限定されず、例えば、アセチレンブラックとすることができる。 The negative electrode active material layer 22 includes a conductive material. The kind of conductive material is not particularly limited, and can be, for example, acetylene black.
負極20の製造方法は特に限定されないが、本実施形態では、第2集電体21の両面21a、21b上に負極スラリーを塗工してから乾燥させることによって、第2集電体21の両面21a、21b上に負極活物質層22を形成する。乾燥した負極活物質層22は、第2集電体21の両面に結着させている状態で、第2集電体21の両側からプレス加工している。 Although the manufacturing method of the negative electrode 20 is not particularly limited, in the present embodiment, the negative electrode slurry is applied on both surfaces 21a and 21b of the second current collector 21 and then dried, whereby both surfaces of the second current collector 21 are dried. A negative electrode active material layer 22 is formed on 21a and 21b. The dried negative electrode active material layer 22 is pressed from both sides of the second current collector 21 while being bonded to both surfaces of the second current collector 21.
負極スラリーは、例えば、負極活物質、導電材料、バインダーおよび粘度調整溶媒を含むことができる。負極スラリーは、例えば、負極活物質として80wt%のシリコン合金と、導電材料として5wt%のアセチレンブラックと、バインダーとして15wt%のポリイミドと、を混合したものを使用できる。スラリーの粘度を調整する溶媒としてNMPを使用できる。 The negative electrode slurry can include, for example, a negative electrode active material, a conductive material, a binder, and a viscosity adjusting solvent. As the negative electrode slurry, for example, a mixture of 80 wt% silicon alloy as a negative electrode active material, 5 wt% acetylene black as a conductive material, and 15 wt% polyimide as a binder can be used. NMP can be used as a solvent for adjusting the viscosity of the slurry.
<電解質層30>
電解質層30は、セパレータを有する。
<Electrolyte layer 30>
The electrolyte layer 30 has a separator.
セパレータは、電解液に含まれる電解質を保持する。 The separator holds the electrolyte contained in the electrolytic solution.
セパレータの種類は、電解液に含まれる電解質を保持し得る限りにおいて特に限定されず、従来公知のものを適宜利用できる。セパレータとして、例えば、電解液に含まれる電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を用いることができる。 The type of the separator is not particularly limited as long as the electrolyte contained in the electrolytic solution can be retained, and conventionally known separators can be appropriately used. As the separator, for example, a porous sheet separator or a nonwoven fabric separator made of a polymer or fiber that absorbs and holds the electrolyte contained in the electrolytic solution can be used.
<正極活物質層12>
正極活物質層12についてさらに詳説する。
<Positive electrode active material layer 12>
The positive electrode active material layer 12 will be further described in detail.
積層体110の積層方向Zの中心側Z1に配置された複数の中心側正極10Aにおける第1集電体11の単位面積当たりの正極活物質の量Qaは、中心側正極10Aよりも積層方向Zの中心から遠い側Z2に配置された複数の外方側正極10Bにおける第1集電体11の単位面積当たりの正極活物質の量Qbよりも大きい。 The amount Qa of the positive electrode active material per unit area of the first current collector 11 in the plurality of center-side positive electrodes 10A arranged on the center side Z1 in the stacking direction Z of the stacked body 110 is larger than the center-side positive electrode 10A in the stacking direction Z. Larger than the amount Qb of the positive electrode active material per unit area of the first current collector 11 in the plurality of outer side positive electrodes 10B arranged on the side Z2 far from the center.
本実施形態では、中心側正極10Aにおける正極活物質層12の単位体積当たりの正極活物質の密度ρ1は、外方側正極10Bにおける正極活物質層12の単位体積当たりの正極活物質の密度ρ2よりも大きい。 In the present embodiment, the density ρ1 of the positive electrode active material per unit volume of the positive electrode active material layer 12 in the center-side positive electrode 10A is equal to the density ρ2 of the positive electrode active material per unit volume of the positive electrode active material layer 12 in the outer-side positive electrode 10B. Bigger than.
密度ρ1と密度ρ2の値は、密度ρ1が密度ρ2よりも大きい限りにおいて特に限定されないが、例えば、密度ρ1/密度ρ2=1.67〜5となるように設定し得る。密度ρ1は、例えば、3.2〜3.9g/cm3とし得る。密度ρ2は、例えば、2.9〜3.5g/cm3とし得る。 The values of the density ρ1 and the density ρ2 are not particularly limited as long as the density ρ1 is larger than the density ρ2, and can be set to be, for example, density ρ1 / density ρ2 = 1.67 to 5. The density ρ1 can be set to 3.2 to 3.9 g / cm 3 , for example. The density ρ2 can be, for example, 2.9 to 3.5 g / cm 3 .
密度ρ1および密度ρ2の調整方法は特に限定されないが、例えば、正極10を製造する際に、第1集電体11に塗工する正極スラリーに含まれる正極活物質の量を調整することによって、密度ρ1および密度ρ2を調整し得る。 The method for adjusting the density ρ1 and the density ρ2 is not particularly limited. For example, when the positive electrode 10 is manufactured, by adjusting the amount of the positive electrode active material contained in the positive electrode slurry applied to the first current collector 11, The density ρ1 and the density ρ2 can be adjusted.
本実施形態では、中心側正極10Aにおける正極活物質層12の厚さh1と、外方側正極10Bにおける正極活物質層12の厚さh2とは等しい。厚さh1と厚さh2の値は特に限定されないが、例えば、55〜70μmとし得る。 In the present embodiment, the thickness h1 of the positive electrode active material layer 12 in the center-side positive electrode 10A is equal to the thickness h2 of the positive electrode active material layer 12 in the outer-side positive electrode 10B. Although the value of thickness h1 and thickness h2 is not specifically limited, For example, it may be 55-70 micrometers.
本実施形態では、中心側正極10Aにおける正極活物質層12に含まれる導電材料の量w1は、外方側正極10Bにおける正極活物質層12に含まれる導電材料の量w2よりも小さい。 In the present embodiment, the amount w1 of the conductive material contained in the positive electrode active material layer 12 in the center-side positive electrode 10A is smaller than the amount w2 of the conductive material contained in the positive electrode active material layer 12 in the outer-side positive electrode 10B.
導電材料の量w1とw2の値は、w1がw2よりも小さい限りにおいて特に限定されないが、例えば、w1/w2=0.2〜0.6となるように設定し得る。導電材料の量w1は、例えば、0.5〜3wt%とし得る。導電材料の量w2は、例えば、2〜5wt%とし得る。 The values of the amounts w1 and w2 of the conductive material are not particularly limited as long as w1 is smaller than w2, but may be set so that, for example, w1 / w2 = 0.2 to 0.6. The amount w1 of the conductive material can be, for example, 0.5 to 3 wt%. The amount w2 of the conductive material may be 2 to 5 wt%, for example.
中心側正極10Aおよび外方側正極10Bの個数は特に限定されず、リチウムイオン二次電池100に求められる性能等に応じて適宜設定し得る。 The numbers of the center-side positive electrode 10A and the outer-side positive electrode 10B are not particularly limited, and can be appropriately set according to the performance required for the lithium ion secondary battery 100.
<リチウムイオン二次電池の動作>
リチウムイオン二次電池100は、所定の充放電レートによって充放電される。充放電レートとは、単位時間当たりに充放電される電気量を意味する。一般に、リチウムイオン二次電池100は、充放電レートを高くすると、内部抵抗が増加し、充放電できる電気量が低下する特性(充放電レート特性)を有する。
<Operation of lithium ion secondary battery>
The lithium ion secondary battery 100 is charged and discharged at a predetermined charge / discharge rate. The charge / discharge rate means the amount of electricity that is charged / discharged per unit time. Generally, when the charge / discharge rate is increased, the lithium ion secondary battery 100 has a characteristic (charge / discharge rate characteristic) in which the internal resistance increases and the amount of electricity that can be charged / discharged decreases.
リチウムイオン二次電池を充放電すると、リチウムイオンが正極活物質層内を拡散移動する。正極活物質層に含まれる正極活物質の量が増えると、リチウムイオン二次電池の容量が増加する一方で、正極活物質層内におけるリチウムイオンの拡散移動距離が大きくなり、過電圧が増加して抵抗が増加する。例えば、図4に示すように、全ての正極について、正極活物質層の単位体積当たりの正極活物質の密度を増やすことによって正極活物質の量を増やした場合、電池全体の内部抵抗Rが増加する。電池全体の内部抵抗Rが増加すると、充放電レート特性が低下する。 When the lithium ion secondary battery is charged and discharged, lithium ions diffuse and move in the positive electrode active material layer. As the amount of the positive electrode active material contained in the positive electrode active material layer increases, the capacity of the lithium ion secondary battery increases, while the diffusion transfer distance of lithium ions in the positive electrode active material layer increases, and the overvoltage increases. Resistance increases. For example, as shown in FIG. 4, when the amount of the positive electrode active material is increased by increasing the density of the positive electrode active material per unit volume of the positive electrode active material layer for all the positive electrodes, the internal resistance R of the entire battery increases. To do. When the internal resistance R of the entire battery increases, the charge / discharge rate characteristics deteriorate.
ここで、リチウムイオン二次電池100内部で発生した熱は、中心側正極10Aから外方側正極10Bへと伝熱されて、外方側正極10Bから放熱される。そのため、中心側正極10Aの温度の方が、外方側正極10Bの温度よりも高くなり易い。正極10の温度が高いと、正極活物質層12内におけるリチウムイオンの拡散移動が容易になるため、過電圧の増加が抑制される。 Here, the heat generated inside the lithium ion secondary battery 100 is transferred from the center-side positive electrode 10A to the outer-side positive electrode 10B, and is radiated from the outer-side positive electrode 10B. For this reason, the temperature of the center-side positive electrode 10A tends to be higher than the temperature of the outer-side positive electrode 10B. When the temperature of the positive electrode 10 is high, the diffusion movement of lithium ions in the positive electrode active material layer 12 becomes easy, and thus an increase in overvoltage is suppressed.
リチウムイオン二次電池100では、過電圧の増加が抑制され易い中心側正極10Aにおける第1集電体11の単位面積当たりの正極活物質の量Qaが、外方側正極10Bにおける第1集電体11の単位面積当たりの正極活物質の量Qbよりも大きい。これにより、リチウムイオン二次電池100全体の内部抵抗Rの増加を抑制しつつ、電池の容量を増やせる。すなわち、放電レート特性の低下を抑制しつつ、電池の容量を増やせる。 In the lithium ion secondary battery 100, the amount Qa of the positive electrode active material per unit area of the first current collector 11 in the center-side positive electrode 10A in which an increase in overvoltage is easily suppressed is the first current collector in the outer-side positive electrode 10B. 11 is larger than the amount Qb of the positive electrode active material per unit area. Thereby, the capacity | capacitance of a battery can be increased, suppressing the increase in the internal resistance R of the lithium ion secondary battery 100 whole. That is, the capacity of the battery can be increased while suppressing a decrease in discharge rate characteristics.
付言すれば、リチウムイオン二次電池100は、低温環境における充放電レート特性の低下を抑制することに対して特に効果がある。 In other words, the lithium ion secondary battery 100 is particularly effective for suppressing a decrease in charge / discharge rate characteristics in a low temperature environment.
具体的には、図4に示すように、全ての正極について正極活物質層に含まれる正極活物質の密度が増えたときの電池全体の内部抵抗Rの増加は、低温環境において顕著である。さらに、低温環境において、中心側正極10Aと外方側正極10Bの温度差は顕著であり、外方側正極10Bの過電圧は中心側正極10Aと比較して特に増加しやすい状態にある。 Specifically, as shown in FIG. 4, the increase in the internal resistance R of the entire battery when the density of the positive electrode active material contained in the positive electrode active material layer is increased for all positive electrodes is significant in a low temperature environment. Further, in a low temperature environment, the temperature difference between the center-side positive electrode 10A and the outer-side positive electrode 10B is significant, and the overvoltage of the outer-side positive electrode 10B is particularly likely to increase as compared with the center-side positive electrode 10A.
リチウムイオン二次電池100によれば、中心側正極10Aにおける正極活物質の量Qaが、低温環境において過電圧が特に増加しやすい外方側正極10Bにおける正極活物質の量Qbよりも大きい。また、リチウムイオン二次電池100によれば、正極活物質の量が大きいことによって中心側正極10Aにおける抵抗が増加し、ジュール発熱による発熱量が大きくなる。そして、中心側正極10Aに生じた熱は外方側正極10Bに伝熱されるから、外方側正極10Bの温度が上がりやすくなり、外方側正極10Bの過電圧の増加を抑制できる。 According to the lithium ion secondary battery 100, the amount Qa of the positive electrode active material in the center-side positive electrode 10A is larger than the amount Qb of the positive electrode active material in the outer-side positive electrode 10B where the overvoltage is particularly likely to increase in a low temperature environment. Moreover, according to the lithium ion secondary battery 100, the resistance in the center-side positive electrode 10A increases due to the large amount of the positive electrode active material, and the amount of heat generated by Joule heat generation increases. And since the heat which generate | occur | produced in 10 A of center side positive electrodes is transmitted to the outer side positive electrode 10B, the temperature of the outer side positive electrode 10B becomes easy to rise, and the increase in the overvoltage of the outer side positive electrode 10B can be suppressed.
その結果、リチウムイオン二次電池100は、電池全体の内部抵抗Rが低下しやすい低温環境における充放電レート特性の低下を抑制することに対して特に効果がある。 As a result, the lithium ion secondary battery 100 is particularly effective for suppressing a decrease in charge / discharge rate characteristics in a low temperature environment in which the internal resistance R of the entire battery tends to decrease.
また、リチウムイオン二次電池100によれば、中心側正極10Aにおける正極活物質層12に含まれる導電材料の量w1は、外方側正極10Bにおける正極活物質層12に含まれる導電材料の量w2よりも小さい。中心側正極10Aに含まれる導電材料の量w1が減ると、中心側正極10Aの抵抗が増加し、中心側正極10Aのジュール発熱による発熱量が増加する。そのため、より多くの熱が中心側正極10Aから外方側正極10Bに伝熱されて外方側正極10Bの温度がより高くなるから、外方側正極10Bの過電圧がより低下する。よって、リチウムイオン二次電池100は、充放電レート特性の低下、特に、低温環境における充放電レート特性の低下をより抑制できる。 Further, according to the lithium ion secondary battery 100, the amount w1 of the conductive material contained in the positive electrode active material layer 12 in the center-side positive electrode 10A is the amount of the conductive material contained in the positive electrode active material layer 12 in the outer-side positive electrode 10B. It is smaller than w2. When the amount w1 of the conductive material contained in the center-side positive electrode 10A decreases, the resistance of the center-side positive electrode 10A increases and the amount of heat generated by Joule heat generation of the center-side positive electrode 10A increases. Therefore, more heat is transferred from the center-side positive electrode 10A to the outer-side positive electrode 10B, and the temperature of the outer-side positive electrode 10B becomes higher, so that the overvoltage of the outer-side positive electrode 10B further decreases. Therefore, the lithium ion secondary battery 100 can further suppress a decrease in charge / discharge rate characteristics, particularly a decrease in charge / discharge rate characteristics in a low-temperature environment.
なお、外方側正極10Bに含まれる導電材料の量w2を減らすことによっても、外方側正極10B自身における発熱量が増大するから、外方側正極10Bの温度を高め得る。しかしながら、外方側正極10Bは冷えやすい状態にあるため温度が上がりにくく、外方側正極10Bの過電圧は下がりにくい。そのため、充放電レート特性を改善させる観点からすると、中心側正極10Aにおける導電材料の量w1を、外方側正極10Bにおける導電材料の量w2よりも小さくするリチウムイオン二次電池100の構成の方が有利である。 Note that the amount of heat generated in the outer positive electrode 10B itself can be increased by reducing the amount w2 of the conductive material contained in the outer positive electrode 10B, so that the temperature of the outer positive electrode 10B can be increased. However, since the outer-side positive electrode 10B is in a state of being easily cooled, the temperature does not easily rise, and the overvoltage of the outer-side positive electrode 10B is hardly lowered. Therefore, from the viewpoint of improving the charge / discharge rate characteristics, the configuration of the lithium ion secondary battery 100 in which the amount w1 of the conductive material in the center-side positive electrode 10A is smaller than the amount w2 of the conductive material in the outer-side positive electrode 10B. Is advantageous.
また、上述したように、リチウムイオン二次電池100の構成は内部抵抗Rを下げる効果を奏し、リチウムイオン二次電池100全体のジュール発熱による発熱量は、それほど大きくならない。また、正極10の温度が高くなると正極10の過電圧は低くなるから、内部抵抗Rが低下して、ジュール発熱による発熱量が減る。すなわち、中心側正極10Aにおいて、温度がある程度高くなると発熱量は減少する。よって、中心側正極10Aの温度が過剰に上がることはない。 Further, as described above, the configuration of the lithium ion secondary battery 100 has an effect of lowering the internal resistance R, and the amount of heat generated by Joule heat generation of the entire lithium ion secondary battery 100 does not increase so much. Moreover, since the overvoltage of the positive electrode 10 decreases as the temperature of the positive electrode 10 increases, the internal resistance R decreases and the amount of heat generated by Joule heat generation decreases. That is, in the center-side positive electrode 10A, the heat generation amount decreases as the temperature increases to some extent. Therefore, the temperature of the center-side positive electrode 10A does not rise excessively.
(作用・効果)
本実施形態に係るリチウムイオン二次電池100は、第1集電体11の両面11a、11b上に、正極活物質を含む正極活物質層12を配置してなる複数の正極10と、第2集電体21の両面21a、21b上に、負極活物質を含む負極活物質層22を配置してなる負極20とを、電解質層30を介して積層してなる積層体110を、外装体120内部に封止してなる。そして、複数の正極10のうち積層体110の積層方向Zの中心側Z1に配置された複数の中心側正極10Aにおける第1集電体11の単位面積当たりの正極活物質の量Qaは、中心側正極10Aよりも積層方向Zの中心から遠い側Z2に配置された複数の外方側正極10Bにおける第1集電体11の単位面積当たりの正極活物質の量Qbよりも大きい。
(Action / Effect)
The lithium ion secondary battery 100 according to the present embodiment includes a plurality of positive electrodes 10 in which a positive electrode active material layer 12 including a positive electrode active material is disposed on both surfaces 11a and 11b of a first current collector 11, and a second A laminate 110 formed by laminating a negative electrode 20 in which a negative electrode active material layer 22 including a negative electrode active material is disposed on both surfaces 21 a and 21 b of a current collector 21 with an electrolyte layer 30 interposed therebetween is used as an outer package 120. Sealed inside. The amount Qa of the positive electrode active material per unit area of the first current collector 11 in the plurality of center-side positive electrodes 10A arranged on the center side Z1 in the stacking direction Z of the stack 110 among the plurality of positive electrodes 10 is the center. The amount Qb of the positive electrode active material per unit area of the first current collector 11 in the plurality of outer side positive electrodes 10B arranged on the side Z2 farther from the center in the stacking direction Z than the side positive electrode 10A is larger.
このような構成によれば、過電圧の増加が抑制され易い中心側正極10Aにおける第1集電体11の単位面積当たりの正極活物質の量Qaが、外方側正極10Bにおける第1集電体11の単位面積当たりの正極活物質の量Qbよりも大きい。これにより、リチウムイオン二次電池100全体の抵抗の増加を抑制しつつ、電池の容量を増やせる。したがって、充放電レート特性の低下を抑制しつつ、電池の容量を増やすことが可能なリチウムイオン二次電池を提供できる。 According to such a configuration, the amount Qa of the positive electrode active material per unit area of the first current collector 11 in the center-side positive electrode 10A in which an increase in overvoltage is easily suppressed is the first current collector in the outer-side positive electrode 10B. 11 is larger than the amount Qb of the positive electrode active material per unit area. Thereby, the capacity | capacitance of a battery can be increased, suppressing the increase in the resistance of the lithium ion secondary battery 100 whole. Therefore, it is possible to provide a lithium ion secondary battery capable of increasing the capacity of the battery while suppressing a decrease in charge / discharge rate characteristics.
また、本実施形態に係るリチウムイオン二次電池100において、中心側正極10Aにおける正極活物質層12の単位体積当たりの正極活物質の密度ρ1は、外方側正極10Bにおける正極活物質層12の単位体積当たりの正極活物質の密度ρ2よりも大きい。 In the lithium ion secondary battery 100 according to the present embodiment, the density ρ1 of the positive electrode active material per unit volume of the positive electrode active material layer 12 in the center-side positive electrode 10A is equal to that of the positive electrode active material layer 12 in the outer-side positive electrode 10B. It is larger than the density ρ2 of the positive electrode active material per unit volume.
このような構成によれば、密度を変えるという簡便な方法によって、中心側正極10Aに含まれる正極活物質の量Qaを、外方側正極10Bに含まれる正極活物質の量Qbよりも大きくできる。したがって、リチウムイオン二次電池の製造が容易になる。 According to such a configuration, the amount Qa of the positive electrode active material contained in the center-side positive electrode 10A can be made larger than the amount Qb of the positive electrode active material contained in the outer-side positive electrode 10B by a simple method of changing the density. . Therefore, it becomes easy to manufacture a lithium ion secondary battery.
また、本実施形態に係るリチウムイオン二次電池100は、正極活物質層12は、導電材料を含み、中心側正極10Aにおける正極活物質層12に含まれる導電材料の量w1は、外方側正極10Bにおける正極活物質層12に含まれる導電材料の量w2よりも小さい。 Further, in the lithium ion secondary battery 100 according to this embodiment, the positive electrode active material layer 12 includes a conductive material, and the amount w1 of the conductive material included in the positive electrode active material layer 12 in the central positive electrode 10A is the outer side. It is smaller than the amount w2 of the conductive material contained in the positive electrode active material layer 12 in the positive electrode 10B.
このような構成によれば、中心側正極10Aのジュール発熱による発熱量が増加する。そのため、より多くの熱が中心側正極10Aから外方側正極10Bに伝熱されて外方側正極10Bの温度がより高くなるから、外方側正極10Bの過電圧がより低下する。したがって、充放電レート特性の低下、特に、低温環境における充放電レート特性の低下をより抑制できる。 According to such a configuration, the amount of heat generated by Joule heat generation of the center-side positive electrode 10A increases. Therefore, more heat is transferred from the center-side positive electrode 10A to the outer-side positive electrode 10B, and the temperature of the outer-side positive electrode 10B becomes higher, so that the overvoltage of the outer-side positive electrode 10B further decreases. Accordingly, it is possible to further suppress a decrease in charge / discharge rate characteristics, particularly a decrease in charge / discharge rate characteristics in a low temperature environment.
(実施形態2)
上述した実施形態1では、中心側正極10Aにおける正極活物質層12の単位体積当たりの正極活物質の密度ρ1を、外方側正極10Bにおける正極活物質層12の単位体積当たりの正極活物質の密度ρ2よりも大きくすることによって、中心側正極10Aにおける正極活物質の量Qaを、外方側正極10Bにおける正極活物質の量Qbよりも大きくした。しかしながら、中心側正極10Aにおける正極活物質の量Qaを、外方側正極10Bにおける正極活物質の量Qbよりも大きくする方法は特に限定されない。
(Embodiment 2)
In Embodiment 1 described above, the density ρ1 of the positive electrode active material per unit volume of the positive electrode active material layer 12 in the center-side positive electrode 10A is set as the positive electrode active material per unit volume of the positive electrode active material layer 12 in the outer side positive electrode 10B. By making it larger than the density ρ2, the amount Qa of the positive electrode active material in the center-side positive electrode 10A was made larger than the amount Qb of the positive electrode active material in the outer-side positive electrode 10B. However, the method of making the amount Qa of the positive electrode active material in the center-side positive electrode 10A larger than the amount Qb of the positive electrode active material in the outer-side positive electrode 10B is not particularly limited.
例えば、中心側正極10Aにおける正極活物質層12の厚さh1を、外方側正極10Bにおける正極活物質層12の厚さh2よりも大きくすることによって、中心側正極10Aにおける第1集電体11の単位面積当たりの正極活物質の量Qaを、外方側正極10Bにおける第1集電体11の単位面積当たりの正極活物質の量Qbよりも大きくしてもよい。 For example, by making the thickness h1 of the positive electrode active material layer 12 in the center-side positive electrode 10A larger than the thickness h2 of the positive electrode active material layer 12 in the outer-side positive electrode 10B, the first current collector in the center-side positive electrode 10A. The amount Qa of the positive electrode active material per unit area of 11 may be larger than the amount Qb of the positive electrode active material per unit area of the first current collector 11 in the outer-side positive electrode 10B.
図5は、本実施形態に係るリチウムイオン二次電池200の図3に対応する拡大断面図である。図6は、正極活物質層の厚さhと電池全体の内部抵抗Rとの関係を示す図である。 FIG. 5 is an enlarged cross-sectional view corresponding to FIG. 3 of the lithium ion secondary battery 200 according to the present embodiment. FIG. 6 is a diagram showing the relationship between the thickness h of the positive electrode active material layer and the internal resistance R of the entire battery.
本実施形態に係るリチウムイオン二次電池200の構成は、中心側正極10Aにおける正極活物質層12の単位体積当たりの正極活物質の密度ρ1が、外方側正極10Bにおける正極活物質層12の単位体積当たりの正極活物質の密度ρ2に等しく、かつ、中心側正極10Aにおける正極活物質層12の厚さh1が、外方側正極10Bにおける正極活物質層12の厚さh2よりも大きい点を除いて、上述した実施形態1に係るリチウムイオン二次電池100の構成と同様である。実施形態1に係るリチウムイオン二次電池100の構成と同一の構成については同一の符号を付して説明を省略し、以下では相違点に係る構成のみ説明する。 The configuration of the lithium ion secondary battery 200 according to the present embodiment is such that the density ρ1 of the positive electrode active material per unit volume of the positive electrode active material layer 12 in the center-side positive electrode 10A is equal to that of the positive electrode active material layer 12 in the outer-side positive electrode 10B. It is equal to the density ρ2 of the positive electrode active material per unit volume, and the thickness h1 of the positive electrode active material layer 12 in the central positive electrode 10A is larger than the thickness h2 of the positive electrode active material layer 12 in the outer positive electrode 10B. The configuration is the same as that of the lithium ion secondary battery 100 according to Embodiment 1 described above. The same components as those of the lithium ion secondary battery 100 according to the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Only the components related to the differences will be described below.
本実施形態において、中心側正極10Aにおける正極活物質の密度ρ1と、外方側正極10Bにおける正極活物質の密度ρ2とは等しい。密度ρ1とρ2の値は特に限定されないが、例えば、2.9〜3.5g/cm3とし得る。 In the present embodiment, the density ρ1 of the positive electrode active material in the center-side positive electrode 10A is equal to the density ρ2 of the positive electrode active material in the outer-side positive electrode 10B. The values of the density ρ1 and ρ2 are not particularly limited, but may be, for example, 2.9 to 3.5 g / cm 3 .
本実施形態において、中心側正極10Aにおける正極活物質層12の厚さh1は、外方側正極10Bにおける正極活物質層12の厚さh2よりも大きい。厚さh1と厚さh2の値は、厚さh1が厚さh2よりも大きい限りにおいて特に限定されないが、例えば、h1/h2=1.15〜1.45となるように設定し得る。厚さh1は、例えば、65〜80μmとし得る。厚さh2は、例えば、55〜70μmとし得る。 In the present embodiment, the thickness h1 of the positive electrode active material layer 12 in the center-side positive electrode 10A is larger than the thickness h2 of the positive electrode active material layer 12 in the outer-side positive electrode 10B. The values of the thickness h1 and the thickness h2 are not particularly limited as long as the thickness h1 is larger than the thickness h2, but may be set to be, for example, h1 / h2 = 1.15 to 1.45. The thickness h1 can be set to 65 to 80 μm, for example. The thickness h2 can be set to 55 to 70 μm, for example.
正極活物質層12の厚さを制御する方法は特に制限されないが、ドクターブレード法などが挙げられる。また、正極活物質層12の厚さを定量的に求める方法としては、種々の方法が考えられるが、例えば、マイクロメーターで測定や放射線を用いた膜厚測定などにより求められる。 Although the method in particular of controlling the thickness of the positive electrode active material layer 12 is not restrict | limited, A doctor blade method etc. are mentioned. Various methods are conceivable as a method for quantitatively obtaining the thickness of the positive electrode active material layer 12. For example, the thickness can be obtained by measurement with a micrometer or measurement of film thickness using radiation.
本実施形態に係るリチウムイオン二次電池200によっても、上述した実施形態1に係るリチウムイオン二次電池100と同様に、充放電レート特性の低下を抑制しつつ、電池の容量を増やすことが可能なリチウムイオン二次電池を提供できる。 Similarly to the lithium ion secondary battery 100 according to the first embodiment described above, the lithium ion secondary battery 200 according to the present embodiment can increase the capacity of the battery while suppressing a decrease in charge / discharge rate characteristics. A lithium ion secondary battery can be provided.
なお、図6に示すように、全ての正極について正極活物質層の厚さhを大きくすることによって正極活物質の量を増やした場合にも、実施形態1において上述した図4の場合と同様に、特に低温環境において電池全体の内部抵抗Rが増加する。よって、本実施形態に係るリチウムイオン二次電池200は、上述した実施形態1に係るリチウムイオン二次電池100と同様に、特に低温環境下において、充放電レート特性の低下を抑制できるという効果がある。 As shown in FIG. 6, even when the amount of the positive electrode active material is increased by increasing the thickness h of the positive electrode active material layer for all the positive electrodes, the same as in the case of FIG. 4 described above in the first embodiment. In particular, the internal resistance R of the entire battery increases particularly in a low temperature environment. Therefore, the lithium ion secondary battery 200 according to the present embodiment has an effect that it is possible to suppress a decrease in charge / discharge rate characteristics, particularly in a low temperature environment, similarly to the lithium ion secondary battery 100 according to the first embodiment described above. is there.
また、本実施形態に係るリチウムイオン二次電池200によれば、厚さを変えるという簡便な方法によって、中心側正極10Aに含まれる正極活物質の量Qaを、外方側正極10Bに含まれる正極活物質の量Qbよりも大きくできる。したがって、リチウムイオン二次電池の製造が容易になる。 Further, according to the lithium ion secondary battery 200 according to the present embodiment, the amount Qa of the positive electrode active material included in the center-side positive electrode 10A is included in the outer-side positive electrode 10B by a simple method of changing the thickness. The amount can be larger than the amount Qb of the positive electrode active material. Therefore, it becomes easy to manufacture a lithium ion secondary battery.
(改変例)
上述した実施形態において、正極活物質の量の変化は、QaとQbの二段階であった。しかしながら、正極活物質の量の変化は多段階であってよい。
(Modification example)
In the above-described embodiment, the change in the amount of the positive electrode active material is in two stages, Qa and Qb. However, the change in the amount of the positive electrode active material may be multistage.
具体的には、図7に示すように、複数の正極10について、積層方向Zの中心側Z1から積層方向Zの中心から遠い側Z2に向かって、第1正極P1、第2正極P2、第3正極P3、・・・、第N正極Pnとし、第k正極の正極活物質の量をQkとした場合に、Q1≧Q2≧Q3≧・・・≧Qnであり、かつ、少なくとも1つの第m正極についてQm>Qm+1となっていればよい。 Specifically, as shown in FIG. 7, for the plurality of positive electrodes 10, the first positive electrode P <b> 1, the second positive electrode P <b> 2, the second positive electrode P <b> 2, and the second positive electrode P <b> 2 are arranged from the center side Z <b> 1 in the stacking direction Z toward the side Z2 far from the center in the stacking direction Z. 3 positive electrodes P3,..., N positive electrode Pn, and Qk is the amount of positive electrode active material of the k positive electrode, Q1 ≧ Q2 ≧ Q3 ≧ ... ≧ Qn, and at least one first It is only necessary that Qm> Qm + 1 for the m positive electrode.
正極活物質の量を三段階に変化させる場合には、Q1=Q2=・・・=Qm>Qm+1=Qm+2=・・・=Qm+k>Qm+k+1=Qm+k+2=・・・=Qnとし得る。 When the amount of the positive electrode active material is changed in three stages, Q1 = Q2 = ... = Qm> Qm + 1 = Qm + 2 = ... = Qm + k> Qm + k + 1 = Qm + k + 2 = ... = Qn.
また、全ての正極10について正極活物質の量を異ならせてもよい。すなわち、Q1>Q2>Q3>・・・>Qnとしてもよい。 Further, the amount of the positive electrode active material may be varied for all the positive electrodes 10. That is, it is good also as Q1> Q2> Q3> ...> Qn.
正極活物質の量を異ならせる方法は、実施形態1において上述した密度を異ならせる方法、若しくは実施形態2において上述した厚さを異ならせる方法のいずれか、またはその両方であってもよい。 The method of varying the amount of the positive electrode active material may be either the method of varying the density described in Embodiment 1 or the method of varying the thickness described in Embodiment 2 or both.
本改変例に係るリチウムイオン二次電池によっても、上述した実施形態1および実施形態2に係るリチウムイオン二次電池と同様に、充放電レート特性の低下を抑制しつつ、電池の容量を増やすことが可能なリチウムイオン二次電池を提供できる。 Also with the lithium ion secondary battery according to this modified example, as in the lithium ion secondary battery according to the first and second embodiments described above, the capacity of the battery is increased while suppressing a decrease in charge / discharge rate characteristics. Can be provided.
以上、実施形態およびその改変例を通じてリチウムイオン二次電池を説明したが、本発明は実施形態およびその改変例において説明した構成のみに限定されることはなく、特許請求の範囲の記載に基づいて適宜変更することが可能である。 As described above, the lithium ion secondary battery has been described through the embodiment and the modified example thereof, but the present invention is not limited to the configuration described in the embodiment and the modified example, and is based on the description of the scope of claims. It can be changed as appropriate.
例えば、上述した実施形態1および実施形態2では、中心側正極10Aと外方側正極10Bとにおいて、正極活物質の密度または正極活物質層12の厚さのいずれか一方を異ならせることによって、中心側正極10Aに含まれる正極活物質の量Qaを外方側正極10Bに含まれる正極活物質の量Qbよりも大きくした。しかしながら、中心側正極10Aにおける正極活物質層12の単位体積当たりの正極活物質の密度ρ1を、外方側正極10Bにおける正極活物質層12の単位体積当たりの正極活物質の密度ρ2よりも大きくし、かつ、中心側正極10Aにおける正極活物質層12の厚さh1を、外方側正極10Bにおける正極活物質層12の厚さh2よりも大きくすることによって、中心側正極10Aに含まれる正極活物質の量Qaを、外方側正極10Bに含まれる正極活物質の量Qbよりも大きくしてもよい。 For example, in Embodiment 1 and Embodiment 2 described above, by varying either the density of the positive electrode active material or the thickness of the positive electrode active material layer 12 between the center-side positive electrode 10A and the outer-side positive electrode 10B, The amount Qa of the positive electrode active material contained in the center-side positive electrode 10A was made larger than the amount Qb of the positive electrode active material contained in the outer-side positive electrode 10B. However, the density ρ1 of the positive electrode active material per unit volume of the positive electrode active material layer 12 in the central positive electrode 10A is larger than the density ρ2 of the positive electrode active material per unit volume of the positive electrode active material layer 12 in the outer positive electrode 10B. In addition, by making the thickness h1 of the positive electrode active material layer 12 in the central positive electrode 10A larger than the thickness h2 of the positive electrode active material layer 12 in the outer positive electrode 10B, the positive electrode included in the central positive electrode 10A The amount Qa of the active material may be larger than the amount Qb of the positive electrode active material included in the outer-side positive electrode 10B.
また、上述した実施形態1および実施形態2並びにその改変例では、第1集電体11の両面11a、11b上に、正極活物質を含む正極活物質層12を配置してなる複数の正極10と、第2集電体21の両面21a、21b上に、負極活物質を含む負極活物質層22を配置してなる負極20と、を備えた、いわゆる非双曲型の二次電池を例に説明した。しかしながら、本発明は、第1集電体11の一の面11a上および第2集電体21の一の面21a上に正極活物質層12を配置してなる正極と、第1集電体11の他の面11b上および第2集電体21の他の面21b上に負極活物質層22を配置してなる負極と、を備えた、いわゆる双曲型の二次電池に適用することも可能である。 Moreover, in Embodiment 1 and Embodiment 2 mentioned above and its modification, the some positive electrode 10 formed by arrange | positioning the positive electrode active material layer 12 containing a positive electrode active material on both surfaces 11a and 11b of the 1st electrical power collector 11. FIG. And a negative electrode 20 in which a negative electrode active material layer 22 including a negative electrode active material is disposed on both surfaces 21a and 21b of the second current collector 21, a so-called non-hyperbolic secondary battery is taken as an example. Explained. However, the present invention provides a positive electrode in which the positive electrode active material layer 12 is disposed on the one surface 11a of the first current collector 11 and the one surface 21a of the second current collector 21, and the first current collector. 11 and a negative electrode in which a negative electrode active material layer 22 is disposed on the other surface 21b of the second current collector 21 and the so-called hyperbolic secondary battery. Is also possible.
さらに、上述した実施形態1および実施形態2並びにその改変例では、積層型の二次電池を例に説明したが、本発明は、巻回型の二次電池にも適用可能である。 Furthermore, in Embodiment 1 and Embodiment 2 described above and the modifications thereof, the description has been given of the laminated secondary battery as an example. However, the present invention can also be applied to a wound secondary battery.
10 正極、
10A 中心側正極(中心側の正極)、
10B 外方側正極(外方側の正極)、
11 第1集電体、
11a、11b 面、
12 正極活物質層、
20 負極、
21 第2集電体、
21a、21b 面、
22 負極活物質層、
30 電解質層、
100、200 リチウムイオン二次電池、
110 積層体、
120 外装体、
Qa 中心側正極の正極活物質の量、
Qb 外方側正極の正極活物質の量、
Z 積層方向、
Z1 積層方向の中心、
Z2 積層方向の中心から遠い側、
w1 中心側正極の導電材料の量、
w2 外方側正極の導電材料の量、
ρ1 中心側正極の正極活物質の密度、
ρ2 外方側正極の正極活物質の密度。
10 positive electrode,
10A center-side positive electrode (center-side positive electrode),
10B outer side positive electrode (outer side positive electrode),
11 First current collector,
11a, 11b surface,
12 positive electrode active material layer,
20 negative electrode,
21 Second current collector,
21a, 21b surface,
22 negative electrode active material layer,
30 electrolyte layer,
100, 200 lithium ion secondary battery,
110 laminate,
120 exterior body,
Qa The amount of the positive electrode active material of the central positive electrode,
Qb Amount of positive electrode active material on the outer side positive electrode,
Z stacking direction,
Z1 is the center in the stacking direction,
Z2 The side far from the center in the stacking direction,
w1 The amount of the conductive material of the center positive electrode,
w2 Amount of conductive material of the outer positive electrode,
ρ1 The density of the positive electrode active material of the central positive electrode,
ρ2 The density of the positive electrode active material of the outer positive electrode.
Claims (4)
複数の前記正極のうち前記積層体の積層方向の中心側に配置された一または複数の中心側の前記正極における前記第1集電体の単位面積当たりの前記正極活物質の量は、前記中心側の前記正極よりも前記積層方向の中心から遠い側に配置された複数の外方側の前記正極における前記第1集電体の単位面積当たりの前記正極活物質の量よりも大きい、リチウムイオン二次電池。 A plurality of positive electrodes in which a positive electrode active material layer containing a positive electrode active material is disposed on at least one surface of the first current collector, and a negative electrode active material is included on at least one surface of the second current collector A laminate formed by laminating a negative electrode formed by arranging a negative electrode active material layer via an electrolyte layer is sealed inside the exterior body,
Among the plurality of positive electrodes, the amount of the positive electrode active material per unit area of the first current collector in one or a plurality of central positive electrodes arranged on the center side in the stacking direction is the center. Lithium ions larger than the amount of the positive electrode active material per unit area of the first current collector in the plurality of outer positive electrodes arranged on the side farther from the center in the stacking direction than the positive electrode on the side Secondary battery.
前記中心側の前記正極における前記正極活物質層に含まれる前記導電材料の量は、前記外方側の前記正極における前記正極活物質層に含まれる前記導電材料の量よりも小さい、請求項1〜3のいずれか1項に記載のリチウムイオン二次電池。 The positive electrode active material layer includes a conductive material,
The amount of the conductive material contained in the positive electrode active material layer in the positive electrode on the center side is smaller than the amount of the conductive material contained in the positive electrode active material layer in the positive electrode on the outer side. The lithium ion secondary battery of any one of -3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017040862A JP2018147677A (en) | 2017-03-03 | 2017-03-03 | Lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017040862A JP2018147677A (en) | 2017-03-03 | 2017-03-03 | Lithium ion secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018147677A true JP2018147677A (en) | 2018-09-20 |
Family
ID=63591457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017040862A Pending JP2018147677A (en) | 2017-03-03 | 2017-03-03 | Lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018147677A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018170142A (en) * | 2017-03-29 | 2018-11-01 | Tdk株式会社 | Lithium ion secondary battery |
CN116544346A (en) * | 2023-07-04 | 2023-08-04 | 深圳海辰储能控制技术有限公司 | Positive pole piece, energy storage device and electric equipment |
KR102633827B1 (en) * | 2022-12-09 | 2024-02-06 | 주식회사 포투원 | Secondary battery pack using seawater |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09293535A (en) * | 1996-04-25 | 1997-11-11 | Sumitomo Chem Co Ltd | Nonaqueous secondary battery |
JP2013191396A (en) * | 2012-03-14 | 2013-09-26 | Hitachi Ltd | Nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery module |
JP2015095329A (en) * | 2013-11-11 | 2015-05-18 | 日産自動車株式会社 | Lithium ion secondary battery |
-
2017
- 2017-03-03 JP JP2017040862A patent/JP2018147677A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09293535A (en) * | 1996-04-25 | 1997-11-11 | Sumitomo Chem Co Ltd | Nonaqueous secondary battery |
JP2013191396A (en) * | 2012-03-14 | 2013-09-26 | Hitachi Ltd | Nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery module |
JP2015095329A (en) * | 2013-11-11 | 2015-05-18 | 日産自動車株式会社 | Lithium ion secondary battery |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018170142A (en) * | 2017-03-29 | 2018-11-01 | Tdk株式会社 | Lithium ion secondary battery |
KR102633827B1 (en) * | 2022-12-09 | 2024-02-06 | 주식회사 포투원 | Secondary battery pack using seawater |
WO2024122805A1 (en) * | 2022-12-09 | 2024-06-13 | 주식회사 포투원 | Secondary battery pack using seawater |
CN116544346A (en) * | 2023-07-04 | 2023-08-04 | 深圳海辰储能控制技术有限公司 | Positive pole piece, energy storage device and electric equipment |
CN116544346B (en) * | 2023-07-04 | 2024-01-23 | 深圳海辰储能控制技术有限公司 | Positive pole piece, energy storage device and electric equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4374947B2 (en) | Multilayer bipolar secondary battery having a cooling tab | |
JP5135678B2 (en) | Battery structure, assembled battery, and vehicle equipped with these | |
JP4301286B2 (en) | Power storage device | |
JP5386917B2 (en) | Secondary battery | |
JP2013016375A (en) | Nonaqueous electrolytic cell module | |
JP2013004294A (en) | Battery pack | |
US20160285066A1 (en) | Lithium ion secondary battery and method for manufacturing the same | |
JP2013127845A (en) | Electric device | |
JP2018147677A (en) | Lithium ion secondary battery | |
JP2011134685A (en) | Secondary battery | |
KR101870602B1 (en) | Flat battery | |
JP2017059538A (en) | Laminated battery | |
JP7130920B2 (en) | Non-aqueous electrolyte secondary battery, method for designing non-aqueous electrolyte secondary battery, and method for manufacturing non-aqueous electrolyte secondary battery | |
KR20180113640A (en) | Flat-type secondary battery | |
JP7378032B2 (en) | lithium secondary battery | |
CN111697261A (en) | Lithium secondary battery | |
JP5509561B2 (en) | Nonaqueous electrolyte secondary battery | |
US20160190540A1 (en) | Lithium ion secondary battery | |
KR20150122579A (en) | Nonaqueous electrolyte secondary battery | |
JP4052127B2 (en) | Thin battery support structure, assembled battery and vehicle | |
US10586953B2 (en) | High-capacity stacked-electrode metal-ion accumulator capable of delivering high power | |
KR101917488B1 (en) | Flat secondary battery | |
JP7490920B2 (en) | Electrode assembly and secondary battery including the same | |
US20160190539A1 (en) | Lithium ion secondary battery | |
JP2018147676A (en) | Secondary battery and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20190528 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20190606 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190708 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200303 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200601 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20201013 |