JP2018145490A - Oil well tube excellent in tube expansion property and manufacturing method therefor - Google Patents

Oil well tube excellent in tube expansion property and manufacturing method therefor Download PDF

Info

Publication number
JP2018145490A
JP2018145490A JP2017042668A JP2017042668A JP2018145490A JP 2018145490 A JP2018145490 A JP 2018145490A JP 2017042668 A JP2017042668 A JP 2017042668A JP 2017042668 A JP2017042668 A JP 2017042668A JP 2018145490 A JP2018145490 A JP 2018145490A
Authority
JP
Japan
Prior art keywords
less
pipe
oil well
mass
yield strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2017042668A
Other languages
Japanese (ja)
Inventor
健介 長井
Kensuke Nagai
健介 長井
幸伸 永田
Yukinobu Nagata
幸伸 永田
雅和 尾▲崎▼
Masakazu Ozaki
雅和 尾▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017042668A priority Critical patent/JP2018145490A/en
Publication of JP2018145490A publication Critical patent/JP2018145490A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oil well tube excellent in tube expansion property and a manufacturing method therefor.SOLUTION: There is provided a low C steel tube containing, by mass%, C:0.010 to 0.100%, Si:0.50% or less, Mn:0.30 to 2.00%, P:0.030% or less, S:0.010% or less, Al:0.01 to 0.10% and the balance Fe with inevitable impurities, having parameter β value represented by the following formulae (1) and (2) satisfying 1.8 or more, having a metal structure consisting of tempered martensite of 95 area% or more as area fraction and the balance inevitable impurities, and having circumferential direction compression yield strength after tube expansion of 350 MPa to 700 MPa. Mn/Si>2 (1). β=2.7C+0.4Si+Mn+0.45 Ni+0.45Cu+0.8Cr+2Mo (2). Element symbols are contents of each element [mass%].SELECTED DRAWING: Figure 2

Description

本発明は、特に耐圧潰特性に優れ、拡管後の周方向圧縮強度が高い拡管特性に優れた油井管およびその製造方法に関するものである。   The present invention relates to an oil well pipe excellent in pressure crushing characteristics and having high pipe expansion characteristics with high circumferential compressive strength after pipe expansion, and a method for producing the same.

拡管特性に優れた鋼管は、現状では油井の補修用として使われている。しかし当該鋼管は、油井のスリム化およびモノダイヤ化等に適用できれば、油井掘削コストを劇的に低減できる可能性を秘めて、現在Expandable鋼管を適用使用と検討中の客先からは、外圧に対して潰れない特性(以下、耐圧潰特性)が要求され始めている。   Steel pipes with excellent pipe expansion characteristics are currently used for oil well repair. However, if the steel pipe can be applied to oil well slimming and monodialysis, etc., it has the potential to dramatically reduce oil well drilling costs. There is an increasing demand for characteristics that do not crush (hereinafter referred to as pressure crush characteristics).

耐圧潰特性は、鋼管の周方向圧縮強度と関連しており、通常の油井管(拡管しない油井管)では鋼管の降伏強度を向上させることが耐圧潰特性を向上させるひとつの方策である。   The crushing characteristics are related to the circumferential compressive strength of the steel pipe. In a normal oil well pipe (an oil well pipe that is not expanded), improving the yield strength of the steel pipe is one measure for improving the crushing characteristics.

一方、地中内で拡管する場合、拡管後の圧縮降伏強度は、鋼管の強度だけでは決まらないことがわかりつつある。具体的には、素管強度の高いDP鋼と新たに開発したバーリング鋼を基本成分とした新成分系で、ほぼ同等の耐圧潰特性を有していることがラボ試験に示された。さらにDP鋼より素管強度がさらに高いQ70(当社製品、高C焼戻しマルテンサイト鋼)とほぼ同等のコラプス圧潰強度を有していることがわかった。これら現象を解明し、拡管後の圧縮降伏強度が高い、すなわち耐圧潰特性の高い鋼管を開発する必要が出てきた。   On the other hand, when expanding pipes underground, it is becoming clear that the compressive yield strength after pipe expansion is not determined only by the strength of the steel pipe. Specifically, a laboratory test showed that the new component system is based on DP steel, which has a high strength of raw pipe and newly developed burring steel, and has almost the same crushing characteristics. Furthermore, it was found that the collapse crushing strength was almost the same as Q70 (our product, high-C tempered martensite steel), which has a higher pipe strength than DP steel. It has become necessary to elucidate these phenomena and to develop a steel pipe having a high compressive yield strength after pipe expansion, that is, a high pressure crushing characteristic.

特許文献1では、拡管特性を向上させるため、ミクロ組織をDP(Dual Phase)とする技術が開示されている。しかしながら、本開示内にて詳細に記載しているが、ミクロ組織をDPとすることは、拡管後の圧縮降伏強度を著しく低下させる効果があり、拡管後のコラプス性能が低下するという問題がある。   Patent Document 1 discloses a technique in which the microstructure is DP (Dual Phase) in order to improve tube expansion characteristics. However, as described in detail in the present disclosure, having the microstructure as DP has the effect of significantly reducing the compression yield strength after pipe expansion, and there is a problem that the collapse performance after pipe expansion is reduced. .

特許文献2では、焼戻しマルテンサイト鋼の拡管鋼管の製造方法が開示されている。しかしながら特許文献2で開示されている成分系は、比較的Cが多く含まれており、これら成分系では、拡管後の圧縮降伏強度を著しく低下させる効果があり、拡管後のコラプス性能が低下するという問題がある。   In patent document 2, the manufacturing method of the expanded steel pipe of tempered martensitic steel is disclosed. However, the component system disclosed in Patent Document 2 contains a relatively large amount of C, and these component systems have the effect of significantly reducing the compression yield strength after pipe expansion, and the collapse performance after pipe expansion is reduced. There is a problem.

特許文献3では、二相組織鋼とすることでバウシンガー効果を抑制し、拡管後のコラプス特性の高い鋼管を製造する方法が開示されている。しかしながら、最近ではより高いコラプス性能が要求されるようになり、特許文献3では対応できないという問題があった。   Patent Document 3 discloses a method for producing a steel pipe having high collapse characteristics after pipe expansion by suppressing the Bauschinger effect by using a dual phase steel. However, recently, higher collapse performance has been required, and there is a problem that Patent Document 3 cannot cope with it.

特許第5014831号公報Japanese Patent No. 5014831 特許第4943325号公報Japanese Patent No. 4943325 特許第4833835号公報Japanese Patent No. 4833835

本発明は、上記の課題を解決するためになされた検討であって、拡管後の周方向圧縮降伏強度が350MPa以上〜700MPaの範囲内であることを特徴とする、拡管特性に優れた油井管およびその製造方法を提供することを目的とする。   The present invention is an investigation for solving the above-mentioned problem, characterized in that the circumferential compression yield strength after pipe expansion is in the range of 350 MPa to 700 MPa, and an oil well pipe having excellent pipe expansion characteristics And it aims at providing the manufacturing method.

本発明者らは、上述したような課題を解決すべく、鋭意研究を重ねた結果、以下に示す知見を得ることができた。拡管後の圧縮降伏強度は、素管の強度とバウシンガー効果により支配され、これまでの検討でバウシンガー効果の抑制が最も効果的であることがわかった。バウシンガー効果は、硬質第二相(島上マルテンサイト、パーライト、セメンタイトなど)を多く含む場合に助長され、均一組織鋼(フェライト単相、マルテンサイト鋼)ではバウシンガー効果が小さい。以上の知見から、フェライト単相鋼または焼戻しマルテンサイト鋼が拡管後圧縮降伏強度を高めるためのミクロ組織の候補であると考えられる。   As a result of intensive studies to solve the above-described problems, the present inventors have been able to obtain the following knowledge. The compressive yield strength after tube expansion is governed by the strength of the tube and the Bausinger effect, and it has been found that suppression of the Bausinger effect is the most effective in the previous studies. The bausinger effect is promoted when a large amount of hard second phase (island martensite, pearlite, cementite, etc.) is contained, and the bausinger effect is small in uniform structure steel (ferrite single phase, martensite steel). From the above knowledge, it is considered that ferrite single-phase steel or tempered martensite steel is a candidate for a microstructure for increasing the compressive yield strength after pipe expansion.

ところが上述のとおり拡管後の圧縮降伏強度は素管の強度の影響も受けるため、図1に示すように、素地の強度が高い焼戻しマルテンサイトのほうがより高い圧縮降伏強度となることがわかった。またセメンタイトの影響についても、図1から、低C焼戻しマルテンサイトが高C・高強度マルテンサイトよりも拡管後の圧縮降伏強度が高くなる。一般的にバウシンガー効果は相間の内部応力が起源と考えられるが、低C材ではその内部応力が発生しにくかったため、バウシンガー効果量が小さくなったと考えられる。なお本結果は実際の拡管後の圧縮降伏強度ではなく、実験により算出したバウシンガー効果量から算出しており、圧縮の降伏強度は絶対値については意味をなさない。   However, as described above, the compressive yield strength after tube expansion is also affected by the strength of the raw tube, and as shown in FIG. 1, it was found that tempered martensite with a higher strength of the base material has a higher compressive yield strength. As for the influence of cementite, it can be seen from FIG. 1 that the compressive yield strength of the low C tempered martensite is higher than that of the high C and high strength martensite. In general, the Bausinger effect is thought to originate from internal stress between phases, but it was difficult to generate the internal stress in low C materials, so it is thought that the Bausinger effect amount was reduced. Note that this result is calculated not from the actual compression yield strength after tube expansion, but from the Bausinger effect amount calculated by experiment, and the compression yield strength does not make sense in terms of absolute values.

本開示は、これら知見に基づいて行われてものであり、要旨は以下のとおりである。
(1)質量%で、C:0.010〜0.100%、Si:0.50%以下、Mn:0.30〜2.00%、P:0.030%以下、S:0.010%以下、Al:0.01〜0.10%以下を含有し、残部がFeおよび不可避的不純物からなり、下記式(1)および(2)式で示されるパラメータβ値が1.8以上を満足し、金属組織は焼戻しマルテンサイトの面積分率が95面積%以上で残部が不可避的組織からなり、拡管後の周方向圧縮降伏強度が350MPa〜700MPaであることを特徴とする拡管特性に優れた油井管。
Mn/Si>2・・・・(1)
β=2.7C+0.4Si+Mn+0.45Ni+0.45Cu+0.8Cr+2Mo・・・(2)
ここで、元素記号は各元素の含有量[質量%]である。
The present disclosure has been made based on these findings, and the gist is as follows.
(1) By mass%, C: 0.010 to 0.100%, Si: 0.50% or less, Mn: 0.30 to 2.00%, P: 0.030% or less, S: 0.010 % Or less, Al: 0.01 to 0.10% or less, the balance is made of Fe and inevitable impurities, and the parameter β value represented by the following formulas (1) and (2) is 1.8 or more. Satisfied, the metal structure is excellent in tube expansion characteristics characterized in that the area fraction of tempered martensite is 95 area% or more and the remainder is an inevitable structure, and the circumferential compressive yield strength after tube expansion is 350 MPa to 700 MPa. Oil well pipe.
Mn / Si> 2 (1)
β = 2.7C + 0.4Si + Mn + 0.45Ni + 0.45Cu + 0.8Cr + 2Mo (2)
Here, the element symbol is the content [% by mass] of each element.

(2)さらに質量%で、B:0.001〜0.010%、Ti:0.005〜0.050%以下Nb:0.01〜0.10%、Ni:0.05〜0.50%以下、Cu:0.05〜0.50%以下、Mo:0.01%〜0.30%以下、Cr:0.05〜0.50%以下、V:0.01%〜0.10%以下、Ca:0.0010%〜0.0060%以下の1種または2種以上を含有することを特徴とする請求項1に記載の拡管特性に優れた油井管。   (2) Further, by mass%, B: 0.001 to 0.010%, Ti: 0.005 to 0.050% or less Nb: 0.01 to 0.10%, Ni: 0.05 to 0.50 %: Cu: 0.05 to 0.50% or less, Mo: 0.01% to 0.30% or less, Cr: 0.05 to 0.50% or less, V: 0.01% to 0.10 The oil well pipe having excellent tube expansion characteristics according to claim 1, wherein the oil well pipe contains one or more of Ca: 0.0010% to 0.0060%.

(3)質量%で、C:0.010〜0.100%、Si:0.50%以下、Mn:0.30〜2.00%、P:0.030%以下、S:0.010%以下、Al:0.01〜0.10%以下を含有し、残部がFeおよび不可避的不純物からなり、下記式(1)および(2)式で示されるパラメータβ値が1.8以上を満足する電縫鋼管を、造管後にA3点以上、A3点+100℃以下の範囲に加熱し、750℃以上の温度から、50℃/s以上の冷却速度で100℃以下まで冷却することを特徴とする請求項1に記載の拡管特性に優れた油井管の製造方法。
Mn/Si>2・・・・(1)
β=2.7C+0.4Si+Mn+0.45Ni+0.45Cu+0.8Cr+2Mo・・・(2)
ここで、元素記号は各元素の含有量[質量%]である。
(3) By mass%, C: 0.010 to 0.100%, Si: 0.50% or less, Mn: 0.30 to 2.00%, P: 0.030% or less, S: 0.010 % Or less, Al: 0.01 to 0.10% or less, the balance is made of Fe and inevitable impurities, and the parameter β value represented by the following formulas (1) and (2) is 1.8 or more. A satisfactory ERW steel pipe is heated to a range of A3 point or higher and A3 point + 100 ° C or lower after pipe forming, and cooled from a temperature of 750 ° C or higher to 100 ° C or lower at a cooling rate of 50 ° C / s or higher The manufacturing method of the oil well pipe excellent in the pipe expansion characteristic of Claim 1.
Mn / Si> 2 (1)
β = 2.7C + 0.4Si + Mn + 0.45Ni + 0.45Cu + 0.8Cr + 2Mo (2)
Here, the element symbol is the content [% by mass] of each element.

(4)さらに前記冷却後、300℃以上、A1点以下の温度に再加熱し、冷却することを特徴とする請求項3に記載の拡管特性に優れた油井管の製造方法。   (4) After the said cooling, it reheats to the temperature of 300 degreeC or more and A1 point or less, and cools, The manufacturing method of the oil well pipe excellent in the pipe expansion characteristic of Claim 3 characterized by the above-mentioned.

(5)前記電縫鋼管が、さらに質量%で、B:0.001〜0.010%、Ti:0.005〜0.050%以下、Nb:0.01〜0.10%、Ni:0.05〜0.50%以下、Cu:0.05〜0.50%以下、Mo:0.01%〜0.30%以下、Cr:0.05〜0.50%以下、V:0.01%〜0.10%以下、Ca:0.0010%〜0.0060%以下の1種または2種以上を含有することを特徴とする請求項3および4に記載の拡管特性に優れた油井管の製造方法。   (5) The electric resistance welded steel pipe is further mass%, B: 0.001 to 0.010%, Ti: 0.005 to 0.050% or less, Nb: 0.01 to 0.10%, Ni: 0.05 to 0.50% or less, Cu: 0.05 to 0.50% or less, Mo: 0.01% to 0.30% or less, Cr: 0.05 to 0.50% or less, V: 0 It is excellent in the pipe expansion characteristic of Claim 3 and 4 characterized by containing 1 type (s) or 2 or more types of 0.01%-0.10% or less, Ca: 0.0010%-0.0060% or less Manufacturing method of oil well pipe.

本発明によれば、拡管が可能であり、拡管後の周方向圧縮強度が高いすなわちコラプス特性が高く、油井管に好適な電縫鋼管の製造方法を提供することができ、産業上の貢献が極めて顕著である。   According to the present invention, pipe expansion is possible, the circumferential compressive strength after pipe expansion is high, that is, the collapse characteristic is high, and a method for manufacturing an electric resistance welded steel pipe suitable for an oil well pipe can be provided, which contributes to industrial contributions. Extremely prominent.

ミクロ組織と反転負荷時の圧縮降伏強度の関係を示す図である。It is a figure which shows the relationship between a microstructure and the compressive yield strength at the time of inversion load. 焼戻しマルテンサイト面積分率と拡管後の圧縮降伏強度の関係を示す図である。It is a figure which shows the relationship between the tempered martensite area fraction and the compression yield strength after pipe expansion. パラメータβと焼戻しマルテンサイト面積分率の関係を示す図である。It is a figure which shows the relationship between parameter (beta) and tempered martensite area fraction. 疵無拡管率とMn/Siの関係を示す図である。It is a figure which shows the relationship between a no-pipe expansion rate and Mn / Si.

以下、本発明について詳細に説明する。まず鋼材の成分組成を限定した理由について説明する。なお、以下、%の表記は、特に断りがない場合は、質量%を意味する。   Hereinafter, the present invention will be described in detail. First, the reason for limiting the component composition of the steel material will be described. Hereinafter, the notation of% means mass% unless otherwise specified.

Cは、鋼の強度を向上させる元素である。C量が0.010%未満では、効果が十分ではない。一方、Cが0.100%を超えると、拡管後の圧縮降伏強度が低下する。したがって、Cは、0.010〜0.100%とした。拡管後の圧縮降伏強度には、低C系が有効であり、好ましくは、0.080%以下、より好ましくは0.060%以下とする。   C is an element that improves the strength of steel. If the amount of C is less than 0.010%, the effect is not sufficient. On the other hand, when C exceeds 0.100%, the compressive yield strength after tube expansion decreases. Therefore, C is set to 0.010 to 0.100%. A low C system is effective for compressive yield strength after tube expansion, preferably 0.080% or less, more preferably 0.060% or less.

Siは、鋼の脱酸剤として使用される元素であるが、0.50%を超えると電縫溶接部に介在物が生成し拡管できない可能性があることから、0.50%以下とする。   Si is an element used as a deoxidizer for steel, but if it exceeds 0.50%, inclusions may be generated in the ERW weld and expansion may not be possible. .

Mnは、添加することで、焼入れ性を高めることができる元素である。焼入れ性を増す効果以外に、Sの無害化のためにも必須であり、0.30%以上を添加する。一方、Mnを過剰に含有すると、Pの偏析などを助長し、拡管割れを原因となるため、上限を2.00%とした。   Mn is an element that can enhance the hardenability when added. In addition to the effect of increasing hardenability, it is essential for detoxifying S, and 0.30% or more is added. On the other hand, if Mn is contained excessively, segregation of P and the like are promoted to cause expansion cracking, so the upper limit was made 2.00%.

Pは、鋼中に不可避的不純物として存在する元素で、0.0300%を超えると、粒界に偏析することで拡管性を損なうため、上限を0.0300%とする。   P is an element present as an inevitable impurity in the steel, and if it exceeds 0.0300%, it segregates at the grain boundary to impair the tube expandability, so the upper limit is made 0.0300%.

Sは、鋼中に不可避的不純物として存在する元素であり、過剰に添加されると拡管性を劣化させるために、0.0100%以下とする。   S is an element present as an unavoidable impurity in the steel, and when added in excess, the expandability is degraded.

Alは、Si同様脱酸剤として添加される。その効果を得るため、0.010%以上添加する。一方0.100%を越えると、通常の電縫溶接設備においては、Al系酸化物の生成に伴い、溶接部の密着性が低下する場合があるため、0.100%以下とする。   Al is added as a deoxidizer in the same manner as Si. In order to obtain the effect, 0.010% or more is added. On the other hand, if it exceeds 0.100%, in ordinary ERW welding equipment, the adhesion of the welded portion may be reduced with the generation of the Al-based oxide, so the content is made 0.100% or less.

更に、必要に応じて、焼入れ性や析出物を通して強度に影響するB, Ti, Nb,Ni、Cu、Mo、Cr、V,Caを添加してもよい。
Bは、少量の添加で焼入れ性を大きく向上させ、強度に影響する元素であり、効果を得るためには、0.0010%以上添加する。一方、0.0100%を越えるとBN等の析出物により拡管性が劣化するため、上限を0.0100%とする。
Furthermore, you may add B, Ti, Nb, Ni, Cu, Mo, Cr, V, and Ca which influence a hardenability and a strength through a precipitate as needed.
B is an element that greatly improves the hardenability by adding a small amount and affects the strength. To obtain the effect, B is added in an amount of 0.0010% or more. On the other hand, if it exceeds 0.0100%, the pipe expandability deteriorates due to precipitates such as BN, so the upper limit is made 0.0100%.

Tiは、炭窒化物を形成し、結晶粒径の微細化に寄与し、強度に影響する元素である。その効果を発揮するためには、0.005%以上の添加が必要であるため、下限を0.005%とした。しかし、Tiが0.050%を超えると、粗大なTiNを生成し、拡管性の低下を招くためTiは0.050%とする。   Ti is an element that forms carbonitrides, contributes to refinement of crystal grain size, and affects strength. In order to exhibit the effect, 0.005% or more of addition is necessary, so the lower limit was made 0.005%. However, if Ti exceeds 0.050%, coarse TiN is generated and the pipe expandability is lowered, so Ti is made 0.050%.

Nbは、強度および靭性に寄与する元素である。効果を得るためには、0.010%以上を添加する。しかし、添加量が多すぎるとNb析出物により拡管性が劣化するため上限を0.100%とする。   Nb is an element that contributes to strength and toughness. In order to obtain the effect, 0.010% or more is added. However, if the addition amount is too large, the tube expandability deteriorates due to Nb precipitates, so the upper limit is made 0.100%.

Niは、焼入れ性向上に寄与し、強度に影響する元素である。効果を得るためには、0.05%以上を添加する。しかし、Niを多量に添加すると、強度が高くなりすぎ、拡管性が阻害される。そのため上限は0.50%とする。   Ni is an element that contributes to improving hardenability and affects strength. In order to obtain the effect, 0.05% or more is added. However, when Ni is added in a large amount, the strength becomes too high and the tube expandability is inhibited. Therefore, the upper limit is 0.50%.

Cuは、焼入れ性向上に有効で強度に影響する元素であり、その効果を得るためには、0.05%以上を添加する。しかし、多量に添加しすぎると、微細なCu粒子を生成し、拡管後の圧縮降伏強度を著しく劣化させるおそれがある。そのため、Cu量の上限を0.50%とすることが好ましい。   Cu is an element effective for improving the hardenability and affecting the strength. To obtain the effect, 0.05% or more is added. However, if added in a large amount, fine Cu particles are generated, and the compression yield strength after tube expansion may be significantly deteriorated. Therefore, it is preferable that the upper limit of the Cu amount is 0.50%.

Moを添加する理由は、鋼材の焼入れ性を向上させ、高強度を得るためである。その効果を得るためには、0.01%以上を添加する。多量に添加するとMo炭窒化物の生成により拡管後圧縮降伏強度を低下させる可能性があるため、上限を0.30%とした。   The reason for adding Mo is to improve the hardenability of the steel material and to obtain high strength. In order to obtain the effect, 0.01% or more is added. If added in a large amount, there is a possibility that the compression yield strength after pipe expansion is reduced due to the formation of Mo carbonitride, so the upper limit was made 0.30%.

Crは、焼入れ性を向上させる元素であり、その効果を得るためには、0.05%以上を添加する。一方で、溶接性を低下させる元素でもあり、多量に添加すると電縫溶接部に生成したCr系介在物により拡管性が低下する。そのため、Cr量の上限を0.50%とすることが好ましい。   Cr is an element that improves the hardenability, and in order to obtain the effect, 0.05% or more is added. On the other hand, it is also an element that degrades weldability. When it is added in a large amount, the pipe expandability is lowered by the Cr-based inclusions generated in the ERW weld. Therefore, it is preferable to set the upper limit of the Cr amount to 0.50%.

Vは、Nbとほぼ同様の効果を有し、効果を得るためには、0.010%以上を添加する。Vは溶接部の軟化を抑制する効果も有する。ただし、Vを多量に添加するとV炭窒化物により、拡管後の圧縮降伏強度が低下する。そのためV添加量は0.100%とすることが好ましい。   V has substantially the same effect as Nb, and 0.010% or more is added to obtain the effect. V also has the effect of suppressing softening of the weld. However, when a large amount of V is added, the compression yield strength after the pipe expansion is lowered by the V carbonitride. Therefore, the V addition amount is preferably 0.100%.

Caは、硫化物系介在物の形態を制御し、強度や低温靭性を向上させる元素である。その効果を得るため0.0010%以上添加する。Ca量が0.0060%を超えると、CaO−CaSが大型のクラスターや介在物となり、拡管性に悪影響を及ぼすおそれがある。そのため、Ca添加量の上限を0.0060%とすることが好ましい。   Ca is an element that controls the form of sulfide inclusions and improves strength and low-temperature toughness. In order to obtain the effect, 0.0010% or more is added. If the Ca content exceeds 0.0060%, CaO—CaS becomes a large cluster or inclusion, which may adversely affect the tube expandability. Therefore, it is preferable that the upper limit of the Ca addition amount be 0.0060%.

上記の元素以外の残部は、Fe及び不可避不純物からなる。上記の元素以外に、本発明の作用効果を害さない元素を微量に添加してもよい。   The balance other than the above elements consists of Fe and inevitable impurities. In addition to the above elements, an element that does not impair the effects of the present invention may be added in a trace amount.

必要なミクロ組織およびその比率は以下の通りである。
上述の通り、本開示において低Cでかつ焼戻しマルテンサイト組織が拡管後の圧縮降伏強度を向上させることがわかった。図2に示すように、焼戻しマルテンサイト面積分率の低下とともに拡管後の圧縮降伏強度が低下した。350MPaを超えるためには焼戻しマルテンサイト面積分率を95面積%以上とすることが重要である。
The required microstructure and its ratio are as follows.
As described above, in the present disclosure, it has been found that the low C and tempered martensite structure improves the compressive yield strength after tube expansion. As shown in FIG. 2, the compressive yield strength after tube expansion decreased with a decrease in the tempered martensite area fraction. In order to exceed 350 MPa, it is important that the tempered martensite area fraction is 95 area% or more.

式(1)で示されるパラメータβは鋼材の焼入れ性に関する指標であり、各元素はその質量%である。この数値が高いと焼入れ性が高いことを示す。拡管後の圧縮降伏強度を高めるためには低C系であることに加え、焼戻しマルテンサイト組織が必要であり、焼入れ性の高い鋼が求められる。図3示すように、この値が1.8以上であれば、後述するプロセスにおいて95面積%以上を焼戻しマルテンサイト組織とすることが可能であり、拡管後圧縮降伏強度が高い鋼管を製造可能である。
β=2.7C+0.4Si+Mn+0.45Ni+0.45Cu+0.8Cr+2Mo (1)
The parameter β shown in the formula (1) is an index related to the hardenability of the steel material, and each element is the mass%. Higher numerical values indicate higher hardenability. In order to increase the compressive yield strength after pipe expansion, in addition to the low C system, a tempered martensite structure is required, and steel with high hardenability is required. As shown in FIG. 3, if this value is 1.8 or more, 95% by area or more can be tempered martensite structure in the process described later, and a steel pipe having high compressive yield strength after pipe expansion can be produced. is there.
β = 2.7C + 0.4Si + Mn + 0.45Ni + 0.45Cu + 0.8Cr + 2Mo (1)

ミクロ組織分率の測定には、TEM(Transmission Electron Microscopy)を用いる。TEM観察では、薄膜法により作成した試料を用いて、総面積100um2に相当する視野、好ましくは縦横10μm前後の正方形もしくは長方形の視野について観察し、ベイナイト、フェライト、焼戻しマルテンサイトの面積分率を測定する。ベイナイトは、Lath内に析出したセメンタイトの優先成長方位が一方向に配向していることが特徴である。 TEM (Transmission Electron Microscopy) is used for the measurement of the microstructure fraction. In TEM observation, a sample prepared by a thin film method is used to observe a visual field corresponding to a total area of 100 um 2 , preferably a square or rectangular visual field of about 10 μm in length and width, and the area fraction of bainite, ferrite, and tempered martensite. taking measurement. Bainite is characterized in that the preferred growth orientation of cementite precipitated in Lath is oriented in one direction.

一方焼戻しマルテンサイトのそれはランダムであるという特徴から判別可能である。また焼戻しマルテンサイトと焼きいれたままのマルテンサイトの区別はセメンタイトの生成の有無で判別可能である。フェライトは拡散変態したことが特徴であり、粒内に転位が含まれていないものがフェライトである。他にベイナイト、パーライト、残留オーステナイトが含まれ得る。尚、拡管後の周方向圧縮降伏強度の測定については、シーム部から90度、180度および270度の位置から、丸棒圧縮試験片を円筒軸が周方向となるように試験片を採取する。採取した圧縮試験片について、圧縮試験を行う。試験条件は、ひずみ速度を10−4/sとし、ひずみはひずみゲージを用いて測定する。得られた荷重―変位曲線から、圧縮の降伏強度を読み取る。なお、本開示における圧縮の降伏強度は0.05%ひずみにおける応力値と定義した。 On the other hand, that of tempered martensite can be distinguished from the characteristic that it is random. Also, the distinction between tempered martensite and as-marsted martensite can be made by the presence or absence of the formation of cementite. A feature of ferrite is that it has undergone diffusion transformation, and ferrite does not contain dislocations in the grains. In addition, bainite, perlite, and retained austenite may be included. Regarding the measurement of the circumferential compressive yield strength after tube expansion, the round bar compression test piece is taken from the seam portion at 90 °, 180 ° and 270 ° so that the cylindrical axis is in the circumferential direction. . A compression test is performed on the collected compression test pieces. The test conditions are a strain rate of 10 −4 / s and the strain is measured using a strain gauge. The yield strength of compression is read from the obtained load-displacement curve. The compression yield strength in the present disclosure was defined as the stress value at 0.05% strain.

図4に示すように、Mn/Siのパラメータが2.0より小さくなると、溶接部にMnSi系の介在物が生成し、拡管時に割れを発生させる。Mn/Siが2.0以上とすると、拡管時の割れを抑制できるため、Mn/Siを2.0以上とした。   As shown in FIG. 4, when the Mn / Si parameter is smaller than 2.0, MnSi inclusions are generated in the welded portion, and cracks are generated during pipe expansion. If Mn / Si is 2.0 or more, cracking during tube expansion can be suppressed, so Mn / Si was set to 2.0 or more.

次に、本発明における電縫鋼管の製造方法について説明する。
拡管後の圧縮降伏強度を高めるためには、ミクロ組織を均質化することが有効であり、均一組織で強度を高めるには焼戻しマルテンサイト鋼が有効である。焼戻しマルテンサイト鋼を得るためには鋼材が焼き入れプロセスに対して十分な焼入れ性を有することが重要であり、上記β値は焼入れ性の指標である。上記β値が適正に制御された鋼管において、以下のプロセスを実施することで、焼戻しマルテンサイト組織を作りこむことができ、拡管後の圧縮降伏強度の向上が可能となる。
Next, the manufacturing method of the ERW steel pipe in this invention is demonstrated.
In order to increase the compressive yield strength after expansion, it is effective to homogenize the microstructure, and tempered martensitic steel is effective to increase the strength in a uniform structure. In order to obtain tempered martensitic steel, it is important that the steel material has sufficient hardenability with respect to the quenching process, and the β value is an index of hardenability. In the steel pipe in which the β value is appropriately controlled, a tempered martensite structure can be formed by performing the following process, and the compression yield strength after the pipe expansion can be improved.

熱延鋼板を連続的にロール成型し、オープンパイプとした後、突合せ部近傍を融点以上に加熱し、スクイズロールで圧接する電縫溶接を行う。電縫溶接後、オンラインでシーム熱処理を実施することがあるが、特にそのプロセスについては限定されない。   After hot-rolling steel sheets are continuously roll-formed to form an open pipe, the vicinity of the butt portion is heated to the melting point or higher and electro-welding welding is performed by pressure welding with a squeeze roll. Although seam heat treatment may be performed online after ERW welding, the process is not particularly limited.

造管後の熱処理として、A3点以上・A3点+100℃以下の範囲に加熱し、造管で導入されたひずみを完全に除去する。A3温度は、式(2)を用いて計算することができる。
A3=937.2−436.5C+56Si−19.7Mn−16.3Cu−26.6Ni−4.9Cr+38.1Mo+124.8V+136.3Ti−19.1Nb+198.4Al+3315B (2)
As the heat treatment after pipe forming, heating is performed within a range of A3 point or higher and A3 point + 100 ° C. or lower to completely remove strain introduced by pipe forming. The A3 temperature can be calculated using equation (2).
A3 = 937.2-436.5C + 56Si-19.7Mn-16.3Cu-26.6Ni-4.9Cr + 38.1Mo + 124.8V + 136.3Ti-19.1Nb + 198.4Al + 3315B (2)

加熱後の鋼管は、加熱炉から出た後、数秒〜数十秒の後直ちに冷却される。このとき冷却開始温度を750℃以上とし、冷却速度を50℃/s以上かつ100℃以下まで冷却する条件を、パラメータβが適正に制御された鋼管に対して実施すれば、低Cであっても焼き入れ処理にてマルテンサイトを生成させることが可能である。冷却の終了温度は、加熱時に生成したオーステナイトが完全にマルテンサイトに変態していれば、特性に影響を与えるものではない。変態終了温度の見積もりは困難であるが、少なくとも本発明の成分範囲であれば、100℃以下の温度とすれば、完全にマルテンサイト変態は完了する。好ましくは、室温まで冷却する。   The heated steel pipe is cooled immediately after several seconds to several tens of seconds after leaving the heating furnace. At this time, if the cooling start temperature is 750 ° C. or higher and the cooling rate is 50 ° C./s or higher and 100 ° C. or lower on a steel pipe whose parameter β is appropriately controlled, the temperature is low C. It is also possible to generate martensite by quenching. The end temperature of cooling does not affect the properties as long as the austenite produced during heating is completely transformed into martensite. Although it is difficult to estimate the transformation end temperature, at least within the component range of the present invention, if the temperature is 100 ° C. or lower, the martensitic transformation is completely completed. Preferably, it is cooled to room temperature.

好ましくは二回目熱処理として、A1温度以下・300℃以上の温度域に加熱する。A1温度は式(3)を用いて計算可能である。保持時間は特性に影響は与えないため、特に規定しないが5分以上が好ましい。焼戻しの冷却過程については特に制限はなく、徐冷であっても急冷であってもよい。
A1=750.8−26.6C+17.6Si−11.6Mn−22.9Cu−23Ni+24.1Cr+22.5Mo−39.7V−5.7Ti+232.4Nb−169.4Al−894.7B (3)
Preferably, as the second heat treatment, heating is performed to a temperature range of A1 temperature or lower and 300 ° C or higher. The A1 temperature can be calculated using equation (3). Since the holding time does not affect the characteristics, it is not particularly specified, but it is preferably 5 minutes or more. There is no restriction | limiting in particular about the cooling process of tempering, and slow cooling or rapid cooling may be sufficient.
A1 = 750.8-26.6C + 17.6Si-11.6Mn-22.9Cu-23Ni + 24.1Cr + 22.5Mo-39.7V-5.7Ti + 232.4Nb-169.4Al-894.7B (3)

以下、実施例により本発明の効果を説明するが、本発明は、以下の実施例で用いた条件に限定されるものではない。試験は、鋼管のサイズをφ279.4mm×t15.9mmとした。表中の圧縮降伏強度は、水圧拡管試験により15%拡管後の値である。
表1に示すように、No.1からNo.25は、請求項に定められる成分・ミクロ組織の範囲内であり、拡管後の圧縮降伏強度が規定範囲となった。
Hereinafter, the effects of the present invention will be described with reference to examples, but the present invention is not limited to the conditions used in the following examples. In the test, the size of the steel pipe was φ279.4 mm × t15.9 mm. The compressive yield strength in the table is the value after 15% tube expansion by the water tube expansion test.
As shown in Table 1, no. 1 to No. No. 25 is within the range of components and microstructures defined in the claims, and the compression yield strength after pipe expansion is within the specified range.

比較例No.1は、C添加量が上限を超過したため、バウシンガー効果が顕著になり拡管後の圧縮降伏強度が低くなった。
比較例No.2は、C添加量が下限を下回ったため、素管強度が低くなり拡管後の圧縮降伏強度が低くなった。
比較例No.3は、Si添加量が上限を超過したため、拡管時に溶接欠陥起因の割れが発生し拡管できなかった。
比較例No.4は、Mn添加量が上限を超過したため、中心偏析起因の割れにより拡管できなかった。
比較例No.5は、Mn添加量が下限を下回ったため、固溶Sが残存し、それが起因で拡管時に割れが発生した。
比較例No.6は、P添加量が上限を超過したため、粒界偏析起因の脆化が発生し拡管割れした。
比較例No.7は、S添加量が上限を超過したため、中心偏析部が脆化し、拡管時に割れが発生した。
比較例No.8は、Al添加量が上限を超過したため、拡管時に溶接欠陥起因の割れが発生し拡管できなかった。
比較例No.9は、Al添加量が下限を下回ったため、脱酸が不十分となり鋳片内部にボイドが生成したため、拡管時に割れが発生した。比較例No.10は、β値が下限を下回ったため、焼き入れ性が不十分であり、マルテンサイト面積分率が95面積%を下回った。それに伴い拡管後圧縮降伏強度が規定値に達しなかった。
比較例No.11は、Mn/Siの比が下限を下回ったため、溶接欠陥起因の割れが発生し拡管できなかった。
比較例No.12は、加熱温度が上限を超過したため、鋼材の靭性が劣化し拡管時に割れが発生した。
比較例No.13は、加熱温度が下限を下回ったため、マルテンサイト面積分率が低くなり、拡管後の圧縮降伏強度が低下した。
比較例No.14は、冷却速度開始温度が下限を下回ったため、マルテンサイト面積分率が低くなり、拡管後の圧縮降伏強度が低下した。
比較例No.15は、冷却速度が下限を下回ったため、マルテンサイト面積分率が低くなり、拡管後の圧縮降伏強度が低下した。
比較例No.16は、冷却終了温度が上限を超過したため、マルテンサイト面積分率が低くなり、拡管後の圧縮降伏強度が低下した。
比較例No.17は、二回目の加熱温度が上限を超過したため、マルテンサイト面積分率が低くなり、拡管後の圧縮降伏強度が低下した。
Comparative Example No. In No. 1, since the C addition amount exceeded the upper limit, the Bauschinger effect became prominent and the compression yield strength after tube expansion became low.
Comparative Example No. In No. 2, since the amount of addition of C was below the lower limit, the strength of the tube was lowered and the compression yield strength after the tube expansion was lowered.
Comparative Example No. In No. 3, since the amount of Si added exceeded the upper limit, cracks due to welding defects occurred at the time of pipe expansion, and the pipe could not be expanded.
Comparative Example No. No. 4 could not be expanded due to cracks due to center segregation because the Mn addition amount exceeded the upper limit.
Comparative Example No. In No. 5, since the amount of Mn added was lower than the lower limit, solid solution S remained, which caused cracks during tube expansion.
Comparative Example No. In No. 6, since the P addition amount exceeded the upper limit, embrittlement caused by grain boundary segregation occurred and the pipe expanded.
Comparative Example No. In No. 7, since the addition amount of S exceeded the upper limit, the center segregation part became brittle and cracks occurred during pipe expansion.
Comparative Example No. In No. 8, since the Al addition amount exceeded the upper limit, cracks due to welding defects occurred at the time of pipe expansion, and the pipe could not be expanded.
Comparative Example No. In No. 9, since the amount of Al added was below the lower limit, deoxidation was insufficient and voids were generated inside the slab, and cracks occurred during pipe expansion. Comparative Example No. In No. 10, since the β value was below the lower limit, the hardenability was insufficient, and the martensite area fraction was below 95 area%. Along with this, the compression yield strength after pipe expansion did not reach the specified value.
Comparative Example No. In No. 11, since the ratio of Mn / Si was below the lower limit, cracks due to welding defects occurred and the tube could not be expanded.
Comparative Example No. In No. 12, since the heating temperature exceeded the upper limit, the toughness of the steel material deteriorated and cracks occurred during pipe expansion.
Comparative Example No. In No. 13, since the heating temperature was lower than the lower limit, the martensite area fraction was low, and the compression yield strength after tube expansion was reduced.
Comparative Example No. No. 14, since the cooling rate start temperature was below the lower limit, the martensite area fraction was low, and the compression yield strength after tube expansion was reduced.
Comparative Example No. In No. 15, since the cooling rate was lower than the lower limit, the martensite area fraction was low, and the compression yield strength after tube expansion was reduced.
Comparative Example No. In No. 16, since the cooling end temperature exceeded the upper limit, the martensite area fraction was lowered, and the compression yield strength after tube expansion was lowered.
Comparative Example No. In No. 17, since the second heating temperature exceeded the upper limit, the martensite area fraction was low, and the compression yield strength after tube expansion was reduced.

Claims (5)

質量%で、
C:0.010〜0.100%
Si:0.50%以下
Mn:0.30〜2.00%
P:0.0300%以下
S:0.0100%以下
Al:0.010〜0.100%以下
を含有し、残部がFeおよび不可避的不純物からなり、下記式(1)および(2)式で示されるパラメータβ値が1.8以上を満足し、金属組織は焼戻しマルテンサイトの面積分率が95面積%以上で残部が不可避的組織からなり、拡管後の周方向圧縮降伏強度が350MPa〜700MPaであることを特徴とする拡管特性に優れた油井管。
Mn/Si>2・・・・(1)
β=2.7C+0.4Si+Mn+0.45Ni+0.45Cu+0.8Cr+2Mo・・・(2)
ここで、元素記号は各元素の含有量[質量%]である。
% By mass
C: 0.010 to 0.100%
Si: 0.50% or less Mn: 0.30 to 2.00%
P: 0.0300% or less S: 0.0100% or less Al: 0.010 to 0.100% or less, with the balance consisting of Fe and inevitable impurities, represented by the following formulas (1) and (2) The indicated parameter β value satisfies 1.8 or more, the metal structure has an area fraction of tempered martensite of 95% by area or more and the remainder is an inevitable structure, and the circumferential compressive yield strength after pipe expansion is 350 MPa to 700 MPa. An oil well pipe with excellent pipe expansion characteristics.
Mn / Si> 2 (1)
β = 2.7C + 0.4Si + Mn + 0.45Ni + 0.45Cu + 0.8Cr + 2Mo (2)
Here, the element symbol is the content [% by mass] of each element.
さらに質量%で、
B:0.0010〜0.0100%、
Ti:0.005〜0.050%以下
Nb:0.010〜0.100%、
Ni:0.05〜0.50%以下、
Cu:0.05〜0.50%以下、
Mo:0.01%〜0.30%以下、
Cr:0.05〜0.50%以下、
V:0.010%〜0.100%以下、
Ca:0.0010%〜0.0060%以下
の1種または2種以上を含有することを特徴とする請求項1に記載の拡管特性に優れた油井管。
In addition,
B: 0.0010 to 0.0100%,
Ti: 0.005 to 0.050% or less Nb: 0.010 to 0.100%,
Ni: 0.05 to 0.50% or less,
Cu: 0.05 to 0.50% or less,
Mo: 0.01% to 0.30% or less,
Cr: 0.05 to 0.50% or less,
V: 0.010% to 0.100% or less,
2. The oil well pipe excellent in pipe expansion characteristics according to claim 1, characterized by containing one or more of Ca: 0.0010% to 0.0060% or less.
質量%で、
C:0.010〜0.100%
Si:0.50%以下
Mn:0.30〜2.00%
P:0.030%以下
S:0.010%以下
Al:0.01〜0.10%以下
を含有し、残部がFeおよび不可避的不純物からなり、下記式(1)および(2)式で示されるパラメータβ値が1.8以上を満足する電縫鋼管を、造管後にA3点以上、A3点+100℃以下の範囲に加熱し、750℃以上の温度から、50℃/s以上の冷却速度で100℃以下まで冷却することを特徴とする請求項1に記載の拡管特性に優れた油井管の製造方法。
Mn/Si>2・・・・(1)
β=2.7C+0.4Si+Mn+0.45Ni+0.45Cu+0.8Cr+2Mo・・・(2)
ここで、元素記号は各元素の含有量[質量%]である。
% By mass
C: 0.010 to 0.100%
Si: 0.50% or less Mn: 0.30 to 2.00%
P: 0.030% or less S: 0.010% or less Al: 0.01 to 0.10% or less, with the balance consisting of Fe and inevitable impurities, represented by the following formulas (1) and (2) The electric resistance welded steel pipe satisfying the indicated parameter β value of 1.8 or more is heated to a range of A3 point or higher and A3 point + 100 ° C or lower after pipe forming, and cooled from 50 ° C or higher to 50 ° C / s or higher. It cools to 100 degrees C or less at a speed | rate, The manufacturing method of the oil well pipe excellent in the pipe expansion characteristic of Claim 1 characterized by the above-mentioned.
Mn / Si> 2 (1)
β = 2.7C + 0.4Si + Mn + 0.45Ni + 0.45Cu + 0.8Cr + 2Mo (2)
Here, the element symbol is the content [% by mass] of each element.
さらに前記冷却後、300℃以上、A1点以下の温度に再加熱し、冷却することを特徴とする請求項3に記載の拡管特性に優れた油井管の製造方法。   4. The method for producing an oil well pipe having excellent tube expansion characteristics according to claim 3, further comprising: after the cooling, reheating to a temperature of 300 [deg.] C. or higher and a temperature of A1 or lower. 前記電縫鋼管が、さらに質量%で、
B:0.001〜0.010%、
Ti:0.005〜0.050%以下
Nb:0.01〜0.10%、
Ni:0.05〜0.50%以下、
Cu:0.05〜0.50%以下、
Mo:0.01%〜0.30%以下、
Cr:0.05〜0.50%以下、
V:0.01%〜0.10%以下、
Ca:0.0010%〜0.0060%以下
の1種または2種以上を含有することを特徴とする請求項3または4に記載の拡管特性に優れた油井管の製造方法。
The ERW steel pipe is further in mass%,
B: 0.001 to 0.010%,
Ti: 0.005 to 0.050% or less Nb: 0.01 to 0.10%,
Ni: 0.05 to 0.50% or less,
Cu: 0.05 to 0.50% or less,
Mo: 0.01% to 0.30% or less,
Cr: 0.05 to 0.50% or less,
V: 0.01% to 0.10% or less,
Ca: One type or two or more types of 0.0010% to 0.0060% or less are contained, The method for producing an oil country tubular good with excellent pipe expansion characteristics according to claim 3 or 4.
JP2017042668A 2017-03-07 2017-03-07 Oil well tube excellent in tube expansion property and manufacturing method therefor Withdrawn JP2018145490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017042668A JP2018145490A (en) 2017-03-07 2017-03-07 Oil well tube excellent in tube expansion property and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017042668A JP2018145490A (en) 2017-03-07 2017-03-07 Oil well tube excellent in tube expansion property and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2018145490A true JP2018145490A (en) 2018-09-20

Family

ID=63590797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017042668A Withdrawn JP2018145490A (en) 2017-03-07 2017-03-07 Oil well tube excellent in tube expansion property and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2018145490A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193829A1 (en) * 2020-03-27 2021-09-30 日本製鉄株式会社 Steel sheet and heat-treated member, and method for manufacturing same
US20210324979A1 (en) * 2018-10-12 2021-10-21 Nippon Steel Corporation Electric resistance welded steel pipe for torsion beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210324979A1 (en) * 2018-10-12 2021-10-21 Nippon Steel Corporation Electric resistance welded steel pipe for torsion beam
US11739866B2 (en) * 2018-10-12 2023-08-29 Nippon Steel Corporation Electric resistance welded steel pipe for torsion beam
WO2021193829A1 (en) * 2020-03-27 2021-09-30 日本製鉄株式会社 Steel sheet and heat-treated member, and method for manufacturing same

Similar Documents

Publication Publication Date Title
CA3009461C (en) Steel material having excellent hydrogen induced cracking (hic) resistance for pressure vessel and manufacturing method therefor
CA2767004C (en) High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
AU2014201975B2 (en) Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
JP4969915B2 (en) Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof
AU2012200698B2 (en) Heavy wall steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
JP3545770B2 (en) High tensile steel and method for producing the same
JP5251089B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
KR101410588B1 (en) Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe
JP5292784B2 (en) Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
JP5145793B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5958450B2 (en) Low-alloy high-strength seamless steel pipe with excellent resistance to sulfide stress corrosion cracking and its manufacturing method
CA2980424C (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
NO339589B1 (en) High-strength seamless steel pipe with excellent resistance to hydrogen-induced cracks, as well as manufacturing process
JP2013515861A (en) High-strength steel sheet with excellent post-weld heat treatment resistance and manufacturing method thereof
JP2020500262A (en) Medium manganese steel for low temperature and its manufacturing method
CA2980250A1 (en) Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
JP2023022159A (en) Steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen-induced cracking (hic) resistance, and method of manufacturing steel thereof
JP5181697B2 (en) High strength steel plate with excellent PWHT resistance and method for producing the same
KR20190029634A (en) Micro alloy steels and methods for making the steels
CN104755645A (en) Seamless steel pipe and method for producing same
JP2018145490A (en) Oil well tube excellent in tube expansion property and manufacturing method therefor
JP5014831B2 (en) ERW steel pipe for expanded oil well with excellent pipe expansion performance and corrosion resistance and method for producing the same
WO2014203472A1 (en) Method for producing hot-rolled martensitic stainless steel strip for welded steel pipe for line pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191107

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20200309