JP2018145599A - Sampling method of soil sample and sampling device - Google Patents
Sampling method of soil sample and sampling device Download PDFInfo
- Publication number
- JP2018145599A JP2018145599A JP2017038293A JP2017038293A JP2018145599A JP 2018145599 A JP2018145599 A JP 2018145599A JP 2017038293 A JP2017038293 A JP 2017038293A JP 2017038293 A JP2017038293 A JP 2017038293A JP 2018145599 A JP2018145599 A JP 2018145599A
- Authority
- JP
- Japan
- Prior art keywords
- freezing
- ground sample
- tube
- refrigerant
- ground
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
本発明は原地盤における砂地盤などの地盤物性情報を得る為の試料採取するための地盤試料のサンプリング方法及びサンプリング装置に関する。 The present invention relates to a sampling method and a sampling device for a ground sample for collecting ground physical property information such as sand ground in the original ground.
地盤凍結サンプリングは、地盤を凍結させることで、サンプリング時や運搬時に地盤が乱されないように、間隙水を凍結させて、土粒子相互を固結させるためのもので、これまでに以下のような技術開発が進められてきた。代表的な事例を以下に示す。 Ground freezing sampling freezes the ground and freezes the pore water so that the ground is not disturbed during sampling or transportation, and solidifies the soil particles. Technology development has been underway. Typical examples are shown below.
特許文献1は、凍結サンプリング深度上面まで大径のボーリングをし、 その孔低中心から小径のボーリングを行い、その中に凍結管を挿入し、その上部には大径ボーリング孔の上部まで断熱管を接続し、この中に注入管を挿入して、上部から冷媒を注入し、下端から吐出させて凍結管内を熱交換しながら上昇し、地盤を凍結させる。大径のコアチューブで凍土を円柱状に切削して凍結管と共に引揚げるもので、サンプリング深度以浅は凍結させないので、これまでの工法より経済的である。
特許文献2、3は、ボーリング孔内に凍結外管を挿入し、その中に凍結区間より上部は断熱処理した凍結内管を挿入してサンプリング区間を凍結させ、凍結孔に近接して地上から凍土上面までボーリング孔を設け、凍土をコアリングしてコアを採取するもので、凍土柱から必要な数のコアのみ採取するので経済的である。
In
特許文献4は、凍結孔用と複数のサンプリング用ガイド管を断熱処理した鋼管の中にセットすることで、熱損失が少なく、個別にボーリングした場合の穴曲がりなどの余裕離間は不要になるので、より径の小さい凍土から良質な試料を採取することが出来るのが特徴である。
According to
特許文献5は、凍結孔のボーリングによる地盤の乱れを無くすため、ボーリングをしないで、潤滑剤を塗布した螺旋状羽付きの凍結管を回転させながら先端の刃先で地盤を切削し、螺旋羽で切削土を上方に排除しながら地中に貫入設置する。凍結管内の注入管の頭部から低温流体を供給し、先端から吐出させて凍結管内を上昇しながら 凍土を造成する。その凍土を円柱状に外周を切削してから凍結管と一緒に引揚げ、地上で試料をコア抜きできるので、凍土量に対して数多くの供試体が得られる。
In
特許文献6は、凍結管の中心に低温流体注入管と内壁面に沿って削孔用の循環水圧送管と掘屑排出用管を内装した凍結管の底蓋部から水ジェットで削孔し、上部に掘屑を排出しながら凍結管を地盤に圧入する。注入管頭部から低温流体を注入し、下端部から吐出させて熱交換しながら凍結管内を上昇し、凍土柱を造成する。その凍土を円柱状に外周を切削してから凍結管と一緒に凍土を引揚げるので凍結管挿入による周辺地盤の乱れは少なく,造成凍土量に対する試験に使用できる凍土量の比が高くなるので経済的になる。
In
しかしながら、これらの文献に記載されたサンプリング方法又はサンプリング装置では、凍結管は細径で、かつ自己掘削型で、貫入による地盤の乱れ領域は小さくなり、凍土の径も小さくすることが出来、経済的になったが、注入管の先端から低温流体を吐出させ、凍結管内を熱交換しながら上昇し、凍土を造成するので、造成凍土柱の下部の方が太くなり、凍土外周面と地盤との引揚抵抗力が大きくなり、凍土柱を引抜くことが困難であった。 However, in the sampling method or sampling apparatus described in these documents, the freezing pipe is thin and self-excavated, the area of ground disturbance due to penetration can be reduced, and the diameter of frozen soil can be reduced. However, since the cryogenic fluid is discharged from the tip of the injection pipe, it rises while exchanging heat in the freezing pipe, and frozen soil is created, so the lower part of the created frozen soil pillar becomes thicker, the outer surface of the frozen soil and the ground It was difficult to pull out the frozen soil pillar due to the increased resistance to lifting.
また、そのまま凍土柱を引き抜くことが困難であるため、凍土柱の周囲を切削して円柱状にして(コアリングして)から引揚げてることになるが、切削用循環低温流体の供給や大型削孔機によるコアリング工費などがかかるという欠点があった。 Also, since it is difficult to pull out the frozen soil pillar as it is, the periphery of the frozen soil pillar is cut into a cylindrical shape (cored) and then lifted up. There was a drawback that the coring work cost by a drilling machine was required.
本発明は以上のような従来の欠点に鑑み、凍結した地盤試料(凍土柱)外周の切削作業(コアリング)なしで迅速に凍土を引揚げる地盤試料のサンプリング方法及びサンプリング装置を提供することを目的としている。 In view of the above-described conventional drawbacks, the present invention provides a sampling method and a sampling apparatus for a ground sample that can quickly lift the frozen soil without cutting (coring) the outer periphery of the frozen ground sample (frozen soil column). It is aimed.
上記目的を達成するために、本発明の地盤試料のサンプリング方法は、地盤試料を採取する土中に凍結管を挿入する凍結管挿入工程と、該凍結管挿入工程で挿入した前記凍結管を冷却し、この凍結管の周囲の地盤試料を該凍結管を中心軸として略逆錘台状に凍結させる地盤試料凍結工程と、前記凍結管を凍結した地盤試料と一緒に土中から引き抜き、地盤試料を採取する地盤試料採取工程とで構成され、前記地盤試料採取工程は、前記凍結した地盤試料の周囲をコアリングせずに行う。 In order to achieve the above object, the ground sample sampling method of the present invention includes a freezing tube insertion step of inserting a freezing tube into the soil from which the ground sample is collected, and cooling the freezing tube inserted in the freezing tube insertion step. A ground sample freezing step in which the ground sample around the freezing tube is frozen in a substantially inverted frustum shape with the freezing tube as a central axis, and the freezing tube is extracted from the soil together with the frozen ground sample, The ground sample collecting step is performed without coring around the frozen ground sample.
また、本発明の地盤試料のサンプリング装置は、 パイプ状のロッドと、該ロッドの下端部にその上端部が接続され、かつ、冷媒流路を備える凍結管と、該凍結管の冷媒流路に冷媒を供給し、この凍結管の周囲の地盤試料を該凍結管を中心軸として略逆錘台状に凍結させる地盤試料凍結手段とで構成される。 The ground sample sampling device of the present invention includes a pipe-shaped rod, a freezing pipe having an upper end connected to the lower end of the rod and having a refrigerant flow path, and a refrigerant flow path of the freezing pipe. The ground sample freezing means is configured to supply a refrigerant and freeze the ground sample around the freezing tube in a substantially inverted frustum shape with the freezing tube as a central axis.
さらに、本発明の地盤試料のサンプリング装置は、土中に設置される円筒又は円柱状の凍結管と、該凍結管の上端部に設けられ、前記凍結管の周囲の地盤試料を該凍結管を中心軸として略逆錘台状に凍結させる冷熱源とで構成される。 Further, the ground sample sampling device of the present invention is provided with a cylindrical or columnar freezing tube installed in the soil, and an upper end portion of the freezing tube, and the ground sample around the freezing tube is used as the freezing tube. The center axis is composed of a cold heat source frozen in a substantially inverted frustum shape.
以上の説明から明らかなように、本発明にあっては次に列挙する効果が得られる。
(1)請求項1、請求項7及び請求項14に記載された各発明においては、凍結管周囲の地盤試料を略逆錐台状や略円柱型に凍結させるので、凍結した地盤試料の引揚抵抗力が大きくなることを防止でき、容易に地盤試料を引き抜くことができる。
そのため、工期の短縮と工費の節減、凍土コアリング用の大型設備と高度な技術が不要になり、容易に地盤試料のサンプリングを行うことができる。
(2)また、凍結した地盤試料の周囲をコアリングせずに地盤試料を引き抜くことができる。
すなわち、地盤凍結は、凍結管からの凍土厚が厚くなると等比級数的に工期と工費が増大する。このようにして造成した凍土を採取するために、従来工法では引抜くことができなかったので、高価な外周部凍土をコアリングして捨てて、その中の凍土柱部分のみを採取していたが、逆錐台状凍土塊を造成することで、造成した全ての凍土をコアリングせずに採取できるようになる。
したがって、造成した凍土塊すべてを採取できるので、造成凍土量に対して、凍結サンプリングの目的に使用できる凍土量の比率が飛躍的に向上させることができる。
(3)請求項2乃至請求項6及び請求項9乃至請求項13に記載された各発明も、前記(1)〜(2)と同様な効果が得られる。
(4)請求項8及び請求項15に記載された発明も、前記(1)〜(2)と同様な効果が得られると共に、事前に調査用の孔を削孔しなくても、凍結管を土中に配置することができる。
As is clear from the above description, the present invention has the following effects.
(1) In each of the inventions described in
For this reason, the construction period can be shortened and the construction cost can be reduced. Large-scale equipment for frozen ground coring and advanced technology can be eliminated, and the ground sample can be easily sampled.
(2) Further, the ground sample can be pulled out without coring around the frozen ground sample.
That is, ground freezing increases the work period and cost in terms of a geometrical series as the frozen soil thickness from the freezing pipe increases. In order to collect the frozen soil created in this way, it could not be pulled out by the conventional method, so the expensive outer peripheral frozen soil was cored and discarded, and only the frozen soil pillar portion was collected. However, by creating an inverted frustum-shaped frozen soil mass, it becomes possible to collect all the frozen soil without coring.
Therefore, since all the created frozen soil blocks can be collected, the ratio of the amount of frozen soil that can be used for the purpose of freezing sampling to the amount of created frozen soil can be dramatically improved.
(3) The inventions described in
(4) In the inventions described in
図1乃至図7は本発明の第1の実施形態を示す説明図である。
図8乃至図11は本発明の第2の実施形態を示す説明図である。
図12乃至図15は本発明の第3の実施形態を示す説明図である。
図16乃至図19は本発明の第4の実施形態を示す説明図である。
図20乃至図22は本発明の第5の実施形態を示す説明図である。
8 to 11 are explanatory views showing a second embodiment of the present invention.
12 to 15 are explanatory views showing a third embodiment of the present invention.
16 to 19 are explanatory views showing a fourth embodiment of the present invention.
20 to 22 are explanatory views showing a fifth embodiment of the present invention.
以下、図面に示す本発明を実施するための形態により、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings.
図1乃至図7に示す本発明を実施するための第1の形態において、1は地盤の液状化強度や動的変形係数などを求めるための特性値を求める地盤試料のサンプリング方法である。
In the first embodiment for carrying out the present invention shown in FIGS. 1 to 7,
この地盤試料のサンプリング方法1は、図1に示すように、地盤試料2を採取する土中に凍結管3を挿入する凍結管挿入工程4と、該凍結管挿入工程4で挿入した凍結管3を冷却し、凍結管3の周囲の地盤試料2を上端から下端へ至るにしたがって小径となる略逆錘台状に凍結させる地盤試料凍結工程5と、前記凍結管3を凍結した地盤試料2と一緒に土中から引き抜き、地盤試料2を採取する地盤試料採取工程6とで構成されている。
As shown in FIG. 1, the ground
また、この地盤試料のサンプリング方法1に用いられる地盤試料のサンプリング装置7は、本実施形態においては図2乃至図4に示すように、パイプ状のロッド8と、該ロッド8の下端部にその上端部が接続され、かつ、冷媒流路9を備える凍結管3と、凍結管3の冷媒流路9に冷媒10を供給し、凍結管3の周囲の地盤試料2を略逆錐台状に凍結させる地盤試料凍結手段11とで構成されている。
The ground
前記凍結管挿入工程4では、図5に示すように地盤試料2を採取しようとする地盤の土中に凍結管3を挿入する工程である。この工程では、予め下穴を掘削しておき、凍結管3を土中に挿入する方法もあるが、本実施形態においては、凍結管3に掘削手段12を備え、穴を開けながら凍結管3を挿入(貫入)する工程である。例えば、図示していない回転圧入機により、ロッド8の先端に装着した凍結管3を所定の土中に静かに回転切削しながら設置する。
In the freezing
本実施形態における掘削手段12としては、凍結管3の下端部に設けられた切削刃14と、回転により地盤を掘削し、掘削した土砂を上部に排出する螺旋羽根13で構成している。
The excavating means 12 in the present embodiment includes a
なお、本実施形態においては、凍結管3は上下同径で底部が閉塞した円筒状で、この凍結管3の周囲に螺旋羽根14が設けられている。この螺旋羽根13は本実施形態では連続したものであるが、回転抵抗を少なくするため断続した螺旋羽根13としても良い。
凍結管3を土中に位置させた後に凍結管3を冷却し、凍結管3の周囲の地盤試料2を略逆錐台状に凍結させる地盤試料凍結工程5を行う。地盤試料2を略逆錐台状に凍結させる地盤試料凍結手段11は、本実施形態では、凍結管3の表面温度を下部から上部に向かって順次低温となるように制御することにより地盤試料2を略逆錐台状に凍結させる。
In the present embodiment, the freezing
After placing the freezing
具体的には、凍結管3内の冷媒流路9の上下端部側面には冷媒温度計T1、T2が装着され、冷媒供給の制御は上下の温度差を指標とする。凍結管3の上端には造成凍土目標径の合板からなる低熱伝導円盤15を装着し、その外周には地盤凍結の検知を過冷却による誤認検知を無くすため、温度計ではなく比抵抗計Rを装着する。
Specifically, refrigerant thermometers T1 and T2 are mounted on the side surfaces of the upper and lower ends of the
凍結管3の内部に配置された冷媒流路9の周壁には複数個の冷媒噴射孔16を形成し、この冷媒吐出孔16から冷媒10を横方向に吐出する。本実施形態では、周方向に所定間隔を隔てて4箇所冷媒吐出孔16を形成し、上部から下部にかけて複数個設けられており、下方は22.5cmピッチ 中間は9cmピッチ 上方は7.5cmピッチで冷媒噴射孔16を設けている。
A plurality of refrigerant injection holes 16 are formed in the peripheral wall of the
冷媒10(液体窒素)は、冷媒流路9に接続された断熱処理した注入接続管(図示せず)から注入され、この制御は、制御装置Cにより、冷媒温度計の上下温度を設定値になるように(凍結管3の下部よりも上部が低くなるように)冷媒10の注入を制御し、比抵抗計Rから凍土が所定の径に達したことが検知されたら液体窒素の注入を停止する。
The refrigerant 10 (liquid nitrogen) is injected from a heat-insulated injection connecting pipe (not shown) connected to the
本実施形態では、凍結管3内の冷媒流路9の外側の上部温度計T1と下部温度計T2の温度差の目標値はマイナス60〜マイナス70℃となるように制御装置Cにより制御されている。例えば上部温度計T1の温度がマイナス110℃〜マイナス120℃、下部温度計T2の温度がマイナス50℃〜マイナス60℃程度になるように制御している。このような温度に制御するために、冷媒10(液体窒素)の注入量は電磁バルブの開閉により制御されており、電磁バルブの開閉は30秒毎に行われる。前述のような温度になるように制御した場合、冷媒10の注入開始約5分後には地盤試料2の凍結が開始し、約30分で地盤試料凍結工程5は終了する。本実施形態の地盤試料凍結工程5で得られる凍結した地盤試料2は、長さ約 1.0m、直径は下端部で約φ4.5cm、上端部で約φ11cm程度の逆錘台状となる。
In the present embodiment, the control device C controls the target value of the temperature difference between the upper thermometer T1 and the lower thermometer T2 outside the
また、冷媒吐出孔16から吐出された冷媒10(液体窒素)は、気化して凍結管3と冷媒流路9の間から上部(ロッド8)側へ排出される。
地盤試料凍結工程5ではこのような地盤試料凍結手段11を用いて、凍結管3の周囲の地盤試料2を略逆錐台状に凍結させる。
Further, the refrigerant 10 (liquid nitrogen) discharged from the
In the ground
凍結管3の周囲の地盤試料2が略逆錐台状に凍結したら、この地盤試料2を凍結管3と一緒に土中から引き抜き、地盤試料2を採取する地盤試料採取工程6を行う。この地盤試料採取工程6を行う際に、凍結した地盤試料2のコアリングはせずに地盤試料2を引き抜く。
When the
具体的には、ロッド8にジャッキ(図示せず)を用いて引揚力を作用させ、凍結した地盤試料2が動いたら、ウィンチ(図示せず)でゆっくり巻き上げ、凍結した地盤試料2をラッピングし、低温養生する。
なお、冷媒流路9の冷媒吐出孔16の深度方向の位置、円周方向の口数や口径、凍結管上下の温度差指標値などは、凍土柱の錐台勾配を引揚抵抗に関わる地盤の密度等から適宜変更することができる。
Specifically, a lifting force is applied to the
It should be noted that the position in the depth direction of the
[発明を実施するための異なる形態]
次に、図8乃至図22に示す本発明を実施するための異なる形態につき説明する。なお、これらの本発明を実施するための異なる形態の説明に当って、前記本発明を実施するための第1の形態と同一構成部分には同一符号を付して重複する説明を省略する。
[Different forms for carrying out the invention]
Next, different modes for carrying out the present invention shown in FIGS. 8 to 22 will be described. In the description of the different embodiments for carrying out the present invention, the same components as those in the first embodiment for carrying out the present invention are denoted by the same reference numerals, and redundant description is omitted.
図8乃至図11に示す本発明を実施するための第2の形態において、前記本発明を実施するための第1の形態と主に異なる点は、パイプ状の凍結管本体17と、該凍結管本体17の外周に螺旋状に冷媒が流れるように設けられた冷媒流路9Aと、該冷媒流路9Aの外側に設けられた被覆管18と、凍結管3Aの下端部に設けられた掘削手段12Aとしてのシューからなる凍結管3Aを用い、前記螺旋状の冷媒流路9Aの上部から冷媒10を流し、凍結管3Aの表面温度を下部から上部に向かって順次低温となるように制御する地盤試料凍結手段11Aを用いて地盤試料凍結工程5Aを行う地盤試料のサンプリング方法1A及び地盤試料のサンプリング装置7Aにした点で、このような構成にしても前記本発明を実施するための第1の形態と同様な作用効果が得られる。
The second embodiment for carrying out the present invention shown in FIGS. 8 to 11 is mainly different from the first embodiment for carrying out the present invention in that a pipe-shaped freezing tube
具体的には、凍結管の内壁に削孔用のジェット口19を下端に有する送水パイプ20と熱交換後の冷媒の排気パイプを内装した凍結管の外側に1ないし複数条の冷媒細管(冷媒流路9A)を螺旋状に巻きつけ、上端部から注入パイプ21を介して冷媒10を注入し、熱交換後、下端部から排気パイプ22を介して気化した冷媒10を排気し、注入温度と排出温度の差を制御して注入しながら逆錐台状凍土塊を造成する。
Specifically, one or more refrigerant tubules (refrigerant) are provided outside the freezing pipe in which a
なお、冷媒流路9Aの螺旋状パイプからなる表面が平滑でなく、凍結管の貫入抵抗が大きいので、熱伝道率の良い薄肉銅筒で形成された被覆管18被覆して凍結管表面を平滑にし、被覆管18と略面一となるようにシュー(掘削手段12A)の径を大きくした結果、貫入抵抗は小さくなったが、熱伝達効率が低下した。
Since the surface of the
そこで本実施形態では、熱膨張率がほぼ同じで熱伝導率が小さい例えばSUS304製の凍結管本体17と熱伝導率が大きい銅製の被覆管18を使用し、凍結管本体17の先端には内向きのシュー12Aを付け、外周には冷媒流路9A用に螺旋細管に相当する山形ねじ加工とし、ねじ山先端に圧着するように焼きばめの原理を応用して銅製の被覆管18を被せている。
Therefore, in the present embodiment, the cryopipe
図12乃至図15に示す本発明を実施するための第3の形態において、前記本発明を実施するための第2の形態と主に異なる点は、前記本発明を実施するための第1の形態と主に異なる点は、多重管(本実施形態では二重管)の凍結管3Bを用い、凍結管3Bの内側の管と外側の管の間を冷媒流路9Bとし、該冷媒流路9Bの上部から冷媒10を流し、前記凍結管3Bの表面温度を下部から上部に向かって順次低温となるように制御する地盤試料凍結手段11Bを用いて地盤試料凍結工程5Bを行う地盤試料のサンプリング方法1B及び地盤試料のサンプリング装置7Bにした点で、このような構成にしても前記本発明を実施するための第1の形態と同様な作用効果が得られる。すなわち、凍結管3Bを多重管とし、注入温度と排出温度の差を制御しながら冷媒流路9Bの上部から冷媒10を流すことにより、凍結管3Bの下部よりも上部が低温にすることができ、略逆錐台状又は略円柱型に凍結させることができる。
The third embodiment for carrying out the present invention shown in FIG. 12 to FIG. 15 is different from the second embodiment for carrying out the present invention mainly in the first embodiment for carrying out the present invention. The main difference from the configuration is that a multi-tube (double tube in this embodiment) freezing
本実施形態では二重管の凍結管3Bとし、凍結管3Bの外側のパイプ3aと内側のパイプ3bとの空隙を冷媒流路9Bとして、この部位に冷媒10を注入し、周辺地盤と熱交換しながら流下して下端部から内側パイプの内側を上昇して排気される。
In the present embodiment, a double
本実施形態のように二重管ではなく、凍結管3Bを三重管等として、最外側パイプと中パイプの空隙を冷媒流路9Bとして、この部位に冷媒10を注入し、熱交換しながら流下して下端部から中パイプと中心部の内パイプの空隙を上昇して排気してもよい。
As in this embodiment, instead of a double pipe, the freezing
図16乃至図19に示す本発明を実施するための第4の形態において、前記本発明を実施するための第1の形態と主に異なる点は、上部から下部に向かって順次小径となる凍結管3Cを用い、該凍結管3Cを冷却することにより地盤試料を略逆錐台状に凍結させる地盤試料凍結手段11Cを用いて地盤試料凍結工程5Cを行う地盤試料のサンプリング方法1C及び地盤試料のサンプリング装置7Cにした点で、このような構成にしても前記本発明を実施するための第1の形態と同様な作用効果が得られる。
The fourth embodiment for carrying out the present invention shown in FIGS. 16 to 19 is mainly different from the first embodiment for carrying out the present invention in that the freezing is gradually reduced in diameter from the upper part to the lower part. The ground sample sampling method 1C for performing the ground
なお、本実施形態の地盤試料凍結手段11Cとしては、凍結管3Cの内部を冷媒流路9Cとし、この冷媒流路9Cに冷媒10(液体窒素)を充填し、常に凍結管3C内の温度を一定に保持する。このように冷却することで、地盤試料の厚さをほぼ一定に造成することができ、凍結管3Cの外周面と同様の勾配を有する地盤試料をサンプリングすることができる。
As the ground sample freezing means 11C of this embodiment, the inside of the freezing
図20乃至図22に示す本発明を実施するための第5の形態において、前記本発明を実施するための第1の形態と主に異なる点は、土中に設置される円筒又は円柱状の凍結管3Dと、該凍結管3Dの上端部に設けられた冷熱源23を用いて冷却することにより、凍結管3Dの周囲の地盤試料を略逆錐台状又は略円柱型に凍結させる地盤試料凍結手段11Dを用いて地盤試料凍結工程5Dを行う地盤試料のサンプリング方法1D及び地盤試料のサンプリング装置7Dにした点で、このような構成にしても前記本発明を実施するための第1の形態と同様な作用効果が得られる。
The fifth embodiment for carrying out the present invention shown in FIGS. 20 to 22 is mainly different from the first embodiment for carrying out the present invention in that a cylindrical or columnar shape installed in the soil is used. A ground sample that freezes the ground sample around the freezing
凍結管3Dの上端部に冷熱源23を設けて凍結管3Dを冷却することにより、凍結管3Dの下部よりも上部の方が低温となり、地盤試料を略逆錐台状又は略円柱型に凍結させることができる。
By providing a
本発明は地盤物性情報を得る為の試料採取を行う産業で利用される。 The present invention is used in the industry of sampling for obtaining ground physical property information.
1、1A、1B、1C、1D:地盤試料のサンプリング方法、
2:地盤試料、 3、3A、3B、3C、3D:凍結管、
4:凍結管挿入工程、
5、5A、5B、5C、5D:地盤試料凍結工程、
6:地盤試料採取工程、
7、7A、7B、7C、7D:地盤試料のサンプリング装置、
8:ロッド、 9、9A、9B、9C、:冷媒流路、
10:冷媒、
11、11A、11B、11C、11D:地盤試料凍結手段、
12、12A:掘削手段、 13:螺旋羽根、
14:切削刃、 15:低熱伝導円盤、
16:冷媒噴射孔、 17:凍結管本体、
18:被覆管、 19:ジェット口、
20:送水パイプ、 21:注入パイプ、
22:排気パイプ、 23:冷熱源。
1, 1A, 1B, 1C, 1D: Sampling method of ground sample,
2: Ground sample, 3, 3A, 3B, 3C, 3D: Cryotube,
4: Freezing tube insertion process,
5, 5A, 5B, 5C, 5D: Ground sample freezing step,
6: Ground sampling process,
7, 7A, 7B, 7C, 7D: ground sample sampling device,
8: Rod, 9, 9A, 9B, 9C: Refrigerant flow path,
10: refrigerant,
11, 11A, 11B, 11C, 11D: ground sample freezing means,
12, 12A: Excavation means, 13: Spiral blade,
14: Cutting blade, 15: Low heat conduction disk,
16: Refrigerant injection hole, 17: Freezing pipe body,
18: cladding tube, 19: jet nozzle,
20: Water supply pipe, 21: Injection pipe,
22: Exhaust pipe, 23: Cold source.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017038293A JP2018145599A (en) | 2017-03-01 | 2017-03-01 | Sampling method of soil sample and sampling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017038293A JP2018145599A (en) | 2017-03-01 | 2017-03-01 | Sampling method of soil sample and sampling device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018145599A true JP2018145599A (en) | 2018-09-20 |
Family
ID=63589671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017038293A Pending JP2018145599A (en) | 2017-03-01 | 2017-03-01 | Sampling method of soil sample and sampling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018145599A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109357907A (en) * | 2018-11-19 | 2019-02-19 | 福建金东矿业股份有限公司 | A kind of intelligent mine comprehensive geology measuring device |
CN110514506A (en) * | 2019-08-13 | 2019-11-29 | 北京建筑大学 | Soil pattern preparation facilities |
JP2020200725A (en) * | 2019-06-13 | 2020-12-17 | 基礎地盤コンサルタンツ株式会社 | Ground sampling device and ground sampling method |
JP2022081096A (en) * | 2020-11-19 | 2022-05-31 | 国立研究開発法人 海上・港湾・航空技術研究所 | Exploration device and exploration method for ground sample |
-
2017
- 2017-03-01 JP JP2017038293A patent/JP2018145599A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109357907A (en) * | 2018-11-19 | 2019-02-19 | 福建金东矿业股份有限公司 | A kind of intelligent mine comprehensive geology measuring device |
CN109357907B (en) * | 2018-11-19 | 2023-11-14 | 福建金东矿业股份有限公司 | Intelligent mine comprehensive geological measuring device |
JP2020200725A (en) * | 2019-06-13 | 2020-12-17 | 基礎地盤コンサルタンツ株式会社 | Ground sampling device and ground sampling method |
JP7023258B2 (en) | 2019-06-13 | 2022-02-21 | 基礎地盤コンサルタンツ株式会社 | Ground sample collection device and ground sample collection method |
CN110514506A (en) * | 2019-08-13 | 2019-11-29 | 北京建筑大学 | Soil pattern preparation facilities |
CN110514506B (en) * | 2019-08-13 | 2024-04-05 | 北京建筑大学 | Soil sample preparation device |
JP2022081096A (en) * | 2020-11-19 | 2022-05-31 | 国立研究開発法人 海上・港湾・航空技術研究所 | Exploration device and exploration method for ground sample |
JP7426028B2 (en) | 2020-11-19 | 2024-02-01 | 国立研究開発法人 海上・港湾・航空技術研究所 | Ground sample exploration device and exploration method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018145599A (en) | Sampling method of soil sample and sampling device | |
AU776634B2 (en) | Drilling bit for drilling while running casing | |
CA1140106A (en) | Apparatus and process for drilling underground arcuate paths and installing production casings, conduits, or flow pipes therein | |
CN104695865B (en) | Microtunnelling system and apparatus | |
CN112593882B (en) | Rope directional coring drilling device with composite function | |
CN106596174A (en) | Pressure-maintaining fixed-point sealed collecting method for underground coal mine nearly-horizontal long-distance coal sample | |
CN109406204B (en) | Fragile rock stratum sample collection drill rod structure | |
US11255128B2 (en) | Drilling boreholes with a hybrid bit | |
US8006780B2 (en) | Method of attachment of a towing anchor to an iceberg | |
RU2295608C2 (en) | Method for pile driving in permafrost ground (variants) | |
JP2524961B2 (en) | Self-excavation ground freezing sampling method and device | |
JP7023258B2 (en) | Ground sample collection device and ground sample collection method | |
JP2663035B2 (en) | Screw pipe type frozen ground sampling method and apparatus | |
JP5688848B2 (en) | Ground reinforcement steel pipe and method of manufacturing the same | |
DE1936902B1 (en) | Method and device for sinking holes in ice | |
EP1654436B1 (en) | Method for heat drilling holes in ice and device for carrying out said method | |
WO2008091173A1 (en) | Method for pitching a pile into a permanently frozen ground | |
CN114109422B (en) | Guide type push pipe installation construction method | |
CN105745395A (en) | Method of filling a coring tool inner barrel with a coring fluid | |
CN108360991B (en) | Water pressure triggering type multi-point hot water core drill bit at bottom of ice layer | |
Ueda et al. | Fifty years of Soviet and Russian drilling activity in polar and non-polar ice: a chronological history | |
JP2020012771A (en) | Ground sample sampling method and sampling device | |
JPS61251743A (en) | Method for freezing and sampling soil quality sample of deep layer | |
JP2670990B2 (en) | Ground frozen sampling method and device | |
Gang et al. | Experimental Research on the Technology of Hydra-Jet Sidetracking of Radial Micro-borehole. |