JP2018143940A - Method for producing catalyst support - Google Patents
Method for producing catalyst support Download PDFInfo
- Publication number
- JP2018143940A JP2018143940A JP2017040090A JP2017040090A JP2018143940A JP 2018143940 A JP2018143940 A JP 2018143940A JP 2017040090 A JP2017040090 A JP 2017040090A JP 2017040090 A JP2017040090 A JP 2017040090A JP 2018143940 A JP2018143940 A JP 2018143940A
- Authority
- JP
- Japan
- Prior art keywords
- compound
- 12cao
- catalyst
- hydrogen
- calcium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 239000001257 hydrogen Substances 0.000 claims abstract description 22
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 22
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000000292 calcium oxide Substances 0.000 claims abstract description 18
- 239000001301 oxygen Substances 0.000 claims abstract description 18
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 17
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 10
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229940043430 calcium compound Drugs 0.000 claims abstract description 7
- 150000001674 calcium compounds Chemical class 0.000 claims abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 6
- -1 aluminum compound Chemical class 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 150000001875 compounds Chemical class 0.000 claims description 26
- 239000010419 fine particle Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 3
- 229940126062 Compound A Drugs 0.000 claims description 2
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 23
- 239000012768 molten material Substances 0.000 abstract 2
- 239000000463 material Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 23
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 20
- 239000004215 Carbon black (E152) Substances 0.000 description 13
- 229930195733 hydrocarbon Natural products 0.000 description 13
- 150000002430 hydrocarbons Chemical class 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 11
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 239000007787 solid Substances 0.000 description 7
- 229910052723 transition metal Inorganic materials 0.000 description 6
- 150000003624 transition metals Chemical class 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000000395 magnesium oxide Substances 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000000634 powder X-ray diffraction Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 238000000629 steam reforming Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000009837 dry grinding Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、12CaO・7Al2O3化合物微粒子含有触媒担体の製造方法に関する。 The present invention relates to a process for producing a catalyst support containing fine particles of 12CaO · 7Al 2 O 3 compound.
水素は従来、各種水素添加反応の還元剤、あるいはアンモニアやメタノールの製造用原料として大量に使用されている。近年、クリーンエネルギーとして着目され、燃料電池の燃料としても注目されている。燃料電池車の開発も進められており、実用化されれば水素のエネルギーとしての需要は大きく、今後も水素の使用量は増大することが想定される。 Conventionally, hydrogen is used in large quantities as a reducing agent for various hydrogenation reactions or as a raw material for producing ammonia and methanol. In recent years, it has attracted attention as clean energy and has attracted attention as a fuel for fuel cells. Fuel cell vehicles are also being developed, and if they are put to practical use, the demand for hydrogen energy will be large, and it is expected that the amount of hydrogen used will continue to increase.
水素の製造方法としては様々な方法があるが、メタン等の炭化水素と水蒸気を反応させて、水素を製造する水蒸気改質法が一般的に用いられている。この水蒸気改質法に用いられる触媒としては、Niを担持したアルミナ触媒が工業的に利用されている。 Although there are various methods for producing hydrogen, a steam reforming method is generally used in which hydrogen is produced by reacting a hydrocarbon such as methane with steam. As a catalyst used in this steam reforming method, an alumina catalyst supporting Ni is industrially used.
一方、特異な結晶構造を有する12CaO・7Al2O3化合物は、その結晶構造内に酸素イオンラジカルを高濃度に含むことが知られており、酸化触媒、イオン伝導体などの用途に有用であることが提案されている(特許文献1、2、3)。さらに、アンモニアを合成するための安定で高性能な触媒として利用できることが提案されている(特許文献4)。 On the other hand, a 12CaO · 7Al 2 O 3 compound having a unique crystal structure is known to contain oxygen ion radicals in a high concentration in the crystal structure, and is useful for applications such as oxidation catalysts and ion conductors. (Patent Documents 1, 2, and 3). Furthermore, it has been proposed that it can be used as a stable and high-performance catalyst for synthesizing ammonia (Patent Document 4).
しかしながら、前記の水蒸気改質法によれば、メタンガスから水素が得られるとともに二酸化炭素が生成するという問題がある。従って、二酸化炭素が生成しない水素の製造方法が望まれる。
また、12CaO・7Al2O3化合物が水素製造用触媒の担体として利用できることは報告されていない。
本発明の課題は、炭化水素ガスを直接分解して水素を製造できる触媒の担体の製造方法を提供することにある。
However, the steam reforming method has a problem that hydrogen is obtained from methane gas and carbon dioxide is generated. Therefore, a method for producing hydrogen that does not produce carbon dioxide is desired.
Further, it has not been reported that 12CaO · 7Al 2 O 3 compound can be used as a carrier for a catalyst for hydrogen production.
An object of the present invention is to provide a method for producing a catalyst carrier capable of producing hydrogen by directly decomposing hydrocarbon gas.
そこで本発明者は、炭化水素ガスから水素を生産する方法に用いることのできる触媒の担体について検討してきたところ、特定の方法で製造した12CaO・7Al2O3化合物微粒子含有担体を用いた触媒が炭化水素ガスを直接分解して水素ガスが効率良く製造できることを見出し、本発明を完成した。 Therefore, the present inventor has examined a catalyst carrier that can be used in a method for producing hydrogen from hydrocarbon gas. As a result, a catalyst using a 12CaO · 7Al 2 O 3 compound fine particle-containing carrier produced by a specific method is disclosed. It has been found that hydrogen gas can be efficiently produced by directly decomposing hydrocarbon gas, and the present invention has been completed.
すなわち、本発明は、次の〔1〕〜〔3〕を提供するものである。 That is, the present invention provides the following [1] to [3].
〔1〕酸化カルシウム/酸化アルミニウム換算のモル比(CaO/Al2O3)が1.5〜1.7の範囲に調整されたカルシウム化合物及びアルミニウム化合物の混合物を、酸素分圧0.02気圧以上の酸素雰囲気中、1400℃以上の温度に加熱し、得られた溶融物を冷却し、次いで得られた12CaO・7Al2O3化合物の固化物を粉砕することを特徴とする12CaO・7Al2O3化合物微粒子含有触媒担体の製造方法。
〔2〕12CaO・7Al2O3化合物微粒子のBET比表面積が2m2/g以上である〔1〕記載の製造方法。
〔3〕触媒が、水素製造用触媒である〔1〕又は〔2〕記載の製造方法。
[1] A mixture of a calcium compound and an aluminum compound in which the molar ratio (CaO / Al 2 O 3 ) in terms of calcium oxide / aluminum oxide is adjusted to a range of 1.5 to 1.7 is used. during more oxygen atmosphere, heated to a temperature above 1400 ° C., the resulting melt was cooled, then 12CaO · 7Al 2, characterized by pulverizing the solidified product obtained 12CaO · 7Al 2 O 3 compound A method for producing a catalyst carrier containing O 3 compound fine particles.
[2] The production method according to [1], wherein the 12CaO · 7Al 2 O 3 compound fine particles have a BET specific surface area of 2 m 2 / g or more.
[3] The production method according to [1] or [2], wherein the catalyst is a hydrogen production catalyst.
本発明方法によれば、高純度で、かつ水素製造用触媒の担体として有用な12CaO・7Al2O3化合物微粒子が効率良く製造できる。 According to the method of the present invention, 12CaO · 7Al 2 O 3 compound fine particles having high purity and useful as a support for a catalyst for hydrogen production can be produced efficiently.
本発明の12CaO・7Al2O3化合物微粒子含有触媒担体の製造方法は、酸化カルシウム/酸化アルミニウム換算のモル比(CaO/Al2O3)が1.5〜1.7の範囲に調整されたカルシウム化合物及びアルミニウム化合物の混合物を、酸素分圧0.02気圧以上の酸素雰囲気中、1400℃以上の温度に加熱し、得られた溶融物を冷却し、次いで得られた12CaO・7Al2O3化合物の固化物を粉砕することを特徴とする。 In the method for producing a catalyst support containing fine particles of 12CaO · 7Al 2 O 3 of the present invention, the molar ratio (CaO / Al 2 O 3 ) in terms of calcium oxide / aluminum oxide was adjusted to a range of 1.5 to 1.7. A mixture of calcium compound and aluminum compound is heated to a temperature of 1400 ° C. or higher in an oxygen atmosphere having an oxygen partial pressure of 0.02 atm or higher, the resulting melt is cooled, and then the 12CaO · 7Al 2 O 3 obtained is cooled. The solidified product of the compound is pulverized.
原料として用いるカルシウム化合物としては、酸化カルシウム、炭酸カルシウム等が挙げられる。また、アルミニウム化合物としては、酸化アルミニウムが挙げられるが、酸化アルミニウムの結晶構造はα型、γ型のいずれでもよい。また、これらのカルシウム化合物及びアルミニウム化合物は、粉末、固体焼結物、固体単結晶など形状を問わない。原料の混合比率は、高純度の12CaO・7Al2O3化合物を得る点から、酸化物換算のモル比〔(CaO)/(Al2O3)〕で、1.5以上1.7以下であり、1.6以上1.7以下がより好ましい。この比率が1.5未満あるいは、1.7を超えると12CaO・7Al2O3化合物が得られ難い。 Examples of calcium compounds used as raw materials include calcium oxide and calcium carbonate. Examples of the aluminum compound include aluminum oxide. The crystal structure of aluminum oxide may be either α-type or γ-type. Moreover, these calcium compounds and aluminum compounds do not ask | require shapes, such as a powder, a solid sintered compact, and a solid single crystal. The mixing ratio of the raw materials is a molar ratio [(CaO) / (Al 2 O 3 )] in terms of oxide from the point of obtaining a high purity 12CaO · 7Al 2 O 3 compound. Yes, 1.6 to 1.7 is more preferable. If this ratio is less than 1.5 or exceeds 1.7, it is difficult to obtain a 12CaO · 7Al 2 O 3 compound.
カルシウム化合物及びアルミニウム化合物の混合物の加熱は、酸素雰囲気中で行なわれる。酸素雰囲気は、12CaO・7Al2O3化合物を得る点から、酸素分圧として0.02気圧(酸素濃度2%)以上であることが必要であり、酸素分圧として0.02気圧以上0.8気圧以下が好ましく、酸素分圧として0.1気圧以上0.3気圧以下がさらに好ましい。
加熱条件は、12CaO・7Al2O3化合物の溶融温度以上とすることが必要であり、最高温度は1400℃以上であり、1400℃以上2500℃以下とするのがより好ましく、1400℃以上1800℃以下とするのがさらに好ましい。加熱は、1400℃以上の温度に1時間以上維持するのが12CaO・7Al2O3化合物を高純度で得る点で好ましく、1400℃以上の温度に2時間以上24時間以下維持するのがより好ましい。
Heating of the mixture of the calcium compound and the aluminum compound is performed in an oxygen atmosphere. From the viewpoint of obtaining a 12CaO.7Al 2 O 3 compound, the oxygen atmosphere needs to be 0.02 atm (oxygen concentration 2%) or more as the oxygen partial pressure, and 0.02 atm or more as the oxygen partial pressure is 0.00. 8 atm or less is preferable, and the oxygen partial pressure is more preferably 0.1 atm or more and 0.3 atm or less.
The heating condition is required to be equal to or higher than the melting temperature of the 12CaO · 7Al 2 O 3 compound, and the maximum temperature is 1400 ° C. or higher, more preferably 1400 ° C. to 2500 ° C., and more preferably 1400 ° C. to 1800 ° C. The following is more preferable. Heating is preferably maintained at a temperature of 1400 ° C. or higher for 1 hour or longer from the viewpoint of obtaining a 12CaO.7Al 2 O 3 compound with high purity, and more preferably maintained at a temperature of 1400 ° C. or higher for 2 hours or longer and 24 hours or shorter. .
前記温度に加熱することにより、原料化合物が溶融してカルシウムアルミネートが生成するので、冷却して固化物とし、得られた固化物を粉砕すれば12CaO・7Al2O3化合物微粒子が得られる。
冷却条件は、特に制限されないが、溶融後の温度が1200℃以下となるまでは降温速度50℃/時間以上600℃/時間以下が好ましい。
生成した12CaO・7Al2O3化合物の固化物は、結晶質およびガラス質のいずれでもよい。12CaO・7Al2O3化合物の純度は50%以上でその他のカルシウムアルミネート化合物を含んでもよいが、触媒担体として効果的に性能を発揮するためには、12CaO・7Al2O3化合物の純度が80%以上であることが好ましい。
12CaO・7Al2O3化合物の固化物の粉砕工程は、乾式粉砕ならびに12CaO・7Al2O3化合物の水和を防ぐため有機溶媒を用いた湿式粉砕のいずれかの微粉砕方法を用いることができる。得られる微粒子は、BET比表面積が2m2/g以上の微粉末であることが触媒活性の点で好ましい。
By heating to the above temperature, the raw material compound is melted to produce calcium aluminate, so that it is cooled to obtain a solidified product, and the obtained solidified product is pulverized to obtain 12CaO · 7Al 2 O 3 compound fine particles.
The cooling conditions are not particularly limited, but a cooling rate of 50 ° C./hour or more and 600 ° C./hour or less is preferable until the temperature after melting becomes 1200 ° C. or less.
The produced solidified product of 12CaO · 7Al 2 O 3 compound may be crystalline or glassy. The purity of the 12CaO · 7Al 2 O 3 compound is 50% or more and may contain other calcium aluminate compounds. However, in order to effectively perform as a catalyst carrier, the purity of the 12CaO · 7Al 2 O 3 compound is It is preferable that it is 80% or more.
Grinding step of solid of 12CaO · 7Al 2 O 3 compound can be any of milling methods wet milling using an organic solvent to prevent hydration of dry grinding and 12CaO · 7Al 2 O 3 compound . The fine particles obtained are preferably fine powders having a BET specific surface area of 2 m 2 / g or more from the viewpoint of catalytic activity.
本発明方法により得られた12CaO・7Al2O3化合物微粒子含有触媒担体に遷移金属を担持させた触媒を用いれば、炭化水素ガスから水素ガスが効率良く製造できる。 If a catalyst in which a transition metal is supported on a catalyst support containing 12CaO · 7Al 2 O 3 fine particles obtained by the method of the present invention is used, hydrogen gas can be efficiently produced from hydrocarbon gas.
触媒に用いられる遷移金属としては、Ni、Pt、Pd、Ru、Rh、Co等の8族、9族及び10族から選ばれる元素の1種又は2種以上が挙げられる。例えば、二元系、三元系等の不均一触媒でもよい。水素製造活性の点から、Ni、Pt、Pd、Ru、Rhがより好ましく、Niが特に好ましい。
遷移金属の粒子径は、水素製造活性の点、担体表面への高い分散度を確保する点から、小さいことが好ましく、メジアン径として0.001μm以上1μm以下が好ましく、0.001μm以上0.1μm以下がより好ましく、0.001μm以上0.01μm以下がさらに好ましい。ここで、メジアン径は、動的光散乱法による累積頻度が50%となる粒径値である。
Examples of the transition metal used in the catalyst include one or more elements selected from Group 8, Group 9, and Group 10, such as Ni, Pt, Pd, Ru, Rh, and Co. For example, a heterogeneous catalyst such as a binary system or a ternary system may be used. From the viewpoint of hydrogen production activity, Ni, Pt, Pd, Ru, and Rh are more preferable, and Ni is particularly preferable.
The particle diameter of the transition metal is preferably small from the viewpoint of hydrogen production activity and the high degree of dispersion on the support surface. The median diameter is preferably 0.001 μm to 1 μm, preferably 0.001 μm to 0.1 μm. The following is more preferable, and 0.001 μm or more and 0.01 μm or less is more preferable. Here, the median diameter is a particle diameter value at which the cumulative frequency by the dynamic light scattering method is 50%.
12CaO・7Al2O3化合物微粒子担体への遷移金属の担持は、例えば有機溶媒を用いた含浸法で行うことができる。具体的には、遷移金属のヘキサン等の有機溶媒分散液中に担体を投入後、撹拌し、溶媒を蒸発させればよい。ここで、遷移金属の担持量は、担体に対して、0.1〜40質量%が好ましく、1〜20質量%がより好ましい。 The transition metal can be supported on the 12CaO.7Al 2 O 3 compound fine particle support by, for example, an impregnation method using an organic solvent. Specifically, the support may be put into an organic solvent dispersion such as hexane of a transition metal and then stirred to evaporate the solvent. Here, the supported amount of the transition metal is preferably 0.1 to 40% by mass, and more preferably 1 to 20% by mass with respect to the carrier.
前記の触媒を用いれば、炭化水素ガスを直接分解して水素を製造することができる。すなわち、前記の触媒に炭化水素ガスを接触させれば、炭化水素が直接分解して水素ガスが得られる。反応は、メタンガスの場合を例にとれば、CH4→C+2H2となる。従って、二酸化炭素や一酸化炭素が副生しない。
炭化水素ガスとしては、飽和炭化水素ガスが好ましく、炭素数1〜4の飽和炭化水素ガスがより好ましく、メタンガスがさらに好ましい。
炭化水素ガスの反応温度は、400℃以上が好ましく、高転化率を維持するためには600℃以上がより好ましい。また反応温度の上限は1000℃で十分である。
炭化水素ガスは、副反応を防止するため二酸化炭素や水素含有量は少ないのが好ましい。
If the catalyst is used, hydrogen can be produced by directly decomposing hydrocarbon gas. That is, if hydrocarbon gas is brought into contact with the catalyst, the hydrocarbon is directly decomposed to obtain hydrogen gas. Taking the case of methane gas as an example, the reaction is CH 4 → C + 2H 2 . Therefore, carbon dioxide and carbon monoxide are not by-produced.
As the hydrocarbon gas, a saturated hydrocarbon gas is preferable, a saturated hydrocarbon gas having 1 to 4 carbon atoms is more preferable, and methane gas is more preferable.
The reaction temperature of the hydrocarbon gas is preferably 400 ° C. or higher, and more preferably 600 ° C. or higher in order to maintain a high conversion rate. The upper limit of the reaction temperature is sufficient to be 1000 ° C.
The hydrocarbon gas preferably has a low carbon dioxide or hydrogen content in order to prevent side reactions.
より具体的には、図1に示すようなガス流通触媒反応管を用いて炭化水素ガスから水素を製造するのが好ましい。すなわち、触媒を設置した反応管中で炭化水素ガス(メタンガス等)を流通させて反応ガスを回収すればよい。反応管は加熱炉により400℃以上に加熱する。 More specifically, it is preferable to produce hydrogen from hydrocarbon gas using a gas flow catalyst reaction tube as shown in FIG. That is, the reaction gas may be recovered by circulating hydrocarbon gas (methane gas or the like) in a reaction tube provided with a catalyst. The reaction tube is heated to 400 ° C. or higher by a heating furnace.
次に実施例を挙げて本発明を更に詳細に説明する。 EXAMPLES Next, an Example is given and this invention is demonstrated still in detail.
実施例1
酸化カルシウムとα型酸化アルミニウムがモル比[CaO]/[Al2O3]=1.63となる混合粉末を酸化マグネシウム坩堝に入れ、酸素濃度21%の乾燥空気中で昇温速度400℃/時間で1440℃まで昇温し、溶融させた状態で3時間保持した後降温速度150℃/時間で室温まで徐冷し固化物を作製した。得られた固化物は、黄色がかった白色の固体であって粉末X線回折より12CaO・7Al2O3を主相とする回折パターンが確認された。12CaO・7Al2O3化合物の純度は90.1%であった。12CaO・7Al2O3化合物の純度は粉末X線回折で確認された結晶相と蛍光X線分析で得られた化学成分比より計算した。
得られた凝固物は、ジェットミルにて粉砕し、粉砕後のBET比表面積が3.5m2/gであった。
Example 1
A mixed powder in which the molar ratio of calcium oxide and α-type aluminum oxide is [CaO] / [Al 2 O 3 ] = 1.63 is placed in a magnesium oxide crucible, and the temperature rise rate is 400 ° C./in dry air having an oxygen concentration of 21%. The temperature was raised to 1440 ° C. over time, held in the molten state for 3 hours, and then gradually cooled to room temperature at a temperature drop rate of 150 ° C./hour to produce a solidified product. The obtained solidified product was a yellowish white solid, and a diffraction pattern having 12CaO · 7Al 2 O 3 as a main phase was confirmed by powder X-ray diffraction. The purity of the 12CaO · 7Al 2 O 3 compound was 90.1%. The purity of the 12CaO · 7Al 2 O 3 compound was calculated from the crystal phase confirmed by powder X-ray diffraction and the chemical component ratio obtained by fluorescent X-ray analysis.
The obtained solidified product was pulverized by a jet mill, and the BET specific surface area after pulverization was 3.5 m 2 / g.
実施例2
酸化カルシウムとα型酸化アルミニウムがモル比[CaO]/[Al2O3]=1.63となる混合粉末を酸化マグネシウム坩堝に入れ、酸素濃度2%の乾燥空気中で昇温速度400℃/時間で1440℃まで昇温し、溶融させた状態で3時間保持した後降温速度150℃/時間で室温まで徐冷し固化物を作製した。得られた固化物は、黄色がかった白色の固体であって粉末X線回折より12CaO・7Al2O3主相とする回折パターンが確認された。12CaO・7Al2O3化合物の純度は94.8質量%であった。
得られた凝固物は、ジェットミルにて粉砕し、粉砕後のBET比表面積が3.2m2/gであった。
Example 2
A mixed powder in which the molar ratio of calcium oxide and α-type aluminum oxide is [CaO] / [Al 2 O 3 ] = 1.63 is placed in a magnesium oxide crucible and heated in a dry air with an oxygen concentration of 2% at a heating rate of 400 ° C. / The temperature was raised to 1440 ° C. over time, held in the molten state for 3 hours, and then gradually cooled to room temperature at a temperature drop rate of 150 ° C./hour to produce a solidified product. The obtained solidified product was a yellowish white solid, and a diffraction pattern of a 12CaO · 7Al 2 O 3 main phase was confirmed by powder X-ray diffraction. The purity of the 12CaO · 7Al 2 O 3 compound was 94.8% by mass.
The obtained solidified product was pulverized by a jet mill, and the BET specific surface area after pulverization was 3.2 m 2 / g.
比較例1
酸化カルシウムと酸化アルミニウムがモル比[CaO]/[Al2O3]=1.75となる混合粉末を酸化マグネシウム坩堝に入れ、酸素濃度21%の乾燥空気中で昇温速度400℃/時間で1440℃まで昇温し、溶融させた状態で3時間保持した後降温速度150℃/時間で室温まで徐冷し、固化物を作製した。得られた固化物は、白色の固体であって粉末X線回折より3CaO・Al2O3を主相とする回折パターンが確認され、12CaO・7Al2O3の回折パターンは確認されなかった。
Comparative Example 1
A mixed powder in which the molar ratio of calcium oxide and aluminum oxide is [CaO] / [Al 2 O 3 ] = 1.75 is placed in a magnesium oxide crucible and heated in a dry air with an oxygen concentration of 21% at a heating rate of 400 ° C./hour. The temperature was raised to 1440 ° C., kept in the melted state for 3 hours, and then gradually cooled to room temperature at a temperature lowering rate of 150 ° C./hour to produce a solidified product. The obtained solidified product was a white solid, and a diffraction pattern having 3CaO · Al 2 O 3 as a main phase was confirmed by powder X-ray diffraction, and a diffraction pattern of 12CaO · 7Al 2 O 3 was not confirmed.
比較例2
酸化カルシウムと酸化アルミニウムがモル比[CaO]/[Al2O3]=1.63となる混合粉末を酸化マグネシウム坩堝に入れ、酸素濃度1%および窒素濃度99%の混合ガス中で昇温速度400℃/時間で1440℃まで昇温し、溶融させた状態で3時間保持した後降温速度150℃/時間で室温まで徐冷し、固化物を作製した。得られた固化物は、白色の固体であって粉末X線回折より3CaO・Al2O3や5CaO・3Al2O3に帰属する回折パターンが確認され、12CaO・7Al2O3の回折パターンは確認されなかった。
Comparative Example 2
A mixed powder in which the molar ratio of calcium oxide and aluminum oxide is [CaO] / [Al 2 O 3 ] = 1.63 is placed in a magnesium oxide crucible, and the rate of temperature rise in a mixed gas having an oxygen concentration of 1% and a nitrogen concentration of 99% The temperature was raised to 1440 ° C. at 400 ° C./hour, held for 3 hours in a molten state, and then gradually cooled to room temperature at a temperature drop rate of 150 ° C./hour to produce a solidified product. The resulting solidified product, a diffraction pattern attributable to a white solid and was a powder X-ray 3CaO · than the diffraction as Al 2 O 3 and 5CaO · 3Al 2 O 3 is confirmed, the diffraction pattern of the 12CaO · 7Al 2 O 3 is It was not confirmed.
参考例1
実施例1で作製した触媒用担体に活性金属を担持するため、担持量が5質量%となるようNiナノ粒子(メジアン径5.0nm)のヘキサン分散液中に担体粉末を投入後、スターラーで24時間撹拌しヘキサン溶媒を蒸発させNi触媒を作製した。
Reference example 1
In order to support the active metal on the catalyst support prepared in Example 1, the support powder was introduced into a hexane dispersion of Ni nanoparticles (median diameter 5.0 nm) so that the supported amount was 5% by mass, and then a stirrer. The mixture was stirred for 24 hours, and the hexane solvent was evaporated to prepare a Ni catalyst.
(触媒性能評価)
図1の模式構成図に示すガス流通触媒反応管を用いて、メタンの直接分解による水素生成に対する触媒活性を調べた。
石英反応管内に触媒試料を設置し、窒素ガス流通雰囲気にて700℃まで昇温した後5000mL/hrの流速でメタンガスを流し1時間保持した。その後、反応ガスを回収してガスクロマトグラフィーにてメタンガス濃度及び水素ガス濃度を測定し、メタン転化率ならびに水素収率を算出して触媒活性を評価した。
その結果、メタン転化率が25.7%、水素収率が23.1%であった。
(Catalyst performance evaluation)
Using the gas flow catalytic reaction tube shown in the schematic configuration diagram of FIG. 1, the catalytic activity for hydrogen generation by direct decomposition of methane was examined.
A catalyst sample was placed in a quartz reaction tube, heated to 700 ° C. in a nitrogen gas flow atmosphere, and then methane gas was flowed at a flow rate of 5000 mL / hr and held for 1 hour. Thereafter, the reaction gas was recovered, the methane gas concentration and the hydrogen gas concentration were measured by gas chromatography, the methane conversion rate and the hydrogen yield were calculated, and the catalytic activity was evaluated.
As a result, the methane conversion was 25.7% and the hydrogen yield was 23.1%.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017040090A JP6941454B2 (en) | 2017-03-03 | 2017-03-03 | Method for producing catalyst carrier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017040090A JP6941454B2 (en) | 2017-03-03 | 2017-03-03 | Method for producing catalyst carrier |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018143940A true JP2018143940A (en) | 2018-09-20 |
JP6941454B2 JP6941454B2 (en) | 2021-09-29 |
Family
ID=63588485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017040090A Active JP6941454B2 (en) | 2017-03-03 | 2017-03-03 | Method for producing catalyst carrier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6941454B2 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52138504A (en) * | 1976-03-16 | 1977-11-18 | Mitsui Toatsu Chem Inc | Catalytic gasification |
JP2002003218A (en) * | 2000-04-18 | 2002-01-09 | Japan Science & Technology Corp | 12CaO.7Al2O3 COMPOUND INCLUDING ACTIVE OXYGEN SEED AND ITS PRODUCTION METHOD |
JP2003128415A (en) * | 2001-10-18 | 2003-05-08 | Japan Science & Technology Corp | 12CaO-7Al2O3 COMPOUND AND METHOD FOR PREPARING THE SAME |
JP2005040762A (en) * | 2003-07-25 | 2005-02-17 | Denki Kagaku Kogyo Kk | Molybdenum scavenger |
JP2005523871A (en) * | 2002-05-01 | 2005-08-11 | コーニング インコーポレイテッド | Manufacture of low thermal expansion calcium aluminate products |
JP2006122793A (en) * | 2004-10-28 | 2006-05-18 | Toda Kogyo Corp | Catalyst and its manufacturing method, catalyst for shift reaction of water gas, method for producing water gas, and catalyst and method for cleaning exhaust gas |
WO2010053132A1 (en) * | 2008-11-06 | 2010-05-14 | 日本たばこ産業株式会社 | Smoking article and method for manufacturing same, and method for manufacturing carbon monoxide reducing agent |
JP2011207648A (en) * | 2010-03-29 | 2011-10-20 | Sumitomo Chemical Co Ltd | METHOD FOR PRODUCING COMPOSITE METAL OXIDE REPRESENTED BY COMPOSITION FORMULA: 12Ca1-xSrxO-7Al2O3 (x=0-1) |
WO2014045780A1 (en) * | 2012-09-20 | 2014-03-27 | 国立大学法人東京工業大学 | Hydrogen generation catalyst and method for producing hydrogen |
-
2017
- 2017-03-03 JP JP2017040090A patent/JP6941454B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52138504A (en) * | 1976-03-16 | 1977-11-18 | Mitsui Toatsu Chem Inc | Catalytic gasification |
JP2002003218A (en) * | 2000-04-18 | 2002-01-09 | Japan Science & Technology Corp | 12CaO.7Al2O3 COMPOUND INCLUDING ACTIVE OXYGEN SEED AND ITS PRODUCTION METHOD |
JP2003128415A (en) * | 2001-10-18 | 2003-05-08 | Japan Science & Technology Corp | 12CaO-7Al2O3 COMPOUND AND METHOD FOR PREPARING THE SAME |
JP2005523871A (en) * | 2002-05-01 | 2005-08-11 | コーニング インコーポレイテッド | Manufacture of low thermal expansion calcium aluminate products |
JP2005040762A (en) * | 2003-07-25 | 2005-02-17 | Denki Kagaku Kogyo Kk | Molybdenum scavenger |
JP2006122793A (en) * | 2004-10-28 | 2006-05-18 | Toda Kogyo Corp | Catalyst and its manufacturing method, catalyst for shift reaction of water gas, method for producing water gas, and catalyst and method for cleaning exhaust gas |
WO2010053132A1 (en) * | 2008-11-06 | 2010-05-14 | 日本たばこ産業株式会社 | Smoking article and method for manufacturing same, and method for manufacturing carbon monoxide reducing agent |
JP2011207648A (en) * | 2010-03-29 | 2011-10-20 | Sumitomo Chemical Co Ltd | METHOD FOR PRODUCING COMPOSITE METAL OXIDE REPRESENTED BY COMPOSITION FORMULA: 12Ca1-xSrxO-7Al2O3 (x=0-1) |
WO2014045780A1 (en) * | 2012-09-20 | 2014-03-27 | 国立大学法人東京工業大学 | Hydrogen generation catalyst and method for producing hydrogen |
Non-Patent Citations (1)
Title |
---|
XIE, H. ET AL., ENERGY FUELS, vol. 30, JPN6020033946, 12 February 2016 (2016-02-12), US, pages 2336 - 2344, ISSN: 0004462205 * |
Also Published As
Publication number | Publication date |
---|---|
JP6941454B2 (en) | 2021-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11772071B2 (en) | Metal-decorated barium calcium aluminum oxide and related materials for NH3 catalysis | |
Pinzón et al. | Hydrogen production by ammonia decomposition over ruthenium supported on SiC catalyst | |
Jafarbegloo et al. | NiO–MgO solid solution prepared by sol–gel method as precursor for Ni/MgO methane dry reforming catalyst: effect of calcination temperature on catalytic performance | |
US10173202B2 (en) | Supported metal catalyst and method of synthesizing ammonia using the same | |
Choudhary et al. | Oxidative conversion of methane to syngas over LaNiO3Perovskite with or without simultaneous steam and CO2Reforming reactions: influence of partial substitution of La and Ni | |
US7001586B2 (en) | CO-free hydrogen from decomposition of methane | |
Yan et al. | Synthesis of tungsten carbide nanoparticles in biochar matrix as a catalyst for dry reforming of methane to syngas | |
Shiozaki et al. | Partial oxidation of methane over a Ni/BaTiO 3 catalyst prepared by solid phase crystallization | |
Candamano et al. | Preparation and characterization of active Ni-supported catalyst for syngas production | |
Chen et al. | High catalytic performance of mesoporous zirconia supported nickel catalysts for selective CO methanation | |
JP3755662B2 (en) | Method for producing carbon nanotube | |
WO2018044241A1 (en) | Method of producing a methanation catalyst | |
Bai et al. | A composite having a porous substrate and polyhedral Cu-Fe oxide nanoparticles showing high catalytic activity during the steam reforming of methanol at low temperatures | |
JP6280443B2 (en) | Catalyst, catalyst production method, ammonia synthesis method, ammonia decomposition method | |
JP6851860B2 (en) | Hydrogen production catalyst and hydrogen production method | |
JP2015504356A (en) | Catalyst composition for methane steam reforming in fuel cells | |
Shah et al. | Partial oxidation of surrogate Jet-A fuel over SiO2 supported MoO2 | |
US6995115B2 (en) | Catalyst for the generation of CO-free hydrogen from methane | |
JP6941454B2 (en) | Method for producing catalyst carrier | |
Chen et al. | Production of hydrogen by partial oxidation of methanol over ZnO-promoted copper catalysts supported on rice husk ash | |
TANG et al. | Effect of modifiers on the performance of Cu-ZnO-based catalysts for low-temperature methanol synthesis | |
JP7040978B2 (en) | Calcium aluminate powder | |
Luong et al. | Facile Synthesis of MnO 2@ SiO 2/Carbon Nanocomposite-based Gold Catalysts from Rice Husk for Low-Temperature CO Oxidation | |
JP2019178015A (en) | Hydrogen production method involving direct decomposition of hydrocarbon | |
JP2019172540A (en) | Method for producing calcium aluminate powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191227 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210316 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210831 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210906 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6941454 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |