JP2018145344A - Production method of foamable thermoplastic resin particles - Google Patents

Production method of foamable thermoplastic resin particles Download PDF

Info

Publication number
JP2018145344A
JP2018145344A JP2017043796A JP2017043796A JP2018145344A JP 2018145344 A JP2018145344 A JP 2018145344A JP 2017043796 A JP2017043796 A JP 2017043796A JP 2017043796 A JP2017043796 A JP 2017043796A JP 2018145344 A JP2018145344 A JP 2018145344A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin particles
melt
foamable
expandable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017043796A
Other languages
Japanese (ja)
Other versions
JP7049771B2 (en
Inventor
丸橋 正太郎
Shotaro Maruhashi
正太郎 丸橋
香屋子 阿部
Kayako Abe
香屋子 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2017043796A priority Critical patent/JP7049771B2/en
Publication of JP2018145344A publication Critical patent/JP2018145344A/en
Application granted granted Critical
Publication of JP7049771B2 publication Critical patent/JP7049771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing foamable thermoplastic resin particles having excellent productivity.SOLUTION: A method of producing foamable thermoplastic resin particles includes: a melting and kneading step of charging a thermoplastic resin in an extruder to melt and knead; and a granulating step of extruding a melt obtained by adding a foaming agent to the thermoplastic resin from a die having a plurality of small holes into pressurized cooling water followed by particulating by cutting the melt immediately after the extrusion, in which a step of selecting a part of foamable thermoplastic resin particles obtained by the granulating step as remelting foamable thermoplastic resin particles to remelt and knead by mixing in the range of 1 to 30 pts.wt. relative to 100 pts.wt of the thermoplastic resin in the melting and kneading step is included.SELECTED DRAWING: None

Description

本発明は、発泡性熱可塑性樹脂粒子の製造方法に関する。   The present invention relates to a method for producing expandable thermoplastic resin particles.

発泡性熱可塑性樹脂粒子を用いた型内発泡成形体は、凸凹等の複雑な形状を有する形状にも適応可能であるため、各種容器、緩衝材、建材等の幅広い用途で使用されている。   In-mold foam moldings using foamable thermoplastic resin particles are applicable to shapes having complex shapes such as irregularities, and are therefore used in a wide range of applications such as various containers, cushioning materials, and building materials.

発泡性熱可塑性樹脂粒子の製造方法としては、モノマー成分を水性媒体中に懸濁させ重合して樹脂粒子を形成後、発泡剤を含浸させて発泡性熱可塑性樹脂粒子を得る懸濁重合法と、押出機を使用して熱可塑性樹脂を溶融混練後、粒子状に切断する溶融混練法などが挙げられる。中でも、押出機で熱可塑性樹脂組成物を溶融し、熱可塑性樹脂組成物の溶融物に発泡剤を圧入混練し、小孔を有するダイスを通じて加圧循環水中に押出し、押出と同時に回転カッターにより切断するとともに、加圧循環水により冷却固化する方法(溶融押出法)は、良好な発泡性粒子を容易に製造することができるため、各種発泡性樹脂粒子の製法に採用されている。   The method for producing expandable thermoplastic resin particles includes a suspension polymerization method in which a monomer component is suspended in an aqueous medium and polymerized to form resin particles, and then impregnated with a foaming agent to obtain expandable thermoplastic resin particles. Examples thereof include a melt-kneading method in which a thermoplastic resin is melt-kneaded using an extruder and then cut into particles. Among them, the thermoplastic resin composition is melted with an extruder, the foaming agent is press-kneaded into the melt of the thermoplastic resin composition, extruded through a die having small holes, into pressurized circulating water, and simultaneously cut with a rotary cutter. At the same time, the method of cooling and solidifying with pressurized circulating water (melt extrusion method) can easily produce good expandable particles, and is therefore employed in the production of various expandable resin particles.

しかし、溶融押出法では、発泡剤を含有する溶融樹脂をダイスから押出すと同時に回転カッターで切断して造粒する際、水圧、水温、および、溶融樹脂温度の調整が不良であると、歪みや凹みといった形状欠陥を有する発泡性樹脂粒子が生じることがある。また、ダイス先端面が加圧循環水と接触しているため、連続製造している間にダイス開口率が変わり、得られる発泡性樹脂粒子の粒重量にも影響してくる。製品として認められる粒重量の範囲は定められるため、粒重量が当該範囲を外れる発泡性樹脂粒子は規格外品として扱われる。。形状欠陥のある発泡性樹脂粒子や、粒重量が規定範囲外である発泡性樹脂粒子は型内発泡成形に使用されると、得られる型内発泡体の表面性が悪化したり、機械的強度が損なわれたりする。そのため、これらの発泡性樹脂粒子は型内成形用として使用できず、規格外品として廃棄処分せざるを得ない。このような規格外の発泡性樹脂粒子は形状や粒重量に欠陥があるものの、難燃剤や熱可塑性樹脂などの成分由来の物性が劣っているわけではないため、歩留まりの観点から廃棄処分にすることは望ましくない。   However, in the melt extrusion method, when extruding a molten resin containing a foaming agent from a die and simultaneously cutting and granulating with a rotary cutter, if the water pressure, water temperature, and molten resin temperature are poorly adjusted, distortion occurs. In some cases, expandable resin particles having shape defects such as dents and dents may occur. Moreover, since the die front end surface is in contact with the pressurized circulating water, the die opening ratio changes during continuous production, which also affects the particle weight of the resulting expandable resin particles. Since the range of the particle weight recognized as a product is determined, expandable resin particles whose particle weight is outside the range are treated as non-standard products. . If foamable resin particles with shape defects or foamable resin particles whose particle weight is outside the specified range are used for in-mold foam molding, the surface properties of the resulting in-mold foam may deteriorate or mechanical strength may be reduced. May be damaged. Therefore, these expandable resin particles cannot be used for in-mold molding and must be disposed of as non-standard products. Although such non-standard foamable resin particles have defects in shape and particle weight, they are not inferior in physical properties derived from components such as flame retardants and thermoplastic resins, so they are disposed of from the viewpoint of yield. That is not desirable.

近年、環境保護の高まりから廃棄物樹脂のリサイクルが積極的に行なわれてる。例えば、特許文献1〜2では、廃棄物の発泡成形体からスチレン系樹脂を回収し、溶融押出法にて発泡性粒子を再生し、再度発泡成形体の製造に使用することが開示されている。しかし、特許文献1〜2は、発泡成形体から回収されたスチレン系樹脂をリサイクルするものであるが、製造過程で生じる規格外の発泡性樹脂粒子そのものを再利用するものではない。このような社会環境の観点からも、製造過程で生じる規格外の発泡性樹脂粒子も有効活用できる方法が望まれる。   In recent years, recycling of waste resin has been actively carried out due to increased environmental protection. For example, Patent Documents 1 and 2 disclose that a styrene-based resin is recovered from a foamed molded article of waste, the foamable particles are regenerated by a melt extrusion method, and used again for the production of a foamed molded article. . However, Patent Documents 1 and 2 recycle the styrene resin recovered from the foamed molded article, but do not reuse the non-standard foamable resin particles themselves that are produced in the manufacturing process. Also from the viewpoint of such a social environment, a method that can effectively utilize non-standard expandable resin particles generated in the production process is desired.

特開2003−306571号公報JP 2003-306571 A 特開2004−115690号公報JP 2004-115690 A

本発明は、生産性のよい発泡性熱可塑性樹脂粒子の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of a foamable thermoplastic resin particle with sufficient productivity.

上記溶融混練法では、押出機に投入された熱可塑性樹脂を溶融混練する際、難燃剤等の分解・劣化を低減するため、溶融混練時における熱可塑性樹脂の温度上昇を抑制することが好ましい。そのため、熱可塑性樹脂に可塑剤を添加し、熱可塑性樹脂の溶融粘度を下げることが一般的に行なわれる。しかし、可塑剤等の添加剤が添加される場合、発泡性樹脂粒子の発泡特性や融着特性等のバランスを損なう傾向がある。そこで、本発明者らは発泡性樹脂粒子に含有される発泡剤の可塑化作用に着目し、製造過程で得られる発泡性樹脂粒子を可塑剤として押出機に再投入し、熱可塑性樹脂と一緒に溶融混練することにより、発泡剤圧入前段階における溶融混練時の溶融樹脂温度の上昇を効果的に抑制できることを見出し、本発明を完成するに至った。   In the melt kneading method, it is preferable to suppress an increase in temperature of the thermoplastic resin during melt kneading in order to reduce decomposition and deterioration of the flame retardant and the like when the thermoplastic resin charged in the extruder is melt kneaded. Therefore, a plasticizer is generally added to the thermoplastic resin to lower the melt viscosity of the thermoplastic resin. However, when an additive such as a plasticizer is added, the balance of the foaming characteristics and the fusion characteristics of the expandable resin particles tends to be impaired. Therefore, the present inventors paid attention to the plasticizing action of the foaming agent contained in the foamable resin particles, and re-introduced the foamable resin particles obtained in the production process into the extruder as a plasticizer, together with the thermoplastic resin. It has been found that, by melt-kneading, the increase in the temperature of the molten resin during melt-kneading in the stage before the foaming agent press-in can be effectively suppressed, and the present invention has been completed.

すなわち、本発明は、熱可塑性樹脂を押出機に投入して溶融混練する溶融混練工程、上記熱可塑性樹脂に発泡剤が添加された溶融物を複数の小孔を有するダイから加圧冷却水中に押出し、上記押出し直後に、ダイから押出された前記溶融物を切断して粒子化する造粒工程を含む、発泡性熱可塑性樹脂粒子の製造方法において、上記造粒工程で得られる発泡性熱可塑性樹脂粒子の一部を再溶融用発泡性熱可塑性樹脂粒子として選別し、上記再溶融用発泡性熱可塑性樹脂粒子を前記溶融混練工程における前記熱可塑性樹脂100重量部に対して1〜30重量部の範囲内で混入し再溶融混練する工程を含むことを特徴とする、発泡性熱可塑性樹脂粒子の製造方法に関する(以下、「本発明の発泡性樹脂粒子の製法」と称することがある。)。   That is, the present invention includes a melt-kneading step in which a thermoplastic resin is introduced into an extruder and melt-kneaded, and a melt obtained by adding a foaming agent to the thermoplastic resin from a die having a plurality of small holes into pressurized cooling water. In the method for producing expandable thermoplastic resin particles, including the granulation step of cutting and granulating the melt extruded from the die immediately after the extrusion, the foamable thermoplastic obtained in the granulation step Part of the resin particles are selected as remeltable foamable thermoplastic resin particles, and the remeltable foamable thermoplastic resin particles are 1 to 30 parts by weight with respect to 100 parts by weight of the thermoplastic resin in the melt-kneading step. And a method for producing expandable thermoplastic resin particles, which includes a step of mixing and remelting and kneading within the range (hereinafter, sometimes referred to as “method for producing expandable resin particles of the present invention”). .

本発明の発泡性樹脂粒子の製法において、上記再溶融用発泡性熱可塑性樹脂粒子が、形状欠陥のある発泡性熱可塑性樹脂粒子、および/または、粒重量が規定範囲から外れる発泡性熱可塑性樹脂粒子を含むことが好ましい。   In the method for producing expandable resin particles of the present invention, the remeltable expandable thermoplastic resin particles are foamable thermoplastic resin particles having a shape defect, and / or expandable thermoplastic resin whose particle weight is out of a specified range. Preferably it contains particles.

本発明の発泡性樹脂粒子の製法において、上記発泡性熱可塑性樹脂粒子が発泡性ポリスチレン系樹脂粒子であることが好ましい。   In the method for producing expandable resin particles of the present invention, the expandable thermoplastic resin particles are preferably expandable polystyrene resin particles.

本発明の発泡性樹脂粒子の製法において、上記再溶融用発泡性熱可塑性樹脂粒子が発泡剤を1〜8重量%含有することが好ましい。   In the process for producing expandable resin particles of the present invention, the remeltable expandable thermoplastic resin particles preferably contain 1 to 8% by weight of a foaming agent.

本発明の発泡性樹脂粒子の製法によれば、製造過程で得られる発泡性樹脂粒子を可塑剤として利用することで、可塑剤などの添加物を使用しなくても溶融混練工程における溶融樹脂温度の上昇を抑制できる。   According to the method for producing expandable resin particles of the present invention, by using the expandable resin particles obtained in the production process as a plasticizer, the melt resin temperature in the melt-kneading step can be used without using an additive such as a plasticizer. Can be suppressed.

本発明の発泡性樹脂粒子の製法によれば、製造過程で発生する発泡性熱可塑性樹脂粒子の規格外品を有効活用できるため、歩留まりが向上し経済的である。   According to the process for producing expandable resin particles of the present invention, since non-standard products of expandable thermoplastic resin particles generated in the production process can be effectively used, the yield is improved and it is economical.

本発明の発泡性樹脂粒子の製法は、熱可塑性樹脂を押出機に投入して溶融混練する溶融混練工程、上記熱可塑性樹脂に発泡剤が含有された溶融物を複数の小孔を有するダイから加圧冷却水中に押出し、押出し直後に、ダイから押出された前記溶融物を切断して粒子化する造粒工程を含む、発泡性熱可塑性樹脂粒子の製造方法において、上記造粒工程で得られる発泡性熱可塑性樹脂粒子の一部を再溶融用発泡性熱可塑性樹脂粒子として選別し、上記再溶融用発泡性熱可塑性樹脂粒子を上記溶融混練工程における前記熱可塑性樹脂100重量部に対して1〜30重量部の範囲内で混入して再溶融混練する工程を含むことを特徴とする。   The method for producing expandable resin particles of the present invention includes a melt-kneading step in which a thermoplastic resin is put into an extruder and melt-kneaded, and a melt containing a foaming agent in the thermoplastic resin is formed from a die having a plurality of small holes. In a method for producing expandable thermoplastic resin particles, including a granulation step of extruding into pressurized cooling water and cutting and granulating the melt extruded from a die immediately after extrusion, the granulation step is obtained in the above granulation step. A part of the expandable thermoplastic resin particles is selected as remeltable expandable thermoplastic resin particles, and the remeltable expandable thermoplastic resin particles are 1 in 100 parts by weight of the thermoplastic resin in the melt kneading step. It includes a step of mixing and remelting and kneading within a range of ˜30 parts by weight.

前記造粒工程で得られる発泡性熱可塑性樹脂粒子の一部をそのまま、熱可塑性樹脂に混入させて再溶融混練させることにより、熱可塑性樹脂の樹脂温度を低く抑えながら溶融混練することができる。発泡性熱可塑性樹脂粒子に含有されている発泡剤によって、熱可塑性樹脂が可塑化され、発泡剤が圧入されるまでの溶融混練工程における溶融樹脂温度の上昇を抑えられる。そのため、溶融樹脂温度の上昇を抑えるために、可塑化剤等の添加剤をさらに添加する必要がない。また、難燃剤を含む場合には、難燃剤の熱分解を効果的に抑えることができるため、難燃性に優れた発泡性熱可塑性樹脂粒子を得ることができる。さらに、通常、規格外品として扱われる、歪や凹み等の形状欠陥がある発泡性熱可塑性樹脂粒子や、粒重量が規定範囲を外れる発泡性熱可塑性樹脂粒子を可塑剤として利用することで、歩留まり向上を図ることができる。   By mixing a part of the foamable thermoplastic resin particles obtained in the granulation step as it is into the thermoplastic resin and remelting and kneading, it is possible to melt and knead while keeping the resin temperature of the thermoplastic resin low. By the foaming agent contained in the foamable thermoplastic resin particles, the thermoplastic resin is plasticized, and an increase in the molten resin temperature in the melt-kneading process until the foaming agent is press-fitted can be suppressed. Therefore, it is not necessary to further add an additive such as a plasticizer in order to suppress an increase in the molten resin temperature. Moreover, since a thermal decomposition of a flame retardant can be suppressed effectively when a flame retardant is included, the expandable thermoplastic resin particle excellent in the flame retardance can be obtained. Furthermore, by using foamable thermoplastic resin particles having shape defects such as distortion and dent, which are usually treated as non-standard products, and foamable thermoplastic resin particles whose particle weight is outside the specified range as a plasticizer, Yield can be improved.

<溶融混練工程>
本発明の発泡性樹脂粒子の製法で使用される熱可塑性樹脂は、公知の熱可塑性樹脂を含有することができ、例えば、ポリスチレン(PS)、スチレン−アクリロニトリル共重合体(AS)、スチレン−(メタ)アクリル酸共重合体(耐熱PS)、スチレン−(メタ)アクリル酸エステル共重合体、スチレン−ブタジエン共重合体(HIPS)、N−フェニルマレイミド−スチレン−無水マレイン酸の三次元共重合体及び、それとASとのアロイ(IP)などのスチレン系樹脂;ポリメチルメタクリレート、ポリアクリロニトリル系樹脂、ポリ塩化ビニル系樹脂などのビニル系樹脂;ポリプロピレン、ポリエチレン、エチレン−プロピレン共重合体、エチレン−プロピレン−ブテン3元共重合体、シクロオレフィン系(共)重合体などのポリオレフィン系樹脂及びこれらに分岐構造、架橋構造を導入してレオロジーコントロールされたポリオレフィン系樹脂;ナイロン6、ナイロン66、ナイロン11、ナイロン12、MXDナイロンなどのポリアミド系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアリレート、ポリカーボネートなどのポリエステル系樹脂、ポリ乳酸などの脂肪族ポリエステル系樹脂;ポリフェニレンエーテル系樹脂(PPE)、変性ポリフェニレンエーテル系樹脂(変性PPE)、ポリオキシメチレン系樹脂、ポリフェニレンスルフィド系樹脂、ポリフェニレンサルファイド系樹脂、芳香族ポリエーテル系樹脂、ポリエーテルエーテルケトン樹脂などのエンジニアリングプラスチックなどが挙げられる。これらは単独で使用しても良いし、2種以上を混合して使用しても良い。これらの中でも、安価で、且つ、発泡成形が容易であるので、スチレン系樹脂が好ましい。
<Melting and kneading process>
The thermoplastic resin used in the process for producing expandable resin particles of the present invention can contain a known thermoplastic resin, such as polystyrene (PS), styrene-acrylonitrile copolymer (AS), styrene- ( (Meth) acrylic acid copolymer (heat-resistant PS), styrene- (meth) acrylic acid ester copolymer, styrene-butadiene copolymer (HIPS), N-phenylmaleimide-styrene-maleic anhydride three-dimensional copolymer Styrenic resin such as alloy (IP) with AS; vinyl resin such as polymethyl methacrylate, polyacrylonitrile resin and polyvinyl chloride resin; polypropylene, polyethylene, ethylene-propylene copolymer, ethylene-propylene -Polynes such as butene terpolymers and cycloolefin (co) polymers Fin resins and polyolefin resins whose rheology is controlled by introducing a branched structure or a crosslinked structure into them; polyamide resins such as nylon 6, nylon 66, nylon 11, nylon 12, MXD nylon; polyethylene terephthalate, polybutylene terephthalate, Polyarylate, polyester resins such as polycarbonate, aliphatic polyester resins such as polylactic acid; polyphenylene ether resin (PPE), modified polyphenylene ether resin (modified PPE), polyoxymethylene resin, polyphenylene sulfide resin, polyphenylene Examples include engineering plastics such as sulfide resins, aromatic polyether resins, and polyether ether ketone resins. These may be used singly or in combination of two or more. Among these, styrene resins are preferred because they are inexpensive and easy to foam.

本発明の発泡性樹脂粒子の製法において、熱可塑性樹脂には必要に応じて各種添加剤を添加することができる。例えば、難燃剤、熱安定剤、ラジカル発生剤、加工助剤、耐候性安定剤、造核剤、発泡助剤、帯電防止剤、輻射伝熱抑制剤、及び、着色剤等を挙げることができる。これらの添加剤は、1種を単独で又は2種以上を組み合わせて使用できる。   In the process for producing expandable resin particles of the present invention, various additives can be added to the thermoplastic resin as necessary. Examples include flame retardants, heat stabilizers, radical generators, processing aids, weathering stabilizers, nucleating agents, foaming aids, antistatic agents, radiation heat transfer inhibitors, and colorants. . These additives can be used alone or in combination of two or more.

難燃剤としては、環境上の問題性が低く、難燃性付与効果が高い点から、臭素系難燃剤を使用することが好ましい。例えば、2,2−ビス[4−(2,3−ジブロモ−2−メチルプロポキシ)−3,5−ジブロモフェニル]プロパン(別名:テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル))、又は2,2−ビス[4−(2,3−ジブロモプロポキシ)−3,5−ジブロモフェニル]プロパン(別名:テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル))等の臭素化ビスフェノール系化合物、臭素化スチレン・ブタジエンブロック共重合体、臭素化ランダムスチレン・ブタジエン共重合体、又は臭素化スチレン・ブタジエングラフト共重合体等の臭素化ブタジエン・ビニル芳香族炭化水素共重合体(例えば、特表2009−516019号公報に開示されている)等が挙げられる。臭素系難燃剤は熱分解しやすい問題点があるものの、本発明によれば、溶融樹脂温度の上昇を抑えながら熱可塑性樹脂およびその他成分を溶融混練することができるため、臭素系難燃剤の分解・劣化が抑制され、得られる発泡性熱可塑性樹脂粒子は良好な難燃性を奏することができる。   As the flame retardant, it is preferable to use a brominated flame retardant from the viewpoint of low environmental problems and high flame retardancy imparting effect. For example, 2,2-bis [4- (2,3-dibromo-2-methylpropoxy) -3,5-dibromophenyl] propane (also known as: tetrabromobisphenol A-bis (2,3-dibromo-2-methyl) Propyl ether)), or 2,2-bis [4- (2,3-dibromopropoxy) -3,5-dibromophenyl] propane (also known as: tetrabromobisphenol A-bis (2,3-dibromopropyl ether)) Brominated bisphenol compounds such as brominated bisphenol compounds, brominated styrene / butadiene block copolymers, brominated random styrene / butadiene copolymers, or brominated styrene / butadiene graft copolymers. Examples thereof include polymers (for example, disclosed in JP-T-2009-516019). Although brominated flame retardants are prone to thermal decomposition, according to the present invention, the thermoplastic resin and other components can be melt-kneaded while suppressing an increase in the molten resin temperature. -Deterioration is suppressed and the foamable thermoplastic resin particles obtained can exhibit good flame retardancy.

輻射伝熱抑制剤としては、発泡成形体中を伝わる伝熱機構のうち輻射伝熱を抑制することができる物質であって、同一の樹脂、発泡剤、セル構造、密度の発泡成形体において、輻射伝熱抑制剤を添加することによって、無添加系に比較して、熱伝導率を低くする効果を有する物質を使用できる。具体的には、近赤外または赤外領域(例えば、800〜3000nm程度の波長域)の光を反射・散乱・吸収する特性を有する物質であればよく、例えば、アルミニウム、酸化アルミニウム等のアルミニウム系化合物、アルミン酸亜鉛等の亜鉛系化合物;ハイドロタルサイト等のマグネシウム系化合物;銀等の銀系化合物:チタン、酸化チタン、チタン酸ストロンチウム等のチタン系化合物;ステンレス、ニッケル、錫、銀、銅、ブロンズ、シラスバルーン、セラミックバルーン、マイクロバルーン、パールマイカ等の熱線反射剤や、カーボンブラック、グラファイト、グラフェン、活性炭などの炭素系化合物;硫酸バリウム、硫酸ストロンチウム、硫酸カルシウム、メルカライト、ハロトリ石、ミョウバン石、鉄ミョウバン石等の硫酸金属塩;三酸化アンチモン、酸化アンチモン、無水アンチモン酸亜鉛等のアンチモン系化合物;酸化錫、酸化インジウム、酸化亜鉛、酸化インジニウム錫、等の金属酸化物;アンモニウム系、尿素系、イモニウム系、アミニウム系、シアニン系、ポリメチン系、アントラキノン系、ジチオール系、銅イオン系、フェニレンジアミン系、フタロシアニン系、ベンゾトリアゾール系、ベンゾフェノン系、シュウ酸アニリド系、シアノアクリレート系、ベンゾトリアゾール系等の熱線吸収剤が挙げられる。これら輻射伝熱抑制剤は、単独で使用してもよく、2種以上を混合して使用してもよい。熱伝導率低減効果とコストのバランスが優れる点から炭素系化合物が好ましく、グラファイト、グラフェン、活性炭、酸化チタンがより好ましい。比較的少量の含有量で熱伝導率低減効果が発揮される点から、グラファイト、グラフェンが特に好ましい。   The radiation heat transfer inhibitor is a substance that can suppress radiant heat transfer among the heat transfer mechanism transmitted through the foam molded body, and in the foam molded body of the same resin, foaming agent, cell structure, density, By adding a radiant heat transfer inhibitor, a substance having an effect of lowering the thermal conductivity can be used as compared with an additive-free system. Specifically, it may be a substance having a property of reflecting, scattering, and absorbing light in the near infrared or infrared region (for example, a wavelength range of about 800 to 3000 nm). For example, aluminum such as aluminum and aluminum oxide Compounds, zinc compounds such as zinc aluminate; magnesium compounds such as hydrotalcite; silver compounds such as silver: titanium compounds such as titanium, titanium oxide, strontium titanate; stainless steel, nickel, tin, silver, Heat-reflecting agents such as copper, bronze, shirasu balloon, ceramic balloon, microballoon, pearl mica, and carbon compounds such as carbon black, graphite, graphene, activated carbon; barium sulfate, strontium sulfate, calcium sulfate, mercalite, halotristone , Alumite, iron alumite, etc. Antimony compounds such as antimony trioxide, antimony oxide, and anhydrous zinc antimonate; metal oxides such as tin oxide, indium oxide, zinc oxide, and indinium tin oxide; ammonium, urea, imonium, aminium, cyanine And heat ray absorbers such as polymethine, polymethine, anthraquinone, dithiol, copper ion, phenylenediamine, phthalocyanine, benzotriazole, benzophenone, oxalic anilide, cyanoacrylate, and benzotriazole. These radiation heat transfer inhibitors may be used alone or in combination of two or more. A carbon-based compound is preferable from the viewpoint of an excellent balance between the thermal conductivity reduction effect and cost, and graphite, graphene, activated carbon, and titanium oxide are more preferable. Graphite and graphene are particularly preferable because the effect of reducing the thermal conductivity is exhibited with a relatively small amount.

本発明の発泡性樹脂粒子の製法における溶融混練工程は、熱可塑性樹脂を押出機で溶融混練する作業が含まれればよく、単独の押出機を使用してもよいし、押出機を複数連結して溶融混練してもよい。また、少なくとも一機の押出機とスタティックミキサーやスクリューを有さない攪拌機など混練装置とを併用して溶融混練されてもよい。   The melt-kneading step in the process for producing expandable resin particles of the present invention only needs to include an operation of melt-kneading the thermoplastic resin with an extruder, and a single extruder may be used, or a plurality of extruders may be connected. And may be melt-kneaded. Alternatively, melt kneading may be performed by using at least one extruder and a kneading apparatus such as a static mixer or a stirrer not having a screw.

押出機としては、公知の押出機を使用することができ、例えば、単軸押出機や二軸押出機を使用することが可能できる。二軸押出機を使用する場合、スクリュー回転方向は同方向であってもよく異方向であってもよい。押出機を二機以上用いる場合は、押出機を直列に連結したタンデム型を採用することが好ましい。例えば、単軸押出機−単軸押出機、二軸押出機−単軸押出機の構成が挙げられ、発泡剤や添加剤の分散性が良好である点から、上流側に二軸押出機を採用した二軸押出機−単軸押出機の構成が好ましい。   As an extruder, a well-known extruder can be used, for example, a single screw extruder or a twin screw extruder can be used. When using a twin screw extruder, the screw rotation direction may be the same or different. When two or more extruders are used, it is preferable to adopt a tandem type in which extruders are connected in series. For example, a single screw extruder-single screw extruder, a twin screw extruder-single screw extruder, and the dispersibility of a foaming agent and an additive is good. The configuration of the adopted twin screw extruder-single screw extruder is preferable.

本発明の発泡性樹脂粒子の製法においては、溶融した熱可塑性樹脂に発泡剤が圧入される。発泡剤としては、特に限定されないが、発泡性と製品ライフのバランスが良く、実際に使用する際に高倍率化しやすい観点から炭化水素系発泡剤が好ましく、中でも炭素数4〜6の炭化水素がより好ましい。発泡剤の炭素数が4以上であると揮発性が低くなり、発泡性熱可塑性樹脂粒子から発泡剤が逸散しにくくなるため、実際に使用する際に発泡工程で発泡剤が十分に残り、十分な発泡力を得ることが可能となり、高倍率化が容易となるため好ましい。また、炭素数が6以下であると、発泡剤の沸点が高すぎないため、予備発泡時の加熱で十分な発泡力を得やすく、高発泡化が易しい傾向となる。炭素数4〜6の炭化水素としては、例えばノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン、ノルマルヘキサン、又はシクロヘキサン等の炭化水素が挙げられる。これらは1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。また、発泡剤は、炭素数4〜5の炭化水素が好ましい。   In the process for producing expandable resin particles of the present invention, a foaming agent is pressed into a molten thermoplastic resin. Although it does not specifically limit as a foaming agent, The balance of foamability and product life is good, and a hydrocarbon type foaming agent is preferable from a viewpoint of being easy to make high magnification when actually used, and a C4-C6 hydrocarbon is especially preferable. More preferred. When the carbon number of the foaming agent is 4 or more, the volatility is low and the foaming agent is less likely to dissipate from the foamable thermoplastic resin particles. A sufficient foaming force can be obtained, and high magnification is easy, which is preferable. Moreover, since the boiling point of a foaming agent is not too high as carbon number is 6 or less, it becomes easy to obtain sufficient foaming force by the heating at the time of preliminary foaming, and it becomes the tendency for high foaming to be easy. Examples of the hydrocarbon having 4 to 6 carbon atoms include hydrocarbons such as normal butane, isobutane, normal pentane, isopentane, neopentane, cyclopentane, normal hexane, and cyclohexane. These may be used individually by 1 type and may be used in combination of 2 or more type. The blowing agent is preferably a hydrocarbon having 4 to 5 carbon atoms.

発泡剤の添加量は、熱可塑性樹脂100重量部に対して4〜10重量部であることが好ましく、4.5〜9重量部がより好ましく、5〜8重量部がさらに好ましい。上記添加量であれば、発泡速度と発泡力のバランスが良く、安定して高倍率化しやすい。添加量が4重量部以上では、発泡に必要な発泡力が十分であるため、高発泡化が容易となり、50倍以上の高発泡倍率の熱可塑性樹脂発泡成形体を製造し易い。また、添加量が10重量部以下であると、難燃性能が良好となると共に、発泡成形体を製造する際の製造時間(成形サイクル)が短くなるため、製造コストが低くできる。   The addition amount of the foaming agent is preferably 4 to 10 parts by weight, more preferably 4.5 to 9 parts by weight, and still more preferably 5 to 8 parts by weight with respect to 100 parts by weight of the thermoplastic resin. If it is the said addition amount, the balance of foaming speed and foaming power will be good, and it will be easy to make high magnification stably. When the addition amount is 4 parts by weight or more, since the foaming force necessary for foaming is sufficient, high foaming becomes easy, and it is easy to produce a thermoplastic resin foam molded article having a high foaming ratio of 50 times or more. Further, when the addition amount is 10 parts by weight or less, the flame retardancy is improved and the production time (molding cycle) for producing the foamed molded product is shortened, so that the production cost can be reduced.

発泡剤は、押出機中で溶融した熱可塑性樹脂に圧入されてもよいし、スタティックミキサーやスクリューを有さない攪拌機などの混練装置を押出機に併設する場合は、押出機から押し出されてから当該混練装置で混練されるまでの間で溶融した熱可塑性樹脂に圧入されてもよい。   The foaming agent may be press-fitted into the thermoplastic resin melted in the extruder, and when a kneading device such as a static mixer or a stirrer having no screw is provided in the extruder, the foaming agent is extruded from the extruder. You may press-fit into the molten thermoplastic resin until it knead | mixes with the said kneading apparatus.

溶融混練工程における設定温度は、使用する熱可塑性樹脂に応じて適宜設定されればよいが、100℃〜250℃が好ましい。設定温度が250℃以下であれば、臭素系難燃剤の分解が起こりにくく、所望の難燃性を得ることが可能となり、所望の難燃性を付与するために難燃剤を過剰に添加する必要がないという効果を奏する。一方、設定温度が100℃以上であると、押出機等の負荷が小さくなって押出が安定となる。   The set temperature in the melt-kneading step may be appropriately set according to the thermoplastic resin to be used, but is preferably 100 ° C to 250 ° C. If the set temperature is 250 ° C. or lower, it is difficult for the brominated flame retardant to decompose, it becomes possible to obtain the desired flame retardancy, and it is necessary to add the flame retardant excessively in order to impart the desired flame retardancy There is an effect that there is no. On the other hand, when the set temperature is 100 ° C. or higher, the load on the extruder or the like is reduced and the extrusion becomes stable.

<造粒工程>
本発明の発泡性樹脂粒子の製法は、上記溶融混練工程で得られた、発泡剤を含有する熱可塑性樹脂の溶融物を複数の小孔を有するダイから加圧冷却水中に押出し、押出し直後から上記溶融物を切断して粒子化する。
<Granulation process>
The process for producing expandable resin particles of the present invention involves extruding a thermoplastic resin melt containing a foaming agent obtained in the melt-kneading step from a die having a plurality of small holes into pressurized cooling water and immediately after extrusion. The melt is cut into particles.

本発明の発泡性樹脂粒子の製法で使用されるダイは、複数の小孔を有するダイであれば特に限定なく公知のものを使用できるが、例えば、好ましくは直径0.3mm〜2.0mm、より好ましくは0.4mm〜1.0mmの小孔を有するダイが挙げられる。   The die used in the method for producing expandable resin particles of the present invention can be any known die without particular limitation as long as it is a die having a plurality of small holes. For example, the diameter is preferably 0.3 mm to 2.0 mm, A die having a small hole of 0.4 mm to 1.0 mm is more preferable.

本発明の発泡性樹脂粒子の製法において、ダイより押出される直前の発泡剤含有熱可塑性樹脂の溶融物の温度は、発泡剤を含まない状態での熱可塑性樹脂のガラス転移温度をTgとすると、Tg+40℃以上であることが好ましく、Tg+40℃〜Tg+100℃であることがより好ましく、Tg+50℃〜Tg+70℃であることがさら好ましい。   In the process for producing expandable resin particles of the present invention, the temperature of the melt of the foaming agent-containing thermoplastic resin immediately before being extruded from the die is Tg, which is the glass transition temperature of the thermoplastic resin in a state not containing the foaming agent. Tg + 40 ° C. or more is preferable, Tg + 40 ° C. to Tg + 100 ° C. is more preferable, and Tg + 50 ° C. to Tg + 70 ° C. is more preferable.

ダイより押出される直前における発泡剤含有熱可塑性樹脂の溶融物の温度がTg+40℃以上の場合は、押出された発泡剤含有熱可塑性樹脂の溶融物の粘度が低くなり、小孔が詰まることが少なくなり、実質小孔開口率の低下のために得られる発泡性樹脂粒子が変形しにくくなる。一方で、ダイスより押出される直前における発泡剤含有熱可塑性樹脂の溶融物の温度がTg+100℃以下の場合は、押出された発泡剤含有熱可塑性樹脂が固化しやすくなり、発泡してしまうことが抑制される。また、押出された発泡剤含有熱可塑性樹脂の粘度が低くなりすぎず、回転カッターにより安定的に切断されることが可能となり、押出された発泡剤含有熱可塑性樹脂が回転カッターに巻き付きにくくなる。   When the temperature of the melt of the foaming agent-containing thermoplastic resin immediately before being extruded from the die is Tg + 40 ° C. or higher, the viscosity of the melt of the extruded foaming agent-containing thermoplastic resin is lowered, and small holes may be clogged. The foamable resin particles obtained due to the decrease in the aperture ratio of the small pores are less likely to be deformed. On the other hand, if the temperature of the melt of the foaming agent-containing thermoplastic resin immediately before being extruded from the die is Tg + 100 ° C. or less, the extruded foaming agent-containing thermoplastic resin is likely to solidify and foam. It is suppressed. In addition, the viscosity of the extruded foaming agent-containing thermoplastic resin does not become too low and can be stably cut by a rotary cutter, and the extruded foaming agent-containing thermoplastic resin is less likely to be wound around the rotary cutter.

発泡剤含有熱可塑性樹脂の溶融物の剪断速度、吐出量などのその他押出条件は、各種熱可塑性樹脂などに応じて適宜設定できる。   Other extrusion conditions such as the shear rate and discharge rate of the melt of the foaming agent-containing thermoplastic resin can be appropriately set according to various thermoplastic resins.

加圧冷却水中に押出された発泡剤含有熱可塑性樹脂を切断する切断装置としては、特に限定されないが、例えば、ダイスリップに略接触する回転カッターで切断されて小球化され、加圧冷却水中を発泡することなく、遠心脱水機まで移送されて脱水・集約される装置、等が挙げられる。回転カッター速度、加圧冷却水の水圧および水温等の諸条件は、各種熱可塑性樹脂などに応じて適宜設定できる。   The cutting device for cutting the foaming agent-containing thermoplastic resin extruded in the pressurized cooling water is not particularly limited. For example, the cutting device is cut by a rotary cutter substantially in contact with the die slip to be spheronized, and the pressurized cooling water is used. And a device that is transported to a centrifugal dehydrator without defoaming and dewatered and collected. Various conditions such as the rotating cutter speed, the pressure of the pressurized cooling water, and the water temperature can be appropriately set according to various thermoplastic resins.

<再溶融用樹脂粒子の選別・再溶融工程>
本発明の発泡性樹脂粒子の製法においては、上記造粒工程で得られる発泡性熱可塑性樹脂粒子から再溶融用発泡性熱可塑性樹脂粒子を選別し、上記溶融混練工程で熱可塑性樹脂に混入して再溶融する。
<Selection and remelting process of resin particles for remelting>
In the process for producing the expandable resin particles of the present invention, the remeltable foamable thermoplastic resin particles are selected from the expandable thermoplastic resin particles obtained in the granulation step and mixed into the thermoplastic resin in the melt kneading step. Melt again.

再溶融用発泡性熱可塑性樹脂粒子としては、上記造粒工程で得られる発泡性熱可塑性樹脂粒子であれば特に限定されないが、生産性の観点から、形状欠陥がある発泡性熱可塑性樹脂粒子や、粒重量が規定範囲から外れる発泡性熱可塑性樹脂粒子を使用することが好ましい。形状欠陥としては、発泡性が劣る形状であれば特に問わないが、例えば、歪みや凹みが挙げられる。また、粒重量の規定範囲は、所望の最終製品たる発泡性樹脂粒子毎に適宜設定される範囲であり、成形時の充填性や発泡性を考慮して決定される。   The foamable thermoplastic resin particle for remelting is not particularly limited as long as it is a foamable thermoplastic resin particle obtained in the granulation step, but from the viewpoint of productivity, the foamable thermoplastic resin particle having a shape defect or It is preferable to use expandable thermoplastic resin particles whose particle weight is outside the specified range. The shape defect is not particularly limited as long as it is inferior in foamability, and examples thereof include distortion and dent. Further, the prescribed range of the particle weight is a range that is appropriately set for each foamable resin particle that is a desired final product, and is determined in consideration of the filling property and foamability during molding.

形状欠陥がある、または、粒重量が規定範囲から外れる発泡性熱可塑性樹脂粒子は、型内発泡成形用として不適ではあるものの、原材料と同一成分からなるものであるため、可塑剤として再投入しても、所望の発泡性熱可塑性樹脂粒子の物性を損なうことがない。また、発泡剤を含有するため、発泡剤圧入する前の段階において、原材料である熱可塑性樹脂を可塑化し、樹脂温度上昇を抑えながら溶融混練することができる。   Expandable thermoplastic resin particles that have shape defects or whose particle weight falls outside the specified range are unsuitable for in-mold foam molding, but are composed of the same components as the raw materials. However, the physical properties of the desired foamable thermoplastic resin particles are not impaired. In addition, since it contains a foaming agent, the thermoplastic resin as a raw material can be plasticized and melt-kneaded while suppressing an increase in the resin temperature before the foaming agent is press-fitted.

再溶融工程に供される再溶融用発泡性熱可塑性樹脂粒子としては、本発明の製造過程で得られる発泡性熱可塑性樹脂粒子をそのまま使用すればよいが、バックフロー抑止および可塑化の観点から、発泡剤の含有量が発泡性熱可塑性樹脂粒子100重量%において1〜8重量%であることが好ましい。   As the foamable thermoplastic resin particles for remelting used in the remelting process, the foamable thermoplastic resin particles obtained in the production process of the present invention may be used as they are, but from the viewpoint of backflow suppression and plasticization. The foaming agent content is preferably 1 to 8% by weight in 100% by weight of the foamable thermoplastic resin particles.

本発明の製造方法における再溶融工程は、再溶融用発泡性熱可塑性樹脂粒子を、熱可塑性樹脂100重量部に対して1〜30重量部の範囲になるように混入し再溶融する。上記範囲であれば、再溶融用発泡性熱可塑性樹脂粒子に含有される発泡剤が熱可塑性樹脂の可塑剤として作用し、溶融樹脂温度の上昇を抑制することができ、かつ、バックフローを抑制して溶融混練できる。また、発泡性熱可塑性樹脂粒子の再溶融による熱可塑性樹脂の劣化による影響も生じにくい。好ましくは2〜25重量部であり、より好ましくは5〜20重量部である。   In the remelting step in the production method of the present invention, the remeltable foamable thermoplastic resin particles are mixed and remelted so as to be in the range of 1 to 30 parts by weight with respect to 100 parts by weight of the thermoplastic resin. If it is the said range, the foaming agent contained in the foamable thermoplastic resin particle for remelting can act as a plasticizer of a thermoplastic resin, can suppress a rise in molten resin temperature, and also suppress backflow. And can be melt-kneaded. In addition, the influence of deterioration of the thermoplastic resin due to remelting of the foamable thermoplastic resin particles hardly occurs. Preferably it is 2-25 weight part, More preferably, it is 5-20 weight part.

<後処理>
本発明の製造方法で得られる発泡性熱可塑性樹脂粒子は、上記造粒工程後に脱水乾燥され、適宜篩などで分級し、帯電防止剤やブロッキング防止剤など改質剤により表面被覆されうる。これら諸工程は公知の方法を適用できる。
<Post-processing>
The foamable thermoplastic resin particles obtained by the production method of the present invention can be dehydrated and dried after the granulation step, classified with a sieve or the like, and coated with a modifier such as an antistatic agent or an antiblocking agent. A known method can be applied to these steps.

Claims (4)

熱可塑性樹脂を押出機に投入して溶融混練する溶融混練工程、
前記熱可塑性樹脂に発泡剤が添加された溶融物を複数の小孔を有するダイから加圧冷却水中に押出し、
前記押出し直後に、ダイから押出された前記溶融物を切断して粒子化する造粒工程を含む、
発泡性熱可塑性樹脂粒子の製造方法において、
前記造粒工程で得られる発泡性熱可塑性樹脂粒子の一部を再溶融用発泡性熱可塑性樹脂粒子として選別し、前記再溶融用発泡性熱可塑性樹脂粒子を前記溶融混練工程における前記熱可塑性樹脂100重量部に対して1〜30重量部の範囲内で混入し再溶融混練する工程を含むことを特徴とする、
発泡性熱可塑性樹脂粒子の製造方法。
A melt-kneading step in which a thermoplastic resin is put into an extruder and melt-kneaded,
Extruding a melt obtained by adding a foaming agent to the thermoplastic resin from a die having a plurality of small holes into pressurized cooling water,
Immediately after the extrusion, including a granulation step of cutting and granulating the melt extruded from the die,
In the method for producing expandable thermoplastic resin particles,
A part of the foamable thermoplastic resin particles obtained in the granulation step is selected as remeltable foamable thermoplastic resin particles, and the remeltable foamable thermoplastic resin particles are selected as the thermoplastic resin in the melt kneading step. Including mixing and remelting and kneading within a range of 1 to 30 parts by weight with respect to 100 parts by weight,
A method for producing expandable thermoplastic resin particles.
前記再溶融用発泡性熱可塑性樹脂粒子が、形状欠陥のある発泡性熱可塑性樹脂粒子、および/または、粒重量が規定範囲から外れる発泡性熱可塑性樹脂粒子を含む、請求項1に記載の発泡性熱可塑性樹脂粒子の製造方法。   The foamable thermoplastic resin particles according to claim 1, wherein the remeltable foamable thermoplastic resin particles include foamable thermoplastic resin particles having a shape defect and / or foamable thermoplastic resin particles whose particle weight is out of a specified range. For producing porous thermoplastic resin particles. 前記発泡性熱可塑性樹脂粒子が発泡性ポリスチレン系樹脂粒子である、請求項1または2に記載の発泡性熱可塑性樹脂粒子の製造方法。   The method for producing expandable thermoplastic resin particles according to claim 1 or 2, wherein the expandable thermoplastic resin particles are expandable polystyrene resin particles. 前記再溶融用発泡性熱可塑性樹脂粒子が、発泡剤を1〜8重量%含有する、請求項1〜3のいずれか一項に記載の発泡性熱可塑性樹脂粒子の製造方法。   The method for producing expandable thermoplastic resin particles according to any one of claims 1 to 3, wherein the remeltable expandable thermoplastic resin particles contain 1 to 8 wt% of a foaming agent.
JP2017043796A 2017-03-08 2017-03-08 Method for manufacturing foamable thermoplastic resin particles Active JP7049771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017043796A JP7049771B2 (en) 2017-03-08 2017-03-08 Method for manufacturing foamable thermoplastic resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017043796A JP7049771B2 (en) 2017-03-08 2017-03-08 Method for manufacturing foamable thermoplastic resin particles

Publications (2)

Publication Number Publication Date
JP2018145344A true JP2018145344A (en) 2018-09-20
JP7049771B2 JP7049771B2 (en) 2022-04-07

Family

ID=63589469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017043796A Active JP7049771B2 (en) 2017-03-08 2017-03-08 Method for manufacturing foamable thermoplastic resin particles

Country Status (1)

Country Link
JP (1) JP7049771B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208734A (en) * 1996-01-31 1997-08-12 Dainippon Ink & Chem Inc Production of foamable styrene-based resin particle
JP2009061654A (en) * 2007-09-06 2009-03-26 Sumitomo Chemical Co Ltd Pelletizing system of synthetic resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208734A (en) * 1996-01-31 1997-08-12 Dainippon Ink & Chem Inc Production of foamable styrene-based resin particle
JP2009061654A (en) * 2007-09-06 2009-03-26 Sumitomo Chemical Co Ltd Pelletizing system of synthetic resin

Also Published As

Publication number Publication date
JP7049771B2 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
JP5372783B2 (en) Expandable polystyrene resin particles, method for producing the same, and foam molded article
JP5570501B2 (en) Expandable vinyl aromatic polymer composition with improved thermal insulation performance, process for its preparation and foamed articles obtained from the composition
JP5677311B2 (en) Composition of foamable vinyl aromatic polymer with improved thermal insulation capacity, process for producing the same, and foamed product obtained therefrom
JP2001525001A (en) Expandable styrene polymer containing graphite particles
KR20120107114A (en) Flame-protected polymer foams
EP2162269A1 (en) Moulded foams made of expandable acrylonitrile copolymers
JP2005506424A (en) Expandable vinyl aromatic polymer and process for producing the same
KR20120129998A (en) Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expanded form
JP5796390B2 (en) Method for producing foamable thermoplastic resin particles
US8801982B2 (en) Method to start-up a process to make expandable vinyl aromatic polymers
JP7049771B2 (en) Method for manufacturing foamable thermoplastic resin particles
JP5603629B2 (en) Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding
JPH09234758A (en) Manufacture of foaming injection molding product
JP7084692B2 (en) Method for manufacturing foamable thermoplastic resin particles
JP7100995B2 (en) Expandable polystyrene-based resin particles, polystyrene-based expanded particles and polystyrene-based expanded molded products
DE112004002167B4 (en) Expandable styrene polymer granules
JP5641846B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP7231691B2 (en) Method for producing expandable thermoplastic resin particles
JP2012207186A (en) Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same
JP7194535B2 (en) Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding
JP7005158B2 (en) Method for manufacturing foamable thermoplastic resin particles
JP2013072003A (en) Foamable polystyrene-based resin particles and method for producing the same, polystyrene-based resin prefoamed particles, and polystyrene-based resin foamed molding
JP4234832B2 (en) Recycled foamed styrene resin particle production method and recycled foamed styrene resin molded product
JP4052193B2 (en) Recycled foamed styrene resin particles, recycled foamed beads, and recycled foamed styrene resin molded products
JP2981374B2 (en) Method for producing expandable resin particles containing ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220328

R150 Certificate of patent or registration of utility model

Ref document number: 7049771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150