JP2018145113A - Method for producing triarylamines - Google Patents

Method for producing triarylamines Download PDF

Info

Publication number
JP2018145113A
JP2018145113A JP2017039277A JP2017039277A JP2018145113A JP 2018145113 A JP2018145113 A JP 2018145113A JP 2017039277 A JP2017039277 A JP 2017039277A JP 2017039277 A JP2017039277 A JP 2017039277A JP 2018145113 A JP2018145113 A JP 2018145113A
Authority
JP
Japan
Prior art keywords
formula
magnesium
general formula
iron
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017039277A
Other languages
Japanese (ja)
Other versions
JP6506330B2 (en
Inventor
中村 正治
Masaharu Nakamura
正治 中村
光 高谷
Hikari Takatani
光 高谷
雄真 青木
Yuma Aoki
雄真 青木
真一 石川
Shinichi Ishikawa
真一 石川
萩原 秀樹
Hideki Hagiwara
秀樹 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Finechem Corp
Kyoto University NUC
Original Assignee
Tosoh Finechem Corp
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Finechem Corp, Kyoto University NUC filed Critical Tosoh Finechem Corp
Priority to JP2017039277A priority Critical patent/JP6506330B2/en
Publication of JP2018145113A publication Critical patent/JP2018145113A/en
Application granted granted Critical
Publication of JP6506330B2 publication Critical patent/JP6506330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method that makes it possible to obtain, conveniently and efficiently, triarylamines, useful as functional compounds for organic ELs, electrophotographic photoreceptors, organic semiconductors, solar cells or the like.SOLUTION: The present invention provides a method for producing triarylamines illustrated by (I-), including reacting diaryl amines and haloaryl compounds with Grignard reagents, to obtain magnesium diaryl amides and magnesium haloaryl compounds, before reacting it with transition metal catalysts.SELECTED DRAWING: None

Description

本発明は、有機EL、電子写真感光体、有機半導体、太陽電池等の機能性化合物として有用なトリアリールアミン類、より具体的には下記(I)〜(IV)の製造方法に関する。
NHフリー芳香族アミノ基置換アニリン類(I)
NHフリー芳香族アミノ基置換カルバゾール類(II)
OHフリー芳香族アミノ基置換フェノール類(III)
SHフリー芳香族アミノ基置換チオフェノール類(IV)
The present invention relates to triarylamines useful as functional compounds such as organic EL, electrophotographic photosensitive members, organic semiconductors, and solar cells, and more specifically to the production methods of (I) to (IV) below.
NH-free aromatic amino group-substituted anilines (I)
NH-free aromatic amino-substituted carbazoles (II)
OH-free aromatic amino group-substituted phenols (III)
SH-free aromatic amino group-substituted thiophenols (IV)

トリアリールアミン類は有機EL、電子写真感光体、有機半導体、太陽電池等の機能性化合物として有用であり、多くの製造方法が報告されている。
NHフリー芳香族アミノ基置換アニリン類(I)の製造方法としては、下記式(i)に示すように、ハロアニリン化合物とジフェニルアミン化合物から、塩基の存在下でパラジウム化合物とホスフィン配位子を触媒として用いアリールアミノ化反応を行う方法が一般的である(例えば特許文献1参照)。
Triarylamines are useful as functional compounds such as organic EL, electrophotographic photoreceptors, organic semiconductors, solar cells, and many production methods have been reported.
As a method for producing NH-free aromatic amino group-substituted anilines (I), as shown in the following formula (i), a palladium compound and a phosphine ligand are used as a catalyst in the presence of a base from haloaniline compounds and diphenylamine compounds. A method for carrying out the arylamination reaction is generally used (see, for example, Patent Document 1).

しかしながら、この方法では、ハロアニリン化合物のフリーのNH基がハロアニリン化合物と反応してしまい、目的物との分離が困難な不純物が複数生成し、目的物が低収率でしか得られないという問題がある。また触媒として高価なパラジウムとホスフィン配位子を、塩基として高価な金属アルコキシドを使用するため、工業的な生産方法としては十分ではなかった。   However, this method has a problem in that the free NH group of the haloaniline compound reacts with the haloaniline compound to generate a plurality of impurities that are difficult to separate from the target product, and the target product can be obtained only in a low yield. is there. Moreover, since expensive palladium and a phosphine ligand are used as a catalyst and expensive metal alkoxide is used as a base, it is not sufficient as an industrial production method.

Figure 2018145113
Figure 2018145113

一方、非特許文献1には、下記式(ii)に示すようにブロモアニリンのフリーのNH基を保護した後、ジフェニルアミン化合物と反応させる方法が報告されている。この方法ではNH基が保護されているため、分離困難な副生物の生成を抑制することができる。
しかしながら、この方法は、NH基を保護及び脱保護する必要があるために多段階となってしまうという課題があった。また触媒として高価なパラジウムとホスフィン配位子を、塩基として高価な金属アルコキシドを使用するため、やはり工業的な生産方法としては十分ではなかった。
On the other hand, Non-Patent Document 1 reports a method in which a free NH group of bromoaniline is protected and then reacted with a diphenylamine compound as shown in the following formula (ii). In this method, since the NH group is protected, generation of by-products that are difficult to separate can be suppressed.
However, this method has a problem of being multi-staged because it is necessary to protect and deprotect the NH group. Further, since expensive palladium and phosphine ligands are used as catalysts and expensive metal alkoxides are used as bases, they are not sufficient as industrial production methods.

Figure 2018145113
Figure 2018145113

特許文献2には、NHフリー芳香族アミノ基置換カルバゾール類(II)の製造方法が報告されている。この方法は、非特許文献1と同様にカルバゾールのフリーNH基を保護及び脱保護する必要があるために多段階を要してしまうという課題があった。また触媒として高価なパラジウムとホスフィン配位子を、塩基として高価な金属アルコキシドを使用するため、工業的な生産方法としては十分ではなかった。   Patent Document 2 reports a method for producing NH-free aromatic amino group-substituted carbazoles (II). Similar to Non-Patent Document 1, this method has a problem of requiring multiple steps because it is necessary to protect and deprotect the free NH group of carbazole. Moreover, since expensive palladium and a phosphine ligand are used as a catalyst and expensive metal alkoxide is used as a base, it is not sufficient as an industrial production method.

非特許文献2及び特許文献3には、OHフリー芳香族アミノ基置換フェノール類(III)とSHフリー芳香族アミノ基置換チオフェノール類(IV)の製造方法がそれぞれ報告されている。しかしながら、触媒として高価なパラジウムやホスフィン配位子を、塩基として高価な金属アルコキシドを使用するため、コストが高いという課題を有し、工業的な製造方法としては十分ではなかった。   Non-Patent Document 2 and Patent Document 3 report methods for producing OH-free aromatic amino group-substituted phenols (III) and SH-free aromatic amino group-substituted thiophenols (IV), respectively. However, since expensive palladium or phosphine ligand is used as a catalyst and expensive metal alkoxide is used as a base, there is a problem that the cost is high, which is not sufficient as an industrial production method.

特許第3161360号公報Japanese Patent No. 3161360 特開2015−193555号公報JP2015-193555A 米国特許出願公開第2016/0233428号明細書US Patent Application Publication No. 2016/0233428

Journal of Physical Chemistry C,Volume115,Issue30,2011(年),15008−15017頁Journal of Physical Chemistry C, Volume 115, Issue 30, 2011 (Year), 15008-15017 Journal of Polymer Science、Part A:Polymer Chemistry,Volume50,Issue18,2012(年),3788−3796頁Journal of Polymer Science, Part A: Polymer Chemistry, Volume 50, Issue 18, 2012 (Year), pages 3788-3796.

本発明の目的は、有機EL、電子写真感光体、有機半導体、太陽電池等の機能性化合物として有用なトリアリールアミン類を簡便且つ高効率に得ることができる製造方法を提供することにある。   The objective of this invention is providing the manufacturing method which can obtain triarylamine useful as functional compounds, such as organic EL, an electrophotographic photoreceptor, an organic semiconductor, and a solar cell simply and efficiently.

本発明者らは、上記課題に対し検討した結果、ジアリールアミン類とハロアリール化合物類にグリニャール試薬を反応させて、それぞれ対応するマグネシウム化合物類を得た後、これらマグネシウム化合物類に遷移金属触媒を反応させることで、簡便且つ高効率にトリアリールアミン類が得られることを見出し、本発明を完成させるに至った。
すなわち本発明は、下記一般式(1)
As a result of studying the above problems, the present inventors reacted diarylamines and haloaryl compounds with Grignard reagents to obtain corresponding magnesium compounds, and then reacted transition metal catalysts with these magnesium compounds. As a result, it was found that triarylamines can be obtained easily and efficiently, and the present invention has been completed.
That is, the present invention provides the following general formula (1)

Figure 2018145113
Figure 2018145113

[式(1)中、Ar、Ar及びArは各々独立して、置換基を有するアリール基もしくは無置換のアリール基を表し、Ar及びArは縮環してもよい。Aは−NR、O又はSを表し、Rは水素原子、置換基を有する炭素数1〜30のアルキル基、無置換の炭素数1〜30のアルキル基、炭素数1〜30のアルコキシキ基又は置換基を有するアリール基もしくは無置換のアリール基を表し、RとArは縮環してもよい。]
で示されるトリアリールアミン類を製造する方法であって、
下記一般式(2)
[In the formula (1), Ar 1 , Ar 2 and Ar 3 each independently represent an aryl group having a substituent or an unsubstituted aryl group, and Ar 2 and Ar 3 may be condensed. A represents -NR, O, or S, and R represents a hydrogen atom, a substituted alkyl group having 1 to 30 carbon atoms, an unsubstituted alkyl group having 1 to 30 carbon atoms, or an alkoxy group having 1 to 30 carbon atoms. Alternatively, it represents an aryl group having a substituent or an unsubstituted aryl group, and R and Ar 1 may be condensed. ]
A process for producing a triarylamine represented by the formula:
The following general formula (2)

Figure 2018145113
Figure 2018145113

[式(2)中、Ar及びArはそれぞれ前記式(1)と同じである。]
で示されるジアリールアミン類と
下記一般式(3)
[In formula (2), Ar 2 and Ar 3 are the same as those in formula (1), respectively. ]
And the following general formula (3)

Figure 2018145113
Figure 2018145113

[式(3)中、Xはハロゲン原子を表し、A及びArはそれぞれ前記式(1)と同じである。]
で示されるハロアリール化合物類に、
グリニャール試薬を反応させて、
下記一般式(4)
[In Formula (3), X 1 represents a halogen atom, and A and Ar 1 are the same as those in Formula (1), respectively. ]
In the haloaryl compounds represented by
React with Grignard reagent,
The following general formula (4)

Figure 2018145113
Figure 2018145113

[式(4)中、Ar及びArはそれぞれ前記式(1)と同じであり、Xはハロゲン原子を表す。]
で示されるマグネシウムジアリールアミド類と
下記一般式(5)
[In Formula (4), Ar 2 and Ar 3 are the same as those in Formula (1), respectively, and X 2 represents a halogen atom. ]
And a magnesium diarylamide represented by the following general formula (5)

Figure 2018145113
Figure 2018145113

[式(5)中、A及びArは前記式(1)と同じであり、Xは前記式(3)と同じであり、Xは前記式(4)と同じである。]
で示されるマグネシウムハロアリール化合物類を得た後、
前記一般式(4)で示されるマグネシウムジアリールアミド類と前記一般式(5)で示されるマグネシウムハロアリール化合物類に、遷移金属触媒を反応させる、トリアリールアミン類の製造方法に関する。以下、本発明を詳細に説明する。
[In the formula (5), A and Ar 1 are the same as the formula (1), X 1 is the same as the formula (3), and X 2 is the same as the formula (4). ]
After obtaining the magnesium haloaryl compounds represented by
The present invention relates to a method for producing triarylamines, wherein a transition metal catalyst is reacted with magnesium diarylamides represented by the general formula (4) and magnesium haloaryl compounds represented by the general formula (5). Hereinafter, the present invention will be described in detail.

上記一般式(1)で示されるトリアリールアミン類において、式(1)中、Ar、Ar及びArは各々独立して、置換基を有するアリール基もしくは無置換のアリール基を表し、Ar及びArは縮環してもよい。Aは−NR、O又はSを表し、Rは水素原子、置換基を有する炭素数1〜30のアルキル基、無置換の炭素数1〜30のアルキル基、炭素数1〜30のアルコキシキ基又は置換基を有するアリール基もしくは無置換のアリール基を表し、RとArは縮環してもよい。 In the triarylamines represented by the general formula (1), in the formula (1), Ar 1 , Ar 2 and Ar 3 each independently represent an aryl group having a substituent or an unsubstituted aryl group, Ar 2 and Ar 3 may be condensed. A represents -NR, O, or S, and R represents a hydrogen atom, a substituted alkyl group having 1 to 30 carbon atoms, an unsubstituted alkyl group having 1 to 30 carbon atoms, or an alkoxy group having 1 to 30 carbon atoms. Alternatively, it represents an aryl group having a substituent or an unsubstituted aryl group, and R and Ar 1 may be condensed.

上記一般式(1)で示されるトリアリールアミン類の具体例の一部を示せば下記の化合物(1−1)〜(1−63)を挙げることができる。   If a part of specific examples of the triarylamines represented by the general formula (1) are shown, the following compounds (1-1) to (1-63) may be mentioned.

Figure 2018145113
Figure 2018145113

Figure 2018145113
Figure 2018145113

Figure 2018145113
Figure 2018145113

Figure 2018145113
Figure 2018145113

また、上記一般式(2)で示されるジアリールアミン類の具体例の一部を示せば、下記の化合物(2−1)〜(2〜13)を挙げることができる。   Moreover, if a part of specific example of diarylamines shown by the said General formula (2) is shown, the following compounds (2-1)-(2-13) can be mentioned.

Figure 2018145113
Figure 2018145113

上記一般式(3)で示されるハロアリール化合物類において、式(3)中、
はハロゲン原子を表す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子またはヨウ素原子が挙げられる。
上記一般式(3)で示されるハロアリール化合物類の具体例の一部を示せば、下記(3−1)〜(3−21)を挙げることができる。
In the haloaryl compounds represented by the general formula (3), in the formula (3),
X 1 represents a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
If a part of specific examples of the haloaryl compounds represented by the general formula (3) are shown, the following (3-1) to (3-21) may be mentioned.

Figure 2018145113
Figure 2018145113

上記一般式(4)で示されるマグネシウムジアリールアミド類において、式(4)中、Xはハロゲン原子を表す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子またはヨウ素原子が挙げられる。
<トリアリールアミン類の製造方法>
一般式(1)で示されるトリアリールアミン類は、特に限定するものではないが、以下に示す工程1(マグネシウム化合物の調製工程)、工程2(アリールアミノ化工程)により製造できる。
In the magnesium diarylamides represented by the general formula (4), in the formula (4), X 2 represents a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
<Method for producing triarylamines>
The triarylamines represented by the general formula (1) are not particularly limited, but can be produced by the following step 1 (magnesium compound preparation step) and step 2 (aryl amination step).

まず工程1であるマグネシウム化合物の調製工程について説明する。
本発明において、一般式(4)で示されるマグネシウムジアリールアミド類は、一般式(2)で示されるジアリールアミン類をグリニャール試薬と反応させることによって製造でき、一般式(5)で示されるマグネシウムハロアリール化合物類は、一般式(3)で示されるハロアリール化合物類をグリニャール試薬と反応させることによって製造できる。
First, the magnesium compound preparation step, which is step 1, will be described.
In the present invention, the magnesium diarylamide represented by the general formula (4) can be produced by reacting the diarylamine represented by the general formula (2) with a Grignard reagent. Aryl compounds can be produced by reacting a haloaryl compound represented by the general formula (3) with a Grignard reagent.

そこで本発明者らは、一般式(1)で示されるトリアリールアミン類を工業的に製造することを鑑み、グリニャール試薬を、一般式(2)で示されるジアリールアミン類と一般式(3)で示されるハリアリール化合物類に、同時に反応させて、一般式(4)で示されるマグネシウムジアリールアミド類と一般式(5)で示されるマグネシウムハロアリール化合物類を同時に製造できることを見出すと共に、所定条件下において一般式(1)で示されるトリアリールアミン類を簡便かつ高効率に得ることができることを見出したのである。   Therefore, in view of industrially producing the triarylamines represented by the general formula (1), the present inventors used Grignard reagents as diarylamines represented by the general formula (2) and the general formula (3). It is found that the magnesium diarylamides represented by the general formula (4) and the magnesium haloaryl compounds represented by the general formula (5) can be simultaneously produced by reacting with the arylaryl compounds represented by the formula It was found that the triarylamines represented by the general formula (1) can be obtained easily and efficiently.

本発明において用いられるグリニャール試薬としては、脂肪族グリニャール試薬または芳香族グリニャール試薬であればよく、例えばメチルマグネシウムブロミド、メチルマグネシウムクロリド、エチルマグネシウムブロミド、エチルマグネシウムクロリド、イソプロピルマグネシウムブロミド、イソプロピルマグネシウムクロリド、ブチルマグネシウムブロミド、ブチルマグネシウムクロリド、フェニルマグネシウムブロミド、フェニルマグネシウムクロリドなどが用いられる。   The Grignard reagent used in the present invention may be an aliphatic Grignard reagent or an aromatic Grignard reagent, such as methyl magnesium bromide, methyl magnesium chloride, ethyl magnesium bromide, ethyl magnesium chloride, isopropyl magnesium bromide, isopropyl magnesium chloride, butyl. Magnesium bromide, butyl magnesium chloride, phenyl magnesium bromide, phenyl magnesium chloride and the like are used.

本発明において用いられるグリニャール試薬の使用量は一般式(2)で示されるジアリールアミン類又は一般式(3)で示されるハロアリール化合物類に対して、1.0モル当量〜100モル当量が望ましく、さらに望ましくは1.1モル当量〜10.0モル当量である。またグリニャール試薬は、アルキルリチウムとマグネシウム塩から調製しても良い。   The amount of Grignard reagent used in the present invention is preferably 1.0 to 100 molar equivalents relative to the diarylamines represented by the general formula (2) or the haloaryl compounds represented by the general formula (3), More desirably, it is 1.1 molar equivalent to 10.0 molar equivalent. Grignard reagents may also be prepared from alkyl lithium and magnesium salts.

本発明において、反応に用いられる溶媒は、例えば、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、1,2−ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル系有機溶媒を挙げることができる。また溶媒は単一で用いても、2種以上を混合して用いてもよい。
溶媒の使用量は、一般式(2)で示されるジアリールアミン類又は一般式(3)で示されるハロアリール化合物類の1重量部に対して、通常、1重量部〜1000重量部とするとよい。
In the present invention, examples of the solvent used in the reaction include ether-based organic solvents such as diethyl ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether, 1,2-dimethoxyethane, tetrahydrofuran, and dioxane. Moreover, a solvent may be used individually or may be used in mixture of 2 or more types.
The amount of the solvent used is usually 1 part by weight to 1000 parts by weight with respect to 1 part by weight of the diarylamines represented by the general formula (2) or the haloaryl compounds represented by the general formula (3).

本発明において、反応は窒素またはアルゴン等の不活性ガス雰囲気下で行うことが望ましく、常圧または加圧下でも行うことができる。反応温度は−50℃〜300℃の範囲が望ましいが、0℃〜150℃の範囲がより望ましい。
反応時間は、基質の種類及び反応温度の違いにより異なるため、特に限定するものではないが、通常、1時間〜48時間の範囲内で反応は完結できる。
In the present invention, the reaction is desirably performed in an inert gas atmosphere such as nitrogen or argon, and can be performed under normal pressure or under pressure. The reaction temperature is preferably in the range of −50 ° C. to 300 ° C., but more preferably in the range of 0 ° C. to 150 ° C.
The reaction time varies depending on the type of substrate and the reaction temperature and is not particularly limited. However, the reaction can usually be completed within a range of 1 hour to 48 hours.

反応終了後は、真空下または常圧下にて溶媒を除去しても、そのまま次の工程2に用いてもよい。
次いで工程2であるアリールアミノ化工程について説明する。
一般式(1)で示されるトリアリールアミン類は、上記で説明した、一般式(4)で示されるマグネシウムジアリールアミド類(4)と一般式(5)で示されるマグネシウムハロアリール化合物類(5)に、遷移金属触媒を、反応させることによって製造できる。
After completion of the reaction, the solvent may be removed under vacuum or normal pressure or may be used in the next step 2 as it is.
Next, the arylamination step as step 2 will be described.
The triarylamines represented by the general formula (1) are the above-described magnesium diarylamides (4) represented by the general formula (4) and magnesium haloaryl compounds represented by the general formula (5) (5). ) Can be produced by reacting a transition metal catalyst.

本発明において、一般式(4)で示されるマグネシウムジアリールアミド類(4)の使用量は、一般式(5)で示されるマグネシウムハロアリール化合物類(5)に対して、1.0モル当量〜10モル当量が望ましく、さらに望ましくは1.0モル当量〜2.0モル当量である。
本発明において用いられる遷移金属触媒としては、鉄化合物、ニッケル化合物、銅化合物またはコバルト化合物であればよい。
In this invention, the usage-amount of magnesium diarylamide (4) shown by General formula (4) is 1.0 molar equivalent-with respect to magnesium haloaryl compounds (5) shown by General formula (5). 10 molar equivalents are desirable, and more desirably 1.0 molar equivalents to 2.0 molar equivalents.
The transition metal catalyst used in the present invention may be an iron compound, a nickel compound, a copper compound or a cobalt compound.

さらに具体的には例えば、塩化鉄(II)、塩化鉄(II)四水和物、塩化鉄(III)、塩化鉄(III)六水和物等の鉄塩化物、臭化鉄(II)、臭化鉄(II)の水和物、臭化鉄(III)、臭化鉄(III)の水和物等の鉄臭化物、フッ化鉄(II)、フッ化鉄(II)の水和物、フッ化鉄(III)、フッ化鉄(III)の水和物等の鉄フッ化物、ヨウ化鉄(II)、ヨウ化鉄(III)の水和物等の鉄ヨウ化物、酢酸鉄(II)、鉄(II)アセチルアセトナート、鉄(III)アセチルアセトナート等の酢酸系の鉄有機化合物、硫酸鉄(II)、硫酸鉄(II)の水和物、硫酸鉄(III)、硫酸鉄(III)の水和物等の鉄硫酸化物、塩化ニッケル(II)、塩化ニッケル(II)六水和物等のニッケル塩化物、臭化ニッケル(II)、臭化ニッケル(II)三水和物等のニッケル臭化物、フッ化ニッケル(II)、フッ化ニッケル(II)の水和物等のニッケルフッ化物、ヨウ化ニッケル(II)、ヨウ化ニッケル(II)の水和物等のニッケルヨウ化物、ニッケル(II)アセチルアセトナート等の酢酸系のニッケル有機化合物、硫酸ニッケル(II)、硫酸ニッケル(II)の水和物等のニッケル硫酸化物、塩化銅(II)、塩化銅(II)二水和物等の銅塩化物、臭化銅(II)、臭化銅(II)の水和物等の銅臭化物、フッ化銅(II)、フッ化銅(II)の水和物等の銅フッ化物、ヨウ化銅(II)、ヨウ化銅(II)の水和物等の銅ヨウ化物、酢酸銅(I)、酢酸銅(II)、酢酸銅(II)モノ水和物、銅(II)アセチルアセトナート等の酢酸系の銅有機化合物、塩化コバルト(II)、塩化コバルト(II)の水和物等のコバルト塩化物、臭化コバルト(II)、臭化コバルト(II)の水和物等のコバルト臭化物、フッ化コバルト(II)、フッ化コバルト(II)の水和物等のコバルトフッ化物、ヨウ化コバルト(II)、ヨウ化コバルト(II)の水和物等のコバルトヨウ化物、酢酸コバルト(II)、酢酸コバルト(II)六水和物、コバルト(II)アセチルアセトナート等の酢酸系のコバルト有機化合物等が挙げられる。   More specifically, for example, iron chlorides such as iron (II) chloride, iron (II) chloride tetrahydrate, iron (III) chloride, iron (III) chloride hexahydrate, and iron (II) bromide. , Iron bromide hydrate, Iron bromide (III), Iron bromide hydrate, etc., Iron fluoride (II), Iron fluoride (II) hydration , Iron fluoride such as iron (III) fluoride, iron fluoride (III) hydrate, iron iodide such as iron (II) iodide, iron (III) hydrate, iron acetate (II), iron (II) acetylacetonate, iron (III) acetylacetonate and other acetic acid-based iron organic compounds, iron (II) sulfate, hydrated iron (II) sulfate, iron (III) sulfate, Iron sulfates such as hydrates of iron (III) sulfate, nickel chlorides such as nickel (II) chloride and nickel (II) chloride hexahydrate, nickel (II) bromide, nickel (II) bromide Nickel bromides such as hydrates, nickel fluoride (II , Nickel fluoride such as nickel fluoride (II) hydrate, nickel iodide such as nickel iodide (II) and nickel iodide (II) hydrate, acetic acid such as nickel (II) acetylacetonate Nickel organic compounds, nickel sulfates such as nickel (II) sulfate and nickel (II) sulfate hydrates, copper chlorides such as copper (II) chloride and copper (II) chloride dihydrate, bromide Copper bromides such as copper (II), copper (II) bromide hydrates, copper fluorides such as copper fluoride (II) and copper fluoride (II) hydrates, copper iodide (II), Copper iodide such as copper iodide (II) hydrate, copper acetate (I), copper acetate (II), copper acetate (II) monohydrate, acetic acid such as copper (II) acetylacetonate Copper organic compounds, cobalt chlorides such as cobalt chloride (II) and cobalt chloride (II) hydrate, cobalt bromide (II), cobalt bromide (II) hydrate Cobalt fluoride such as cobalt bromide, cobalt fluoride (II), cobalt fluoride (II) hydrate, etc., cobalt iodide (II), cobalt iodide (II) hydrate, etc., Examples thereof include acetic acid-based cobalt organic compounds such as cobalt acetate (II), cobalt acetate (II) hexahydrate, and cobalt (II) acetylacetonate.

これらの内、反応収率を更に向上させるためには、塩化鉄(II)、塩化鉄(II)四水和物、塩化鉄(III)、塩化鉄(III)六水和物、臭化鉄(II)、臭化鉄(II)の水和物、臭化鉄(III)、臭化鉄(III)の水和物、フッ化鉄(II)、フッ化鉄(II)の水和物、フッ化鉄(III)、フッ化鉄(III)の水和物等の鉄ハロゲン化物がより望ましく、特に鉄塩化物が望ましい。   Among these, in order to further improve the reaction yield, iron (II) chloride, iron (II) chloride tetrahydrate, iron (III) chloride, iron (III) chloride hexahydrate, iron bromide (II), Iron bromide (II) hydrate, Iron bromide (III), Iron bromide (III) hydrate, Iron fluoride (II), Iron fluoride (II) hydrate Iron halides such as iron (III) fluoride and iron (III) fluoride hydrate are more preferable, and iron chloride is particularly preferable.

遷移金属触媒の添加量は、マグネシウムジアリールアミド類(4)又はマグネシウムハロアリール化合物類(5)の1モルに対して、0.01モル%〜100モル%の範囲が望ましく、さらに望ましくは、0.05モル%〜10.0モル%の範囲である。
本発明において、反応に用いられる溶媒は、極性溶媒でも非極性溶媒のどちらでもよく、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素や、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、ターシャリーブチルメチルエーテル、1,2−ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル系有機溶媒を挙げることができる。また溶媒は単一で用いても、2種以上を混合して用いてもよい。
The addition amount of the transition metal catalyst is preferably in the range of 0.01 mol% to 100 mol%, more preferably 0 to 1 mol of the magnesium diarylamides (4) or the magnesium haloaryl compounds (5). The range is from 0.05 mol% to 10.0 mol%.
In the present invention, the solvent used in the reaction may be either a polar solvent or a nonpolar solvent, such as aromatic hydrocarbons such as benzene, toluene, xylene, diethyl ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether, Mention may be made of ether organic solvents such as tertiary butyl methyl ether, 1,2-dimethoxyethane, tetrahydrofuran and dioxane. Moreover, a solvent may be used individually or may be used in mixture of 2 or more types.

溶媒の使用量は、一般式(4)で示されるマグネシウムジアリールアミド類又は一般式(5)で示されるマグネシウムハロアリール化合物類に対して、通常、1重量部〜1000重量部とするとよい。
反応は、窒素またはアルゴン等の不活性ガス雰囲気下で行うことが望ましく、常圧または加圧下でも行うことができる。反応温度は0℃〜300℃の範囲が望ましいが、50℃〜200℃の範囲がより望ましい。
The amount of the solvent used is usually 1 part by weight to 1000 parts by weight with respect to the magnesium diarylamides represented by the general formula (4) or the magnesium haloaryl compounds represented by the general formula (5).
The reaction is desirably performed in an inert gas atmosphere such as nitrogen or argon, and can be performed under normal pressure or under pressure. The reaction temperature is preferably in the range of 0 ° C to 300 ° C, more preferably in the range of 50 ° C to 200 ° C.

本発明において、反応時間は、基質の種類及び反応温度の違いにより異なるため、特に限定するものではないが、通常、1時間〜48時間の範囲内で反応は完結できる。
反応終了後、一般に公知の精製手法を用いることができる。例えば、反応液に水または希塩酸を加えて生成した塩を溶解処理した後、分液操作で有機層を分離する。得られた有機層を水または食塩水またはアルカリ水溶液等で洗浄した後、カラムクロマトグラフィーや晶析等の一般的な方法によって単離精製することができる。
In the present invention, the reaction time varies depending on the type of substrate and the reaction temperature, and thus is not particularly limited, but the reaction can usually be completed within a range of 1 hour to 48 hours.
After completion of the reaction, generally known purification methods can be used. For example, water or dilute hydrochloric acid is added to the reaction solution to dissolve the generated salt, and then the organic layer is separated by a liquid separation operation. The obtained organic layer can be washed with water, brine, an alkaline aqueous solution or the like, and then isolated and purified by a general method such as column chromatography or crystallization.

本発明により、有機EL、電子写真感光体、有機半導体、太陽電池等の機能性化合物として有用なトリアリールアミン類を簡便且つ高効率に得ることができる。   According to the present invention, triarylamines useful as functional compounds such as organic EL, electrophotographic photoreceptors, organic semiconductors, and solar cells can be obtained easily and efficiently.

以下、本発明を、実施例を用いて更に詳細に説明するが、これらの実施例は本発明の概要を示すもので、本発明はこれらの実施例に限定されるものではない。
<化合物の同定・定量・分析>
目的化合物の同定は、H NMR(H核磁気共鳴スペクトル)、13C NMR(13C核磁気共鳴スペクトル)、19F NMR(19F核磁気共鳴スペクトル)、MS(質量分析スペクトル)、IR分析、HRMS分析、融点分析及び元素分析により決定した。純度はGC分析により決定した。収率はウンデカンを内部標準物質としGC分析により決定した。また目的物の精製には、必要に応じてリサイクル分取GPCを用いた。
EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, these Examples show the outline | summary of this invention and this invention is not limited to these Examples.
<Identification, quantification and analysis of compounds>
The target compound was identified by 1 H NMR ( 1 H nuclear magnetic resonance spectrum), 13 C NMR ( 13 C nuclear magnetic resonance spectrum), 19 F NMR ( 19 F nuclear magnetic resonance spectrum), MS (mass spectrometry spectrum), IR Determined by analysis, HRMS analysis, melting point analysis and elemental analysis. Purity was determined by GC analysis. The yield was determined by GC analysis using undecane as an internal standard. For purification of the target product, recycled preparative GPC was used as necessary.

用いた装置は以下の通りである。
核磁気共鳴スペクトル:JEOL ECS−400NR、Bruker AVANCE III 800US Plus
IR装置:PerkinElmer Spectrum One FT−IR Spectrometer
HR−MS装置:JEOL JMS−700 massspectrometer
融点測定装置:Yanaco MP−500D
GC装置:Shimadzu GC−2010(FID)
カラム:ZB−1MS(10m×0.10mmI.D.df:0.1μm)(Phenomenex社製)
検出器:水素炎イオン化検出器
リサイクル分取GPC:Japan Analytical Industry LC−9204 instrument
カラム:JAIGEL−1H−40/JAIGEL−2H−40。
The equipment used is as follows.
Nuclear magnetic resonance spectrum: JEOL ECS-400NR, Bruker AVANCE III 800US Plus
IR equipment: PerkinElmer Spectrum One FT-IR Spectrometer
HR-MS device: JEOL JMS-700 massspectrometer
Melting point measuring device: Yanaco MP-500D
GC device: Shimadzu GC-2010 (FID)
Column: ZB-1MS (10 m × 0.10 mm IDf: 0.1 μm) (Phenomenex)
Detector: Hydrogen flame ionization detector Recycle preparative GPC: Japan Analytical Industry LC-9204 instrument
Column: JAIGEL-1H-40 / JAIGEL-2H-40.

実施例1(N、N−di−p−tolylbenzene−1,4−diamine(1−1)) Example 1 (N 1, N 1 -di -p-tolylbenzene-1,4-diamine (1-1))

Figure 2018145113
Figure 2018145113

ねじ込み式テフロン(登録商標)栓付試験管(20ml)に、ジ−p−トリルアミン(118mg,0.598mmol)、4−ヨードアニリン(65.2mg、0.298mmol)、ジエチルエーテル(1.00mL)を仕込んだ後、内温25℃にてエチルマグネシウムブロミドのジエチルエーテル溶液(300μL,3.00M,0.900mmol)を滴下した。その後、ヒートブロック温度25℃にて10分間撹拌した後、溶媒を除去し、それぞれのマグネシウムアミド体を得た。   In a test tube (20 ml) with a screw-in type Teflon® stopper, di-p-tolylamine (118 mg, 0.598 mmol), 4-iodoaniline (65.2 mg, 0.298 mmol), diethyl ether (1.00 mL) After that, ethyl magnesium bromide in diethyl ether (300 μL, 3.00 M, 0.900 mmol) was added dropwise at an internal temperature of 25 ° C. Then, after stirring for 10 minutes at a heat block temperature of 25 ° C., the solvent was removed to obtain respective magnesium amide compounds.

次いで、塩化鉄(II)四水和物(3.00mg,15.1μmol)とキシレン(2.00mL)を添加した後、ヒートブロック温度140℃で24時間熟成した。室温まで冷却した後、1N塩酸(1.80mL)を加えて反応を停止し、炭酸水素ナトリウム水溶液で中和した。酢酸エチル(3.6mL×4回)を用いて抽出を実施し、得られた有機層をフロリジルを用いて濾過した後、濃縮乾固した。   Subsequently, iron (II) chloride tetrahydrate (3.00 mg, 15.1 μmol) and xylene (2.00 mL) were added, followed by aging at a heat block temperature of 140 ° C. for 24 hours. After cooling to room temperature, 1N hydrochloric acid (1.80 mL) was added to stop the reaction, and the mixture was neutralized with an aqueous sodium hydrogen carbonate solution. Extraction was performed using ethyl acetate (3.6 mL × 4 times), and the obtained organic layer was filtered using Florisil and then concentrated to dryness.

得られた乾固物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/5)にて精製することで、目的とする化合物(1−1)をオフホワイト色固体として得た(収率:93%、収量:79.7mg、純度:97%(GC分析))。
Anal,calcd for C2020 C,83.30;H,6.99;N,9.71.found C、83.22;H、7.06;N,9.42。
The obtained dried product was purified by silica gel column chromatography (hexane / ethyl acetate = 5/5) to obtain the target compound (1-1) as an off-white solid (yield: 93 %, Yield: 79.7 mg, purity: 97% (GC analysis)).
Anal, calcd for C 20 H 20 N 2 C, 83.30; H, 6.99; N, 9.71. found C, 83.22; H, 7.06; N, 9.42.

実施例2   Example 2

Figure 2018145113
Figure 2018145113

ハロアリール化合物を4−ブロモアニリンとし、アリールアミノ化工程の反応温度を160℃、熟成時間を36時間に変更した以外は、実施例1と同一モル比及び操作で実施した。
目的とする化合物(1−1)をオフホワイト色固体として得た(収率:83%、収量:71.6mg、純度:97%(GC分析))。
The same molar ratio and operation as in Example 1 were carried out except that the haloaryl compound was 4-bromoaniline, the reaction temperature of the arylamination step was changed to 160 ° C., and the aging time was changed to 36 hours.
The target compound (1-1) was obtained as an off-white solid (yield: 83%, yield: 71.6 mg, purity: 97% (GC analysis)).

実施例3(N、N−bis(4−fluorophenyl)benzene−1,4−diamine(1−3)) Example 3 (N 1, N 1 -bis (4-fluorophenyl) benzene-1,4-diamine (1-3))

Figure 2018145113
Figure 2018145113

ねじ込み式テフロン(登録商標)栓付試験管(20ml)に、ビス(4−フルオロフェニル)アミン(124mg,0.604mmol)、4−ヨードアニリン(65.6mg、0.300mmol)、ジエチルエーテル(1.00mL)を仕込んだ後、内温25℃にてエチルマグネシウムブロミドのジエチルエーテル溶液(300μL,3.00M,0.900mmol)を滴下した。その後、ヒートブロック温度25℃にて10分間撹拌した後、溶媒を除去し、それぞれのマグネシウムアミド体を得た。   In a test tube (20 ml) with a screw-in type Teflon® stopper, bis (4-fluorophenyl) amine (124 mg, 0.604 mmol), 4-iodoaniline (65.6 mg, 0.300 mmol), diethyl ether (1 0.000 mL), ethyl diethyl bromide in diethyl ether (300 μL, 3.00 M, 0.900 mmol) was added dropwise at an internal temperature of 25 ° C. Then, after stirring for 10 minutes at a heat block temperature of 25 ° C., the solvent was removed to obtain respective magnesium amide compounds.

次いで、塩化鉄(II)四水和物(3.00mg,15.1μmol)とキシレン(2.00mL)を添加した後、ヒートブロック温度140℃で24時間熟成した。室温まで冷却した後、1N塩酸(1.80mL)を加えて反応を停止し、炭酸水素ナトリウム水溶液で中和した。酢酸エチル(3.6mL×4回)を用いて抽出を実施し、得られた有機層をフロリジルを用いて濾過した後、濃縮乾固した。   Subsequently, iron (II) chloride tetrahydrate (3.00 mg, 15.1 μmol) and xylene (2.00 mL) were added, followed by aging at a heat block temperature of 140 ° C. for 24 hours. After cooling to room temperature, 1N hydrochloric acid (1.80 mL) was added to stop the reaction, and the mixture was neutralized with an aqueous sodium hydrogen carbonate solution. Extraction was performed using ethyl acetate (3.6 mL × 4 times), and the obtained organic layer was filtered using Florisil and then concentrated to dryness.

得られた乾固物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/5)及びリサイクル分取GPCにて精製することで、目的とする化合物(1−3)をオフホワイト色固体として得た(収率:51%、収量:45.6mg、純度:>99%(GC分析))。
Mp: 108.0−109.0℃
IR(neat、cm−1) 3470,3370,1623,1496,1266,1216,1154,1095,824,808
H NMR (CDCl、392MHz )δ3.63(s、2H)、6.63(d、J=8.6Hz、2H)、6.87−6.96(m、10H)
13C NMR(CDCl、98.5MHz)δ115.9(d、Jc−f=22Hz)、116.3、124.1(d、Jc−f=7.5Hz)、127.1、139.3、143.0、144.8、158.2(d、Jc−f=242Hz)
19F NMR(CDCl、368MHz)δ−122.3
HRMS(EI)m/z[M]calc for C1814 296.1125;found 296.1123。
The obtained dried product was purified by silica gel column chromatography (hexane / ethyl acetate = 5/5) and recycle preparative GPC to obtain the target compound (1-3) as an off-white solid. (Yield: 51%, yield: 45.6 mg, purity:> 99% (GC analysis)).
Mp: 108.0-109.0 ° C
IR (neat, cm −1 ) 3470, 3370, 1623, 1496, 1266, 1216, 1154, 1095, 824, 808
1 H NMR (CDCl 3 , 392 MHz) δ 3.63 (s, 2H), 6.63 (d, J = 8.6 Hz, 2H), 6.87-6.96 (m, 10H)
13 C NMR (CDCl 3, 98.5MHz ) δ115.9 (d, J c-f = 22Hz), 116.3,124.1 (d, J c-f = 7.5Hz), 127.1,139 .3,143.0,144.8,158.2 (d, J c-f = 242Hz)
19 F NMR (CDCl 3 , 368 MHz) δ-122.3
HRMS (EI) m / z [ M] + calc for C 18 H 14 F 2 N 2 296.1125; found 296.1123.

実施例4(4−(di−p−tolylamino)phenol(1−40))   Example 4 (4- (di-p-tolylamino) phenol (1-40))

Figure 2018145113
Figure 2018145113

ねじ込み式テフロン(登録商標)栓付試験管(20ml)に、ジ−p−トリルアミン(118mg,0.598mmol)、4−ブロモフェノール(51.8mg、0.299mmol)、ジエチルエーテル(1.00mL)を仕込んだ後、内温25℃にてエチルマグネシウムブロミドのジエチルエーテル溶液(300μL,3.00M,0.900mmol)を滴下した。その後、ヒートブロック温度25℃にて10分間撹拌した後、溶媒を除去し、マグネシウムアミド体及びマグネシウムフェノキサイド体を得た。   In a test tube (20 ml) with a screw-in Teflon (registered trademark) stopper, di-p-tolylamine (118 mg, 0.598 mmol), 4-bromophenol (51.8 mg, 0.299 mmol), diethyl ether (1.00 mL) After that, ethyl magnesium bromide in diethyl ether (300 μL, 3.00 M, 0.900 mmol) was added dropwise at an internal temperature of 25 ° C. Then, after stirring for 10 minutes at a heat block temperature of 25 ° C., the solvent was removed to obtain a magnesium amide body and a magnesium phenoxide body.

次いで、塩化鉄(II)四水和物(3.00mg,15.1μmol)とキシレン(2.00mL)を添加した後、ヒートブロック温度160℃で24時間熟成した。室温まで冷却した後、1N塩酸(1.80mL)を加えて反応を停止した。酢酸エチル(3.6mL×4回)を用いて抽出を実施し、得られた有機層をフロリジルを用いて濾過した後、濃縮乾固した。   Subsequently, iron (II) chloride tetrahydrate (3.00 mg, 15.1 μmol) and xylene (2.00 mL) were added, followed by aging at a heat block temperature of 160 ° C. for 24 hours. After cooling to room temperature, 1N hydrochloric acid (1.80 mL) was added to stop the reaction. Extraction was performed using ethyl acetate (3.6 mL × 4 times), and the obtained organic layer was filtered using Florisil and then concentrated to dryness.

得られた乾固物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=9/1)にて精製することで、目的とする化合物(1−40)を紫色固体として得た(収率:76%、収量:66.5mg、純度:>99%(GC分析))。
HRMS(EI)m/z[M]calcd for C2019NO 289.1467.found 289.1466。
The obtained dried product was purified by silica gel column chromatography (hexane / ethyl acetate = 9/1) to obtain the target compound (1-40) as a purple solid (yield: 76%, Yield: 66.5 mg, purity:> 99% (GC analysis)).
HRMS (EI) m / z [M] + calcd for C 20 H 19 NO 289.1467. found 2899.1466.

実施例5(N,N−diphenyl−1H−indol−5−amine(1−14))   Example 5 (N, N-diphenyl-1H-indol-5-amine (1-14))

Figure 2018145113
Figure 2018145113

ねじ込み式テフロン(登録商標)栓付試験管(20ml)に、ジフェニルアミン(101mg,0.597mmol)、5−ブロモインドール(59.3mg、0.302mmol)、ジエチルエーテル(1.00mL)を仕込んだ後、内温25℃にてエチルマグネシウムブロミドのジエチルエーテル溶液(300μL,3.00M,0.900mmol)を滴下した。その後、ヒートブロック温度25℃にて10分間撹拌した後、溶媒を除去し、それぞれのマグネシウムアミド体を得た。   After charging test tube (20 ml) with screw-in Teflon (registered trademark) with diphenylamine (101 mg, 0.597 mmol), 5-bromoindole (59.3 mg, 0.302 mmol) and diethyl ether (1.00 mL) A diethyl ether solution of ethyl magnesium bromide (300 μL, 3.00 M, 0.900 mmol) was added dropwise at an internal temperature of 25 ° C. Then, after stirring for 10 minutes at a heat block temperature of 25 ° C., the solvent was removed to obtain respective magnesium amide compounds.

次いで、塩化鉄(II)四水和物(3.00mg,15.1μmol)とキシレン(2.00mL)を添加した後、ヒートブロック温度160℃で24時間熟成した。室温まで冷却した後、1N塩酸(1.80mL)を加えて反応を停止した。酢酸エチル(3.6mL×4回)を用いて抽出を実施し、得られた有機層をフロリジルを用いて濾過した後、濃縮乾固した。   Subsequently, iron (II) chloride tetrahydrate (3.00 mg, 15.1 μmol) and xylene (2.00 mL) were added, followed by aging at a heat block temperature of 160 ° C. for 24 hours. After cooling to room temperature, 1N hydrochloric acid (1.80 mL) was added to stop the reaction. Extraction was performed using ethyl acetate (3.6 mL × 4 times), and the obtained organic layer was filtered using Florisil and then concentrated to dryness.

得られた乾固物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=9/1)にて精製することで、目的とする化合物(1−14)を黄色固体として得た(収率:76%、収量:65.0mg、純度:96%(GC分析))。
Mp: 118.5−119.6℃
IR(neat、cm−1) 3401,3059,1582,1491,1472,1452,1417,1337,1283,1255,1169,1142,1023,894,884,867,855,802,752,730,708,694,654,608,581
H NMR (CDCl、392MHz )δ6.89−6.93(m、2H)、7.03(dd、J=2.4、7.1Hz、1H)、7.06(m、4H)、7.17−7.21(m、5H)、7.32(d、J=7.8Hz、2H)、7.42(m、1H)、8.08(s、1H)
13C NMR(CDCl、98.5MHz)δ102.9,112.0,119.1,121.5、122.5,122.8,125.1,128.9,129.1,133.4,140.6,148.9
Anal,calcd for C2016 C,84.48;H,5.67;N,9.85.found C、84.40;H,5.85;N,9.70。
The obtained dried product was purified by silica gel column chromatography (hexane / ethyl acetate = 9/1) to obtain the target compound (1-14) as a yellow solid (yield: 76%, Yield: 65.0 mg, purity: 96% (GC analysis)).
Mp: 118.5-119.6 ° C
IR (neat, cm −1 ) 3401, 3059, 1582, 1491, 1472, 1452, 1417, 1337, 1283, 1255, 1169, 1142, 1023, 894, 884, 867, 855, 802, 752, 730, 708, 694,654,608,581
1 H NMR (CDCl 3 , 392 MHz) δ 6.89-6.93 (m, 2H), 7.03 (dd, J = 2.4, 7.1 Hz, 1H), 7.06 (m, 4H), 7.17-7.21 (m, 5H), 7.32 (d, J = 7.8 Hz, 2H), 7.42 (m, 1H), 8.08 (s, 1H)
13 C NMR (CDCl 3 , 98.5 MHz) δ 102.9, 112.0, 119.1, 121.5, 122.5, 122.8, 125.1, 128.9, 129.1, 133.4 , 140.6, 148.9
Anal, calcd for C 20 H 16 N 2 C, 84.48; H, 5.67; N, 9.85. found C, 84.40; H, 5.85; N, 9.70.

実施例6(N、N−di−p−tolyl−9H−carbazole−3−amine(1−25))   Example 6 (N, N-di-p-tolyl-9H-carbazole-3-amine (1-25))

Figure 2018145113
Figure 2018145113

ねじ込み式テフロン(登録商標)栓付試験管(20ml)に、ジ−p−トリルアミン(59.0mg,0.299mmol)、3−ヨード−9H−カルバゾール(87.8mg、0.300mmol)、ジエチルエーテル(1.50mL)を仕込んだ後、内温25℃にてエチルマグネシウムブロミドのジエチルエーテル溶液(200μL,3.00M,0.600mmol)を滴下した。その後、ヒートブロック温度25℃にて10分間撹拌した後、溶媒を除去し、それぞれのマグネシウムアミド体を得た。   In a test tube (20 ml) with a screw-type Teflon (registered trademark) stopper, di-p-tolylamine (59.0 mg, 0.299 mmol), 3-iodo-9H-carbazole (87.8 mg, 0.300 mmol), diethyl ether (1.50 mL) was added, and a diethyl ether solution of ethyl magnesium bromide (200 μL, 3.00 M, 0.600 mmol) was added dropwise at an internal temperature of 25 ° C. Then, after stirring for 10 minutes at a heat block temperature of 25 ° C., the solvent was removed to obtain respective magnesium amide compounds.

次いで、塩化鉄(II)四水和物(3.10mg,15.6μmol)とトルエン(2.00mL)を添加した後、ヒートブロック温度80℃で6時間熟成した。室温まで冷却した後、1N塩酸(1.20mL)を加えて反応を停止した。酢酸エチル(2.4mL×4回)を用いて抽出を実施し、得られた有機層をフロリジルを用いて濾過した後、濃縮乾固した。   Next, iron (II) chloride tetrahydrate (3.10 mg, 15.6 μmol) and toluene (2.00 mL) were added, followed by aging at a heat block temperature of 80 ° C. for 6 hours. After cooling to room temperature, 1N hydrochloric acid (1.20 mL) was added to stop the reaction. Extraction was performed using ethyl acetate (2.4 mL × 4 times), and the obtained organic layer was filtered using Florisil and then concentrated to dryness.

得られた乾固物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=9/1)にて精製することで、目的とする化合物(1−25)を白色固体として得た(収率:93%、収量:101mg、純度:97%(GC分析))。
Mp:228.5−229.5℃
IR(neat、cm−1)3421、3386、3028、2918、1606、1505、1490、1475、1460、1322、1310、1233、1177、1110、812
H NMR(DMSO−d、392Hz)δ2.28(s、6H)、6.91(m、4H)、7.08(m、4H)、7.12(dd、J=0.8、7.8Hz、1H)、7.16(dd、J=2.0、7.8Hz、1H)、7.40(td、J=1.1,7.8Hz,1H)、7.50(d、J=8.6Hz、1H)、7.51(d、J=7.8Hz、1H)、7.87(d、J=2.0Hz、1H)、8.05(d、J=7.8Hz,1H)、11.3(s、1H)
13C NMR(DMSO−d、98.5Hz)δ20.23,111.0,112.0,118.0,118.4,120.3,122.0,122.1,123.3,125.0,125.6,129.6,130.1,136.9,139.0,140.3,146.1
HRMS(EI)m/z[M]calcd for C2622 362.1783.found 362.1782。
The obtained dried product was purified by silica gel column chromatography (hexane / ethyl acetate = 9/1) to obtain the target compound (1-25) as a white solid (yield: 93%, Yield: 101 mg, purity: 97% (GC analysis)).
Mp: 228.5-229.5 ° C
IR (neat, cm −1 ) 3421, 3386, 3028, 2918, 1606, 1505, 1490, 1475, 1460, 1322, 1310, 1233, 1177, 1110, 812
1 H NMR (DMSO-d 6 , 392 Hz) δ 2.28 (s, 6H), 6.91 (m, 4H), 7.08 (m, 4H), 7.12 (dd, J = 0.8, 7.8 Hz, 1 H), 7.16 (dd, J = 2.0, 7.8 Hz, 1 H), 7.40 (td, J = 1.1, 7.8 Hz, 1 H), 7.50 (d , J = 8.6 Hz, 1H), 7.51 (d, J = 7.8 Hz, 1H), 7.87 (d, J = 2.0 Hz, 1H), 8.05 (d, J = 7. 8Hz, 1H), 11.3 (s, 1H)
13 C NMR (DMSO-d 6 , 98.5 Hz) δ 20.23, 111.0, 112.0, 118.0, 118.4, 120.3, 122.0, 122.1, 123.3, 125 0.0, 125.6, 129.6, 130.1, 136.9, 139.0, 140.3, 146.1
HRMS (EI) m / z [M] + calcd for C 26 H 22 N 2 362.1783. found 362.1782.

実施例7
鉄化合物を無水塩化鉄(III)に変更した以外は、実施例6と同一のモル比及び操作で実施した。
目的とする化合物(1−25)を白色固体として得た(収率:85%、収量:92.3mg、純度:98%(GC分析))。
Example 7
It implemented by the same molar ratio and operation as Example 6 except having changed the iron compound into anhydrous iron (III) chloride.
The target compound (1-25) was obtained as a white solid (yield: 85%, yield: 92.3 mg, purity: 98% (GC analysis)).

実施例8
鉄化合物を塩化鉄(III)六水和物に変更した以外は、実施例6と同一のモル比及び操作で実施した。熟成6時間においてGC分析による定量を行ったところ、目的とする化合物(1−25)の収率は26%であった。
実施例9
鉄化合物を無水塩化鉄(II)とし、溶媒をキシレン、ヒートブロック温度140℃に変更した以外は、実施例6と同一のモル比及び操作で実施した。熟成6時間においてGC分析による定量を行ったところ、目的とする化合物(1−25)の収率は87%であった。
Example 8
It implemented by the same molar ratio and operation as Example 6 except having changed the iron compound into iron (III) chloride hexahydrate. When quantification was performed by GC analysis at 6 hours of aging, the yield of the target compound (1-25) was 26%.
Example 9
The same molar ratio and operation as in Example 6 were performed except that the iron compound was anhydrous iron (II) chloride, the solvent was changed to xylene, and the heat block temperature was 140 ° C. When quantification was performed by GC analysis at 6 hours of aging, the yield of the target compound (1-25) was 87%.

実施例10
ハロアリール化合物を3−ブロモ−9H−カルバゾールとし、ヒートブロック温度を120℃に変更した以外は、実施例6と同一のモル比及び操作で実施した。熟成6時間においてGC分析による定量を行ったところ、目的とする化合物(1−25)の収率は78%であった。
Example 10
The same molar ratio and operation as in Example 6 were performed except that the haloaryl compound was 3-bromo-9H-carbazole and the heat block temperature was changed to 120 ° C. As a result of GC analysis at 6 hours of aging, the yield of the target compound (1-25) was 78%.

実施例11
溶媒をテトラヒドロフランに変更した以外は、実施例7と同一のモル比及び操作で実施した。熟成6時間においてGC分析による定量を行ったところ、目的とする化合物(1−25)の収率は10%であった。
実施例12
触媒を塩化ニッケル(II)六水和物に変更した以外は、実施例6と同一のモル比及び操作で実施した。熟成6時間においてGC分析による定量を行ったところ、目的とする化合物(1−25)の収率は59%であった。
Example 11
It implemented by the same molar ratio and operation as Example 7 except having changed the solvent into tetrahydrofuran. When quantification was performed by GC analysis at 6 hours of aging, the yield of the target compound (1-25) was 10%.
Example 12
The same molar ratio and operation as in Example 6 were carried out except that the catalyst was changed to nickel (II) chloride hexahydrate. When quantification was performed by GC analysis at 6 hours of aging, the yield of the target compound (1-25) was 59%.

実施例13(N,N,N,N−tetra−p−tolyl−9H−carbazole−3,6−diamine(1−37)) Example 13 (N 3, N 3, N 6, N 6 -tetra-p-tolyl-9H-carbazole-3,6-diamine (1-37))

Figure 2018145113
Figure 2018145113

ねじ込み式テフロン(登録商標)栓付試験管(20ml)に、ジ−p−トリルアミン(59.3mg,0.301mmol)、3、6−ジヨードカルバゾール(62.6mg、0.149mmol)、ジエチルエーテル(1.50mL)を仕込んだ後、内温25℃にてエチルマグネシウムブロミドのジエチルエーテル溶液(150μL,3.00M,0.450mmol)を滴下した。その後、ヒートブロック温度25℃にて10分間撹拌した後、溶媒を除去し、それぞれのマグネシウムアミド体を得た。   In a test tube (20 ml) with a screw-in type Teflon® stopper, di-p-tolylamine (59.3 mg, 0.301 mmol), 3,6-diiodocarbazole (62.6 mg, 0.149 mmol), diethyl ether (1.50 mL) was added, and then an ethyl magnesium bromide diethyl ether solution (150 μL, 3.00 M, 0.450 mmol) was added dropwise at an internal temperature of 25 ° C. Then, after stirring for 10 minutes at a heat block temperature of 25 ° C., the solvent was removed to obtain respective magnesium amide compounds.

次いで、塩化鉄(II)四水和物(1.50mg,7.56μmol)とトルエン(2.00mL)を添加した後、ヒートブロック温度100℃で6時間熟成した。室温まで冷却した後、1N塩酸(0.900mL)を加えて反応を停止した。酢酸エチル(1.8mL×4回)を用いて抽出を実施し、得られた有機層をフロリジルを用いて濾過した後、濃縮乾固した。   Subsequently, iron (II) chloride tetrahydrate (1.50 mg, 7.56 μmol) and toluene (2.00 mL) were added, followed by aging at a heat block temperature of 100 ° C. for 6 hours. After cooling to room temperature, 1N hydrochloric acid (0.900 mL) was added to stop the reaction. Extraction was performed using ethyl acetate (1.8 mL × 4 times), and the obtained organic layer was filtered using Florisil and then concentrated to dryness.

得られた乾固物96.6mgの内、91.3mgをリサイクル分取GPCにて精製することで、目的とする化合物(1−37)を白色固体として得た(収率:62%、収量:48.9mg、純度:96%(GC分析))。
実施例14(N,N,N,N−tetra−p−tolyl−9H−carbazole−3,6−diamine(1−37))
Of the obtained 96.6 mg of the dried solid product, 91.3 mg was purified by recycle preparative GPC to obtain the target compound (1-37) as a white solid (yield: 62%, yield). : 48.9 mg, purity: 96% (GC analysis)).
Example 14 (N 3, N 3, N 6, N 6 -tetra-p-tolyl-9H-carbazole-3,6-diamine (1-37))

Figure 2018145113
Figure 2018145113

ねじ込み式テフロン(登録商標)栓付試験管(20ml)に、ジ−p−トリルアミン(59.5mg,0.302mmol)、3、6−ジブロモカルバゾール(48.5mg、0.149mmol)、ジエチルエーテル(1.50mL)を仕込んだ後、内温25℃にてエチルマグネシウムブロミドのジエチルエーテル溶液(150μL,3.00M,0.450mmol)を滴下した。その後、ヒートブロック温度25℃にて10分間撹拌した後、溶媒を除去し、それぞれのマグネシウムアミド体を得た。   A test tube (20 ml) with a screw-in type Teflon® stopper was charged with di-p-tolylamine (59.5 mg, 0.302 mmol), 3,6-dibromocarbazole (48.5 mg, 0.149 mmol), diethyl ether ( 1.50 mL) was added, and then an ethyl magnesium bromide diethyl ether solution (150 μL, 3.00 M, 0.450 mmol) was added dropwise at an internal temperature of 25 ° C. Then, after stirring for 10 minutes at a heat block temperature of 25 ° C., the solvent was removed to obtain respective magnesium amide compounds.

次いで、塩化鉄(II)四水和物(1.50mg,7.56μmol)とキシレン(2.00mL)を添加した後、ヒートブロック温度140℃で6時間熟成した。室温まで冷却した後、1N塩酸(0.900mL)を加えて反応を停止し、炭酸水素ナトリウム水溶液で中和した。酢酸エチル(1.8mL×4回)を用いて抽出を実施し、得られた有機層をフロリジルを用いて濾過した後、濃縮乾固した。   Next, iron (II) chloride tetrahydrate (1.50 mg, 7.56 μmol) and xylene (2.00 mL) were added, followed by aging at a heat block temperature of 140 ° C. for 6 hours. After cooling to room temperature, 1N hydrochloric acid (0.900 mL) was added to stop the reaction, and neutralized with an aqueous sodium hydrogen carbonate solution. Extraction was performed using ethyl acetate (1.8 mL × 4 times), and the obtained organic layer was filtered using Florisil and then concentrated to dryness.

得られた乾固物96.5mgの内、91.9mgをリサイクル分取GPCにて精製することで、目的とする化合物(1−37)を白色固体として得た(収率:41%、収量:32.9mg、純度:>99%(GC分析))。
Mp:153.0−154.2℃
IR(neat、cm−1)3401,3022,2917,1605,1505,1487,1460,1319,1272,1229,807
H NMR(DMSO−d、392MHz)δ2.21(s、12H)、6.82(m、8H)、7.00(m、8H)7.10(dd、J=2.0、8.6Hz、2H)7.44(d、J=9.0Hz、2H)、7.74(d、J=2.0Hz、2H)、11.2(s、1H)
13C NMR(DMSO−d、98.5MHz)δ20.22、112.1、118.3、121.9、123.2、125.4、129.6、130.1、137.5、138.9、146.0
HRMS(EI)m/z[M]calcd for C4035 557.2831;found 557.2832
比較例1
91.9 mg of the obtained dried product 96.5 mg was purified by recycle preparative GPC to obtain the target compound (1-37) as a white solid (yield: 41%, yield). : 32.9 mg, purity:> 99% (GC analysis)).
Mp: 153.0-154.2 ° C
IR (neat, cm −1 ) 3401, 3022, 2917, 1605, 1505, 1487, 1460, 1319, 1272, 1229, 807
1 H NMR (DMSO-d 6 , 392 MHz) δ 2.21 (s, 12H), 6.82 (m, 8H), 7.00 (m, 8H) 7.10 (dd, J = 2.0, 8 .6 Hz, 2H) 7.44 (d, J = 9.0 Hz, 2H), 7.74 (d, J = 2.0 Hz, 2H), 11.2 (s, 1H)
13 C NMR (DMSO-d 6 , 98.5 MHz) δ 20.22, 112.1, 118.3, 121.9, 123.2, 125.4, 129.6, 130.1, 137.5, 138 .9, 146.0
HRMS (EI) m / z [M] + calcd for C 40 H 35 N 3 557.2831; found 557.2832
Comparative Example 1

Figure 2018145113
Figure 2018145113

ねじ込み式テフロン(登録商標)栓付試験管(20ml)に、アルゴン雰囲気下でジ−p−トリルアミン(59.9mg,0.304mmol)、3−ヨード−9H−カルバゾール(88.5mg、0.302mmol)、酢酸パラジウム(3.26mg、14.5μmol、5mol%)、トリ―tert―ブチルホスフィン(11.5mg、56.8μmol、20mol%)、ソディウム tert−ブトキサイド(33.9mg、0.353mmol)、キシレン(2mL)を仕込んだ。次いでヒートブロック温度160℃にて1時間熟成した。
GC分析による定量を行ったところ、目的とする化合物(1−25)の収率は0%であった。
In a test tube (20 ml) with a screw-in type Teflon® stopper, di-p-tolylamine (59.9 mg, 0.304 mmol), 3-iodo-9H-carbazole (88.5 mg, 0.302 mmol) under an argon atmosphere. ), Palladium acetate (3.26 mg, 14.5 μmol, 5 mol%), tri-tert-butylphosphine (11.5 mg, 56.8 μmol, 20 mol%), sodium tert-butoxide (33.9 mg, 0.353 mmol), Xylene (2 mL) was charged. Next, aging was performed at a heat block temperature of 160 ° C. for 1 hour.
When the quantitative analysis by GC analysis was performed, the yield of the target compound (1-25) was 0%.

比較例2
ハロアリール化合物を4−ブロモ−9H−カルバゾールとし、ヒートブロック温度を140℃に変更した以外は、比較例1と同一モル比及び操作で実施した。
熟成1時間においてGC分析による定量を行ったところ、目的とする化合物(1−25)の収率は2%であった。
Comparative Example 2
It implemented by the same molar ratio and operation as the comparative example 1 except having made the haloaryl compound into 4-bromo-9H-carbazole and changing the heat block temperature into 140 degreeC.
When quantification was performed by GC analysis during 1 hour of aging, the yield of the target compound (1-25) was 2%.

比較例3   Comparative Example 3

Figure 2018145113
Figure 2018145113

ねじ込み式テフロン(登録商標)栓付試験管(20ml)に、アルゴン雰囲気下でジ−p−トリルアミン(60.3mg,0.306mmol)、3−ヨード−9H−カルバゾール(87.0mg、0.297mmol)、無水塩化銅(I)(1.08mg、10.9μmol、3.5mol%)、1,10−フェナントロリン(2.40mg、13.3μmol、3.5mol%)、水酸化カリウム(131mg、2.34mmol)、キシレン(2.0mL)を仕込んだ。次いでヒートブロック温度160℃にて1時間熟成した。   In a test tube (20 ml) with a screw-in Teflon® stopper, di-p-tolylamine (60.3 mg, 0.306 mmol), 3-iodo-9H-carbazole (87.0 mg, 0.297 mmol) under an argon atmosphere. ), Anhydrous copper (I) chloride (1.08 mg, 10.9 μmol, 3.5 mol%), 1,10-phenanthroline (2.40 mg, 13.3 μmol, 3.5 mol%), potassium hydroxide (131 mg, 2 mol .34 mmol) and xylene (2.0 mL) were charged. Next, aging was performed at a heat block temperature of 160 ° C. for 1 hour.

GC分析による定量を行ったところ、目的とする化合物(1−25)の収率は0%であった。
以上の実施例1〜17及び比較例1〜3をそれぞれ表1、表2としてまとめた。

Figure 2018145113
When the quantitative analysis by GC analysis was performed, the yield of the target compound (1-25) was 0%.
The above Examples 1-17 and Comparative Examples 1-3 were summarized as Table 1 and Table 2, respectively.
Figure 2018145113

Figure 2018145113
Figure 2018145113

Figure 2018145113
Figure 2018145113

Figure 2018145113
Figure 2018145113

Claims (2)

下記一般式(1)
Figure 2018145113
[式(1)中、Ar、Ar及びArは各々独立して、置換基を有するアリール基もしくは無置換のアリール基を表し、Ar及びArは縮環してもよい。Aは−NR、O又はSを表し、Rは水素原子、置換基を有する炭素数1〜30のアルキル基、無置換の炭素数1〜30のアルキル基、炭素数1〜30のアルコキシキ基又は置換基を有するアリール基もしくは無置換のアリール基を表し、RとArは縮環してもよい。]
で示されるトリアリールアミン類を製造する方法であって、
下記一般式(2)
Figure 2018145113
[式(2)中、Ar及びArはそれぞれ前記式(1)と同じである。]
で示されるジアリールアミン類と
下記一般式(3)
Figure 2018145113
[式(3)中、Xはハロゲン原子を表し、A及びArはそれぞれ前記式(1)と同じである。]
で示されるハロアリール化合物類に、
グリニャール試薬を反応させて、
下記一般式(4)
Figure 2018145113
[式(4)中、Ar及びArはそれぞれ前記式(1)と同じであり、Xはハロゲン原子を表す。]
で示されるマグネシウムジアリールアミド類(4)と
下記一般式(5)
Figure 2018145113
[式(5)中、A及びArは前記式(1)と同じであり、Xは前記式(3)と同じであり、Xは前記式(4)と同じである。]
で示されるマグネシウムハロアリール化合物類を得た後、
前記一般式(4)で示されるマグネシウムジアリールアミド類と前記一般式(5)で示されるマグネシウムハロアリール化合物類に、遷移金属触媒を反応させる、トリアリールアミン類の製造方法。
The following general formula (1)
Figure 2018145113
[In the formula (1), Ar 1 , Ar 2 and Ar 3 each independently represent an aryl group having a substituent or an unsubstituted aryl group, and Ar 2 and Ar 3 may be condensed. A represents -NR, O, or S, and R represents a hydrogen atom, a substituted alkyl group having 1 to 30 carbon atoms, an unsubstituted alkyl group having 1 to 30 carbon atoms, or an alkoxy group having 1 to 30 carbon atoms. Alternatively, it represents an aryl group having a substituent or an unsubstituted aryl group, and R and Ar 1 may be condensed. ]
A process for producing a triarylamine represented by the formula:
The following general formula (2)
Figure 2018145113
[In formula (2), Ar 2 and Ar 3 are the same as those in formula (1), respectively. ]
And the following general formula (3)
Figure 2018145113
[In Formula (3), X 1 represents a halogen atom, and A and Ar 1 are the same as those in Formula (1), respectively. ]
In the haloaryl compounds represented by
React with Grignard reagent,
The following general formula (4)
Figure 2018145113
[In Formula (4), Ar 2 and Ar 3 are the same as those in Formula (1), respectively, and X 2 represents a halogen atom. ]
Magnesium diarylamides (4) represented by the following general formula (5)
Figure 2018145113
[In the formula (5), A and Ar 1 are the same as the formula (1), X 1 is the same as the formula (3), and X 2 is the same as the formula (4). ]
After obtaining the magnesium haloaryl compounds represented by
A method for producing triarylamines, comprising reacting a magnesium diarylamide represented by the general formula (4) and a magnesium haloaryl compound represented by the general formula (5) with a transition metal catalyst.
遷移金属触媒が鉄化合物である、請求項1に記載のトリアリールアミン類の製造方法。 The method for producing a triarylamine according to claim 1, wherein the transition metal catalyst is an iron compound.
JP2017039277A 2017-03-02 2017-03-02 Process for producing arylamines Active JP6506330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017039277A JP6506330B2 (en) 2017-03-02 2017-03-02 Process for producing arylamines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017039277A JP6506330B2 (en) 2017-03-02 2017-03-02 Process for producing arylamines

Publications (2)

Publication Number Publication Date
JP2018145113A true JP2018145113A (en) 2018-09-20
JP6506330B2 JP6506330B2 (en) 2019-04-24

Family

ID=63589996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017039277A Active JP6506330B2 (en) 2017-03-02 2017-03-02 Process for producing arylamines

Country Status (1)

Country Link
JP (1) JP6506330B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123542A (en) * 2020-02-03 2021-08-30 国立大学法人京都大学 Method for producing asymmetric diarylamine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262655A (en) * 1998-01-13 1999-09-28 Fuji Xerox Co Ltd Composite, its production and semiconductor device
JP2012001452A (en) * 2010-06-15 2012-01-05 Kyushu Univ Organic semiconductor material
JP2012121880A (en) * 2010-11-15 2012-06-28 Kyoto Univ Method of producing arylamine
JP2012532135A (en) * 2009-06-29 2012-12-13 日東電工株式会社 Luminescent aryl-heteroaryl compounds
JP2013145791A (en) * 2012-01-13 2013-07-25 ▲いく▼▲雷▼光電科技股▲分▼有限公司 Carbazole derivative, organic electroluminescent device using the same, and manufacturing method thereof
JP2015193555A (en) * 2014-03-31 2015-11-05 日本化薬株式会社 Method for producing carbazole compound having tertiary amino group, and the compound
JP2017165722A (en) * 2016-03-09 2017-09-21 国立大学法人京都大学 Asymmetric bis(1,2-diarylamino)benzene and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262655A (en) * 1998-01-13 1999-09-28 Fuji Xerox Co Ltd Composite, its production and semiconductor device
JP2012532135A (en) * 2009-06-29 2012-12-13 日東電工株式会社 Luminescent aryl-heteroaryl compounds
JP2012001452A (en) * 2010-06-15 2012-01-05 Kyushu Univ Organic semiconductor material
JP2012121880A (en) * 2010-11-15 2012-06-28 Kyoto Univ Method of producing arylamine
JP2013145791A (en) * 2012-01-13 2013-07-25 ▲いく▼▲雷▼光電科技股▲分▼有限公司 Carbazole derivative, organic electroluminescent device using the same, and manufacturing method thereof
JP2015193555A (en) * 2014-03-31 2015-11-05 日本化薬株式会社 Method for producing carbazole compound having tertiary amino group, and the compound
JP2017165722A (en) * 2016-03-09 2017-09-21 国立大学法人京都大学 Asymmetric bis(1,2-diarylamino)benzene and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123542A (en) * 2020-02-03 2021-08-30 国立大学法人京都大学 Method for producing asymmetric diarylamine
JP7308161B2 (en) 2020-02-03 2023-07-13 国立大学法人京都大学 Method for producing asymmetric diarylamines

Also Published As

Publication number Publication date
JP6506330B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
CN100528816C (en) Process for the preparation of iodoaromatic compounds and its application
JPH09323959A (en) Production of arylamine and method for ullmann condensation reaction
KR102230628B1 (en) Vortioxetine manufacturing process
JPH09323958A (en) Production of triarylamine and arylamine
KR20140014154A (en) Methods of making hiv attachment inhibitor prodrug compound and intermediates
US20060258888A1 (en) Bis-Amination of Aryl Halides
JP2018145113A (en) Method for producing triarylamines
JP4467935B2 (en) Method for producing halogenated aromatic amine compound
JP2018039777A (en) Peri-xanthenoxanthene bisimide compound, method for producing the same, organic el element, and organic thin film solar cell
US9376384B2 (en) Diaryliodonium salt
JP6615212B2 (en) Preparation of 1- (2-halogen-ethyl) -4-piperidinecarboxylic acid ethyl ester
JP5028788B2 (en) Method for producing arylamines
KR101264166B1 (en) Method for preparing 1,2-bis(5-aminotetrazol-1-yl)ethane
JP5777106B2 (en) Method for producing arylamines
JPWO2020090989A1 (en) Method for Producing Fluoroaromatic Secondary or Tertiary Amine Compound
JP2003277333A (en) Method for producing halotriarylamines and method for producing vinyltriarylamines using the same
US20220056054A1 (en) Methods of preparation of aminoboranes and applications for borylation and suzuki coupling
JP5153648B2 (en) Method for producing 3-benzyloxybenzenethiol
JP2011148752A (en) Method for producing triarylborane and method for producing triarylborane complex
JP4734587B2 (en) Halogenated cyanuric derivatives, processes for their production and their use
JP2010120875A (en) Method for producing arylamine compound
US20100130786A1 (en) Method for producing triarylamine compound
KR101876527B1 (en) Improved method for preparing carbazole derivatives
WO2023190846A1 (en) Method for producing fluorine-containing aromatic compound
CN117327010A (en) Preparation method of 3-tertiary butyl amino acrylamide derivative

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190328

R150 Certificate of patent or registration of utility model

Ref document number: 6506330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250