JP2018146425A - Inspection equipment and inspection method of multilayer body structure - Google Patents

Inspection equipment and inspection method of multilayer body structure Download PDF

Info

Publication number
JP2018146425A
JP2018146425A JP2017042609A JP2017042609A JP2018146425A JP 2018146425 A JP2018146425 A JP 2018146425A JP 2017042609 A JP2017042609 A JP 2017042609A JP 2017042609 A JP2017042609 A JP 2017042609A JP 2018146425 A JP2018146425 A JP 2018146425A
Authority
JP
Japan
Prior art keywords
multilayer structure
temperature distribution
adhesion
inspected
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017042609A
Other languages
Japanese (ja)
Inventor
大樹 松畑
Daiki Matsuhata
大樹 松畑
靖弘 石井
Yasuhiro Ishii
靖弘 石井
康元 佐藤
Yasumoto Sato
康元 佐藤
守正 村瀬
Morimasa Murase
守正 村瀬
北山 綱次
Koji Kitayama
綱次 北山
裕 足立
Yutaka Adachi
裕 足立
正樹 千々石
Masaki Chichiwa
正樹 千々石
学 大鋸
Manabu Oga
学 大鋸
遼 木崎
Ryo Kizaki
遼 木崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Toyota Auto Body Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd, Toyota Central R&D Labs Inc filed Critical Toyota Auto Body Co Ltd
Priority to JP2017042609A priority Critical patent/JP2018146425A/en
Publication of JP2018146425A publication Critical patent/JP2018146425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaluate, in a non-contact and non-destruction state, existence of an adhesive and an adhesion region in a multilayer body structure to which adhesion is applied.SOLUTION: In inspection equipment of a multilayer body structure including temperature distribution measurement means 10 and temperature control means 12, a distribution of a surface temperature in a width direction of a part to be inspected is measured by the temperature distribution measurement means 10, in the state where a temperature of the part to be inspected is adjusted by the temperature control means 12, and the width of an adhesion region in the part to be inspected is determined by using an integrated value along the width direction of the distribution of the surface temperature of the part to be inspected, and a gap width of adhesion on the part to be inspected.SELECTED DRAWING: Figure 2

Description

本発明は、接着が施された多層体構造の検査装置及び検査方法に関する。   The present invention relates to an inspection apparatus and an inspection method for a multilayer structure to which adhesion is applied.

複数の層を接着剤で接着した多層体構造において接着領域を判定する技術が開示されている。例えば、多層体構造をヒータで加熱した後に赤外線カメラにより温度分布を測定し、超音波信号を用いて温度閾値を算出することで接着領域を判定する技術が開示されている(特許文献1)。   A technique for determining an adhesion region in a multilayer structure in which a plurality of layers are bonded with an adhesive is disclosed. For example, a technique is disclosed in which a multilayer structure is heated with a heater, a temperature distribution is measured with an infrared camera, and a temperature threshold is calculated using an ultrasonic signal to determine an adhesion region (Patent Document 1).

特開2015−10944号公報Japanese Patent Laying-Open No. 2015-10944

ところで、従来技術では接着領域を判定するために超音波信号を使用している。すなわち、超音波信号の走査で得られた接着剤の始点と終点の温度を接着領域の閾値とし、赤外線カメラによる熱画像から接着領域を抽出している。このため、超音波を送受信する機器及びセンサが必要となり、装置が大掛かりとなり、さらに装置が高価になる。また、超音波センサの感度は温度変化の影響を受け易いので、熱源からの影響を避けるために冷却をしたり、熱源から隔離したりする必要がある。   By the way, in the prior art, an ultrasonic signal is used to determine the adhesion region. That is, the adhesive region is extracted from the thermal image obtained by the infrared camera using the temperature of the starting point and the ending point of the adhesive obtained by scanning the ultrasonic signal as the threshold value of the adhesive region. For this reason, a device and a sensor for transmitting and receiving ultrasonic waves are required, the apparatus becomes large, and the apparatus becomes expensive. Further, since the sensitivity of the ultrasonic sensor is easily affected by temperature changes, it is necessary to cool or isolate it from the heat source in order to avoid the influence from the heat source.

本発明の一つの態様は、接着が施された多層体構造の検査装置であって、温度分布測定手段と、温度調整手段と、を備え、前記温度調整手段によって被検査部の温度を調整した状態で前記温度分布測定手段によって前記被検査部の幅方向の表面温度の分布を測定し、前記被検査部の表面温度の分布の幅方向に沿った積分値と前記被検査部の接着の隙間幅とを用いて前記被検査部における接着領域を求めることを特徴とする多層体構造の検査装置である。   One aspect of the present invention is a multi-layer structure inspection apparatus to which adhesion is applied, and includes a temperature distribution measurement means and a temperature adjustment means, and the temperature adjustment means adjusts the temperature of the part to be inspected. In the state, the surface temperature distribution in the width direction of the inspected part is measured by the temperature distribution measuring means, and the integrated value along the width direction of the surface temperature distribution of the inspected part and the gap between the adhesion of the inspected part An inspection apparatus having a multilayer structure, wherein an adhesion region in the inspected part is obtained using a width.

ここで、前記温度分布測定手段は、赤外線検出装置を含むことが好適である。また、前記温度調整手段は、加熱装置であることが好適である。   Here, it is preferable that the temperature distribution measuring unit includes an infrared detecting device. The temperature adjusting means is preferably a heating device.

また、前記被検査部の表面温度の分布の積分値が等しい場合、前記隙間幅が大きいほど前記接着領域の幅が大きいとすることが好適である。   Moreover, when the integral value of the surface temperature distribution of the part to be inspected is equal, it is preferable that the width of the adhesion region is larger as the gap width is larger.

また、前記温度分布測定手段による前記被検査部の表面温度の分布の測定をリアルタイムで行い、前記接着領域をリアルタイムで求めることが好適である。   In addition, it is preferable to measure the surface temperature distribution of the part to be inspected by the temperature distribution measuring means in real time and to obtain the adhesion region in real time.

また、前記隙間幅を測定するための距離測定手段をさらに備えることが好適である。   In addition, it is preferable to further include a distance measuring means for measuring the gap width.

本発明の別の態様は、接着が施された多層体構造の検査方法であって、前記多層体構造の被検査部の温度を調整した状態で前記被検査部の幅方向の表面温度の分布を測定し、前記被検査部の表面温度の分布の幅方向に沿った積分値と前記被検査部の接着の隙間幅を用いて前記被検査部における接着領域を求めることを特徴とする多層体構造の検査方法である。   Another aspect of the present invention is a method for inspecting a multilayer structure to which bonding has been performed, and the distribution of the surface temperature in the width direction of the inspected part in a state in which the temperature of the inspected part of the multilayer structure is adjusted A multi-layer body characterized in that an adhesion region in the inspected portion is obtained using an integral value along a width direction of a surface temperature distribution of the inspected portion and a gap width of the adhesion of the inspected portion This is a structure inspection method.

本発明によれば、接着が施された多層体構造における接着剤の有無、接着領域を非接触及び非破壊で評価できる。また、別途測定された塗布後の接着剤の状態(長さ・幅や高さ)と貼り合わせ後の実際の接着領域等を対比することもできる。   ADVANTAGE OF THE INVENTION According to this invention, the presence or absence of the adhesive agent and the adhesion area | region in the multilayered structure to which adhesion | attachment was given can be evaluated by non-contact and non-destructive. In addition, the state (length, width, and height) of the adhesive after application, which is separately measured, can be compared with the actual adhesion area after bonding.

本発明の実施の形態における検査装置の構成を示す図である。It is a figure which shows the structure of the test | inspection apparatus in embodiment of this invention. 多層構造体の接着剤の塗布領域の観察結果及び当該領域に相当する接着領域の温度分布の測定結果の例を示す図である。It is a figure which shows the example of the observation result of the application | coating area | region of the adhesive agent of a multilayer structure, and the measurement result of the temperature distribution of the adhesion area | region equivalent to the said area | region. 多層構造体の温度分布のCAE解析を説明するための図である。It is a figure for demonstrating the CAE analysis of the temperature distribution of a multilayer structure. 多層構造体の温度分布のCAE解析結果の例を示す図である。It is a figure which shows the example of the CAE analysis result of the temperature distribution of a multilayer structure. 多層構造体の温度分布のCAE解析結果に基づく接着幅と温度分布の積分値の関係を示す図である。It is a figure which shows the relationship between the adhesive width based on the CAE analysis result of the temperature distribution of a multilayer structure, and the integral value of temperature distribution. 本発明の実施の形態における検査装置により測定された多層体構造の温度分布を示す図である。It is a figure which shows the temperature distribution of the multilayer body structure measured with the test | inspection apparatus in embodiment of this invention. 本発明の実施の形態における検査装置により測定された多層体構造の幅方向の温度分布を示す図である。It is a figure which shows the temperature distribution of the width direction of the multilayered body structure measured with the test | inspection apparatus in embodiment of this invention. 本発明の実施の形態における検査装置により測定された多層構造体の温度分布に対する接着幅と温度分布の積分値の関係を示す図である。It is a figure which shows the relationship between the adhesive width with respect to the temperature distribution of the multilayered structure measured by the test | inspection apparatus in embodiment of this invention, and the integrated value of temperature distribution.

[多層体構造の検査装置]
本発明の実施の形態における多層体構造の検査装置100は、図1に示すように、温度分布測定手段10、温度調整手段12、距離センサ14及び処理手段16を含んで構成される。
[Multi-layer structure inspection equipment]
As shown in FIG. 1, the multilayer structure inspection apparatus 100 according to the embodiment of the present invention includes a temperature distribution measuring unit 10, a temperature adjusting unit 12, a distance sensor 14, and a processing unit 16.

検査装置100は、被検査体である多層構造体200の被検査部における接着剤が存在する領域(以下、接着領域)を求めるために用いられる。多層構造体200は、例えば、2枚の鋼板202,204を接着剤206にて接着した構造体である。ただし、多層構造体200は、これに限定されるものではなく、接着剤で接着され、温度調整手段12による温度調整が可能であり、温度分布測定手段10による温度分布測定が可能である多層構造体であればよい。すなわち、多層構造体200を構成する構成物は、鋼板202,204に限定されるものではない。また、多層構造体200に用いられる接着剤206の種類も特に限定されるものではない。   The inspection apparatus 100 is used for obtaining a region where an adhesive is present (hereinafter referred to as an adhesive region) in a portion to be inspected of the multilayer structure 200 that is a subject to be inspected. The multilayer structure 200 is a structure in which, for example, two steel plates 202 and 204 are bonded with an adhesive 206. However, the multilayer structure 200 is not limited to this, and is a multilayer structure that is bonded with an adhesive, can be adjusted by the temperature adjusting unit 12, and can be measured by the temperature distribution measuring unit 10. Any body is acceptable. That is, the constituents constituting the multilayer structure 200 are not limited to the steel plates 202 and 204. Further, the type of the adhesive 206 used for the multilayer structure 200 is not particularly limited.

温度分布測定手段10は、多層構造体200の被検査部における温度の分布を測定する手段である。温度分布測定手段10は、例えば、赤外線カメラとすることが好適である。ただし、温度分布測定手段10は、赤外線カメラに限定されるものではなく、多層構造体200の温度の分布を測定できるものであればよい。接着剤の存在する長さのみを求める場合、温度分布測定手段10は、ライン状の温度分布を測定するラインセンサであればよい。また、接着剤の存在する面(長さ及び幅等の二次元の領域)を求める場合、温度分布測定手段10は、面状の温度分布を測定するアレイセンサであればよい。また、温度分布測定手段10は、ラインセンサを走査して面内の温度分布を測定する構成としてもよい。温度分布測定手段10で測定された温度分布のデータは処理手段16に入力される。   The temperature distribution measuring means 10 is a means for measuring the temperature distribution in the part to be inspected of the multilayer structure 200. The temperature distribution measuring means 10 is preferably an infrared camera, for example. However, the temperature distribution measuring means 10 is not limited to the infrared camera, and any device that can measure the temperature distribution of the multilayer structure 200 may be used. In the case of obtaining only the length in which the adhesive exists, the temperature distribution measuring means 10 may be a line sensor that measures a linear temperature distribution. Moreover, when calculating | requiring the surface (two-dimensional area | regions, such as length and width) in which an adhesive agent exists, the temperature distribution measurement means 10 should just be an array sensor which measures planar temperature distribution. Further, the temperature distribution measuring means 10 may be configured to measure the in-plane temperature distribution by scanning a line sensor. The temperature distribution data measured by the temperature distribution measuring means 10 is input to the processing means 16.

温度調整手段12は、多層構造体200の被検査部の温度を調整する手段である。温度調整手段12は、例えば、ヒートガンとすることが好適である。ただし、温度調整手段12は、ヒートガンに限定するものではなく、多層構造体200の被検査部の温度を調整することができるものであればよい。温度調整手段12は、処理手段16からの温度制御信号によって制御され、多層構造体200に対して熱量を与えて多層構造体200の被検査部の温度を調節する。温度調整手段12がヒートガンである場合、温度調整手段12は多層構造体200の被検査部に対して熱風を供給することにより被検査部を加熱する。温度調整手段12は、多層構造体200を挟んで温度分布測定手段10のセンサと対向するように配置される。   The temperature adjusting means 12 is a means for adjusting the temperature of the part to be inspected of the multilayer structure 200. The temperature adjusting means 12 is preferably a heat gun, for example. However, the temperature adjusting means 12 is not limited to a heat gun, and any means can be used as long as it can adjust the temperature of the part to be inspected of the multilayer structure 200. The temperature adjusting means 12 is controlled by a temperature control signal from the processing means 16 and applies a heat amount to the multilayer structure 200 to adjust the temperature of the part to be inspected of the multilayer structure 200. When the temperature adjusting means 12 is a heat gun, the temperature adjusting means 12 heats the part to be inspected by supplying hot air to the part to be inspected of the multilayer structure 200. The temperature adjusting means 12 is disposed so as to face the sensor of the temperature distribution measuring means 10 with the multilayer structure 200 interposed therebetween.

距離センサ14は、多層構造体200の被検査部における接着の隙間の幅を測定する手段である。距離センサ14は、例えば、レーザ送出器とレーザ受信器とを備えた測距センサとすることができる。この場合、予めレーザ送出器とレーザ受信器との距離が定まっているテーブル上に多層構造体200を載せ置いて、多層構造体200の表面にレーザ送信器からレーザ光を送出し、表面で反射したレーザ光をレーザ受信器にて受信し、その時間差に基づいて多層構造体200の全体の厚さT1を測定することができる。このとき、鋼板202の厚さT2と鋼板204の厚さT3が予め判っていれば、多層構造体200の全体の厚さT1から鋼板202の厚さT2と鋼板204の厚さT3を減算することによって多層構造体200の被検査部における接着の隙間の幅Tを算出することができる。なお、距離センサ14は、レーザ送出器とレーザ受信器とを備えた測距センサに限定されるものではなく、多層構造体200の被検査部における接着の隙間の幅を測定することができるものであればよい。   The distance sensor 14 is a means for measuring the width of the adhesion gap in the inspected portion of the multilayer structure 200. The distance sensor 14 can be, for example, a distance measuring sensor including a laser transmitter and a laser receiver. In this case, the multilayer structure 200 is placed on a table in which the distance between the laser transmitter and the laser receiver is determined in advance, and laser light is transmitted from the laser transmitter to the surface of the multilayer structure 200 and reflected by the surface. The received laser beam is received by a laser receiver, and the entire thickness T1 of the multilayer structure 200 can be measured based on the time difference. At this time, if the thickness T2 of the steel plate 202 and the thickness T3 of the steel plate 204 are known in advance, the thickness T2 of the steel plate 202 and the thickness T3 of the steel plate 204 are subtracted from the total thickness T1 of the multilayer structure 200. As a result, the width T of the adhesion gap in the inspected portion of the multilayer structure 200 can be calculated. The distance sensor 14 is not limited to a distance measuring sensor provided with a laser transmitter and a laser receiver, and can measure the width of the adhesion gap in the inspected portion of the multilayer structure 200. If it is.

処理手段16は、検査装置100の各部の制御、各部での測定結果の取得及び測定結果に対する処理を行う。処理手段16は、例えば、検査装置100の温度分布測定手段10、温度調整手段12及び距離センサ14を制御するためのインターフェースを備えたコンピュータを含んで構成することができる。処理手段16による処理については後述する。   The processing means 16 performs control of each part of the inspection apparatus 100, acquisition of measurement results at each part, and processing for the measurement results. For example, the processing unit 16 may include a computer having an interface for controlling the temperature distribution measuring unit 10, the temperature adjusting unit 12, and the distance sensor 14 of the inspection apparatus 100. The processing by the processing means 16 will be described later.

[多層体構造の検査方法]
検査装置100に多層構造体200をセットする。多層構造体200は、温度分布測定手段10と温度調整手段12とが対向するように、温度分布測定手段10と温度調整手段12との間にセットされる。
[Multilayer structure inspection method]
The multilayer structure 200 is set in the inspection apparatus 100. The multilayer structure 200 is set between the temperature distribution measuring means 10 and the temperature adjusting means 12 so that the temperature distribution measuring means 10 and the temperature adjusting means 12 face each other.

処理手段16は、距離センサ14に距離測定信号を出力し、距離センサ14によって多層構造体200の上面までの距離を測定する。距離センサ14は、測定された多層構造体200の上面までの距離を処理手段16へ出力する。   The processing means 16 outputs a distance measurement signal to the distance sensor 14 and measures the distance to the upper surface of the multilayer structure 200 by the distance sensor 14. The distance sensor 14 outputs the measured distance to the upper surface of the multilayer structure 200 to the processing means 16.

処理手段16は、受信した多層構造体200の上面までの距離の測定値から多層構造体200の被検査部における接着の隙間の幅を算出する。   The processing means 16 calculates the width of the adhesive gap in the inspected portion of the multilayer structure 200 from the received measured value of the distance to the upper surface of the multilayer structure 200.

具体的には、予め測定しておいた多層構造体200を載せ置いているテーブルまでの距離から多層構造体200の上面までの距離を減算して多層構造体200の全体の厚さを算出する。そして、多層構造体200の全体の厚さから予め取得しておいた鋼板202の厚さT2と鋼板204の厚さT3を減算することで多層構造体200の被検査部における接着の隙間の幅を算出する。   Specifically, the total thickness of the multilayer structure 200 is calculated by subtracting the distance to the upper surface of the multilayer structure 200 from the distance to the table on which the multilayer structure 200 is previously measured. . Then, by subtracting the thickness T2 of the steel plate 202 and the thickness T3 of the steel plate 204 obtained in advance from the total thickness of the multilayer structure 200, the width of the bonding gap in the inspected portion of the multilayer structure 200 Is calculated.

また、処理手段16は、温度調整手段12に加熱制御信号を出力し、温度調整手段12によって下面から多層構造体200を加熱する。温度分布測定手段10は、多層構造体200の上面に伝導してきた熱を測定し、測定結果を処理手段16へ出力する。処理手段16は、温度分布測定手段10の測定結果を受信する。   Further, the processing means 16 outputs a heating control signal to the temperature adjusting means 12 and heats the multilayer structure 200 from the lower surface by the temperature adjusting means 12. The temperature distribution measuring unit 10 measures the heat conducted to the upper surface of the multilayer structure 200 and outputs the measurement result to the processing unit 16. The processing unit 16 receives the measurement result of the temperature distribution measuring unit 10.

処理手段16は、多層構造体200に対する温度分布測定手段10及び温度調整手段12の相対位置を変えつつ、温度分布測定手段10から多層構造体200の上面の温度分布を取得する。例えば、図1のX方向、すなわち多層構造体200の長手方向に沿って温度分布測定手段10及び温度調整手段12の位置を変えつつ、Y方向、すなわち多層構造体200の幅方向に亘る温度分布を測定する。   The processing unit 16 acquires the temperature distribution of the upper surface of the multilayer structure 200 from the temperature distribution measurement unit 10 while changing the relative positions of the temperature distribution measurement unit 10 and the temperature adjustment unit 12 with respect to the multilayer structure 200. For example, while changing the positions of the temperature distribution measuring means 10 and the temperature adjusting means 12 along the X direction in FIG. 1, that is, the longitudinal direction of the multilayer structure 200, the temperature distribution over the Y direction, that is, the width direction of the multilayer structure 200. Measure.

図2は、多層構造体200の接着剤の塗布領域の観察結果と当該領域に相当する接着領域の温度分布の測定結果を示す。図2(a)は、多層構造体200の鋼板202を引き剥がした状態を観察した写真である。図2(b)は、鋼板202を引き剥がす前に多層構造体200の温度分布を測定した結果である。   FIG. 2 shows the observation result of the adhesive application region of the multilayer structure 200 and the measurement result of the temperature distribution of the adhesive region corresponding to the region. FIG. 2A is a photograph observing a state in which the steel plate 202 of the multilayer structure 200 is peeled off. FIG. 2B shows the results of measuring the temperature distribution of the multilayer structure 200 before peeling off the steel plate 202.

多層構造体200の接着の隙間が製造によるばらつき等により変化すると、鋼板204から鋼板202への熱の伝達の時間に差が生じる。接着の隙間は、接着幅と同様に鋼板204から鋼板202への熱伝達に直接の影響を与える。したがって、接着の隙間を考慮せずに接着領域を精度良く求めることは困難である。一方、接着の隙間、接着の幅、鋼板202へ伝わる熱量はそれぞれ相関関係があると考えられる。そこで、これらの関係を予め求めておけば、実測された接着の隙間と鋼板202の上面の温度分布から接着領域を求めることができる。   When the adhesion gap of the multilayer structure 200 changes due to manufacturing variations or the like, a difference occurs in the time of heat transfer from the steel plate 204 to the steel plate 202. The bonding gap directly affects the heat transfer from the steel plate 204 to the steel plate 202 as well as the bonding width. Therefore, it is difficult to accurately obtain the adhesion region without considering the adhesion gap. On the other hand, it is considered that the bonding gap, the bonding width, and the amount of heat transferred to the steel plate 202 are correlated. Therefore, if these relationships are obtained in advance, the adhesion region can be obtained from the measured adhesion gap and the temperature distribution of the upper surface of the steel plate 202.

コンピュータ支援解析(CAE)によって、様々な接着の隙間、接着の幅に対して鋼板202の上面の温度分布を解析すると、図3に示すような多層構造体200の幅方向(Y方向)に対する温度分布を解析的に求めることができる。   When the temperature distribution of the upper surface of the steel plate 202 is analyzed with respect to various adhesion gaps and adhesion widths by computer-aided analysis (CAE), the temperature in the width direction (Y direction) of the multilayer structure 200 as shown in FIG. Distribution can be obtained analytically.

図4は、CAEによって解析した結果として得られた鋼板202の温度分布の例を示す。図4(a)は、多層構造体200における接着の隙間が小さい場合において、接着の幅が小さい多層構造体200の解析結果(実線)、接着の幅が中程度の多層構造体200の解析結果(破線)、接着の幅が大きい多層構造体200の解析結果(点線)を示す。図4(b)は、多層構造体200における接着の隙間が中程度の場合において、接着の幅が小さい多層構造体200の解析結果(実線)、接着の幅が中程度の多層構造体200の解析結果(破線)、接着の幅が大きい多層構造体200の解析結果(点線)を示す。図4(c)は、多層構造体200における接着の隙間が大きい場合において、接着の幅が小さい多層構造体200の解析結果(実線)、接着の幅が中程度の多層構造体200の解析結果(破線)、接着の幅が大きい多層構造体200の解析結果(点線)を示す。   FIG. 4 shows an example of the temperature distribution of the steel plate 202 obtained as a result of analysis by CAE. FIG. 4A shows an analysis result (solid line) of the multilayer structure 200 having a small adhesion width and an analysis result of the multilayer structure 200 having a medium adhesion width when the adhesion gap in the multilayer structure 200 is small. (Broken line) shows an analysis result (dotted line) of the multilayer structure 200 having a large adhesion width. FIG. 4B shows an analysis result (solid line) of the multilayer structure 200 having a small adhesion width when the adhesion gap in the multilayer structure 200 is medium, and the multilayer structure 200 having a medium adhesion width. An analysis result (broken line) and an analysis result (dotted line) of the multilayer structure 200 having a large adhesion width are shown. FIG. 4C shows an analysis result (solid line) of the multilayer structure 200 having a small adhesion width and an analysis result of the multilayer structure 200 having a medium adhesion width when the adhesion gap in the multilayer structure 200 is large. (Broken line) shows an analysis result (dotted line) of the multilayer structure 200 having a large adhesion width.

なお、図4のCAEにおいて、接着の隙間が小さいとは隙間が0.3mm、接着の隙間が中程度とは隙間が0.5mm及び接着の隙間が大きいとは隙間が0.6mmである。また、鋼板202の板厚は0.8mm、鋼板204の板厚は0.75mmである。   In the CAE of FIG. 4, when the bonding gap is small, the gap is 0.3 mm, when the bonding gap is medium, the gap is 0.5 mm, and when the bonding gap is large, the gap is 0.6 mm. The plate thickness of the steel plate 202 is 0.8 mm, and the plate thickness of the steel plate 204 is 0.75 mm.

図5は、多層構造体200の接着の幅と温度分布の積分値(多層構造体200の上面に伝達される熱量に相当する物理量)との関係を示す。図5に示すような関係を実験又は解析により予め求めておき、処理手段16に記憶させておくことによって、距離センサ14によって得られた多層構造体200の接着の隙間と温度分布測定手段10によって得られた接着領域の幅方向(Y方向)の温度分布の積分値から接着の幅を求めることができる。   FIG. 5 shows the relationship between the adhesion width of the multilayer structure 200 and the integrated value of the temperature distribution (a physical quantity corresponding to the amount of heat transferred to the upper surface of the multilayer structure 200). A relationship as shown in FIG. 5 is obtained in advance by experiment or analysis and stored in the processing means 16, so that the adhesion gap of the multilayer structure 200 obtained by the distance sensor 14 and the temperature distribution measuring means 10 are used. The adhesion width can be obtained from the integrated value of the temperature distribution in the width direction (Y direction) of the obtained adhesion region.

[実施例]
図6は、検査装置100を用いて実際に多層構造体200の上面の温度分布を測定した結果を示す。図6において、白さが強いほど高温の領域であることを示し、黒さが強いほど低温の領域であることを示している。また、図6の縦軸は、多層構造体200のY方向(幅方向)に沿った温度分布を示し、図6の横軸は多層構造体200のX方向(長手方向)に沿った温度分布を示している。
[Example]
FIG. 6 shows the result of actually measuring the temperature distribution on the upper surface of the multilayer structure 200 using the inspection apparatus 100. In FIG. 6, it shows that it is a high temperature area | region, so that white is strong, and has shown that it is a low temperature area, so that black is strong. 6 represents the temperature distribution along the Y direction (width direction) of the multilayer structure 200, and the horizontal axis of FIG. 6 represents the temperature distribution along the X direction (longitudinal direction) of the multilayer structure 200. Is shown.

図7は、図6に示した多層構造体200の温度分布測定の結果を多層構造体200のY方向(幅方向)に沿ってグラフ化したものである。図7では、図6の点線に沿った多層構造体200の上面の温度分布を例に示している。図7(a)は、多層構造体200における接着の隙間が小さい場合において、接着の幅が小さい多層構造体200の測定結果(実線)、接着の幅が中程度の多層構造体200の測定結果(破線)、接着の幅が大きい多層構造体200の測定結果(点線)を示す。図7(b)は、多層構造体200における接着の隙間が中程度の場合において、接着の幅が小さい多層構造体200の測定結果(実線)、接着の幅が中程度の多層構造体200の測定結果(破線)、接着の幅が大きい多層構造体200の測定結果(点線)を示す。図7(c)は、多層構造体200における接着の隙間が大きい場合において、接着の幅が小さい多層構造体200の測定結果(実線)、接着の幅が中程度の多層構造体200の測定結果(破線)、接着の幅が大きい多層構造体200の測定結果(点線)を示す。   FIG. 7 is a graph showing the results of temperature distribution measurement of the multilayer structure 200 shown in FIG. 6 along the Y direction (width direction) of the multilayer structure 200. In FIG. 7, the temperature distribution on the upper surface of the multilayer structure 200 along the dotted line in FIG. 6 is shown as an example. FIG. 7A shows a measurement result (solid line) of the multilayer structure 200 with a small adhesion width and a measurement result of the multilayer structure 200 with a medium adhesion width when the adhesion gap in the multilayer structure 200 is small. (Broken line) shows the measurement result (dotted line) of the multilayer structure 200 having a large adhesion width. FIG. 7B shows a measurement result (solid line) of the multilayer structure 200 having a small adhesion width when the adhesion gap in the multilayer structure 200 is medium, and the multilayer structure 200 having a medium adhesion width. A measurement result (broken line) and a measurement result (dotted line) of the multilayer structure 200 having a large adhesion width are shown. FIG. 7C shows a measurement result (solid line) of the multilayer structure 200 having a small adhesion width and a measurement result of the multilayer structure 200 having a medium adhesion width when the adhesion gap in the multilayer structure 200 is large. (Broken line) shows the measurement result (dotted line) of the multilayer structure 200 having a large adhesion width.

図8は、図7に示した温度分布の実測値を多層構造体200のY方向(幅方向)に沿って積分した積分値を多層構造体200の接着の幅に対してプロットした図である。図8に示されたように、温度分布の実測値の多層構造体200のY方向(幅方向)に沿った積分値は、多層構造体200の接着の幅に対して概ね直線(比例関係)となった。   FIG. 8 is a diagram in which an integrated value obtained by integrating the actually measured values of the temperature distribution shown in FIG. 7 along the Y direction (width direction) of the multilayer structure 200 is plotted with respect to the bonding width of the multilayer structure 200. . As shown in FIG. 8, the integrated value of the measured value of the temperature distribution along the Y direction (width direction) of the multilayer structure 200 is approximately a straight line (proportional relationship) with respect to the bonding width of the multilayer structure 200. It became.

したがって、温度分布の実測値の多層構造体200のY方向(幅方向)に沿った積分値と温度分布の実測値の多層構造体200の接着の隙間の実測値に基づいて多層構造体200の接着の幅を推定することができる。   Therefore, based on the integrated value along the Y direction (width direction) of the multilayer structure 200 of the measured value of the temperature distribution and the measured value of the adhesion gap of the multilayer structure 200 of the measured temperature distribution value, The width of the bond can be estimated.

以上のように、本実施の形態によれば、多層構造体200の接着の隙間と温度分布の積分値に基づいて接着の幅を非接触及び非破壊の方法で高い精度で推定することができる。また、高価な超音波計測システムを使用する必要がなく、従来より安価で簡素な検査装置を提供することができる。   As described above, according to the present embodiment, the adhesion width can be estimated with high accuracy by a non-contact and non-destructive method based on the integrated value of the adhesion gap and the temperature distribution of the multilayer structure 200. . Further, it is not necessary to use an expensive ultrasonic measurement system, and it is possible to provide an inspection apparatus that is cheaper and simpler than before.

また、本実施の形態によれば、接着の隙間と温度分布の積分値が求まれば接着領域を把握することができる。温度分布の積分値の算出処理は比較的負荷の小さな処理であるので、本実施の形態によれば接着領域をリアルタイムで求めることができる。   Further, according to the present embodiment, the adhesion region can be grasped if the integrated value of the adhesion gap and the temperature distribution is obtained. Since the process for calculating the integrated value of the temperature distribution is a process with a relatively small load, according to the present embodiment, the adhesion region can be obtained in real time.

10 温度分布測定手段、12 温度調整手段、14 距離センサ、16 処理手段、100 検査装置、200 多層構造体、202,204 鋼板、206 接着剤。
DESCRIPTION OF SYMBOLS 10 Temperature distribution measurement means, 12 Temperature adjustment means, 14 Distance sensor, 16 Processing means, 100 Inspection apparatus, 200 Multilayer structure, 202,204 Steel plate, 206 Adhesive.

Claims (7)

接着が施された多層体構造の検査装置であって、
温度分布測定手段と、温度調整手段と、を備え、
前記温度調整手段によって被検査部の温度を調整した状態で前記温度分布測定手段によって前記被検査部の幅方向の表面温度の分布を測定し、
前記被検査部の表面温度の分布の幅方向に沿った積分値と前記被検査部の接着の隙間幅とを用いて前記被検査部における接着領域を求めることを特徴とする多層体構造の検査装置。
An inspection device for a multilayered structure with adhesion,
A temperature distribution measuring means and a temperature adjusting means;
The surface temperature distribution in the width direction of the inspected part is measured by the temperature distribution measuring means in a state where the temperature of the inspected part is adjusted by the temperature adjusting means,
Inspection of a multilayer structure characterized in that an adhesion region in the inspected part is obtained by using an integral value along a width direction of a surface temperature distribution of the inspected part and a gap width of adhesion of the inspected part apparatus.
請求項1に記載の多層体構造の検査装置であって、
前記温度分布測定手段は、赤外線検出装置を含むことを特徴とする多層体構造の検査装置。
An inspection apparatus for a multilayer structure according to claim 1,
The temperature distribution measuring means includes an infrared detector, and has a multilayer structure.
請求項1又は2に記載の多層体構造の検査装置であって、
前記温度調整手段は、加熱装置であることを特徴とする多層体構造の検査装置。
An inspection apparatus for a multilayer structure according to claim 1 or 2,
The temperature adjusting means is a heating device, and is an inspection device for a multilayer structure.
請求項1〜3のいずれか1項に記載の多層体構造の検査装置であって、
前記被検査部の表面温度の分布の積分値が等しい場合、前記隙間幅が大きいほど前記接着領域の幅が大きいとすることを特徴とする多層体構造の検査装置。
The inspection apparatus for a multilayer structure according to any one of claims 1 to 3,
An inspection apparatus for a multilayer structure, wherein when the integrated values of the surface temperature distributions of the parts to be inspected are equal, the larger the gap width, the larger the width of the adhesion region.
請求項1〜4のいずれか1項に記載の多層体構造の検査装置であって、
前記温度分布測定手段による前記被検査部の表面温度の分布の測定をリアルタイムで行い、前記接着領域をリアルタイムで求めることを特徴とする多層体構造の検査装置。
It is an inspection apparatus of the multilayer body structure according to any one of claims 1 to 4,
An inspection apparatus for a multilayer structure, wherein the temperature distribution measuring means measures the distribution of the surface temperature of the part to be inspected in real time and obtains the adhesion region in real time.
請求項1〜5のいずれか1項に記載の多層体構造の検査装置であって、
前記隙間幅を測定するための距離測定手段をさらに備えることを特徴とする多層体構造の検査装置。
An inspection apparatus for a multilayer structure according to any one of claims 1 to 5,
An inspection apparatus for a multilayer structure, further comprising a distance measuring means for measuring the gap width.
接着が施された多層体構造の検査方法であって、
前記多層体構造の被検査部の温度を調整した状態で前記被検査部の幅方向の表面温度の分布を測定し、前記被検査部の表面温度の分布の幅方向に沿った積分値と前記被検査部の接着の隙間幅を用いて前記被検査部における接着領域を求めることを特徴とする多層体構造の検査方法。
A method for inspecting a multi-layered body structure to which bonding is applied,
The surface temperature distribution in the width direction of the inspected part is measured in a state where the temperature of the inspected part of the multilayer structure is adjusted, and the integrated value along the width direction of the surface temperature distribution of the inspected part and the A method for inspecting a multilayer structure, wherein an adhesion region in the part to be inspected is obtained using a gap width of adhesion of the part to be inspected.
JP2017042609A 2017-03-07 2017-03-07 Inspection equipment and inspection method of multilayer body structure Pending JP2018146425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017042609A JP2018146425A (en) 2017-03-07 2017-03-07 Inspection equipment and inspection method of multilayer body structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017042609A JP2018146425A (en) 2017-03-07 2017-03-07 Inspection equipment and inspection method of multilayer body structure

Publications (1)

Publication Number Publication Date
JP2018146425A true JP2018146425A (en) 2018-09-20

Family

ID=63591926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017042609A Pending JP2018146425A (en) 2017-03-07 2017-03-07 Inspection equipment and inspection method of multilayer body structure

Country Status (1)

Country Link
JP (1) JP2018146425A (en)

Similar Documents

Publication Publication Date Title
JP6301951B2 (en) Sample inspection method and system using thermography
US6517238B2 (en) Thermal imaging measurement of lateral diffusivity and non-invasive material defect detection
US8541746B2 (en) Process and system for the nondestructive quality determination of a weld seam, and a welding device
EP1918698B1 (en) Systems and method for locating failure events in samples under load
CN102159940B (en) Method for detecting defect in material and system for same
US11226301B2 (en) Thermographic examination means and method for non-destructive examination of a near-surface structure at a test object
US20170212066A1 (en) Characterization of Wrinkles and Periodic Variations in Material Using Infrared Thermography
EP3489675B1 (en) Thermography inspection for near-surface inconsistencies of composite structures combined with ultrasonic inspection
JP2017129560A (en) Infrared thermography method for wrinkle characterization in composite structure
JP2002527745A (en) A device that detects test specimens without contact
US20060029121A1 (en) Test apparatus and test method for the nondestructive testing in particular of membrane electrode assemblies for use in fuel cells, which can be integrated in production
US9816866B2 (en) Method for examination of a sample by means of the heat flow thermography
EP3077802B1 (en) Thermographic inspection system and corresponding method
JP2015505035A (en) Measurement method of thermal conductivity
JP4463855B2 (en) System and method for inspecting coatings, surfaces and interfaces
JP2008014959A (en) Method for inspecting coating member for interface defects
JP2018146425A (en) Inspection equipment and inspection method of multilayer body structure
CN109416332B (en) Thermal diffusivity measuring device, thermal diffusivity measuring method, and program
Sun Method for determining defect depth using thermal imaging
JP7351503B2 (en) Thermal resistance information acquisition device, thermal resistance information acquisition method, program, and contact information acquisition device
WO2016157588A1 (en) Nondestructive testing apparatus and nondestructive testing method
RU2568044C1 (en) Electrothermal method for detecting and identifying defects in walls of structural members
Sreeraj et al. Nondestructive evaluation of additively manufactured parts
JPH041863B2 (en)
JP2022120524A (en) Inspection method and inspection device for adhesive application state