JP2018143092A - Control device, control method, and program - Google Patents

Control device, control method, and program Download PDF

Info

Publication number
JP2018143092A
JP2018143092A JP2018095556A JP2018095556A JP2018143092A JP 2018143092 A JP2018143092 A JP 2018143092A JP 2018095556 A JP2018095556 A JP 2018095556A JP 2018095556 A JP2018095556 A JP 2018095556A JP 2018143092 A JP2018143092 A JP 2018143092A
Authority
JP
Japan
Prior art keywords
power generation
output
index
device group
generation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018095556A
Other languages
Japanese (ja)
Other versions
JP6508392B2 (en
Inventor
耕治 工藤
Koji Kudo
耕治 工藤
礼明 小林
Noriaki Kobayashi
礼明 小林
康将 本間
Kosuke Homma
康将 本間
鈴木 勝也
Katsuya Suzuki
勝也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2018095556A priority Critical patent/JP6508392B2/en
Publication of JP2018143092A publication Critical patent/JP2018143092A/en
Application granted granted Critical
Publication of JP6508392B2 publication Critical patent/JP6508392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress an output of each power generation device so as to maintain fairness of an output suppression when a suppression of an output of a power generation device such as a renewable energy power source is required.SOLUTION: A control device includes: a determination unit that determines output control information of a plurality of predetermined power generation devices on the basis of a first index relating to an output state of a power generation group and a second index relating to an output state of the plurality of predetermined power generation devices belonging to the power generation device group; and a communication unit that transmits the output control information to a plurality of corresponding predetermined power generation devices. The determination unit determines the output control information according to a difference between an output state of the power generation device group in an output control time zone and an output state of the predetermined power generation devices belonging to the power generation device group.SELECTED DRAWING: Figure 1A

Description

本発明は、発電装置を制御する制御装置、制御方法およびプログラムに関する。   The present invention relates to a control device, a control method, and a program for controlling a power generation device.

太陽光発電装置や風力発電装置などの再生可能エネルギーを用いて発電する発電装置(以下「再エネ電源」とも称する)が接続された電力系統が知られている。
再エネ電源が接続された電力系統では、電力需要を電力供給が上回る場合、再エネ電源等の発電装置の出力(電力供給)を抑制する必要が生じる。
特許文献1には、電力系統に接続されたPV(Photovoltaic power generation:太陽光発電)装置の出力を抑制する電力系統制御システムが記載されている。
この電力系統制御システムは、PV装置の定格出力に基づいて、複数のPV装置をグループ分けする。そして、この電力系統制御システムは、電力需給バランスを満足させるために、グループ単位でPV装置の出力を抑制する。
2. Description of the Related Art There is known an electric power system to which a power generation device (hereinafter also referred to as “renewable power source”) that generates power using renewable energy such as a solar power generation device or a wind power generation device is connected.
In a power system to which a renewable energy power source is connected, when the power supply exceeds the power demand, it is necessary to suppress the output (power supply) of a power generator such as a renewable energy power source.
Patent Document 1 describes a power system control system that suppresses the output of a PV (Photovoltaic power generation) device connected to the power system.
The power system control system groups a plurality of PV devices based on the rated output of the PV devices. And this electric power system control system suppresses the output of a PV apparatus per group in order to satisfy electric power supply-demand balance.

特許第5460622号公報Japanese Patent No. 5460622

現在、電力系統の管理者(例えば、電力会社)がアグリゲータやPPS(Power Producer and Supplier:特定規模電気事業者)、IPP(Independent Power Producer:独立系発電事業者)、及び再エネ電源等を有する一般の需要家から再エネ電源等の発電装置の出力(電力)を買い取る仕組みが検討されている。
この仕組みでは、例えば、複数のIPPの各々の発電装置(例えば、再エネ電源)が電力系統に接続されている場合に、特定のIPPの発電装置の出力が常に優先的に買い取られ、他のIPPの発電装置の出力が常に抑制されることは好ましくない。このため、再エネ電源等の発電装置の出力を抑制する必要が生じたとき、出力抑制の公平性を保つように各発電装置の出力を抑制することが求められる。
特許文献1に記載の電力系統制御システムは、電力需給バランスを満足させるためにグループ単位でPV装置の出力を単に抑制するシステムであり、出力抑制の公平性に関して何ら考慮していない。したがって、この電力系統制御システムでは、公平性を保つように各発電装置の出力を抑制することは困難であった。
Currently, power system managers (eg, power companies) have aggregators, PPS (Power Producer and Supplier), IPP (Independent Power Producer), and renewable energy sources. A mechanism for purchasing the output (electric power) of a power generation device such as a renewable energy power source from general consumers is being studied.
In this mechanism, for example, when each power generation device (for example, renewable energy power supply) of a plurality of IPPs is connected to the power system, the output of the power generation device of a specific IPP is always preferentially purchased, It is not preferable that the output of the IPP generator is always suppressed. For this reason, when the output of power generators, such as a renewable energy power supply, needs to be suppressed, it is calculated | required to suppress the output of each power generator so that the fairness of output suppression may be maintained.
The power system control system described in Patent Literature 1 is a system that simply suppresses the output of the PV device in units of groups in order to satisfy the power supply-demand balance, and does not consider anything about the fairness of output suppression. Therefore, in this power system control system, it has been difficult to suppress the output of each power generator so as to maintain fairness.

本発明の目的は、上記課題を解決可能な制御装置、制御方法およびプログラムを提供することである。   The objective of this invention is providing the control apparatus, control method, and program which can solve the said subject.

本発明の制御装置は、発電装置群の出力状態に関する第1指標と、前記発電装置群に属する複数の所定発電装置の出力状態に関する第2指標と、に基づいて、前記複数の所定発電装置の出力制御情報を決定する決定部と、
前記出力制御情報を対応する前記複数の所定発電装置に送信する通信部と、を備え、
前記決定部は、出力制御時間帯における前記発電装置群の出力状態と、前記発電装置群に属する前記複数の所定発電装置の出力状態との差に応じて前記出力制御情報を決定する構成である。
The control device according to the present invention is based on a first index related to the output state of the power generation device group and a second index related to the output state of the plurality of predetermined power generation devices belonging to the power generation device group. A determination unit for determining output control information;
A communication unit that transmits the output control information to the corresponding predetermined power generation devices, and
The determination unit is configured to determine the output control information according to a difference between an output state of the power generation device group in an output control time zone and output states of the plurality of predetermined power generation devices belonging to the power generation device group. .

または、発電装置群の出力状態に関する第1指標と、前記発電装置群に属する複数の所定発電装置の出力状態に関する第2指標と、に基づいて、前記複数の所定発電装置の出力制御情報を決定する決定部と、
前記出力制御情報を対応する前記複数の所定発電装置に送信する通信部と、を備え、
前記決定部は、さらに前記発電装置群の出力状態に関する第1指標と、前記発電装置群とは異なる発電装置群の出力状態に関する第1指標との差に応じて前記出力制御情報を決定する構成である。
Alternatively, the output control information of the plurality of predetermined power generation devices is determined based on the first index related to the output state of the power generation device group and the second index related to the output state of the plurality of predetermined power generation devices belonging to the power generation device group. A decision unit to
A communication unit that transmits the output control information to the corresponding predetermined power generation devices, and
The determination unit further determines the output control information according to a difference between a first index relating to an output state of the power generation device group and a first index relating to an output state of a power generation device group different from the power generation device group. It is.

または、発電装置群の出力状態に関する指標に基づいて、前記発電装置群に属する複数の所定発電装置の出力制御情報を決定する決定部と、
前記出力制御情報を対応する前記複数の所定発電装置に送信する通信部と、を備え、
前記決定部は、前記発電装置群の出力状態に関する指標と、前記発電装置群とは異なる発電装置群の出力状態に関する指標との差に応じて前記出力制御情報を決定する構成である。
Alternatively, a determination unit that determines output control information of a plurality of predetermined power generation devices belonging to the power generation device group based on an index related to the output state of the power generation device group;
A communication unit that transmits the output control information to the corresponding predetermined power generation devices, and
The determination unit is configured to determine the output control information according to a difference between an index related to an output state of the power generation device group and an index related to an output state of a power generation device group different from the power generation device group.

または、発電装置群に属する複数の第1発電装置の出力状態に関する指標と、前記発電装置群に属する、前記複数の第1発電装置とは異なる複数の第2発電装置の出力状態に関する指標と、に基づいて、前記複数の第1発電装置の出力制御情報を決定する決定部と、
前記出力制御情報を対応する前記複数の第1発電装置に送信する通信部と、を備え、
前記決定部は、出力制御時間帯における前記複数の第1発電装置の出力状態と、前記複数の第2発電装置の出力状態との差に応じて前記出力制御情報を決定する構成である。
Or, an index relating to the output state of a plurality of first power generation devices belonging to the power generation device group, and an indicator relating to the output state of a plurality of second power generation devices different from the plurality of first power generation devices belonging to the power generation device group, And a determination unit that determines output control information of the plurality of first power generation devices,
A communication unit that transmits the output control information to the corresponding first power generation devices,
The determining unit is configured to determine the output control information according to a difference between an output state of the plurality of first power generation devices and an output state of the plurality of second power generation devices in an output control time period.

または、発電装置群の出力状態に関する第1指標と、前記発電装置群に属する複数の所定発電装置の出力状態に関する第2指標と、に基づいて、前記複数の所定発電装置の出力制御情報を決定する決定部と、
前記出力制御情報を対応する前記複数の所定発電装置に送信する通信部と、を備え、
前記出力制御情報は、
所定時間帯の前記発電装置群の基準発電量と、経過済みの時間帯の前記発電装置群の抑制回数または抑制時間の少なくともいずれか一方とに基づいて設定された前記第1指標と、
前記所定時間帯の前記発電装置群に属する前記複数の所定発電装置の基準発電量と、前記経過済みの時間帯の前記複数の所定発電装置の抑制回数または抑制時間の少なくともいずれか一方とに基づいて設定された前記第2指標との差に応じて決定される構成である。
Alternatively, the output control information of the plurality of predetermined power generation devices is determined based on the first index related to the output state of the power generation device group and the second index related to the output state of the plurality of predetermined power generation devices belonging to the power generation device group. A decision unit to
A communication unit that transmits the output control information to the corresponding predetermined power generation devices, and
The output control information is
The first index set based on a reference power generation amount of the power generation device group in a predetermined time zone and at least one of the number of suppressions or the suppression time of the power generation device group in an elapsed time zone;
Based on a reference power generation amount of the plurality of predetermined power generation devices belonging to the power generation device group in the predetermined time zone and at least one of the number of times of suppression or the suppression time of the plurality of predetermined power generation devices in the elapsed time zone. It is the structure determined according to the difference with the said 2nd parameter | index set by this.

本発明の制御方法は、発電装置群の出力状態に関する第1指標と、前記発電装置群に属する複数の所定発電装置の出力状態に関する第2指標と、に基づいて、前記複数の所定発電装置の出力制御情報を決定し、
前記出力制御情報を対応する前記複数の所定発電装置に送信し、
前記出力制御情報を、出力制御時間帯における前記発電装置群の出力状態と、前記発電装置群に属する前記複数の所定発電装置の出力状態との差に応じて決定する方法である。
The control method of the present invention is based on the first index related to the output state of the power generation device group and the second index related to the output state of the plurality of predetermined power generation devices belonging to the power generation device group. Determine the output control information,
Transmitting the output control information to the corresponding predetermined power generation devices,
The output control information is determined according to a difference between an output state of the power generation device group in an output control time zone and output states of the plurality of predetermined power generation devices belonging to the power generation device group.

または、発電装置群の出力状態に関する第1指標と、前記発電装置群に属する複数の所定発電装置の出力状態に関する第2指標と、に基づいて、前記複数の所定発電装置の出力制御情報を決定し、
前記出力制御情報を対応する前記複数の所定発電装置に送信し、
前記出力制御情報を、前記発電装置群の出力状態に関する第1指標と、前記発電装置群とは異なる発電装置群の出力状態に関する第1指標との差に応じて決定する方法である。
Alternatively, the output control information of the plurality of predetermined power generation devices is determined based on the first index related to the output state of the power generation device group and the second index related to the output state of the plurality of predetermined power generation devices belonging to the power generation device group. And
Transmitting the output control information to the corresponding predetermined power generation devices,
The output control information is determined according to a difference between a first index relating to an output state of the power generation device group and a first index relating to an output state of a power generation device group different from the power generation device group.

または、発電装置群の出力状態に関する指標に基づいて、前記発電装置群に属する複数の所定発電装置の出力制御情報を決定し、
前記出力制御情報を対応する前記複数の所定発電装置に送信し、
前記出力制御情報を、前記発電装置群の出力状態に関する指標と、前記発電装置群とは異なる発電装置群の出力状態に関する指標との差に応じて決定する方法である。
Or, based on an index related to the output state of the power generation device group, determine output control information of a plurality of predetermined power generation devices belonging to the power generation device group,
Transmitting the output control information to the corresponding predetermined power generation devices,
The output control information is determined according to a difference between an index related to an output state of the power generation device group and an index related to an output state of a power generation device group different from the power generation device group.

または、発電装置群に属する複数の第1発電装置の出力状態に関する指標と、前記発電装置群に属する、前記複数の第1発電装置とは異なる複数の第2発電装置の出力状態に関する指標と、に基づいて、前記複数の第1発電装置の出力制御情報を決定し、
前記出力制御情報を対応する前記複数の第1発電装置に送信し、
前記出力制御情報を、出力制御時間帯における前記複数の第1発電装置の出力状態と、前記複数の第2発電装置の出力状態との差に応じて決定する方法である。
Or, an index relating to the output state of a plurality of first power generation devices belonging to the power generation device group, and an indicator relating to the output state of a plurality of second power generation devices different from the plurality of first power generation devices belonging to the power generation device group, And determining output control information of the plurality of first power generators,
Transmitting the output control information to the corresponding first power generators;
The output control information is determined according to a difference between an output state of the plurality of first power generation devices and an output state of the plurality of second power generation devices in an output control time period.

または、発電装置群の出力状態に関する第1指標と、前記発電装置群に属する複数の所定発電装置の出力状態に関する第2指標と、に基づいて、前記複数の所定発電装置の出力制御情報を決定し、
前記出力制御情報を対応する前記複数の所定発電装置に送信し、
前記出力制御情報を、
所定時間帯の前記発電装置群の基準発電量と、経過済みの時間帯の前記発電装置群の抑制回数または抑制時間の少なくともいずれか一方とに基づいて設定された前記第1指標と、前記所定時間帯の前記発電装置群に属する前記複数の所定発電装置の基準発電量と、前記経過済みの時間帯の前記複数の所定発電装置の抑制回数または抑制時間の少なくともいずれか一方とに基づいて設定された前記第2指標との差に応じて決定する方法である。
Alternatively, the output control information of the plurality of predetermined power generation devices is determined based on the first index related to the output state of the power generation device group and the second index related to the output state of the plurality of predetermined power generation devices belonging to the power generation device group. And
Transmitting the output control information to the corresponding predetermined power generation devices,
The output control information is
The first index set based on a reference power generation amount of the power generation device group in a predetermined time zone and at least one of the number of suppressions or the suppression time of the power generation device group in an elapsed time zone; and the predetermined index Set based on a reference power generation amount of the plurality of predetermined power generation devices belonging to the power generation device group in the time zone and at least one of the number of suppressions or the suppression time of the plurality of predetermined power generation devices in the elapsed time zone This is a method of determining according to a difference from the second index.

本発明のプログラムは、コンピュータに、
発電装置群の出力状態に関する第1指標と、前記発電装置群に属する複数の所定発電装置の出力状態に関する第2指標と、に基づいて、前記複数の所定発電装置の出力制御情報を決定する決定手順と、
前記出力制御情報を対応する前記複数の所定発電装置に送信する送信手順と、を実行させるためのものであり、
前記決定手順にて、出力制御時間帯における前記発電装置群の出力状態と、前記発電装置群に属する前記複数の所定発電装置の出力状態との差に応じて前記出力制御情報を決定させるためのものである。
The program of the present invention is stored in a computer.
Determination to determine output control information of the plurality of predetermined power generation devices based on a first index regarding the output state of the power generation device group and a second index regarding the output states of the plurality of predetermined power generation devices belonging to the power generation device group Procedure and
A transmission procedure for transmitting the output control information to the corresponding plurality of predetermined power generation devices, and
In the determination procedure, the output control information is determined according to a difference between an output state of the power generation device group in an output control time zone and an output state of the plurality of predetermined power generation devices belonging to the power generation device group. Is.

または、コンピュータに、
発電装置群の出力状態に関する第1指標と、前記発電装置群に属する複数の所定発電装置の出力状態に関する第2指標と、に基づいて、前記複数の所定発電装置の出力制御情報を決定する決定手順と、
前記出力制御情報を対応する前記複数の所定発電装置に送信する送信手順と、を実行させるためのものであり、
前記決定手順にて、前記発電装置群の出力状態に関する第1指標と、前記発電装置群とは異なる発電装置群の出力状態に関する第1指標との差に応じて前記出力制御情報を決定させるためのものである。
Or on your computer,
Determination to determine output control information of the plurality of predetermined power generation devices based on a first index regarding the output state of the power generation device group and a second index regarding the output states of the plurality of predetermined power generation devices belonging to the power generation device group Procedure and
A transmission procedure for transmitting the output control information to the corresponding plurality of predetermined power generation devices, and
In the determination procedure, the output control information is determined according to a difference between a first index related to the output state of the power generation device group and a first index related to the output state of the power generation device group different from the power generation device group. belongs to.

または、コンピュータに、
発電装置群の出力状態に関する指標に基づいて、前記発電装置群に属する複数の所定発電装置の出力制御情報を決定する決定手順と、
前記出力制御情報を対応する前記複数の所定発電装置に送信する送信手順と、を実行させるためのものであり、
前記決定手順にて、前記発電装置群の出力状態に関する指標と、前記発電装置群とは異なる発電装置群の出力状態に関する指標との差に応じて前記出力制御情報を決定させるためのものである。
Or on your computer,
A determination procedure for determining output control information of a plurality of predetermined power generation devices belonging to the power generation device group, based on an index relating to an output state of the power generation device group;
A transmission procedure for transmitting the output control information to the corresponding plurality of predetermined power generation devices, and
In the determination procedure, the output control information is determined according to a difference between an index related to an output state of the power generation device group and an index related to an output state of a power generation device group different from the power generation device group. .

または、コンピュータに、
発電装置群に属する複数の第1発電装置の出力状態に関する指標と、前記発電装置群に属する、前記複数の第1発電装置とは異なる複数の第2発電装置の出力状態に関する指標と、に基づいて、前記複数の第1発電装置の出力制御情報を決定する決定手順と、
前記出力制御情報を対応する前記複数の第1発電装置に送信する送信手順と、を実行させるためのものであり、
前記決定手順にて、出力制御時間帯における前記複数の第1発電装置の出力状態と、前記複数の第2発電装置の出力状態との差に応じて前記出力制御情報を決定するものである。
Or on your computer,
Based on an index related to output states of a plurality of first power generation devices belonging to the power generation device group and an index related to output states of a plurality of second power generation devices different from the plurality of first power generation devices belonging to the power generation device group. A determination procedure for determining output control information of the plurality of first power generators;
A transmission procedure for transmitting the output control information to the corresponding first power generation devices, and
In the determination procedure, the output control information is determined according to a difference between an output state of the plurality of first power generation devices and an output state of the plurality of second power generation devices in an output control time period.

または、コンピュータに、
発電装置群の出力状態に関する第1指標と、前記発電装置群に属する複数の所定発電装置の出力状態に関する第2指標と、に基づいて、前記複数の所定発電装置の出力制御情報を決定する決定手順と、
前記出力制御情報を対応する前記複数の所定発電装置に送信する送信手順と、を実行させるためのものであり、
前記決定手順にて、所定時間帯の前記発電装置群の基準発電量と、経過済みの時間帯の前記発電装置群の抑制回数または抑制時間の少なくともいずれか一方とに基づいて設定された前記第1指標と、前記所定時間帯の前記発電装置群に属する前記複数の所定発電装置の基準発電量と、前記経過済みの時間帯の前記複数の所定発電装置の抑制回数または抑制時間の少なくともいずれか一方とに基づいて設定された前記第2指標との差に応じて前記出力制御情報を決定させるためのものである。
Or on your computer,
Determination to determine output control information of the plurality of predetermined power generation devices based on a first index regarding the output state of the power generation device group and a second index regarding the output states of the plurality of predetermined power generation devices belonging to the power generation device group Procedure and
A transmission procedure for transmitting the output control information to the corresponding plurality of predetermined power generation devices, and
In the determining procedure, the first power generation amount set based on the reference power generation amount of the power generation device group in a predetermined time zone and at least one of the number of suppression times or the suppression time of the power generation device group in the elapsed time zone. At least one of one index, a reference power generation amount of the plurality of predetermined power generation devices belonging to the power generation device group in the predetermined time zone, and a suppression frequency or a suppression time of the plurality of predetermined power generation devices in the elapsed time zone The output control information is determined according to a difference from the second index set based on the one.

本発明によれば、公平性を保つように各発電装置の出力を抑制することが可能になる。   According to the present invention, it is possible to suppress the output of each power generator so as to maintain fairness.

本発明の第1実施形態の発電制御装置Aを示した図である。It is the figure which showed the electric power generation control apparatus A of 1st Embodiment of this invention. 発電制御装置Aの動作を説明するためのフローチャートである。5 is a flowchart for explaining the operation of the power generation control device A. 本発明の第1実施形態の一変形例を示した図である。It is the figure which showed one modification of 1st Embodiment of this invention. 本発明の第2実施形態の制御装置Bを示した図である。It is the figure which showed the control apparatus B of 2nd Embodiment of this invention. 制御装置Bの動作を説明するためのフローチャートである。3 is a flowchart for explaining an operation of a control device B. 本発明の第2実施形態の一変形例を示した図である。It is the figure which showed one modification of 2nd Embodiment of this invention. 本発明の第3実施形態を示した図である。It is the figure which showed 3rd Embodiment of this invention. 本発明の第3実施形態の動作を説明するための図である。It is a figure for demonstrating operation | movement of 3rd Embodiment of this invention. 本発明の第4実施形態の制御システム100を示した図である。It is the figure which showed the control system 100 of 4th Embodiment of this invention. 制御システム100の動作を説明するための図である。4 is a diagram for explaining the operation of the control system 100. FIG. 制御システム100の動作を説明するためのフローチャートである。3 is a flowchart for explaining the operation of the control system 100. 電力需給関係を表す図である。It is a figure showing the power supply-demand relationship. 発電制御装置2の動作を説明するためのフローチャートである。4 is a flowchart for explaining the operation of the power generation control device 2; 第5実施形態の制御システム100Aを示した図である。It is the figure which showed control system 100A of 5th Embodiment. 制御システム100Aの動作を説明するための図である。It is a figure for demonstrating operation | movement of 100 A of control systems. 制御装置11の動作を説明するためのフローチャートである。3 is a flowchart for explaining the operation of the control device 11; 対象発電制御装置2の動作を説明するためのフローチャートである。4 is a flowchart for explaining the operation of the target power generation control device 2; 第6実施形態の制御システム100Bを示した図である。It is the figure which showed control system 100B of 6th Embodiment. 制御システム100Bの動作を説明するための図である。It is a figure for demonstrating operation | movement of the control system 100B.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1実施形態)
図1Aは、本発明の第1実施形態の発電制御装置Aを示した図である。
発電制御装置Aは、電力系統に接続された発電装置を制御する。以下、発電制御装置Aにて制御される発電装置を「制御対象の発電装置」とも称する。制御対象の発電装置は、所定発電装置の一例である。
制御対象の発電装置は、例えば、再生可能エネルギーを用いて発電する発電装置(再エネ電源)である。再エネ電源としては、太陽光発電装置、風力発電装置、小水力発電装置、地熱発電装置、潮力発電装置、バイオマス発電装置などが挙げられる。以下、特に太陽光発電装置と風力発電装置を、それぞれ、「PV装置」、「WT(Wind Turbine)装置」とも称する。再エネ電源は、上述した装置に限らず適宜変更可能である。また、制御対象の発電装置は、再エネ電源以外の燃料電池やガスタービン発電装置など、発電抑制が必要な時間帯に発電抑制が可能な如何なる発電装置でもよい。
(First embodiment)
FIG. 1A is a diagram illustrating a power generation control device A according to the first embodiment of the present invention.
The power generation control device A controls the power generation device connected to the power system. Hereinafter, the power generation device controlled by the power generation control device A is also referred to as a “controlled power generation device”. The power generation device to be controlled is an example of a predetermined power generation device.
The power generation device to be controlled is, for example, a power generation device (renewable power source) that generates power using renewable energy. Examples of the renewable energy power source include a solar power generation device, a wind power generation device, a small hydropower generation device, a geothermal power generation device, a tidal power generation device, and a biomass power generation device. Hereinafter, the solar power generation device and the wind power generation device are also referred to as “PV device” and “WT (Wind Turbine) device”, respectively. The renewable energy source is not limited to the above-described device, and can be changed as appropriate. Further, the power generation device to be controlled may be any power generation device capable of suppressing power generation in a time zone where power generation suppression is required, such as a fuel cell other than a renewable energy power source or a gas turbine power generation device.

発電制御装置Aは、通信部A1と制御部A2とを含む。   The power generation control device A includes a communication unit A1 and a control unit A2.

通信部A1は、制御対象の発電装置を制御するための出力抑制情報を受信する。
出力抑制情報は、公平性の指標および出力制御情報の一例である。
出力抑制情報は、複数の発電装置が属する発電装置群での出力抑制状態に関する第1指標と、制御対象の発電装置の出力抑制状態に関する第2指標と、に基づいて決定される。出力抑制状態は、出力状態の一例である。
ここで、出力抑制状態や出力状態とは、例えば、発電装置群や発電装置における、出力制御された発電量や発電抑制量、発電量上限値(出力の上限値)、装置のオン/オフ状態、出力制御された時間、出力制御された結果としての売電収益や売電損失などである。
第1指標は、基準指標の一例である。第2指標は個別指標の一例である。
ここで、制御対象の発電装置は、発電装置群に属してもよいし属さなくてもよい。
以下では、制御対象の発電装置は、発電装置群に属するものとする。
なお、第1指標や第2指標を考慮すると、発電装置群は、同一再エネ電源カテゴリに属する再エネ電源で構成された発電装置群である方が、再エネ電源の種別に伴う特性の違いを反映することができるため、公平性の観点で望ましい。また、同一再エネ電源カテゴリにおいては、同一の出力電力の上限値(定格値や契約容量)を持つ電源を第1指標や第2指標の対象とした方が、発電抑制を行う際、出力電力の上限都によって変わる抑制電力の絶対値の違いを反映させることができるため、公平性の観点で望ましい。
The communication unit A1 receives output suppression information for controlling the power generation device to be controlled.
The output suppression information is an example of fairness index and output control information.
The output suppression information is determined based on the first index related to the output suppression state in the power generation device group to which the plurality of power generation devices belong, and the second index related to the output suppression state of the power generation device to be controlled. The output suppression state is an example of an output state.
Here, the output suppression state and the output state are, for example, power generation amount and power generation suppression amount, power generation amount upper limit value (output upper limit value), and on / off state of the device in the power generation device group and the power generation device. The output control time, the power sales profit as a result of the power control and the power sales loss.
The first index is an example of a reference index. The second index is an example of an individual index.
Here, the power generation device to be controlled may or may not belong to the power generation device group.
Hereinafter, it is assumed that the power generation device to be controlled belongs to the power generation device group.
In consideration of the first index and the second index, the power generation device group is a power generation device group composed of renewable energy power sources belonging to the same renewable energy power source category. This is desirable from the viewpoint of fairness. In the same renewable energy power category, when the power source having the same upper limit value (rated value or contracted capacity) of the same output power is targeted for the first index or the second index, This is desirable from the viewpoint of fairness because it can reflect the difference in the absolute value of the suppression power that varies depending on the upper limit city.

本実施形態では、第1指標として、発電装置群全体での出力抑制の程度が大きいほど値が小さくなる指標が用いられる。第2指標として、制御対象の発電装置での出力抑制の程度が大きいほど値が小さくなる指標が用いられる。
第1指標と第2指標は、例えば、発電装置群に属する各発電装置の発電量に基づいて決定される。
例えば、第1指標は、所定時間帯(例えば、出力抑制時間帯のうちの経過済みの時間帯、または、単位時間帯)での発電装置群の基準発電量に対する、出力抑制時間帯のうちの経過済みの時間帯での発電装置群の発電量の比である。出力抑制時間帯は、出力制御時間帯の一例である。
以下「出力抑制時間帯のうちの経過済みの時間帯」を単に「経過済みの時間帯」と称する。なお、「経過済みの時間帯」は、過去に実施された複数の出力抑制時間帯の各々の経過済みの時間帯の積算時間帯でもよい。
第2指標は、該所定時間帯での制御対象の発電装置の基準発電量に対する、経過済みの時間帯での制御対象の発電装置の発電量の比である。
ここで、発電装置群の基準発電量としては、例えば、発電装置群に属する各発電装置の出力電力の上限値に該所定時間帯の時間長を乗算した値の総和が用いられる。制御対象の発電装置の基準発電量としては、例えば、制御対象の発電装置の出力電力の上限値に該所定時間帯の時間長を乗算した値が用いられる。
各発電装置の出力電力の上限値と制御対象の発電装置の出力電力の上限値の一例は、各発電装置の出力電力の定格値と、制御対象の発電装置の出力電力の定格値である。
なお、各発電装置の出力電力の上限値と制御対象の発電装置の出力電力の上限値は、定格値に限らず適宜変更可能である。例えば、各発電装置の出力電力の上限値と制御対象の発電装置の出力電力の上限値は、各発電装置の出力電力の契約上の上限値と制御対象の出力電力の契約上の上限値でもよい。ここで、契約上の上限値とは、例えば、発電装置の管理者(例えば、PPS)と電力系統の管理者(例えば、電力会社)との間で契約された発電装置の出力電力の上限値(例えば、契約容量)である。
In the present embodiment, as the first index, an index that decreases in value as the degree of output suppression in the entire power generation device group increases is used. As the second index, an index that decreases in value as the degree of output suppression in the power generation device to be controlled increases is used.
The first index and the second index are determined based on, for example, the power generation amount of each power generator belonging to the power generator group.
For example, the first index is an output suppression time zone with respect to a reference power generation amount of the power generation device group in a predetermined time zone (for example, an elapsed time zone or a unit time zone in the output suppression time zone). It is the ratio of the power generation amount of the power generation device group in the elapsed time zone. The output suppression time zone is an example of an output control time zone.
Hereinafter, the “elapsed time zone in the output suppression time zone” is simply referred to as “elapsed time zone”. The “elapsed time zone” may be an accumulated time zone of each elapsed time zone among the plurality of output suppression time zones implemented in the past.
The second index is a ratio of the power generation amount of the control target power generation device in the elapsed time zone to the reference power generation amount of the control target power generation device in the predetermined time zone.
Here, as the reference power generation amount of the power generation device group, for example, a total sum of values obtained by multiplying the upper limit value of the output power of each power generation device belonging to the power generation device group by the time length of the predetermined time period is used. As the reference power generation amount of the power generator to be controlled, for example, a value obtained by multiplying the upper limit value of the output power of the power generator to be controlled by the time length of the predetermined time zone is used.
Examples of the upper limit value of the output power of each power generator and the upper limit value of the output power of the power generator to be controlled are the rated value of the output power of each power generator and the rated value of the output power of the power generator to be controlled.
Note that the upper limit value of the output power of each power generation device and the upper limit value of the output power of the power generation device to be controlled are not limited to the rated values and can be changed as appropriate. For example, the upper limit value of the output power of each power generation device and the upper limit value of the output power of the power generation device to be controlled are the upper limit value on the contract of the output power of each power generation device and the upper limit value on the contract of the output power of the control target. Good. Here, the upper limit value in the contract is, for example, the upper limit value of the output power of the power generation apparatus contracted between the manager of the power generation apparatus (for example, PPS) and the manager of the power system (for example, the power company). (For example, contract capacity).

なお、第1指標として、発電装置群全体での出力抑制の程度が大きいほど値が大きくなる指標が用いられ、第2指標として、制御対象の発電装置での出力抑制の程度が大きいほど値が大きくなる指標が用いられてもよい。
例えば、第1指標として、所定時間帯(例えば、出力抑制時間帯のうちの経過済みの時間帯、または、単位時間帯)での発電装置群の基準発電量に対する、経過済みの時間帯での発電装置群の抑制電力量の比が用いられてもよい。そして、第2指標として、該所定時間帯での制御対象の発電装置の基準発電量に対する、経過済みの時間帯での制御対象の発電装置の抑制電力量の比が用いられてもよい。
ここで、発電装置群の抑制電力量として、例えば、経過済みの時間帯での発電装置群の基準発電量から経過済みの時間帯での発電装置群の発電量を差し引いた値が用いられる。そして、制御対象の発電装置の抑制電力量として、例えば、経過済みの時間帯での制御対象の発電装置の基準発電量から経過済みの時間帯での制御対象の発電装置の発電量を差し引いた値が用いられる。
Note that, as the first index, an index that increases as the degree of output suppression in the entire power generation apparatus group increases, and as the second index, the value increases as the degree of output suppression in the controlled power generation apparatus increases. An increasing index may be used.
For example, as the first index, in the elapsed time zone with respect to the reference power generation amount of the power generation device group in a predetermined time zone (for example, the elapsed time zone in the output suppression time zone or the unit time zone) A ratio of the suppressed power amount of the power generation device group may be used. Then, as the second index, a ratio of the suppression power amount of the control target power generation device in the elapsed time zone to the reference power generation amount of the control target power generation device in the predetermined time zone may be used.
Here, for example, a value obtained by subtracting the power generation amount of the power generation device group in the elapsed time zone from the reference power generation amount of the power generation device group in the elapsed time zone is used as the suppression power amount of the power generation device group. Then, as the suppressed power amount of the control target power generation device, for example, the power generation amount of the control target power generation device in the elapsed time zone is subtracted from the reference power generation amount of the control target power generation device in the elapsed time zone. A value is used.

出力抑制情報は、例えば、出力抑制時間帯における発電装置群での出力抑制状態と、同出力抑制時間帯における制御対象の発電装置での出力抑制状態と、の差が小さくなるように、第1指標と第2指標に基づいて、外部装置にて決定される。以下、上記差を「状態差」とも称する。
例えば、第2指標にて特定される制御対象の発電装置での出力抑制の程度が、第1指標にて特定される発電装置群全体での出力抑制の程度よりも大きい場合、外部装置は、次の発電抑制の機会では、制御対象の発電装置での出力抑制の程度を小さくする出力抑制情報を決定する。
また、第2指標にて特定される制御対象の発電装置での出力抑制の程度が、第1指標にて特定される発電装置群全体での出力抑制の程度よりも小さい場合、外部装置は、次の発電抑制の機会では、制御対象の発電装置での出力抑制の程度を大きくする出力抑制情報を決定する。
また、第2指標にて特定される制御対象の発電装置での出力抑制の程度が、第1指標にて特定される発電装置群全体での出力抑制の程度と同じ(同程度)である場合は、外部装置は、次の発電抑制の機会では、制御対象の発電装置での出力抑制の程度を変更せずに出力抑制情報を決定する。
The output suppression information is, for example, the first so that the difference between the output suppression state in the power generation device group in the output suppression time zone and the output suppression state in the power generation device to be controlled in the output suppression time zone is small. It is determined by the external device based on the index and the second index. Hereinafter, the difference is also referred to as “state difference”.
For example, when the degree of output suppression in the power generation apparatus to be controlled specified by the second index is larger than the degree of output suppression in the entire power generation apparatus group specified by the first index, the external device At the next power generation suppression opportunity, output suppression information that reduces the degree of output suppression in the power generation device to be controlled is determined.
Further, when the degree of output suppression in the power generation device to be controlled specified by the second index is smaller than the degree of output suppression in the entire power generation device group specified by the first index, the external device At the next power generation suppression opportunity, output suppression information that increases the degree of output suppression in the power generation device to be controlled is determined.
In addition, the degree of output suppression in the power generation device to be controlled specified by the second index is the same (same level) as the degree of output suppression in the entire power generation device group specified by the first index The external device determines the output suppression information without changing the degree of output suppression in the power generation device to be controlled at the next power generation suppression opportunity.

本実施形態では、出力抑制情報は、制御対象の発電装置の発電量上限値を示す。ここで、発電量上限値は、出力上限値の一例である。この場合、出力抑制の程度を大きくするほど、制御対象の発電装置の発電量上限値は小さくなる。
外部装置は、発電装置群に要求される出力抑制量が出力抑制時間帯にわたって一定である場合、状態差が小さくなるように、第1指標と第2指標の差が大きいほど、所定発電装置の発電量上限値の変更幅を大きくする出力抑制情報を決定する。出力抑制量は、出力制御量の一例である。
なお、出力抑制情報が示す情報は、発電量上限値に限らず、出力抑制の時間など適宜変更可能である。
外部装置は、出力抑制情報を発電制御装置Aに送信する。通信部A1は、外部装置から出力抑制情報を受信する。
In the present embodiment, the output suppression information indicates the power generation amount upper limit value of the power generation device to be controlled. Here, the power generation amount upper limit value is an example of an output upper limit value. In this case, the larger the degree of output suppression, the smaller the power generation amount upper limit value of the power generator to be controlled.
When the output suppression amount required for the power generation device group is constant over the output suppression time zone, the external device increases the difference between the first index and the second index so that the state difference becomes smaller. The output suppression information for increasing the change range of the power generation amount upper limit value is determined. The output suppression amount is an example of an output control amount.
Note that the information indicated by the output suppression information is not limited to the power generation amount upper limit value, and can be changed as appropriate, such as output suppression time.
The external device transmits the output suppression information to the power generation control device A. The communication unit A1 receives output suppression information from the external device.

制御部A2は、通信部A1が受信した出力抑制情報に基づいて、制御対象の発電装置の出力を制御する。   The control unit A2 controls the output of the power generation device to be controlled based on the output suppression information received by the communication unit A1.

次に、動作を説明する。
図1Bは、発電制御装置Aの動作を説明するためのフローチャートである。
通信部A1は、出力抑制情報を受信する(ステップS201)。続いて、通信部A1は、出力抑制情報を制御部A2に出力する。
制御部A2は、出力抑制情報を受信すると、出力抑制情報に基づいて制御対象の発電装置の出力を制御する(ステップS202)。本実施形態では、制御部A2は、制御対象の発電装置から電力系統へ出力される電力を、出力抑制情報が示す発電量上限値以下に抑制する。
Next, the operation will be described.
FIG. 1B is a flowchart for explaining the operation of the power generation control device A.
The communication unit A1 receives the output suppression information (step S201). Subsequently, the communication unit A1 outputs the output suppression information to the control unit A2.
When receiving the output suppression information, the control unit A2 controls the output of the power generation device to be controlled based on the output suppression information (step S202). In this embodiment, control part A2 suppresses the electric power output to the electric power grid | system from the electric power generating apparatus of control object to below the electric power generation amount upper limit which output suppression information shows.

次に、本実施形態の効果を説明する。
本実施形態では、通信部A1は、制御対象の発電装置での出力抑制状態と他の発電装置を含む発電装置群での出力抑制状態とが反映された出力抑制情報を受信する。出力抑制情報に反映された制御対象の発電装置と発電装置群との間の出力抑制状態との関係は、制御対象の発電装置と他の発電装置との出力抑制状態の違いを表す。このため、制御部A2が、この違いが反映された出力抑制情報に基づいて制御対象の発電装置の出力を制御することで、発電装置間の出力抑制の公平性を改善可能になる。
Next, the effect of this embodiment will be described.
In this embodiment, communication part A1 receives the output suppression information in which the output suppression state in the power generation device to be controlled and the output suppression state in the power generation device group including other power generation devices are reflected. The relationship between the output suppression state between the power generation device to be controlled and the power generation device group reflected in the output suppression information represents the difference in the output suppression state between the power generation device to be controlled and another power generation device. For this reason, control part A2 can improve the fairness of the output suppression between electric power generating apparatuses by controlling the output of the electric power generating apparatus of control object based on the output suppression information in which this difference was reflected.

また、出力抑制情報は、発電装置群での出力抑制状態と制御対象の発電装置での出力抑制状態との差が小さくなるように、第1指標と第2指標に基づいて決定されたものである。このため、制御部A2が、この出力抑制情報に基づいて制御対象の発電装置の出力を制御することで、発電装置間での出力抑制の公平性を改善可能になる。   The output suppression information is determined based on the first index and the second index so that the difference between the output suppression state in the power generation device group and the output suppression state in the power generation device to be controlled becomes small. is there. For this reason, control part A2 can improve the fairness of the output suppression between electric power generating apparatuses by controlling the output of the electric power generating apparatus of control object based on this output suppression information.

また、出力抑制情報は、発電装置群に要求される出力抑制量が出力抑制時間帯にわたって一定である場合、状態差が小さくなるように、第1指標と第2指標の差が大きいほど、制御対象の発電装置の発電量上限値の変更幅を大きくする情報である。このため、制御部A2が、この出力抑制情報に基づいて制御対象の発電装置の出力を制御することで、発電装置間での出力抑制の公平性を高い精度で改善可能になる。   In addition, the output suppression information is controlled as the difference between the first index and the second index is larger so that the state difference is smaller when the output suppression amount required for the power generation device group is constant over the output suppression time period. This is information for increasing the change range of the power generation amount upper limit value of the target power generation apparatus. For this reason, control part A2 can improve the fairness of the output suppression between power generators with high precision by controlling the output of the power generator set to be controlled based on this output suppression information.

次に、本実施形態の変形例を説明する。
出力抑制情報が更新されるごとに繰り返し送信される場合、通信部A1は、出力抑制情報を繰り返し受信してもよい。そして、制御部A2は、通信部A1が受信した出力抑制情報のうち最新の出力抑制情報に基づいて制御対象の発電装置の出力を制御してもよい。この場合、最新の出力抑制情報に基づいて制御対象の発電装置の出力を制御可能になる。
Next, a modification of this embodiment will be described.
When the output suppression information is repeatedly transmitted each time it is updated, the communication unit A1 may repeatedly receive the output suppression information. Then, the control unit A2 may control the output of the power generation device to be controlled based on the latest output suppression information among the output suppression information received by the communication unit A1. In this case, the output of the power generation device to be controlled can be controlled based on the latest output suppression information.

制御部A2は、通信部A1での出力抑制情報の受信間隔以下の時間間隔で、最新の出力抑制情報に基づいて制御対象の発電装置の出力を制御してもよい。例えば、制御対象の発電装置が再生エネ電源である場合、気象条件に応じて、制御対象の発電装置自体の出力が短い時間の間に変動する可能性がある。制御対象の発電装置の出力制御を出力抑制情報の受信間隔以下の時間間隔で行うことで、制御対象の発電装置自体の出力の変動に対応することが可能になる。   The control unit A2 may control the output of the power generation device to be controlled based on the latest output suppression information at a time interval equal to or less than the reception interval of the output suppression information in the communication unit A1. For example, when the power generation device to be controlled is a regenerative energy power source, the output of the power generation device itself to be controlled may fluctuate in a short time depending on weather conditions. By performing output control of the power generation device to be controlled at a time interval that is less than or equal to the reception interval of the output suppression information, it is possible to cope with fluctuations in the output of the power generation device itself to be controlled.

通信部A1は、制御対象の発電装置の発電量を出力抑制情報の送信元に送信してもよい。この場合、通信部A1は、制御対象の発電装置の発電量を出力抑制情報の送信元に、出力抑制情報の受信間隔以下の時間間隔で送信してもよい。この場合、制御対象の発電装置の最新の発電量が最新の出力抑制情報に反映され、発電抑制制御の精度を向上させることができる。   The communication unit A1 may transmit the power generation amount of the power generation device to be controlled to the transmission source of the output suppression information. In this case, the communication unit A1 may transmit the power generation amount of the power generation device to be controlled to the transmission source of the output suppression information at a time interval equal to or less than the reception interval of the output suppression information. In this case, the latest power generation amount of the power generation device to be controlled is reflected in the latest output suppression information, and the accuracy of power generation suppression control can be improved.

発電装置群の基準発電量として、該所定時間帯での発電装置群の推定発電量(該当時間帯で理論的に発電が可能な量)が用いられ、制御対象の発電装置の基準発電量として、該所定時間帯での制御対象の発電装置の推定発電量(該当時間帯で理論的に発電が可能な量)が用いられてもよい。以下では、推定発電量を発電可能量とも称する。   As the standard power generation amount of the power generation device group, the estimated power generation amount of the power generation device group in the predetermined time zone (the amount that can theoretically generate power in the corresponding time zone) is used, The estimated power generation amount of the power generation device to be controlled in the predetermined time zone (the amount that can theoretically generate power in the corresponding time zone) may be used. Hereinafter, the estimated power generation amount is also referred to as a power generation possible amount.

第1指標として、該所定時間帯での発電装置群の基準売電収益に対する、経過済みの時間帯での発電装置群の発電量に応じた売電収益の比が用いられてもよい。この際、第2指標として、該所定時間帯での制御対象の発電装置の基準売電収益に対する、経過済みの時間帯での制御対象の発電装置の発電量に応じた売電収益の比が用いられてもよい。   As the first index, the ratio of the power sales revenue according to the power generation amount of the power generation device group in the elapsed time zone to the reference power sales revenue of the power generation device group in the predetermined time zone may be used. At this time, as a second index, the ratio of the power sales revenue corresponding to the power generation amount of the controlled power generation device in the elapsed time zone to the reference power sales revenue of the controlled power generation device in the predetermined time zone is May be used.

発電装置群の基準売電収益の一例としては、発電装置群に属する各発電装置の出力電力の上限値に該所定時間帯の時間長を乗算した値に該発電装置での単位売電価格を乗算した値の総和が挙げられる。また、制御対象の発電装置の基準売電収益の一例としては、制御対象の発電装置の出力電力の上限値に該所定時間を乗算した値に制御対象の発電装置での単位売電価格を乗算した値が挙げられる。   As an example of the standard power sales revenue of the power generation device group, the unit power selling price in the power generation device is obtained by multiplying the upper limit value of the output power of each power generation device belonging to the power generation device group by the time length of the predetermined time zone. The sum of the multiplied values is given. In addition, as an example of the standard power sales revenue of the control target power generation device, a value obtained by multiplying the upper limit value of the output power of the control target power generation device by the predetermined time is multiplied by the unit power sales price of the control target power generation device. Value.

発電制御装置Aは、第1指標と第2指標とに基づいて出力抑制情報を決定し、その決定した出力抑制情報に基づいて制御対象の発電装置の出力を制御してもよい。
図1Cは、第1指標と第2指標とに基づいて出力抑制情報を決定する発電制御装置AAの一例を示した図である。
発電制御装置AAは、決定部AA1と、制御部AA2と、を含む。
決定部AA1は、第1指標と第2指標とに基づいて出力抑制情報を決定する。決定部AA1での出力抑制情報の決定手法としては、例えば、上述した外部装置での出力抑制情報の決定手法が用いられる。
なお、決定部AA1は、第1指標と第2指標を上述した外部装置から受信してもよいし、第1指標を外部装置から受信し第2指標を生成してもよい。
制御部AA2は、決定部AA1が決定した出力抑制情報に基づいて、制御対象の発電装置の出力を制御する。制御部AA2での制御対象の発電装置の出力の制御手法は、例えば、制御部A2での制御対象の発電装置の出力の制御手法と同様である。
具体的に説明すると、発電制御装置AAは、受信した第1指標と、受信もしくは生成した第2指標とに基づいて出力抑制情報(出力制御情報の一例)を生成する。そして、この出力抑制情報に基づいて発電制御装置AAは、制御対象の発電装置の出力の制御を行う。
この変形例によれば、外部装置が出力抑制情報を決定する必要がなくなるため、外部装置の負荷を低減可能になる。
なお、この変形例では、第1指標を受信する間隔をT1と、第1指標と第2指標に基づいて決定された出力抑制情報により発電制御を実行する間隔をT2としたとき、T1>T2の関係を満たすことが望ましい。
例えば、制御部AA2が第1指標の受信間隔T1より短い時間間隔T2で発電制御する場合、決定部AA1は、時間間隔T2で、最新の第1指標と第2指標とを用いて出力抑制情報を決定する。
複数の発電装置群により決まる第1指標は全体としての指標なので短い間隔では変動しないが、各発電装置に関する第2指標は気象条件など短い時間で変動する。このため、T1より短いT2で発電制御を行うことで、発電装置の実際の発電状態に応じた発電制御を行うことが可能になる。よって、精度の高い発電制御を行うことが可能になる。
よって、発電制御をするたびに、最新の第1指標とその時点での第2指標により、出力抑制情報を作成して、発電制御装置の発電制御を行うことが好ましい。
The power generation control device A may determine the output suppression information based on the first index and the second index, and may control the output of the power generation device to be controlled based on the determined output suppression information.
FIG. 1C is a diagram illustrating an example of the power generation control device AA that determines the output suppression information based on the first index and the second index.
The power generation control device AA includes a determination unit AA1 and a control unit AA2.
The determination unit AA1 determines the output suppression information based on the first index and the second index. As a method for determining output suppression information in the determination unit AA1, for example, the method for determining output suppression information in the external device described above is used.
The determining unit AA1 may receive the first index and the second index from the above-described external device, or may receive the first index from the external device and generate the second index.
The control unit AA2 controls the output of the power generation device to be controlled based on the output suppression information determined by the determination unit AA1. The control method of the output of the power generation device to be controlled by the control unit AA2 is the same as the control method of the output of the power generation device to be controlled by the control unit A2, for example.
More specifically, the power generation control device AA generates output suppression information (an example of output control information) based on the received first index and the received or generated second index. Then, based on the output suppression information, the power generation control device AA controls the output of the power generation device to be controlled.
According to this modification, it is not necessary for the external device to determine the output suppression information, so that the load on the external device can be reduced.
In this modification, when the interval for receiving the first index is T1, and the interval for executing the power generation control based on the output suppression information determined based on the first index and the second index is T2, T1> T2 It is desirable to satisfy the relationship.
For example, when the control unit AA2 performs power generation control at a time interval T2 shorter than the reception interval T1 of the first index, the determination unit AA1 uses the latest first index and second index at the time interval T2 to output suppression information. To decide.
Since the first index determined by a plurality of power generation device groups is an index as a whole, it does not change at short intervals, but the second index for each power generation device changes in a short time such as weather conditions. Therefore, by performing power generation control at T2 shorter than T1, power generation control according to the actual power generation state of the power generation device can be performed. Therefore, it is possible to perform power generation control with high accuracy.
Therefore, it is preferable to perform power generation control of the power generation control device by creating output suppression information based on the latest first index and the second index at that time each time power generation control is performed.

(第2実施形態)
図2Aは、本発明の第2実施形態の制御装置Bを示した図である。
制御装置Bは、例えば、第1実施形態で説明した外部装置の一例として機能する。
制御装置Bは、処理部B1と通信部B2とを含む。
(Second Embodiment)
FIG. 2A is a diagram illustrating a control device B according to the second embodiment of the present invention.
The control device B functions as an example of the external device described in the first embodiment, for example.
The control device B includes a processing unit B1 and a communication unit B2.

処理部B1は、決定部の一例である。
処理部B1は、第1実施形態で説明した第1指標および第2指標に基づいて、発電装置群に属する各発電装置の出力抑制情報を決定する。ここで、第2指標は、発電装置群に属する発電装置ごとに存在する。なお、発電装置群は、第1実施形態で説明した発電装置群と同様である。
処理部B1は、発電装置群に属する発電装置ごとに、出力抑制時間帯における発電装置群での出力抑制状態と、該出力抑制時間帯における発電装置での出力抑制状態と、の差(状態差)が小さくなるように、第1指標と第2指標に基づいて出力抑制情報を決定する。
本実施形態では、処理部B1は、発電装置群に要求される出力抑制量が出力抑制時間帯にわたって一定である場合、発電装置群の発電装置ごとに、状態差が小さくなるように、第1指標と第2指標の差が大きいほど該発電装置の発電量上限値の変更幅を大きくする出力抑制情報を決定する。
処理部B1は、第1指標と第2指標を他の装置から受信してもよいし生成または決定してもよい。例えば、制御装置Bをアグリゲータが保有する場合、前記他の装置の一例としては、電力会社が保有する中央給電指令所の指令装置が挙げられる。
処理部B1は、例えば、第1実施形態で説明した手法で第1指標と第2指標を決定する。この場合、処理部B1は、発電装置群に属する各発電装置の発電量(経過済み時間帯での発電量)を、通信部B2を介して受信する。また、処理部B1は、第1指標と第2指標の決定に必要な定数(例えば、各発電装置の出力電力の上限値や所定時間)を予め保持している。
通信部B2は、処理部B1が決定した出力抑制情報を、その出力抑制情報に対応する発電装置に送信する。
The processing unit B1 is an example of a determination unit.
The processing unit B1 determines output suppression information of each power generation device belonging to the power generation device group based on the first index and the second index described in the first embodiment. Here, the second index exists for each power generation device belonging to the power generation device group. The power generation device group is the same as the power generation device group described in the first embodiment.
The processing unit B1 determines, for each power generation device belonging to the power generation device group, a difference between the output suppression state in the power generation device group in the output suppression time zone and the output suppression state in the power generation device in the output suppression time zone (state difference The output suppression information is determined on the basis of the first index and the second index so as to be small.
In the present embodiment, when the output suppression amount required for the power generation device group is constant over the output suppression time zone, the processing unit B1 performs the first operation so that the state difference is reduced for each power generation device of the power generation device group. As the difference between the index and the second index increases, output suppression information that increases the amount of change in the power generation amount upper limit value of the power generation device is determined.
The processing unit B1 may receive, generate, or determine the first index and the second index from another device. For example, when the aggregator holds the control device B, an example of the other device is a command device of a central power supply command station held by an electric power company.
For example, the processing unit B1 determines the first index and the second index by the method described in the first embodiment. In this case, the processing unit B1 receives the power generation amount (power generation amount in the elapsed time zone) of each power generation device belonging to the power generation device group via the communication unit B2. Further, the processing unit B1 holds in advance constants necessary for determining the first index and the second index (for example, the upper limit value of output power of each power generation device and a predetermined time).
The communication unit B2 transmits the output suppression information determined by the processing unit B1 to the power generation device corresponding to the output suppression information.

次に、本実施形態の動作を説明する。
図2Bは、制御装置Bの動作を説明するためのフローチャートである。
処理部B1は、発電装置群に属する発電装置ごとに、状態差が小さくなるように、第1指標とその発電装置の第2指標に基づいて出力抑制情報を決定する(ステップS401)。
Next, the operation of this embodiment will be described.
FIG. 2B is a flowchart for explaining the operation of the control device B.
The processing unit B1 determines the output suppression information based on the first index and the second index of the power generation device so that the state difference is small for each power generation device belonging to the power generation device group (step S401).

ここで、ステップS401の一例を説明する。
処理部B1は、発電装置群に属する発電装置ごとに、以下の動作を実行する。
処理部B1は、第2指標にて特定される発電装置での出力抑制の程度が、第1指標にて特定される発電装置群全体での出力抑制の程度よりも大きい場合、その発電装置での出力抑制の程度を小さくする出力抑制情報を決定する。
また、処理部B1は、第2指標にて特定される発電装置での出力抑制の程度が、第1指標にて特定される発電装置群全体での出力抑制の程度よりも小さい場合、その発電装置での出力抑制の程度を大きくする出力抑制情報を決定する。
本実施形態でも、第1実施形態と同様に、出力抑制情報は発電装置の発電量上限値を示す。この場合、出力抑制の程度を大きくするほど、制御対象の発電装置の発電量上限値は小さくなる。なお、出力抑制情報は、発電量上限値に限らず、出力抑制の時間など適宜変更可能である。
この際、発電装置群全体に要求される発電量上限値(出力抑制量)が出力抑制時間帯において確定されている場合、処理部B1は、各発電装置の発電量上限値の総和が発電装置群全体の発電量上限値以下になるように、各出力抑制情報を決定する。ここで、発電装置群全体の発電量上限値は、例えば出力抑制時間帯で一定であるとする。なお、発電量上限値は、出力抑制時間帯内で変更されてもよい。なお、出力抑制時間帯を分割した時間帯が、所定時間帯として用いられてもよい。
Here, an example of step S401 will be described.
The processing unit B1 performs the following operation for each power generation device belonging to the power generation device group.
When the degree of output suppression in the power generation device specified by the second index is greater than the degree of output suppression in the entire power generation device group specified by the first index, the processing unit B1 Output suppression information that reduces the degree of output suppression is determined.
Further, when the degree of output suppression in the power generation device specified by the second index is smaller than the degree of output suppression in the entire power generation device group specified by the first index, the processing unit B1 Output suppression information that increases the degree of output suppression in the apparatus is determined.
Also in the present embodiment, as in the first embodiment, the output suppression information indicates the power generation amount upper limit value of the power generation device. In this case, the larger the degree of output suppression, the smaller the power generation amount upper limit value of the power generator to be controlled. Note that the output suppression information is not limited to the power generation amount upper limit value, and can be appropriately changed such as the output suppression time.
At this time, if the power generation amount upper limit value (output suppression amount) required for the entire power generation device group is determined in the output suppression time zone, the processing unit B1 determines that the total power generation amount upper limit value of each power generation device is the power generation device. Each output suppression information is determined so that it may become below the power generation amount upper limit of the whole group. Here, it is assumed that the power generation amount upper limit value of the entire power generation device group is constant, for example, in the output suppression time zone. Note that the power generation amount upper limit value may be changed within the output suppression time zone. In addition, the time slot | zone which divided | segmented the output suppression time slot | zone may be used as a predetermined time slot | zone.

続いて、処理部B1は、通信部B2を介して、各出力抑制情報を対応する発電装置に送信する(ステップS402)。   Subsequently, the processing unit B1 transmits each output suppression information to the corresponding power generation device via the communication unit B2 (step S402).

各発電装置は、出力抑制情報を受信すると、発電装置から電力系統へ出力される電力を、出力抑制情報が示す発電量上限値以下に抑制する。   Each power generation device, when receiving the output suppression information, suppresses the power output from the power generation device to the power system to be equal to or lower than the power generation amount upper limit value indicated by the output suppression information.

次に、本実施形態の効果を説明する。
本実施形態では、処理部B1は、発電装置群での出力抑制状態に関する第1指標と、発電装置群に属する各発電装置の出力抑制状態に関する第2指標と、に基づいて、各発電装置の出力抑制情報を決定する。第1指標と第2指標との関係は、発電装置群全体と個別の発電装置との出力抑制状態の違いを表す。このため、各出力抑制情報には、この違いが反映される。したがって、各発電装置がこれら出力抑制情報に基づいて出力を抑制すれば、発電装置間の出力抑制の公平性を改善可能になる。
Next, the effect of this embodiment will be described.
In this embodiment, processing part B1 is based on the 1st parameter | index regarding the output suppression state in a power generation device group, and the 2nd parameter | index regarding the output suppression state of each power generation device which belongs to a power generation device group. Determine output suppression information. The relationship between the first index and the second index represents the difference in the output suppression state between the entire power generation device group and the individual power generation devices. For this reason, this difference is reflected in each output suppression information. Therefore, if each power generator suppresses the output based on the output suppression information, the fairness of the output suppression between the power generators can be improved.

処理部B1は、発電装置群に属する発電装置ごとに、状態差が小さくなるように、第1指標と第2指標に基づいて出力抑制情報を決定する。
このため、各発電装置がこれら出力抑制情報に基づいて出力を抑制すれば、発電装置間の出力抑制の差が小さくなり、発電装置間の出力抑制の公平性を改善可能になる。
The processing unit B1 determines the output suppression information based on the first index and the second index so that the state difference is small for each power generation device belonging to the power generation device group.
For this reason, if each power generator suppresses the output based on the output suppression information, the difference in output suppression between the power generators becomes small, and the fairness of the output suppression between the power generators can be improved.

処理部B1は、発電装置群に要求される出力抑制量が出力抑制時間帯にわたって一定である場合、発電装置ごとに、状態差が小さくなるように、第1指標と第2指標の差が大きいほど、該発電装置の発電量上限値の変更幅を大きくする出力抑制情報を決定する。
このため、各発電装置がこれら出力抑制情報に基づいて出力を抑制することで、発電装置間での出力抑制の公平性を高い精度で改善可能になる。
When the output suppression amount required for the power generation device group is constant over the output suppression time zone, the processing unit B1 has a large difference between the first index and the second index so that the state difference is small for each power generation device. The output suppression information that increases the range of change of the power generation amount upper limit value of the power generation device is determined.
For this reason, it becomes possible to improve the fairness of the output suppression between power generators with high precision because each power generator suppresses an output based on these output suppression information.

次に、本実施形態の変形例を説明する。
制御装置Bが、処理部B1の決定した出力抑制情報に基づいて発電装置を制御してもよい。
図2Cは、処理部B1の決定した出力抑制情報に基づいて発電装置を制御する制御装置BBの一例を示した図である。図2Cにおいて、図2Aに示したものと同一構成のものには同一符号を付してある。
制御装置BBは、処理部B1と、制御部BB2と、を含む。
制御部BB2は、処理部B1が決定した出力抑制情報に基づいて、その出力抑制情報に対応する発電装置を制御する。例えば、制御部BB2は、処理部B1が決定した出力抑制情報ごとに、その出力抑制情報に対応する発電装置を直接制御する。
制御部BB2での出力抑制情報を用いた個々の発電装置の制御手法としては、それぞれ、第1実施形態で説明した制御部A2での出力抑制情報を用いた個々の発電装置の制御手法が用いられる。
例えば、外部装置に設けられた制御装置BBは、第1指標と発電装置ごとの第2指標とに基づいて、各発電装置の出力抑制情報(出力制御情報の一例)を作成する。
そして、制御装置BBを有する外部装置は、出力抑制情報に基づいて、複数の発電装置を直接的に制御する。つまり、制御装置BBを備える外部装置は、遠隔から複数の発電装置の出力を制御する。
この変形例によれば、制御装置BBが各発電装置を直接制御可能になる。
Next, a modification of this embodiment will be described.
The control device B may control the power generation device based on the output suppression information determined by the processing unit B1.
FIG. 2C is a diagram illustrating an example of a control device BB that controls the power generation device based on the output suppression information determined by the processing unit B1. In FIG. 2C, the same components as those shown in FIG. 2A are denoted by the same reference numerals.
Control device BB includes a processing unit B1 and a control unit BB2.
Control part BB2 controls the electric power generating apparatus corresponding to the output suppression information based on the output suppression information determined by process part B1. For example, the control unit BB2 directly controls the power generation device corresponding to the output suppression information for each output suppression information determined by the processing unit B1.
As the control method of each power generation device using the output suppression information in the control unit BB2, the control method of each power generation device using the output suppression information in the control unit A2 described in the first embodiment is used. It is done.
For example, the control device BB provided in the external device creates output suppression information (an example of output control information) for each power generation device based on the first index and the second index for each power generation device.
Then, the external device having the control device BB directly controls the plurality of power generation devices based on the output suppression information. That is, the external device including the control device BB remotely controls the outputs of the plurality of power generation devices.
According to this modification, the control device BB can directly control each power generation device.

(第3実施形態)
図3は、本発明の第3実施形態の制御システムを示した図である。図3において、図1Aに示したものと同一構成のものには同一符号を付してある。
この制御システムは、複数の発電制御装置Aと、制御装置Cと、を含む。
複数の発電制御装置Aは、複数の群に分けられている。本実施形態では、複数の発電制御装置Aは、第1群D1と第2群D2という2つの群に分けられている。なお、群の数は「2」に限らず複数であればよい。
第1群D1に属する発電制御装置Aの各々は、制御対象の発電装置としてPV装置を用いる。一方、第2群D2に属する発電制御装置Aの各々は、制御対象の発電装置としてWT装置を用いる。
第1群で用いられる複数のPV装置(以下、単に「PV装置群」と称する)、および、第2群で用いられる複数のWT装置(以下、単に「WT装置群」と称する)は、それぞれ発電装置群の一例である。
なお、第1群で用いられる発電装置群と、第2群で用いられる発電装置群は、再エネ電源の互いに異なるカテゴリ(本実施形態では、太陽光発電装置と風力発電装置)に属することが望ましい。しかしながら、第1群で用いられる発電装置群と、第2群で用いられる発電装置群は、電源についての同一のカテゴリに属してもよい。
(Third embodiment)
FIG. 3 is a diagram illustrating a control system according to a third embodiment of the present invention. 3, the same components as those shown in FIG. 1A are denoted by the same reference numerals.
This control system includes a plurality of power generation control devices A and a control device C.
The plurality of power generation control devices A are divided into a plurality of groups. In the present embodiment, the plurality of power generation control devices A are divided into two groups, a first group D1 and a second group D2. The number of groups is not limited to “2”, but may be a plurality.
Each of the power generation control devices A belonging to the first group D1 uses a PV device as a power generation device to be controlled. On the other hand, each of the power generation control devices A belonging to the second group D2 uses a WT device as a power generation device to be controlled.
A plurality of PV devices used in the first group (hereinafter simply referred to as “PV device group”) and a plurality of WT devices used in the second group (hereinafter simply referred to as “WT device group”) are respectively It is an example of a power generator group.
Note that the power generation device group used in the first group and the power generation device group used in the second group belong to different categories (in this embodiment, the solar power generation device and the wind power generation device) of the renewable energy power source. desirable. However, the power generation device group used in the first group and the power generation device group used in the second group may belong to the same category regarding the power source.

本実施形態では、異なるカテゴリである「PV装置群」と「WT装置群」との間でそれぞれの抑制の差が小さくなるように、それぞれの出力抑制情報が決定される。
本実施形態では、再エネ電源のカテゴリ毎に、つまり、PV装置群とWT装置群との各々について、別々に、第1指標と第2指標が用いられる。第1指標と第2指標としては、例えば、第1実施形態や第2実施形態で説明した第1指標と第2指標が用いられる。以下、PV装置群での第1指標および第2指標をそれぞれ「第1指標A」、「第2指標A」と称し、WT装置群での第1指標および第2指標をそれぞれ「第1指標B」、「第2指標B」と称する。
In this embodiment, each output suppression information is determined so that the difference of each suppression becomes small between "PV apparatus group" and "WT apparatus group" which are different categories.
In the present embodiment, the first index and the second index are used separately for each category of the renewable energy power source, that is, for each of the PV device group and the WT device group. As the first index and the second index, for example, the first index and the second index described in the first embodiment and the second embodiment are used. Hereinafter, the first index and the second index in the PV device group are referred to as “first index A” and “second index A”, respectively, and the first index and the second index in the WT device group are respectively referred to as “first index”. B ”and“ second index B ”.

制御装置Cは、処理部C1と通信部C2と、を含む。
処理部C1は、PV装置群に属する出力抑制情報を、PV装置群の第1指標AとPV装置群の第2指標Aとに基づいて決定する。また、処理部C1は、WT装置群に属する出力抑制情報を、WT装置群の第1指標BとWT装置群の第2指標Bとに基づいて決定する。
この際、処理部C1は、PV装置群の第1指標AとWT装置群の第1指標Bとの差にも応じて各出力抑制情報を決定する。
通信部C2は、処理部C1が決定した出力抑制情報を、その出力抑制情報に対応する発電制御装置Aに送信する。
The control device C includes a processing unit C1 and a communication unit C2.
The processing unit C1 determines the output suppression information belonging to the PV device group based on the first index A of the PV device group and the second index A of the PV device group. Further, the processing unit C1 determines the output suppression information belonging to the WT device group based on the first index B of the WT device group and the second index B of the WT device group.
At this time, the processing unit C1 determines each output suppression information according to the difference between the first index A of the PV device group and the first index B of the WT device group.
The communication unit C2 transmits the output suppression information determined by the processing unit C1 to the power generation control device A corresponding to the output suppression information.

次に、本実施形態の動作を説明する。
図4は、本実施形態の動作を説明するためのフローチャートである。
ここでは、簡単のために、PV装置群に属する各PV装置は2MWの契約容量を持つ太陽光発電装置であり、WT装置群に属する各WT装置は2MWの契約容量を持つ風力発電装置であるとする。なお、各PV装置および各WT装置は2MWの契約容量を持つ装置に限らず適宜変更可能である。
Next, the operation of this embodiment will be described.
FIG. 4 is a flowchart for explaining the operation of the present embodiment.
Here, for simplicity, each PV device belonging to the PV device group is a solar power generation device having a contract capacity of 2 MW, and each WT device belonging to the WT device group is a wind power generation device having a contract capacity of 2 MW. And Each PV device and each WT device is not limited to a device having a contract capacity of 2 MW, and can be changed as appropriate.

処理部C1は、発電抑制が必要な、ある出力抑制時間帯において、PV装置群とWT装置群に対して発電抑制を実施し、その後、実施した出力抑制時間帯における第1指標Aと第1指標Bとを比較する。
そして、処理部C1は、次の出力抑制時間帯における発電抑制では、出力抑制時間帯における第1指標Aと該出力抑制時間帯における第1指標Bとの差が小さくなるように、第1指標Aと第1指標Bと第2指標Aと第2指標Bを用いて、各出力抑制情報を決定する(ステップS601)。
The processing unit C1 performs power generation suppression on the PV device group and the WT device group in a certain output suppression time zone where power generation suppression is necessary, and then the first index A and the first in the implemented output suppression time zone. The index B is compared.
Then, the processing unit C1 sets the first index so that the difference between the first index A in the output suppression time zone and the first index B in the output suppression time zone becomes small in the power generation suppression in the next output suppression time zone. Each output suppression information is determined using A, 1st parameter | index B, 2nd parameter | index A, and 2nd parameter | index B (step S601).

例えば、第1指標Aにて特定されるPV装置群全体での出力抑制の程度が、第1指標Bにて特定されるWT装置群全体での出力抑制の程度よりも大きい場合、処理部C1は、次の発電抑制の機会では、PV装置群全体で担う出力抑制の程度を小さくした上(PV装置群全体での出力抑制の程度が小さくなるように第1指標Aを調整した上で)で、各PV装置の出力抑制情報については第1指標Aと第2指標Aを用いて、各WT装置の出力抑制情報については第1指標Bと第2指標Bを用いて、第1実施形態や第2実施形態で説明した手法で決定する。
また、第1指標Aにて特定されるPV装置群全体での出力抑制の程度が、第1指標Bにて特定されるWT装置群全体での出力抑制の程度よりも小さい場合、処理部C1は、次の発電抑制の機会では、PV装置群全体で担う出力抑制の程度を大きくした上で(PV装置群全体での出力抑制の程度が大きくなるように第1指標Aを調整した上で)、各PV電装置の出力抑制情報については第1指標Aと第2指標Aを用いて、各WT装置の出力抑制情報については第1指標Bと第2指標Bを用いて、第1実施形態や第2実施形態で説明した手法で決定する。
ここで、上述した調整処理において、処理部C1は、第1指標Aの代わりに第1指標Bを調整してもよいし、第1指標Aと第1指標Bの両方を調整してもよい。
なお、第1指標Aにて特定されるPV装置群全体での出力抑制の程度が、第1指標Bにて特定されるWT装置群全体での出力抑制の程度と同じ(同程度)よりも小さい場合、各指標を調整することなく、各PV電装置の出力抑制情報については第1指標Aと第2指標Aを用いて、各WT装置の出力抑制情報については第1指標Bと第2指標Bを用いて、第1実施形態や第2実施形態で説明した手法で決定する。
For example, when the degree of output suppression for the entire PV device group specified by the first index A is greater than the degree of output suppression for the entire WT device group specified by the first index B, the processing unit C1 In the next opportunity to suppress power generation, the degree of output suppression in the entire PV device group is reduced (after adjusting the first index A so that the degree of output suppression in the entire PV device group is reduced). In the first embodiment, the first index A and the second index A are used for the output suppression information of each PV apparatus, and the first index B and the second index B are used for the output suppression information of each WT apparatus. And the method described in the second embodiment.
Further, when the degree of output suppression in the entire PV device group specified by the first index A is smaller than the degree of output suppression in the entire WT device group specified by the first index B, the processing unit C1 In the next opportunity of power generation suppression, after increasing the degree of output suppression for the entire PV device group (after adjusting the first index A so that the degree of output suppression for the entire PV device group increases) ), The first index A and the second index A are used for the output suppression information of each PV electric device, and the first index B and the second index B are used for the output suppression information of each WT device. It is determined by the method described in the form or the second embodiment.
Here, in the adjustment process described above, the processing unit C1 may adjust the first index B instead of the first index A, or may adjust both the first index A and the first index B. .
In addition, the degree of output suppression in the entire PV device group specified by the first index A is the same as (same level) as the degree of output suppression in the entire WT device group specified by the first index B. In the case of being small, without adjusting each index, the first index A and the second index A are used for the output suppression information of each PV electric device, and the first index B and the second for the output suppression information of each WT apparatus. Using the index B, it is determined by the method described in the first embodiment or the second embodiment.

続いて、通信部C2は、処理部C1が決定した出力抑制情報を、その出力抑制情報に対応する発電制御装置Aに送信する(ステップS602)。
発電制御装置Aでの出力抑制情報に基づく発電装置(PV装置、WT装置)の出力抑制手法は、第1実施形態で説明した手法と同様である。
Subsequently, the communication unit C2 transmits the output suppression information determined by the processing unit C1 to the power generation control device A corresponding to the output suppression information (step S602).
The output suppression method of the power generation device (PV device, WT device) based on the output suppression information in the power generation control device A is the same as the method described in the first embodiment.

次に、本実施形態の効果を説明する。
処理部C1は、PV装置群の第1指標AとWT装置群の第1指標Bとの差に応じて各出力抑制情報を決定する。
PV装置群の第1指標AはPV装置群全体での出力抑制の程度を示し、WT装置群の第1指標Bは、WT装置群全体での出力抑制の程度を示す。このため、各第1指標の差は、PV装置群全体とWT装置群全体との出力抑制の程度の差を意味する。
したがって、各第1指標の差に応じて各出力抑制情報を決定するで、PV装置群全体とWT装置群全体との出力抑制の程度の差に応じて各出力抑制情報を決定でき、異なるカテゴリの再エネ電源間での公平性を改善可能になる。このため、発電装置の種類によらず公平性の高い発電抑制を実施可能になる。
Next, the effect of this embodiment will be described.
The processing unit C1 determines each output suppression information according to the difference between the first index A of the PV device group and the first index B of the WT device group.
The first index A of the PV device group indicates the degree of output suppression in the entire PV device group, and the first index B of the WT device group indicates the degree of output suppression in the entire WT device group. For this reason, the difference of each 1st parameter | index means the difference of the grade of the output suppression of the whole PV apparatus group and the whole WT apparatus group.
Therefore, since each output suppression information is determined according to the difference of each 1st parameter | index, each output suppression information can be determined according to the difference of the level of output suppression with the whole PV apparatus group and the whole WT apparatus group, It becomes possible to improve the fairness among renewable energy sources. For this reason, it becomes possible to implement power generation suppression with high fairness regardless of the type of power generation device.

次に、本実施形態の変形例を説明する。
本変形例では、処理部C1は、発電抑制しない状況における2つの発電装置群の間での基準期間(例えば1年)の間の総発電量の差に基づいて、各出力抑制情報を決定する。
例えば、処理部C1は、次の出力抑制時間帯における発電抑制では、出力抑制時間帯における第1指標Aと該出力抑制時間帯における第1指標Bとの差が、上記総発電量の差に応じた所定基準値以上となる範囲内で小さくなるように、第1指標Aと第1指標Bと第2指標Aと第2指標Bを用いて、各出力抑制情報を決定する
Next, a modification of this embodiment will be described.
In the present modification, the processing unit C1 determines each output suppression information based on a difference in total power generation amount between a reference period (for example, one year) between two power generation device groups in a situation where power generation is not suppressed. .
For example, in the power generation suppression in the next output suppression time zone, the processing unit C1 determines that the difference between the first index A in the output suppression time zone and the first index B in the output suppression time zone is the difference in the total power generation amount. Each output suppression information is determined using the first index A, the first index B, the second index A, and the second index B so as to be smaller within a range that is equal to or greater than the corresponding predetermined reference value.

一例として、第1群で用いられる発電装置群と、第2群で用いられる発電装置群が、電源についての同一のカテゴリに属している場合、次のようなケースが考えられる。
例えば、同一カテゴリを、太陽光発電源とする。第1群を、例えばクラスタ1(新潟県)の太陽光発電群、第2群をクラスタ2(宮崎県)の太陽光発電群、とする。この場合、発電抑制しない状況において、クラスタ1とクラスタ2の間で年間発電量が異なる可能性がある。例えば、クラスタ1の方がクラスタ2よりも年間発電量が大きくなるかもしれない。
このとき、第3実施形態と同様の指標設定で、クラスタ1とクラスタ2の間の出力抑制の公平性が向上するように制御する場合、処理部C1は、第1指標Aと第1指標Bとの差を単純に少なくするのではなく、第1指標Aと第1指標Bとの差を、ある値までは許容する制御を行う。
この例では、処理部C1は、クラスタ2に比べてクラスタ1の抑制量や抑制割合が少なくなるように制御する。これにより、年間発電量の地域差(設備稼働率に相当する)をも考慮した公平性の改善が可能となる。
As an example, when the power generation device group used in the first group and the power generation device group used in the second group belong to the same category regarding the power source, the following cases are conceivable.
For example, let the same category be a solar power generation source. For example, the first group is a solar power generation group of cluster 1 (Niigata Prefecture), and the second group is a solar power generation group of cluster 2 (Miyazaki Prefecture). In this case, there is a possibility that the annual power generation amount differs between the cluster 1 and the cluster 2 in a situation where the power generation is not suppressed. For example, the annual power generation amount of cluster 1 may be larger than that of cluster 2.
At this time, when control is performed so that the fairness of output suppression between the cluster 1 and the cluster 2 is improved with the same index setting as in the third embodiment, the processing unit C1 includes the first index A and the first index B. The control is performed to allow the difference between the first index A and the first index B up to a certain value.
In this example, the processing unit C1 performs control so that the suppression amount and suppression ratio of the cluster 1 are smaller than those of the cluster 2. As a result, it is possible to improve the fairness taking into account the regional difference in annual power generation (corresponding to the capacity utilization rate).

(第4実施形態)
図5は、本発明の第4実施形態の制御システム100を示した図である。
制御システム100は、制御装置1と、複数の発電制御装置2と、を含む。制御システム100は、複数の発電制御装置2と対応する複数のPV(太陽光発電)装置3を制御する。図5では、発電制御装置2がPV装置3と1対1で対応した例を示しているが、発電制御装置2とPV装置3との対応関係は1対1に限らず、1対2や1対多など適宜変更可能である。
(Fourth embodiment)
FIG. 5 is a diagram showing a control system 100 according to the fourth embodiment of the present invention.
The control system 100 includes a control device 1 and a plurality of power generation control devices 2. The control system 100 controls a plurality of PV (solar power generation) devices 3 corresponding to the plurality of power generation control devices 2. FIG. 5 shows an example in which the power generation control device 2 corresponds to the PV device 3 on a one-to-one basis, but the correspondence relationship between the power generation control device 2 and the PV device 3 is not limited to one-to-one, One-to-many can be appropriately changed.

PV装置3は、発電装置および再エネ電源の一例である。複数のPV装置3にて構成されるPV装置群3aは、発電装置群の一例である。
なお、発電装置は、PV装置3に限らず適宜変更可能である。例えば、発電装置として、WT(風力発電)装置が用いられてもよい。
また、PV装置群3a内の一部のPV装置3が、PV装置3以外の発電装置(例えば、WT装置)に変更されてもよい。
The PV device 3 is an example of a power generation device and a renewable energy power source. A PV device group 3a configured by a plurality of PV devices 3 is an example of a power generation device group.
The power generation device is not limited to the PV device 3 and can be changed as appropriate. For example, a WT (wind power generation) device may be used as the power generation device.
Moreover, some PV devices 3 in the PV device group 3a may be changed to power generation devices (for example, WT devices) other than the PV device 3.

各PV装置3は、電力系統4に接続されている。
本実施形態では、各PV装置3が電力系統4に出力する電力の上限値は、事前に契約にて決められている。以下、契約にて決められている出力電力の上限値を「契約容量[W]」とも称する。
各PV装置3は、太陽光を直流電流(電力)に変換する太陽光パネルと、PCS(Power Conditioning System)と、を含む。PCSは、太陽光パネルからの直流電力を交流電力に変換し、また、その交流電力のレベルを調整する。
Each PV device 3 is connected to the power system 4.
In the present embodiment, the upper limit value of the electric power that each PV device 3 outputs to the electric power system 4 is determined in advance by a contract. Hereinafter, the upper limit value of the output power determined by the contract is also referred to as “contract capacity [W]”.
Each PV device 3 includes a solar panel that converts sunlight into direct current (electric power), and a PCS (Power Conditioning System). The PCS converts direct current power from the solar panel into alternating current power and adjusts the level of the alternating current power.

電力系統4は、火力発電所4aおよび揚水式発電所4bを含む。電力系統4には負荷5も接続されている。図5では、負荷5は、電力系統4から供給された電力を消費する複数の機器(電力需要発生装置)を仮想的に統合した仮想負荷(需要家)として示されている。本実施形態では、電力系統4には、PV装置3以外の不図示の再エネ電源(例えば、WT装置や地熱発電)や、不図示の原子力発電所および不図示の水力発電所が接続されているとする。   The electric power system 4 includes a thermal power plant 4a and a pumped storage power plant 4b. A load 5 is also connected to the power system 4. In FIG. 5, the load 5 is shown as a virtual load (customer) obtained by virtually integrating a plurality of devices (power demand generating devices) that consume power supplied from the power system 4. In the present embodiment, an unillustrated renewable energy source (for example, a WT device or geothermal power generation) other than the PV device 3, an unillustrated nuclear power plant, and an unillustrated hydroelectric power plant are connected to the power system 4. Suppose that

制御装置1は、電力系統4において電力需給バランスを管理する管理者(例えば、電力会社)の管理下にある。なお、電力需給バランスを管理する管理者は、電力会社に限らず適宜変更可能である。本実施形態では、制御装置1は、電力会社の管理下にあるとする。   The control device 1 is under the management of an administrator (for example, a power company) that manages the power supply / demand balance in the power system 4. The manager who manages the power supply / demand balance is not limited to the power company and can be changed as appropriate. In the present embodiment, it is assumed that the control device 1 is under the control of an electric power company.

制御装置1は、通信部1aと、処理部1bと、を含む。
通信部1aは、各発電制御装置2、火力発電所4aおよび揚水式発電所4bと通信する。
通信部1aは、例えば、以下のような通信を行う。
通信部1aは、火力発電所4aおよび揚水式発電所4bの実際の発電量を受信する。通信部1aは、火力発電所4aに発電に関する指示を送信する。通信部1aは、揚水式発電所4bに発電や揚水運転(発電に用いる水をポンプにてくみ上げる運転)に関する指示を送信する。
通信部1aは、各発電制御装置2から、発電制御装置2に対応するPV装置3の発電量を受信する。通信部1aは、PV装置3の発電量を処理部1bに出力する。
通信部1aは、処理部1bが決定した各PV装置3の出力抑制を制御する出力抑制情報を、その出力抑制情報の対象となるPV装置3に対応する発電制御装置2に送信する。
The control device 1 includes a communication unit 1a and a processing unit 1b.
The communication unit 1a communicates with each power generation control device 2, the thermal power plant 4a, and the pumped storage power plant 4b.
For example, the communication unit 1a performs the following communication.
The communication unit 1a receives the actual power generation amount of the thermal power plant 4a and the pumped storage power plant 4b. The communication unit 1a transmits an instruction regarding power generation to the thermal power plant 4a. The communication unit 1a transmits an instruction regarding power generation or pumping operation (operation for pumping water used for power generation with a pump) to the pumped storage power plant 4b.
The communication unit 1 a receives the power generation amount of the PV device 3 corresponding to the power generation control device 2 from each power generation control device 2. The communication unit 1a outputs the power generation amount of the PV device 3 to the processing unit 1b.
The communication unit 1a transmits the output suppression information for controlling the output suppression of each PV device 3 determined by the processing unit 1b to the power generation control device 2 corresponding to the PV device 3 that is the target of the output suppression information.

処理部1bは、決定部の一例である。
処理部1bは、電力系統4において電力需給バランスをとるために各PV装置3の出力抑制情報を決定する。
処理部1bは、各PV装置3の実際の発電量(以下「発電実績量」とも称する)を通信部1aから受信する。
処理部1bは、各PV装置3の発電実績量に基づいて、PV装置群3aでの出力抑制状態に関する第1指標と、各PV装置3での出力抑制状態に関する第2指標と、を決定する。
処理部1bは、PV装置3ごとに、第1指標と、PV装置3の第2指標と、に基づいて、出力抑制情報を決定する。
The processing unit 1b is an example of a determination unit.
The processing unit 1b determines the output suppression information of each PV device 3 in order to balance power supply and demand in the power system 4.
The processing unit 1b receives the actual power generation amount of each PV device 3 (hereinafter also referred to as “power generation actual amount”) from the communication unit 1a.
The processing unit 1b determines a first index related to the output suppression state in the PV device group 3a and a second index related to the output suppression state in each PV device 3 based on the actual power generation amount of each PV device 3. .
The processing unit 1 b determines output suppression information for each PV device 3 based on the first index and the second index of the PV device 3.

複数の発電制御装置2および複数のPV装置3は、複数のPPSの管理下にある。各PPSは、1台の発電制御装置2を管理してもよいし、複数の発電制御装置2を管理してもよい。
各発電制御装置2に対応するPV装置3は、それぞれ、所定発電装置の一例である。よって、発電制御装置2ごとに所定発電装置が存在することになる。各PV装置3の発電実績量は、PV装置3に対応する測定部6にて測定される。測定部6は、例えばスマートメータである。なお、PV装置3が測定部6を含んでもよい。
各発電制御装置2は、通信部2aと制御部2bとを含む。なお、各発電制御装置2は、測定部6を含んでもよい。
通信部2aは、制御装置1と通信する。
通信部2aは、測定部6が測定したPV装置3の発電実績量を制御装置1に送信する。通信部2aは、制御装置1から出力抑制情報を受信する。なお、出力抑制情報の受信の形態としては、制御装置1からプッシュ(Push)送信される出力抑制情報を発電制御装置2が受動的に受信する形態や、発電制御装置2が能動的に制御装置1をプル(Pull)すること(出力抑制情報をリクエストすること)で出力抑制情報を受信する形態が挙げられる。
制御部2bは、出力抑制情報に基づいてPV装置3の出力を制御する。
なお、発電制御装置2は、対応するPV装置3に内蔵されてもよい。発電制御装置2が内蔵されたPV装置3は、発電機器や発電装置の一例となる。
The plurality of power generation control devices 2 and the plurality of PV devices 3 are under the control of a plurality of PPSs. Each PPS may manage one power generation control device 2 or a plurality of power generation control devices 2.
Each PV device 3 corresponding to each power generation control device 2 is an example of a predetermined power generation device. Accordingly, there is a predetermined power generation device for each power generation control device 2. The actual power generation amount of each PV device 3 is measured by the measurement unit 6 corresponding to the PV device 3. The measuring unit 6 is a smart meter, for example. Note that the PV device 3 may include the measurement unit 6.
Each power generation control device 2 includes a communication unit 2a and a control unit 2b. Each power generation control device 2 may include a measurement unit 6.
The communication unit 2a communicates with the control device 1.
The communication unit 2 a transmits the actual power generation amount of the PV device 3 measured by the measurement unit 6 to the control device 1. The communication unit 2a receives the output suppression information from the control device 1. In addition, as a form of reception of the output suppression information, a form in which the power generation control apparatus 2 passively receives the output suppression information transmitted from the control apparatus 1 (Push), or the power generation control apparatus 2 actively controls the control apparatus. The form which receives output suppression information by pulling 1 (requesting output suppression information) is mentioned.
The control unit 2b controls the output of the PV device 3 based on the output suppression information.
Note that the power generation control device 2 may be incorporated in the corresponding PV device 3. The PV device 3 in which the power generation control device 2 is incorporated is an example of a power generation device or a power generation device.

次に、動作を説明する。
図6は、制御システム100の動作を説明するための図である。図6では、火力発電所と揚水式発電所がまとめて「火力・水力電源」として表され、発電制御装置2が省略されている。
Next, the operation will be described.
FIG. 6 is a diagram for explaining the operation of the control system 100. In FIG. 6, the thermal power plant and the pumped-storage power plant are collectively represented as “thermal power / hydropower source”, and the power generation control device 2 is omitted.

まず、制御システム100による抑制開始時の動作を説明する。
図7は、制御システム100による抑制開始時の動作を説明するためのフローチャートである。
電力会社の処理部1bは、翌日の0時から24時までの時間帯について、例えば9時に、管轄する電力系統4の管内の全需要家(負荷5)の需要量と、全PV装置3を含む再エネ電源の発電量の予測を行う(ステップS701)。なお、予測を行う時刻は9時に限らず適宜変更可能である。
なお、上記、全需要家の需要量の予測、及び再エネ電源の発電量の予測を行うためには、必要な情報として、天気、気温、湿度、風速等の気象情報等の予報値を処理部1bが入手する必要があるが、図5では、その経路や入手先を不図示としている。なお、気象情報は、例えば、気象庁等から入手できる。
図8は、ステップS701での予測結果を加味した翌日の0時から24時までの時間帯の電力需給関係を表す図である。
電力の安定供給を実現するためには、電力供給量(発電量)が電力需要量を上回っている時間帯において電力供給量(発電量)を抑制する必要がある。
PV装置等の再エネ電源が接続された電力系統において再エネ電源による電力供給量を抑制する場合、優先給電規定に則って、まず、再エネ電源以外の電力供給量を抑制する必要がある。
ここで、図8に示した電力需給状態では、優先給電規定に則り火力発電等の出力抑制や揚水式発電のポンプくみ上げ(揚水運転)による需要創出を行った後でも、10時以降にPV装置3に起因の余剰電力の発生が予測されたとする。このため、処理部1bは、PV装置3での出力抑制(発電抑制)が必要であると判断する(ステップS702)。なお、PV装置3に起因する余剰電力の発生が予測されなかった場合、処理部1bは、PV装置3での出力抑制が不要であると判断する(ステップS702)。
PV装置3での出力抑制が必要である場合、処理部1bは、PV装置3の出力抑制を実施することを決定する。
First, the operation at the start of suppression by the control system 100 will be described.
FIG. 7 is a flowchart for explaining the operation at the start of suppression by the control system 100.
The processing unit 1b of the electric power company, for the time zone from 0:00 to 24:00 on the next day, for example, at 9:00, the demand amount of all the consumers (load 5) in the jurisdiction of the power system 4 to be controlled, The power generation amount of the renewable energy power source is predicted (step S701). Note that the prediction time is not limited to 9 o'clock and can be changed as appropriate.
In addition, in order to predict the demand amount of all consumers and the amount of power generated by renewable energy sources, the forecast values such as weather information such as weather, temperature, humidity, and wind speed are processed as necessary information. Although it is necessary to obtain the part 1b, in FIG. 5, the route and the source are not shown. The weather information can be obtained from, for example, the Japan Meteorological Agency.
FIG. 8 is a diagram showing the power supply-demand relationship in the time zone from 0:00 to 24:00 on the next day, taking into account the prediction result in step S701.
In order to realize a stable power supply, it is necessary to suppress the power supply amount (power generation amount) in a time zone in which the power supply amount (power generation amount) exceeds the power demand amount.
When the amount of power supplied by a renewable energy power source is suppressed in an electric power system to which a renewable energy power source such as a PV device is connected, it is first necessary to suppress the amount of power supply other than the renewable energy power source in accordance with the priority power supply regulations.
Here, in the power supply and demand state shown in FIG. 8, the PV device is generated after 10:00 even after the generation of demand by suppressing the output of thermal power generation, etc., or pumping up pumping (pumping operation) in accordance with the priority power supply regulations. 3 is predicted to generate surplus power. For this reason, the processing unit 1b determines that output suppression (power generation suppression) in the PV device 3 is necessary (step S702). In addition, when generation | occurrence | production of the surplus electric power resulting from the PV apparatus 3 is not estimated, the process part 1b judges that the output suppression in the PV apparatus 3 is unnecessary (step S702).
When the output suppression in the PV device 3 is necessary, the processing unit 1b determines to perform the output suppression of the PV device 3.

PV装置3の出力抑制は、以下のような手順で実施される。
まず、処理部1bは、抑制当日の電力需要および電力供給のトレンドや予測に基づいて、PV装置3での出力抑制が必要であるかを再確認する。
以下、再確認手法の一例を説明する。
抑制当日、処理部1bは、全需要家(負荷5)の電力需要量の測定値(例えば、30分毎に更新)とその予測値をもとに、電力需要のトレンドを監視する。ここで、全需要家(負荷5)の電力需要量の測定値は、各需要家の電力計(例えば、スマートメータ)から制御装置1に送信される。なお、全需要家(負荷5)の電力需要量の測定値の更新間隔は30分に限らず適宜変更可能である。
また、処理部1bは、PV装置等の再エネ電源についても、発電量の測定値、並びに、測定器が無い電源については推定値をもとに、電力供給のトレンドを監視する。
処理部1bは、電力需要および電力供給のトレンドや予測に基づいて、PV装置3に起因する余剰電力が発生するかを判断する。この判断が再確認に対応する。
この判断は、例えば、当日、継続的に、30分毎に行う(判断の更新間隔は、30分に限らず、1時間や15分など、30分よりも長い時間や短い時間に適宜変更可能である)。
処理部1bは、PV装置3に起因する余剰電力が発生しないと判断すると、PV装置3の出力抑制を実行しない。一方、PV装置3に起因する余剰電力が発生すると判断すると、処理部1bは、PV装置3の出力抑制を実行する。
The output suppression of the PV device 3 is performed by the following procedure.
First, the processing unit 1b reconfirms whether output suppression in the PV device 3 is necessary based on the power demand on the day of suppression and the trend and prediction of power supply.
Hereinafter, an example of the reconfirmation method will be described.
On the day of suppression, the processing unit 1b monitors the trend of power demand based on the measured value (for example, updated every 30 minutes) of the power demand amount of all consumers (load 5) and its predicted value. Here, the measured value of the power demand amount of all the consumers (load 5) is transmitted to the control apparatus 1 from the power meter (for example, smart meter) of each consumer. In addition, the update interval of the measured value of the power demand amount of all consumers (load 5) is not limited to 30 minutes and can be changed as appropriate.
In addition, the processing unit 1b also monitors the trend of power supply based on the measured value of the amount of power generation and the estimated value of the power source without the measuring device for the renewable energy power source such as the PV device.
The processing unit 1b determines whether surplus power due to the PV device 3 is generated based on power demand and power supply trends and predictions. This determination corresponds to reconfirmation.
This determination is performed, for example, continuously every 30 minutes on the same day (the update interval of determination is not limited to 30 minutes, and can be appropriately changed to a time longer than 30 minutes, such as 1 hour or 15 minutes) Is).
If the processing unit 1b determines that surplus power due to the PV device 3 is not generated, the processing unit 1b does not suppress the output of the PV device 3. On the other hand, if it judges that the surplus electric power resulting from the PV apparatus 3 will generate | occur | produce, the process part 1b will perform the output suppression of the PV apparatus 3. FIG.

次に、再確認の結果、PV装置3の出力抑制を実行すると判断した場合の動作を説明する。以下では、この動作の一例として、当日の9時30分現在で、10時から15時の時間帯にPV装置3に起因する余剰電力の発生する可能性が高いと判断した場合の動作を説明する。この場合、10時から15時の時間帯が「出力抑制時間帯」となる。   Next, the operation when it is determined that the output suppression of the PV device 3 is executed as a result of reconfirmation will be described. In the following, as an example of this operation, an operation when it is determined that there is a high possibility that surplus power due to the PV device 3 is generated in the time zone from 10 o'clock to 15 o'clock as of 9:30 on that day will be described. To do. In this case, the time zone from 10:00 to 15:00 is the “output suppression time zone”.

処理部1bは、10時時点のPV装置群3aの出力電力量を、その後の15時までの時間帯(出力抑制時間帯)の間も維持する形での発電抑制の実施を決定する(ステップS703)。
ここで、10時時点のPV装置群3aの出力電力量は、出力抑制時間帯での発電許可量(出力抑制量)の一例である。また、この発電抑制では、PV装置群3aに要求される発電許可量(出力抑制量)は、出力抑制時間帯(10時〜15時)にわたって一定となる。
The processing unit 1b decides to implement power generation suppression in such a manner that the output power amount of the PV device group 3a at 10 o'clock is maintained during the subsequent time zone (output suppression time zone) until 15:00 (step S1). S703).
Here, the output power amount of the PV device group 3a at 10 o'clock is an example of the power generation permission amount (output suppression amount) in the output suppression time zone. Further, in this power generation suppression, the power generation permission amount (output suppression amount) required for the PV device group 3a is constant over the output suppression time zone (10:00 to 15:00).

続いて、処理部1bは、10時から15時までの5時間の時間帯を1時間ごとに区分して区分時間帯Ttjを決定する。今回は、10時からの各区分時間帯はTt0、Tt1、Tt2、Tt3、Tt4となる。ここで、区分時間帯の長さは1時間に限らず適宜変更可能である。 Subsequently, the processing unit 1b determines a divided time zone Tt j by dividing a time zone of 5 hours from 10:00 to 15:00 every hour. In this case, each segment time zone from 10 o'clock is Tt 0 , Tt 1 , Tt 2 , Tt 3 , Tt 4 . Here, the length of the segment time zone is not limited to one hour and can be changed as appropriate.

続いて、処理部1bは、まず区分時間帯Tt0(10時から11時の時間帯)において、PV装置群3aに属するPV装置3のすべて(総数N)で発電出力抑制を決定する。以下、総数NのPV装置3の各々を、PV装置3n(nは1〜N)とも称する。
今回は、区分時間帯Tt0でのPV装置群3aの発電量を、10時時点のPV装置群3aの発電量(例えばP10時)に維持する発電出力抑制が実施される。
Subsequently, the processing unit 1b first determines power generation output suppression for all (total number N) of the PV devices 3 belonging to the PV device group 3a in the segment time zone Tt 0 (time zone from 10:00 to 11:00). Hereinafter, each of the total number N of PV devices 3 is also referred to as a PV device 3n (n is 1 to N).
This time, the power generation output suppression is performed to maintain the power generation amount of the PV device group 3a in the segment time zone Tt 0 at the power generation amount of the PV device group 3a at 10 o'clock (for example, at P10).

処理部1bは、10時の30分前(9時30分)に、初期の個別指標P’0,n=0.3を決定する(ステップS704)。P’0,n=0.3の決定手法については後述する。
続いて、処理部1bは、初期の個別指標P’0,n=0.3と、区分時間帯Tt0を示す区分時間帯情報I0とを、通信部1aから各発電制御装置2へ配信する(ステップS705)。初期の個別指標P’0,nにおいて、「0」は区分時間帯Ttj(j=0)に対応し、「n」はPV装置3nのnに対応する。
ここで、初期の個別指標P’0,n=0.3を決定するタイミングは、区分時間帯Tt0の開始時点の30分前に限らない。このタイミングは、初期の個別指標P’0,n=0.3と区分時間帯情報I0との送信タイミングが区分時間帯Tt0の開始時点よりも前になることを条件として適宜変更可能である。
各発電制御装置2では、制御部2bは、通信部2aを介して、初期の個別指標P’0,n=0.3と区分時間帯情報I0と受信すると、初期の個別指標P’0,n=0.3と区分時間帯情報I0を保持する。
The processing unit 1b determines an initial individual index P ′ 0, n = 0.3 30 minutes before 10 o'clock (9:30) (step S704). A method for determining P ′ 0, n = 0.3 will be described later.
Subsequently, the processing unit 1b distributes the initial individual index P ′ 0, n = 0.3 and the segment time zone information I 0 indicating the segment time zone Tt 0 from the communication unit 1a to each power generation control device 2 ( Step S705). In the initial individual index P ′ 0, n , “0” corresponds to the segment time zone Tt j (j = 0) , and “n” corresponds to n of the PV device 3n.
Here, the timing for determining the initial individual index P ′ 0, n = 0.3 is not limited to 30 minutes before the start time of the segment time zone Tt 0 . This timing can be appropriately changed on condition that the transmission timing of the initial individual index P ′ 0, n = 0.3 and the segment time zone information I 0 is before the start time of the segment time zone Tt 0 .
In each power generation control device 2, the control unit 2 b receives the initial individual indicator P ′ 0, n = 0.3 and the segment time zone information I 0 via the communication unit 2 a, and then receives the initial individual indicator P ′ 0, n. = 0.3 and the segment time zone information I 0 are held.

図9は、初期の個別指標P’0,n=0.3と区分時間帯情報I0を受信した発電制御装置2の動作を説明するためのフローチャートである。
制御部2bは、区分時間帯情報I0が示す開始時刻(この場合10時)になると、対応するPV装置3の発電量上限値を、該PV装置3の契約容量[W]に初期の個別指標P’0,n=0.3を乗じた発電量(=区分時間帯Tt0での発電量上限値W0 [W])に設定する。続いて、制御部2bは、対応するPV装置3の出力電力量が発電量上限値W0 [W]を超えないように、対応するPV装置3の出力電力量を制御する(ステップS901)。
例えば、制御部2bは、対応するPV装置3内のPCSを制御して、対応するPV装置3の出力電力量が発電量上限値W0 [W]を超えないように、対応するPV装置3の出力電力量を制御する。
制御部2bは、ステップS901を、周期T2(T2は、0.4秒程度)で区分時間帯情報I0が示す終了時刻(この場合11時)まで繰り返す。周期T2は、区分時間帯の時間長(この例では1時間)以下である。なお、周期T2は、区分時間帯の時間長以下の範囲内で適宜変更可能であるが、区分時間帯より十分短い方が、制御精度が向上するため望ましい。
なお、各PV装置3が、共通の個別指標P’0,n=0.3にて出力抑制されても、天候の状況により、各PV装置3の出力に間にばらつきが生じる可能性がある。このばらつきは、出力抑制の実績に影響する。
FIG. 9 is a flowchart for explaining the operation of the power generation control device 2 that has received the initial individual indicator P ′ 0, n = 0.3 and the segment time zone information I 0 .
When the start time (in this case, 10:00) indicated by the segment time zone information I 0 is reached, the control unit 2b sets the power generation amount upper limit value of the corresponding PV device 3 to the contracted capacity [W] of the PV device 3 as an initial individual The power generation amount multiplied by the index P ′ 0, n = 0.3 (= the power generation amount upper limit value W 0 n [W] in the segment time zone Tt 0 ) is set. Subsequently, the control unit 2b controls the output power amount of the corresponding PV device 3 so that the output power amount of the corresponding PV device 3 does not exceed the power generation amount upper limit value W 0 n [W] (step S901). .
For example, the control unit 2b controls the PCS in the corresponding PV device 3 so that the output power amount of the corresponding PV device 3 does not exceed the power generation amount upper limit value W 0 n [W]. 3 is controlled.
The control unit 2b repeats step S901 until the end time (in this case, 11:00) indicated by the segment time zone information I 0 in a cycle T2 (T2 is about 0.4 seconds). The period T2 is equal to or less than the time length of the segment time zone (1 hour in this example). Note that the period T2 can be appropriately changed within a range equal to or less than the time length of the segment time zone, but it is desirable that the cycle T2 is sufficiently shorter than the segment time zone because the control accuracy is improved.
Even if the output of each PV device 3 is suppressed at the common individual index P ′ 0, n = 0.3, there is a possibility that the output of each PV device 3 varies depending on the weather conditions. This variation affects the performance of output suppression.

一方、制御装置1では、処理部1bが、周期T3(T3=30分程度、T2<T3<区分時間帯の時間長)で、各PV装置3の発電実績量を示す発電量情報を各発電制御装置2の通信部2aから継続的に収集する。制御の精度を考えると、周期T3は区分時間帯の時間長の1/10以下が望ましい。   On the other hand, in the control device 1, the processing unit 1 b receives the power generation amount information indicating the actual power generation amount of each PV device 3 in the cycle T3 (T3 = about 30 minutes, T2 <T3 <the time length of the segment time zone). Data are continuously collected from the communication unit 2a of the control device 2. Considering the accuracy of control, the period T3 is desirably 1/10 or less of the time length of the segment time zone.

本実施形態では、個別指標として、次の2つを想定する。
1つ目は、ある区分時間帯Ttに対して、発電抑制のスケジュール値(発電抑制の程度を決定する値)を決める計画個別指標P’J,nである。上述した初期の個別指標P’0,n=0.3も、計画個別指標に属する。
2つ目は、ある区分時間帯Ttでの発電抑制のスケジュール値を実際の発電実績で計算し直す実績個別指標PJ,nである。これら2つの個別指標(計画個別指標と実績個別指標)は、ダッシュの有無で区別する。
計画個別指標のうち初期の個別指標以外の計画個別指標は、出力抑制情報の一例である。
実績個別指標は、第2指標の一例である。
In the present embodiment, the following two are assumed as individual indexes.
The first is a planned individual index P ′ J, n that determines a schedule value for power generation suppression (a value that determines the degree of power generation suppression) for a certain segment time zone Tt J. The initial individual index P ′ 0, n = 0.3 described above also belongs to the planned individual index.
The second is a performance individual index P J, n that recalculates the schedule value for power generation suppression in a certain time zone Tt J with the actual power generation performance. These two individual indicators (plan individual indicator and actual individual indicator) are distinguished by the presence or absence of a dash.
The plan individual index other than the initial individual index among the plan individual indices is an example of output suppression information.
The performance individual index is an example of a second index.

上述した初期の個別指標P’0,n=0.3は、例えば、以下のように導出される。
8時の時点でPV装置3に起因する余剰電力が10時以降で発生する状況が予測され、9時の時点で10時の発電電力を予測したところ、PV装置群3aでの総発電電力αが予測され、10時以降、PV装置群3aでの総発電電力が総発電電力αよりも大きくなることで余剰電力が発生する状況であることが判明したとする。よって、10時以降、PV装置群3aでの総発電電力を総発電電力αに維持する必要があることが分かった。
この状況において、電力αの値をPV装置群3aの総契約容量で割ることで算出された値が0.3(=P’0,n)である。
なお、PV装置3の発電量上限値は、PV装置3の契約容量[W]に初期の個別指標P’0,n=0.3を乗じた発電量となる。このため、初期の個別指標P’0,nの値が小さいほど、PV装置3の出力は抑制される。
The initial individual index P ′ 0, n = 0.3 described above is derived as follows, for example.
A situation in which surplus power caused by the PV device 3 is generated after 10:00 at the time of 8 o'clock is predicted, and the generated power at 10 o'clock is predicted at the time of 9 o'clock, the total generated power α in the PV device group 3a It is assumed that after 10 o'clock, surplus power is generated when the total generated power in the PV device group 3a becomes larger than the total generated power α. Therefore, it turned out that after 10 o'clock, it is necessary to maintain the total generated power in the PV device group 3a at the total generated power α.
In this situation, the value calculated by dividing the value of the power α by the total contracted capacity of the PV device group 3a is 0.3 (= P ′ 0, n ).
The power generation amount upper limit value of the PV device 3 is a power generation amount obtained by multiplying the contracted capacity [W] of the PV device 3 by the initial individual index P ′ 0, n = 0.3. For this reason, the smaller the initial individual index P ′ 0, n is, the more the output of the PV device 3 is suppressed.

次に、制御システム100による抑制開始時以降の動作を説明する。
ここで、いくつかのパラメータを以下のように定義する。
Mn:PV装置3nの契約容量[W]
Tj:抑制時間帯
Gj≧0:抑制時間帯Tjで許可されたPV装置群3aの発電総量[W]
Wj n≧0:PV装置3nの抑制時間帯Tjにおける発電量上限値[W]
Next, the operation after the start of suppression by the control system 100 will be described.
Here, some parameters are defined as follows.
M n : Contract capacity [3] of PV device 3n
T j : Suppression time zone
Gj ≧ 0: Total power generation [W] of the PV device group 3a permitted in the suppression time zone Tj
W j n ≧ 0: Power generation amount upper limit [W] in the suppression time zone T j of the PV device 3n

処理部1bは、10:00〜10:30の抑制時間帯T0に(本来T0は、10:00〜11:00であるが、情報収集及び処理時間を考慮し、以下のT0の時間帯に対する指標計算では、10:00〜10:30の値を代表値として用いている)における各PV装置3の発電量の過去の実績曲線PVn(t)を生成する。実績曲線PVn(t)は、各PV装置3の発電実績量から生成される。
このとき、抑制時間帯T0におけるPV装置3nの実際の発電量は

Figure 2018143092
である。
処理部1bは、次の区分時間帯Tt1では、以下の数2にて決定される基準指標P1を用いる。ここで、基準指標は、第1指標の一例である。
Figure 2018143092
この指標(P1)は、全PV装置3(PV装置群3a)の定格出力に対する実際の出力の平均を意味する。
ここで、処理部1bは、他の基準指標として例えば通常の算術平均に相当する
Figure 2018143092
を用いてもよい。
一方、処理部1bは、以下の数4にて決定される実績個別指標P0,nを用いる。
Figure 2018143092
ここで、抑制時間帯T1に出力抑制をかけない場合に発電するであろうPV装置群3aの発電量(ここでは、契約容量で発電すると仮定する)に対して、抑制時間帯T1に発電量上限値W1 nで各PV装置3nの発電を抑制した場合のPV装置群3aの実際の発電量の割合を、近似的に、以下のQ1,nとする。
Figure 2018143092
そして、処理部1bは、抑制時間帯のうちの経過済みの時間帯(この場合、抑制時間帯T0)におけるPV装置3間の実績個別指標P0,nのギャップを補正しつつ、基準指標P1からの実績個別指標P0,nのズレを最小化するように各W1 nを決定する。
最適化問題の形で表現すれば、処理部1bは、
Figure 2018143092
Figure 2018143092
の2つの式を解くことで得られたW1 1,・・・,W1 nを、次の区分時間帯Tt1における各PV装置3nの発電量上限値W1 nとする。 Processing unit 1b, 10:00 to 10:30 (original T 0 to suppress the time zone T 0 of the 10:00 to 11:00 and it is, considering information acquisition and processing times, the following T 0 In the index calculation for the time zone, the past actual performance curve PV n (t) of the power generation amount of each PV device 3 in the range of 10:00 to 10:30 is used as a representative value). The actual curve PV n (t) is generated from the actual power generation amount of each PV device 3.
At this time, the actual power generation amount of the PV device 3n in the suppression time zone T 0 is
Figure 2018143092
It is.
Processing unit 1b, the next segment time period Tt 1, using the reference index P 1, which is determined by the following equation (2). Here, the reference index is an example of a first index.
Figure 2018143092
This index (P 1 ) means the average of the actual output with respect to the rated output of all the PV devices 3 (PV device group 3a).
Here, the processing unit 1b corresponds to, for example, a normal arithmetic average as another reference index.
Figure 2018143092
May be used.
On the other hand, the processing unit 1b uses the performance individual index P 0, n determined by the following equation 4.
Figure 2018143092
Here, the power generation amount of the PV device group 3a that would power when not to apply output suppression suppression time period T 1 with respect to (in this case, it is assumed that the power generation in the contract capacity), the inhibition time period T 1 The ratio of the actual power generation amount of the PV device group 3a when the power generation of each PV device 3n is suppressed at the power generation amount upper limit value W 1 n is approximately Q 1, n as follows.
Figure 2018143092
Then, the processing unit 1b corrects the gap of the individual performance indicators P 0, n between the PV devices 3 in the elapsed time zone (in this case, the suppression time zone T 0 ) of the suppression time zones , while correcting the gap between the performance indicators P 0, n. Each W 1 n is determined so as to minimize the deviation of the individual performance index P 0, n from P 1 .
If expressed in the form of an optimization problem, the processing unit 1b
Figure 2018143092
Figure 2018143092
W 1 1 ,..., W 1 n obtained by solving these two equations are set as the power generation amount upper limit value W 1 n of each PV device 3n in the next segment time zone Tt 1 .

処理部1bは、次の区分時間帯Tt1では、発電量上限値W1 nを契約容量Mnで割った値である計画個別指標P’1,nと、区分時間帯Tt1を示す区分時間帯情報I1とを、通信部1aから、対応する発電制御装置2配信する。
そして、各発電制御装置2では、制御部2bは、通信部2aを介して、計画個別指標P’1,nと区分時間帯情報I1と受信すると、過去の計画個別指標および過去の区分時間帯情報を破棄して、最新の計画個別指標P’1,nと区分時間帯情報I1を保持する。制御部2bは、11時になったら、対応するPV装置3の発電量上限値が、契約容量[W]に計画個別指標P’1,nを乗じた発電量(=区分時間帯T1での発電量上限値W1 [W])になるよう、対応するPV装置3を周期T2でリアルタイム制御する。この発電制御装置2の動作は、図9に示した動作に準拠する。
一方、制御装置1は、周期T3で、各PV装置3nの発電量を示す情報を継続的に収集する。
Processing unit 1b, the next segment time period Tt 1, segment showing plan and individual index P '1, n is a value obtained by dividing the power generation amount upper limit value W 1 n contract capacity M n, the divided time zone Tt 1 The time zone information I 1 is distributed from the communication unit 1a to the corresponding power generation control device 2.
In each power generation control device 2, the control unit 2 b receives the plan individual index P ′ 1, n and the segment time zone information I 1 via the communication unit 2 a, and then stores the past plan individual index and the past segment time. The band information is discarded, and the latest planned individual index P ′ 1, n and the divided time band information I 1 are retained. When the control unit 2b reaches 11 o'clock, the power generation amount upper limit value of the corresponding PV device 3 is the power generation amount obtained by multiplying the contracted capacity [W] by the planned individual index P ′ 1, n (= in the segment time zone T 1 ). The corresponding PV device 3 is controlled in real time at the cycle T2 so that the power generation amount upper limit value W 1 n [W] The operation of the power generation control device 2 conforms to the operation shown in FIG.
On the other hand, the control device 1 continuously collects information indicating the power generation amount of each PV device 3n in the cycle T3.

その後、処理部1bは、10:30〜11:30の抑制時間帯T1におけるPV装置3の実際の発電量を

Figure 2018143092
を計算して求める。
処理部1bは、次の区分時間帯Tt2では、以下の数9にて決定される基準指標P2を用いる。
Figure 2018143092
また、処理部1bは、以下の数10にて決定される実績個別指標P1,nを用いる。
Figure 2018143092
また、処理部1bは、前の時間帯と同様に
Figure 2018143092
を定義する。
そして、処理部1bは、基準指標P1及び基準指標P2からの、実績個別指標P0,n及び実績個別指標P1,nのズレを最小化するように各W2 nを決定する。
すなわち、今回の抑制では、処理部1bは、抑制対象時間帯全体での公平性を担保する観点から、過去の全時間帯における実際のズレを加味した上で、最適な抑制配分を行う。
このため、処理部1bは、
Figure 2018143092
Figure 2018143092
の2式を解くことで得られたW2 1,・・・,W2 nを、次の区分時間帯Tt2における各PV装置3nの発電量上限値W2 nとする。
以下、上述した処理が繰り返される。 Thereafter, the processing unit 1b, 10:30 to 11:30 the actual power generation amount of the PV device 3 in the suppression time zone T 1 of the
Figure 2018143092
Is calculated.
Processing unit 1b, the next segment time period Tt 2, using the reference index P 2, which is determined by the following equation (9).
Figure 2018143092
Further, the processing unit 1b uses the performance individual index P 1, n determined by the following formula 10.
Figure 2018143092
In addition, the processing unit 1b is similar to the previous time zone.
Figure 2018143092
Define
Then, the processing unit 1b determines each W 2 n so as to minimize a deviation between the actual individual index P 0, n and the actual individual index P 1, n from the reference index P 1 and the reference index P 2 .
That is, in the current suppression, the processing unit 1b performs an optimal suppression distribution in consideration of actual deviation in all past time zones from the viewpoint of ensuring fairness in the entire suppression target time zone.
Therefore, the processing unit 1b
Figure 2018143092
Figure 2018143092
W 2 1 ,..., W 2 n obtained by solving these two equations are set as the power generation amount upper limit value W 2 n of each PV device 3n in the next segment time zone Tt 2 .
Thereafter, the above-described processing is repeated.

上述した発電量上限値を決定する処理を一般的に表すと、処理部1bは、

Figure 2018143092
Figure 2018143092
の2式を解くことで得られたWj 1,・・・,Wj nを、次の区分時間帯Ttjにおける各PV装置3nの発電量上限値Wj nとする。
なお、処理部1bは、最後の区分時間帯Tt4については、その時間帯終了時(15:00)、翌日以降の抑制に備えて、基準指標P6に相当する値や実績個別指標P5,nに相当する値を求める。その際、指標計算で用いる抑制時間帯T5としての時間は、14:00〜15:00、を用いる。 If the process which determines the electric power generation amount upper limit mentioned above generally is represented, the process part 1b will be described.
Figure 2018143092
Figure 2018143092
W j 1 ,..., W j n obtained by solving these two equations are set as the power generation amount upper limit value W j n of each PV device 3n in the next segment time zone Tt j .
The processing unit 1b, for the last segment time period Tt 4, during the time period ends (15:00), provided the next day after the suppression value and performance corresponding to the reference index P 6 individual index P 5 , Find the value corresponding to n . At that time, 14: 0 to 15:00 is used as the time as the suppression time zone T 5 used in the index calculation.

ただし、日射の状況によって、例えば、曇った時などは、各PV装置3nは、必ずしも発電量上限値の発電を実施できず、上限値以下の値での発電しか実施できないが、可能な限り発電量上限値を上限とする制御を行う。   However, depending on the solar radiation, for example, when it is cloudy, each PV device 3n cannot always generate power at the upper limit of power generation, and can only generate power at a value below the upper limit. Control is performed with the upper limit of the amount as the upper limit.

次に、本実施形態の効果について説明する。
本実施形態では、PJとP’J,n、PJ,nを用いたフィードバック制御が繰り返される。
発電抑制の機会は、年に1度だけではなく、複数回あると考えられるため、その抑制が必要な複数の日を通じて、上記フィードバック抑制の繰り返し回数が増えれば増えるほど、PV装置3の間で公平な抑制を実施することができる。
この手法では、PV装置3ごとに、発電抑制時間帯での天候や気温等の条件は異なるが、同じ定格(もしくは契約容量)の電源を有するPV装置3は、同じ発電量(発電抑制量)になるようフィードバック制御されることになる。
このような制御によって、PV装置3間で公平性を維持した発電抑制が可能となる。
Next, the effect of this embodiment will be described.
In this embodiment, feedback control using P J and P ′ J, n and P J, n is repeated.
It is considered that there are multiple opportunities to suppress power generation, not just once a year, so the more the number of repetitions of the feedback suppression increases, the more the PV device 3 becomes, through multiple days that need to be suppressed. Fair restraint can be implemented.
In this method, conditions such as weather and temperature in the power generation suppression time zone differ for each PV device 3, but the PV devices 3 having the same rated power (or contract capacity) have the same power generation amount (power generation suppression amount). The feedback control is performed so that
Such control makes it possible to suppress power generation while maintaining fairness among the PV devices 3.

次に、本実施形態の変形例について説明する。
本実施形態では、データ収集間隔T3=30分の例を示したが、情報通信環境によっては、より頻繁に発電データを収集できる場合が想定される。
例えば、T3=5分の場合であれば、抑制時間帯T0を10:00−10:55とし、処理部1bは、この間の5分おきの発電データで、次の区分時間帯Tt1におけるPjとPj,nを決定する。さらに、抑制時間帯T1を10:55−11:55とし、処理部1bは、この間の5分おきの発電データで、次の区分時間帯Tt2におけるPjとPj,nを決定する。この決定アルゴリズムは、区分時間帯TJの時間とT3との関係の変更に応じて柔軟に変えることができる。
Next, a modification of this embodiment will be described.
In the present embodiment, an example of the data collection interval T3 = 30 minutes is shown. However, depending on the information communication environment, it is assumed that the power generation data can be collected more frequently.
For example, if T3 = 5 minutes, the suppression time zone T 0 is set to 10: 00-10: 55, and the processing unit 1b uses the power generation data every 5 minutes during this time in the next segment time zone Tt 1 . P j and P j, n are determined. Further, the suppression time zone T 1 is set to 10: 55-11: 55, and the processing unit 1b determines P j and P j, n in the next segment time zone Tt 2 with the power generation data every 5 minutes during this time. . This determination algorithm can be flexibly changed according to a change in the relationship between the time of the segment time zone TJ and T3.

本実施形態では、抑制当日に発電抑制を決定し、抑制開始時刻10時の30分前に、制御装置1から、公平性の指標(初期の基準指標)を、各発電制御装置(各PV装置3n)へ配信する例を示した。
しかしながら、抑制の要否は、前日や1週間前、1か月前、1年前等事前に決定され、抑制当日のスケジュールをあらかじめ配信しておく手法(例えば、制御装置1がカレンダーと共にスケジュールを発電制御装置2へ配信する手法や、カレンダーと共にスケジュールを制御装置1が保持し、各発電制御装置2が制御装置1へ情報を取りに行く手法)が用いられてもよい。
例えば、1日毎にスケジュールする状況で、ある日(以下「A日」とする)の抑制が必要と考えられる時間帯が11:00−14:00であった場合、処理部1bは、以下のように動作してもよい。
処理部1bは、その時の各PV装置3nの発電量上限値WJ nを、例えば、契約容量の50%とし、実際にA日の11:00−14:00に発電抑制を実施する。
そして、処理部1bは、発電抑制実施後、第3実施形態で1時間の時間窓(区分時間帯)に基づいて行っていた計算を、時間窓を11:00−14:00と置き換えて計算する。このため、翌日等の次の抑制予定日の抑制時間帯における発電量上限値WJ nの決定にフィードバックが施される。この場合は、日単位での公平性フィードバックにはなるが、抑制回数が増えれば増えるほど、公平性を維持した発電抑制を実施できることになる。これを週単位や月単位でやってもよい。
In the present embodiment, power generation suppression is determined on the suppression day, and 30 minutes before the suppression start time 10 o'clock, the fairness index (initial reference index) is obtained from each power generation control apparatus (each PV apparatus). An example of delivery to 3n) was shown.
However, the necessity of suppression is determined in advance such as the previous day, one week ago, one month ago, one year ago, etc., and a method of distributing the schedule on the day of suppression in advance (for example, the control device 1 schedules with the calendar) A method of distributing to the power generation control device 2 or a method in which the control device 1 holds a schedule together with a calendar and each power generation control device 2 obtains information from the control device 1 may be used.
For example, in a situation where the schedule is performed every day, when the time zone in which the suppression of a certain day (hereinafter referred to as “A day”) is considered necessary is 11: 00-14: 00, the processing unit 1b May operate as follows.
The processing unit 1b sets the power generation amount upper limit value W J n of each PV device 3n at that time to, for example, 50% of the contracted capacity, and actually performs power generation suppression at 11: 00-14: 00 on the A day.
Then, the processing unit 1b performs the calculation performed based on the one-hour time window (segment time zone) in the third embodiment after the power generation suppression is performed by replacing the time window with 11: 00-14: 00. To do. For this reason, feedback is given to the determination of the power generation amount upper limit value W J n in the suppression time zone of the next scheduled suppression date such as the next day. In this case, although it becomes fairness feedback on a daily basis, as the number of times of suppression increases, power generation suppression with fairness can be implemented. This may be done on a weekly or monthly basis.

また、発電量上限値WJ nを、例えば契約容量の0%とし、公平性を担保する指標として、“抑制に応じた総回数”や“抑制に応じた総時間”で代用することも可能である。この手法では、公平性そのものについては精度が悪くなるが、発電抑制の実施が簡単になるメリットがある。 In addition, the power generation upper limit W J n is set to, for example, 0% of the contracted capacity, and “total number according to suppression” or “total time according to suppression” can be substituted as an index to ensure fairness. It is. This method has the merit of facilitating the implementation of power generation suppression, although the fairness itself is less accurate.

抑制実施時間帯に至った場合、即、PCSの出力を目標値(発電量上限値WJ n)にするよう設定してもよいし、急激な発電量変化を避けるため、ゆっくりと、例えば10分程度の時間をかけて、PCSの出力を現在値から目標値へ変更してもよい。これはPCSの設定を時間をかけて目標値へ変更することで実現されるが、この手法は、電力系統の火力発電等との電力需給調整の協調(再エネ発電の出力変化が急激だと火力発電等の出力変更について追随性の問題が生じる恐れがある)を考える上で有効である。 When the suppression execution time period is reached, the PCS output may be set immediately to the target value (power generation amount upper limit value W J n ), or in order to avoid a sudden power generation amount change, for example, 10 The PCS output may be changed from the current value to the target value by taking about a minute. This is realized by changing the PCS setting to the target value over time, but this method is based on the coordination of power supply and demand adjustment with thermal power generation of the power system (when the output change of renewable energy power generation is abrupt This is effective in considering the possibility of following problems regarding output changes such as thermal power generation.

基準指標と実績個別指標の代わりに、第1実施形態や第2実施形態で説明した第1指標と第2指標が用いられてもよい。   Instead of the reference index and the individual performance index, the first index and the second index described in the first embodiment and the second embodiment may be used.

計画個別指標の代わりに、発電量上限値WJ nが用いられてもよい。この場合、各発電制御装置2では、対応するPV装置3の発電量上限値が発電量上限値WJ nになるよう、対応するPV装置3を周期T2でリアルタイム制御する。 The power generation amount upper limit value W J n may be used instead of the planned individual index. In this case, each power generation control device 2 performs real-time control of the corresponding PV device 3 at the cycle T2 so that the power generation amount upper limit value of the corresponding PV device 3 becomes the power generation amount upper limit value W J n .

(第5実施形態)
本発明の第5実施形態は、制御対象に同一カテゴリの再エネ電源として太陽光発電装置(PV装置)を想定し、出力抑制対象の複数のPV装置をエリアと契約容量とに基づいて複数のグループ(以下「グループ」を「クラスタ」と称する)に分け、クラスタ単位で、PV装置の出力抑制を実行する。
(Fifth embodiment)
In the fifth embodiment of the present invention, a photovoltaic power generation device (PV device) is assumed as a renewable energy power source of the same category as a control target, and a plurality of PV devices that are output suppression targets are set based on areas and contracted capacities. Dividing into groups (hereinafter, “group” is referred to as “cluster”), output suppression of the PV device is executed in cluster units.

第5実施形態は、この際、同一の契約容量範囲(例えば、500kW以上)の契約容量を有する複数のPV装置間で出力抑制の公平性がなされるように、PV装置の発電出力を制御する。契約容量は、PV装置の発電量上限値の一例である。
この場合、同一の契約容量範囲の契約容量を有する複数のPV装置、または、同一のエリア内で同一の契約容量範囲の契約容量を有する複数のPV装置が、発電装置群に属する複数のPV装置の一例となる。契約容量は所定指標の一例である。
In this case, the fifth embodiment controls the power generation output of the PV device so that the output restraint is fair among a plurality of PV devices having the same contract capacity range (for example, 500 kW or more). . The contract capacity is an example of the power generation amount upper limit value of the PV device.
In this case, a plurality of PV devices having a contract capacity in the same contract capacity range, or a plurality of PV devices having a contract capacity in the same contract capacity range in the same area belong to a plurality of PV devices. An example. The contract capacity is an example of a predetermined index.

出力抑制の公平性がなされる複数のPV装置を特定するために使用される所定指標は、契約容量に限らず適宜変更可能である。
例えば、所定指標として、PV装置3の定格出力や発電効率が用いられてもよい。
また、所定指標としては、契約容量、定格出力、発電効率等の固定的な指標の代わりに、動的指標(例えば、PV装置3が設置されている地域の気象条件や、PV装置3の推定発電量、過去の発電量、抑制量、電圧変動)が用いられてもよい。
The predetermined index used to identify a plurality of PV devices for which fairness of output suppression is made is not limited to the contract capacity and can be changed as appropriate.
For example, the rated output and power generation efficiency of the PV device 3 may be used as the predetermined index.
In addition, as a predetermined index, instead of a fixed index such as contract capacity, rated output, and power generation efficiency, a dynamic index (for example, the weather condition of the area where the PV device 3 is installed, the estimation of the PV device 3) (Power generation amount, past power generation amount, suppression amount, voltage fluctuation) may be used.

第5実施形態においても、第3実施形態と同様に、PV装置は、発電装置および再エネ電源の一例である。発電装置は、PV装置に限らず適宜変更可能である。例えば、発電装置として、WT装置が用いられてもよい。
また、同一のクラスタに属する複数のPV装置の一部が、PV装置以外の発電装置(例えば、WT装置)に変更されてもよい。
Also in the fifth embodiment, as in the third embodiment, the PV device is an example of a power generation device and a renewable energy power source. The power generation device is not limited to the PV device and can be changed as appropriate. For example, a WT device may be used as the power generation device.
Further, some of the plurality of PV devices belonging to the same cluster may be changed to a power generation device (for example, a WT device) other than the PV device.

図10は、第5実施形態の制御システム100Aを示した図である。図10において、図5に示したものと同一構成のものには同一符号を付してある。
第5実施形態の制御システム100Aと第4実施形態の制御システム100との主な相違点は、第5実施形態の制御システム100Aが、図5に示した制御装置1と処理部1bの代わりに制御装置11と処理部1b1を用いる点である。
以下、第5実施形態の制御システム100Aについて、第4実施形態の制御システム100と異なる点をメインに説明する。
FIG. 10 is a diagram illustrating a control system 100A according to the fifth embodiment. 10, the same components as those shown in FIG. 5 are denoted by the same reference numerals.
The main difference between the control system 100A of the fifth embodiment and the control system 100 of the fourth embodiment is that the control system 100A of the fifth embodiment replaces the control device 1 and the processing unit 1b shown in FIG. The control device 11 and the processing unit 1b1 are used.
Hereinafter, the difference of the control system 100A of the fifth embodiment from the control system 100 of the fourth embodiment will be mainly described.

制御システム100Aは、制御装置11と複数の発電制御装置2とを含む。
制御装置11は、処理部1b1と通信部1aとを含む。
処理部1b1は、決定部の一例である。
処理部1b1は、電力系統4において電力需給バランスをとるために各PV装置3の出力抑制情報を決定する。
処理部1b1は、各PV装置3の実際の発電量(発電実績量)を通信部1aから受信する。
処理部1b1は、各PV装置3の発電実績量に基づいて、PV装置群3aでの出力抑制状態に関する第1指標と、各PV装置3での出力抑制状態に関する第2指標と、を決定する。
処理部1b1は、PV装置3ごとに、第1指標とPV装置3の第2指標とに基づいて出力抑制情報を決定する。
The control system 100A includes a control device 11 and a plurality of power generation control devices 2.
The control device 11 includes a processing unit 1b1 and a communication unit 1a.
The processing unit 1b1 is an example of a determination unit.
The processing unit 1b1 determines the output suppression information of each PV device 3 in order to balance power supply and demand in the power system 4.
The processing unit 1b1 receives the actual power generation amount (power generation actual amount) of each PV device 3 from the communication unit 1a.
The processing unit 1b1 determines the first index related to the output suppression state in the PV device group 3a and the second index related to the output suppression state in each PV device 3 based on the actual power generation amount of each PV device 3. .
The processing unit 1b1 determines output suppression information for each PV device 3 based on the first index and the second index of the PV device 3.

次に、動作を説明する。
図11は、制御システム100Aの動作を説明するための図である。図11では、火力発電所と揚水式発電所がまとめて「火力・水力電源」として表され、PV装置のクラスタが「再エネ電源クラスタ」として表されている。
まず、電力会社の処理部1b1は、管轄する電力系統4の管内の複数のPV装置3を複数のクラスタに分ける。
例えば、処理部1b1は、電力会社の管轄エリアを、各エリア(例えばYkm×Ykmの矩形)の中心間距離が少なくとも10km以上離れるように、L(例えば、100)等分する。なお、各エリアの大きさ、形状および中心間距離並びにLの数は、それぞれ、適宜変更可能である。
続いて、処理部1b1は、各エリアにおいて、エリア内の複数のPV装置3を、PV装置3の契約容量に基づいて分類する。
本実施形態では、処理部1b1は、PV装置3を、契約容量が、C1:500kW以上、C2:500kW未満〜50kW以上、C3:50kW未満〜10kW以上、C4:10kW未満、の4つに分類する。
その結果L×4通りのクラスタができる。なお、契約容量に基づく分類手法はC1〜C4の4つに限らず適宜変更可能である。
そして、処理部1b1は、今回、L=100等分されたエリアにE〜Eの順番をつける。このエリアの順番は、ランダムに設定されてもよいし、地理的に近いエリア同士が近い順番を有するように設定されてもよい。
各エリア内で分類C1に属するPV装置群(クラスタ)を「EL,C1」と表記する。
このため、例えば、クラスタE2,C1は、エリア2に属し契約容量が500kW未満〜50kW以上の複数のPV装置3にて構成される。
処理部1b1は、分類C1〜C4に対して、契約容量が大きい順に、優先順位をC1〜C4の順に設ける。
処理部1b1は、最終的なクラスタ選択では、E1,C1、E2,C1、・・・EL,C1、E1,C2・・・の順番で選択する。
Next, the operation will be described.
FIG. 11 is a diagram for explaining the operation of the control system 100A. In FIG. 11, the thermal power plant and the pumped storage power plant are collectively represented as “thermal power / hydraulic power”, and the cluster of PV devices is represented as “renewable power cluster”.
First, the processing unit 1b1 of the electric power company divides the plurality of PV devices 3 in the pipe of the power system 4 under its control into a plurality of clusters.
For example, the processing unit 1b1 divides the jurisdiction area of the power company into L (for example, 100) equally so that the center-to-center distance of each area (for example, Ykm × Ykm rectangle) is at least 10 km or more. Note that the size, shape, center-to-center distance, and number of L of each area can be changed as appropriate.
Subsequently, in each area, the processing unit 1b1 classifies the plurality of PV devices 3 in the area based on the contracted capacity of the PV devices 3.
In the present embodiment, the processing unit 1b1 classifies the PV device 3 into four categories: C1: 500kW or more, C2: less than 500kW to 50kW or more, C3: less than 50kW to 10kW or more, and C4: less than 10kW. To do.
As a result, L × 4 clusters can be formed. The classification method based on the contract capacity is not limited to four of C1 to C4, and can be changed as appropriate.
Then, the processing unit 1b1 assigns the order of E 1 to E L to the area divided into L = 100 this time. The order of the areas may be set at random, or may be set so that the geographically close areas have a close order.
A PV device group (cluster) belonging to the classification C1 in each area is denoted as “ EL, C1 ”.
For this reason, for example, the clusters E 2 and C 1 are configured by a plurality of PV devices 3 belonging to the area 2 and having a contract capacity of less than 500 kW to 50 kW or more.
The processing unit 1b1 provides priorities in the order of C1 to C4 in descending order of the contract capacity with respect to the classifications C1 to C4.
In the final cluster selection, the processing unit 1b1 selects E 1, C1 , E 2, C1 ,... E L, C1 , E 1, C2 ,.

図12は、制御装置11の動作を説明するためのフローチャートである。
電力会社の処理部1b1は、管轄する電力系統4の管内の全需要家(負荷5)の需要量と、全PV装置3を含む再エネ電源の発電量について、今後1週間における0時から24時までの予測を行う(ステップS1201)。なお、予測期間は適宜変更可能である。
その予測の結果、優先給電規定に則り、火力発電等の出力抑制や、揚水式発電のポンプくみ上げによる需要創出を行った後でも、1週間の中でY日の11時頃〜15時頃にPV装置起因の余剰電力の発生が予測されたとする。
このため、処理部1b1は、PV装置3での出力抑制が必要と判断する(ステップS1202)。なお、PV装置起因の余剰電力の発生が予測されなかった場合、処理部1b1は、PV装置3での出力抑制が不要と判断する(ステップS1202)。
PV装置3での出力抑制が必要である場合、処理部1b1は、PV装置3の出力抑制を実施することを決定する。
FIG. 12 is a flowchart for explaining the operation of the control device 11.
The processing section 1b1 of the electric power company is responsible for the demand amount of all customers (loads 5) in the jurisdiction of the power system 4 and the power generation amount of the renewable energy power source including all the PV devices 3 from 0:00 in the next week. Prediction until time is performed (step S1201). The forecast period can be changed as appropriate.
As a result of the prediction, even after generating demand by controlling the output of thermal power generation and pumping up pumped-storage power generation in accordance with the priority power supply regulations, from 11:00 to 15:00 on the Y day in one week. It is assumed that generation of surplus power due to the PV device is predicted.
Therefore, the processing unit 1b1 determines that output suppression in the PV device 3 is necessary (step S1202). In addition, when generation | occurrence | production of the surplus electric power resulting from a PV apparatus is not estimated, the process part 1b1 judges that the output suppression in the PV apparatus 3 is unnecessary (step S1202).
When the output suppression in the PV device 3 is necessary, the processing unit 1b1 determines to suppress the output of the PV device 3.

PV装置3の出力抑制は、以下のような手順で実施される。
まず、処理部1b1は、抑制当日の電力需要および電力供給のトレンドに基づいて、PV装置3での出力抑制が必要であるかを再確認する。
以下、再確認手法の一例を説明する。
Y日当日、処理部1b1は、全需要家(負荷5)の電力需要量の測定値(例えば、15分毎に更新)とその予測値をもとに、電力需要のトレンドを監視する。ここで、全需要家(負荷5)の電力需要量の測定値は、各需要家の電力計(例えば、スマートメータ)から制御装置11に送信される。なお、全需要家(負荷5)の電力需要量の測定値の更新間隔は15分に限らず、30分等適宜変更可能である。
また、処理部1b1は、PV装置等の再エネ電源についても、発電量の測定値、並びに、測定器が無い電源についての推定値をもとに、電力供給のトレンドを監視する。
処理部1b1は、電力需要および電力供給のトレンドに基づいて、PV装置3に起因する余剰電力が発生するかどうかを判断する。この判断が再確認に対応する。
処理部1b1は、PV装置3に起因する余剰電力が発生しないと判断すると、PV装置3の出力抑制を実行しない。一方、PV装置3に起因する余剰電力が発生すると判断すると、処理部1b1は、PV装置3の出力抑制を実行する。
The output suppression of the PV device 3 is performed by the following procedure.
First, the processing unit 1b1 reconfirms whether output suppression in the PV device 3 is necessary based on the power demand on the suppression day and the power supply trend.
Hereinafter, an example of the reconfirmation method will be described.
On the day of Y, the processing unit 1b1 monitors the power demand trend based on the measured value (for example, updated every 15 minutes) of the power demand amount of all consumers (load 5) and its predicted value. Here, the measurement value of the power demand amount of all the consumers (load 5) is transmitted to the control apparatus 11 from the power meter (for example, smart meter) of each consumer. In addition, the update interval of the measured value of the power demand amount of all consumers (load 5) is not limited to 15 minutes, and can be changed as appropriate, such as 30 minutes.
The processing unit 1b1 also monitors the power supply trend for the renewable energy power source such as the PV device based on the measured value of the power generation amount and the estimated value for the power source without the measuring device.
The processing unit 1b1 determines whether or not surplus power due to the PV device 3 is generated based on the power demand and the power supply trend. This determination corresponds to reconfirmation.
If the processing unit 1b1 determines that surplus power due to the PV device 3 is not generated, the processing unit 1b1 does not execute the output suppression of the PV device 3. On the other hand, if it judges that the surplus electric power resulting from the PV apparatus 3 will generate | occur | produce, the process part 1b1 will perform the output suppression of the PV apparatus 3. FIG.

次に、再確認の結果、PV装置3の出力抑制を実行すると判断した場合の動作を説明する。以下では、この動作の一例として、10時現在で、11時から15時の時間帯にPV装置3に起因する余剰電力の発生する可能性が高いと判断した場合の動作を説明する。この場合、11時から15時の時間帯が「出力抑制時間帯」となる。   Next, the operation when it is determined that the output suppression of the PV device 3 is executed as a result of reconfirmation will be described. In the following, as an example of this operation, an operation when it is determined that there is a high possibility that surplus power due to the PV device 3 is generated in the time zone from 11:00 to 15:00 at 10:00 will be described. In this case, the time zone from 11:00 to 15:00 is the “output suppression time zone”.

処理部1b1は、11時からPV装置3の発電抑制の実施を決定する。
処理部1b1は、まず、制御対象クラスタを選択する(ステップ1203)。この場合、処理部1b1は、最初に11:00−12:00の抑制時間帯Ttt(Ttt=1時間)の間に制御するクラスタ(制御対象クラスタ)を選択する。
処理部1b1は、10時30分の時点で、優先順位順に選択したクラスタにて構成されるクラスタ群で発電抑制できる抑制総量推定値ΣPm_total[W]が、抑制時間帯Ttt1において必要な抑制総量Qtotal[W]の値以上になるまで、クラスタを1以上最小数だけ選択する。今回は、クラスタE1,C1〜E40,C1までが、制御対象クラスタとして選択されたとする。
なお、ここでのクラスタ選択では、ΣPm_total≧Qtotalとなる最小数のクラスタが選択されている。このため、処理部1b1は、制御対象クラスタ内の各PV装置3の発電量上限値を0にする(完全抑制)。
PV装置3の発電量上限値=0は、出力抑制情報の一例である。
そして、処理部1b1は、10時45分に、制御対象クラスタ内の各PV装置3nに対応する発電制御装置(以下「対象発電制御装置」と称する)2へ、発電量上限値W1 n=0と、抑制時間帯Ttt1を示す抑制時間帯情報Itt1とを配信する(ステップS1204)。
なお、制御対象クラスタの選択を開始するタイミングは、抑制時間帯の30分前に限らない。このタイミングは、抑制時間帯の開始タイミングよりも、制御対象クラスタの選択に要する時間と、発電量上限値および抑制時間帯情報の配信に要する時間を加算した時間より十分前のタイミングであればよい。
また、発電量上限値と抑制時間帯情報とを配信するタイミングは、抑制時間帯の15分前に限らない。このタイミングは、抑制時間帯の開始タイミングよりも、発電量上限値と抑制時間帯情報との配信に要する時間より前のタイミングであればよい。
各対象発電制御装置2では、制御部2bは、通信部2aを介して、発電量上限値W1 n=0と抑制時間帯情報Itt1とを受信すると、発電量上限値W1 n=0と抑制時間帯情報Itt1とを保持する。
Processing part 1b1 determines implementation of power generation suppression of PV device 3 from 11:00.
The processing unit 1b1 first selects a control target cluster (step 1203). In this case, the processing unit 1b1 is initially 11:00 to 12:00 suppression time zone Ttt 1 (Ttt 1 = 1 hour) to select a cluster (control target cluster) to control during.
Processing unit 1b1 is a time of 10:30, the priority suppression total estimate can power generation suppression in configured clusters in the selected cluster in order ΣP m_total [W] it is required in the inhibition time period Ttt 1 inhibition Until the total amount Q total [W] or more is reached, 1 or more and a minimum number of clusters are selected. In this example, it is assumed that clusters E1 , C1 to E40 , C1 are selected as control target clusters.
In the cluster selection here, the minimum number of clusters satisfying ΣP m_total ≧ Q total is selected. Therefore, the processing unit 1b1 sets the power generation amount upper limit value of each PV device 3 in the control target cluster to 0 (complete suppression).
The power generation amount upper limit value = 0 of the PV device 3 is an example of output suppression information.
Then, at 10:45, the processing unit 1b1 sends the power generation amount upper limit value W 1 n = to the power generation control device (hereinafter referred to as “target power generation control device”) 2 corresponding to each PV device 3n in the control target cluster. 0, deliver a suppression time zone information Itt 1 illustrating the inhibition time period Ttt 1 (step S1204).
Note that the timing for starting selection of the control target cluster is not limited to 30 minutes before the suppression time zone. This timing may be a timing sufficiently earlier than the start time of the suppression time zone and the time required for selecting the control target cluster and the time required for distributing the power generation amount upper limit value and the suppression time zone information. .
Further, the timing for distributing the power generation amount upper limit value and the suppression time zone information is not limited to 15 minutes before the suppression time zone. This timing may be any timing that is earlier than the time required for distribution of the power generation amount upper limit value and the suppression time zone information before the start time of the suppression time zone.
In each target power generation control device 2, when the control unit 2b receives the power generation amount upper limit value W 1 n = 0 and the suppression time zone information Itt 1 via the communication unit 2a, the power generation amount upper limit value W 1 n = 0. And suppression time zone information Itt 1 are held.

図13は、発電量上限値W1 n=0と抑制時間帯情報を受信した対象発電制御装置2の動作を説明するためのフローチャートである。
制御部2bは、抑制時間帯情報Itt1が示す開始時刻(この場合11時)になると、対応するPV装置3の出力が発電量上限値W1 n=0になるよう、対応するPV装置3を制御する(ステップS1301)。例えば、制御部2bは、対応するPV装置3内のPCSを制御して、対応するPV装置3の出力が発電量上限値W1 n=0になるよう、対応するPV装置3を制御する。
制御部2bは、ステップS1301を、周期Tt2(Tt2は、1sec程度)で抑制時間帯情報Itt1が示す終了時刻(この場合12時)まで繰り返す。なお、周期Tt2は、抑制時間帯の時間長(この例では1時間)以下である。なお、周期Tt2は、抑制時間帯の時間長以下の範囲内で適宜変更可能である。
FIG. 13 is a flowchart for explaining the operation of the target power generation control device 2 that has received the power generation amount upper limit value W 1 n = 0 and the suppression time zone information.
At the start time indicated by the suppression time zone information Itt 1 (in this case, 11:00), the control unit 2b sets the corresponding PV device 3 so that the output of the corresponding PV device 3 becomes the power generation amount upper limit value W 1 n = 0. Is controlled (step S1301). For example, the control unit 2b controls the corresponding PV device 3 by controlling the PCS in the corresponding PV device 3 so that the output of the corresponding PV device 3 becomes the power generation amount upper limit value W 1 n = 0.
Control unit 2b, a step S1301, the period Tt2 (Tt2 is about 1 sec) is repeated until the end time indicated by the suppression time zone information Itt 1 in (at this case 12). The period Tt2 is equal to or shorter than the time length of the suppression time zone (1 hour in this example). Note that the period Tt2 can be appropriately changed within a range equal to or less than the time length of the suppression time zone.

一方、発電抑制が開始されると、制御装置11では、処理部1b1が、周期Tt3(Tt3=15分程度、T3≦T1)で、各PV装置3の発電実績量を示す発電量情報を各発電制御装置2の通信部2aから継続的に収集する。   On the other hand, when the power generation suppression is started, in the control device 11, the processing unit 1b1 sets the power generation amount information indicating the power generation amount of each PV device 3 in the cycle Tt3 (Tt3 = about 15 minutes, T3 ≦ T1). Data are continuously collected from the communication unit 2a of the power generation control device 2.

次に、処理部1b1は、11時30分の時点で、新たに制御対象クラスタを選択する。本実施形態では、優先順位順に選択したクラスタにて構成されるクラスタ群で発電抑制できる抑制総量推定値ΣPm_total[W]が、抑制時間帯Ttt2において必要な抑制総量Qtotal[W]の値以上になるまで、クラスタを1以上最小数だけ選択する。今回は、クラスタE1,C1〜E40,C1に加えて、クラスタE41,C1〜E67,C1までが、制御対象クラスタとして選択されたとする。
ここでのクラスタ選択でも、ΣPm_total≧Qtotalとなる最小数のクラスタが選択されている。このため、処理部1b1は、制御対象クラスタ内の各PV装置3の発電量上限値を0にする(完全抑制)。
そこで、処理部1b1は、11時45分に、制御対象クラスタ内の各PV装置3nに対応する発電制御装置(対象発電制御装置)2へ、発電量上限値W2 n=0と抑制時間帯Ttt2を示す抑制時間帯情報Itt2とを配信する。
各対象発電制御装置2では、制御部2bは、通信部2aを介して、発電量上限値W2 n=0と抑制時間帯情報Itt2とを受信すると、発電量上限値W2 n=0と抑制時間帯情報Itt2とを保持する。
制御部2bは、抑制時間帯情報Itt2が示す開始時刻(この場合12時)になると、対応するPV装置3内のPCSを制御して、対応するPV装置3の出力が発電量上限値W1 n=0になるよう、対応するPV装置3を制御する。制御部2bは、このPV装置3の出力制御を周期Tt2で抑制時間帯情報Itt2が示す終了時刻(この場合13時)まで繰り返す。
以下、このような制御対象クラスタの選択と出力抑制制御が15:00まで繰り返される。
このような制御対象クラスタの選択と出力抑制制御の繰り返しによって、Y日におけるPV装置3に起因する余剰電力の発生を防ぐことが可能になる。
なお、本実施形態での抑制対象PV装置の選択手法では、出力抑制の当日、一度抑制対象として選ばれたPV装置3は、必要な抑制総量Qtotal[W]の量に応じて、基本的に継続して、その日の抑制が終わるまで選び続けられる可能性がある。例えば、11:00〜12:00のQtotal[W]よりも12:00〜13:00のQtotal[W]の方が大きく、更に13:00〜14:00のQtotal[W]の方が大きく、14:00〜15:00のQtotal[W]が13:00〜14:00のQtotal[W]よりも小さく11:00〜12:00のQtotal[W]よりも大きい場合、11:00〜12:00で選ばれた抑制対象PV装置3は、ほぼ11:00〜15:00まで抑制対象として選び続けられ、13:00〜14:00の抑制対象PV装置3の数が最も多くなり、14:00〜15:00では、一部の抑制対象PV装置3が抑制対象から外されるといった選択がなされる。
Next, the processing unit 1b1 newly selects a control target cluster at 11:30. In this embodiment, the suppression total amount estimated value ΣP m_total [W] that can suppress power generation in a cluster group composed of clusters selected in order of priority is the value of the total suppression amount Q total [W] required in the suppression time period Ttt 2 . Until this is the case, a minimum number of clusters of 1 or more is selected. This time, in addition to the cluster E 1, C1 ~E 40, C1 , until the cluster E 41, C1 ~E 67, C1 is the selected as the control target cluster.
Also in this cluster selection, the minimum number of clusters satisfying ΣP m_total ≧ Q total is selected. Therefore, the processing unit 1b1 sets the power generation amount upper limit value of each PV device 3 in the control target cluster to 0 (complete suppression).
Therefore, at 11:45, the processing unit 1b1 sends the power generation amount upper limit value W 2 n = 0 and the suppression time zone to the power generation control device (target power generation control device) 2 corresponding to each PV device 3n in the control target cluster. to deliver the suppression time zone information Itt 2 indicating the Ttt 2.
In each target power generation control device 2, when the control unit 2b receives the power generation amount upper limit value W 2 n = 0 and the suppression time zone information Itt 2 via the communication unit 2a, the power generation amount upper limit value W 2 n = 0. And suppression time zone information Itt 2 are held.
At the start time (in this case, 12:00) indicated by the suppression time zone information Itt 2 , the control unit 2 b controls the PCS in the corresponding PV device 3 so that the output of the corresponding PV device 3 is the power generation amount upper limit value W. The corresponding PV device 3 is controlled so that 1 n = 0. Control unit 2b is repeated until the PV device 3 outputs control the end time indicated by the suppression time zone information Itt 2 with a period Tt2 (at this case 13).
Thereafter, the selection of the control target cluster and the output suppression control are repeated until 15:00.
By repeating the selection of the control target cluster and the output suppression control, it is possible to prevent generation of surplus power due to the PV device 3 on the Y day.
In addition, in the selection method of the suppression target PV apparatus in this embodiment, the PV apparatus 3 once selected as the suppression target on the day of output suppression is basically based on the amount of the total suppression amount Q total [W] required. You may continue to choose until the day's suppression ends. For example, 11:00 to 12:00 of Q total [W] 12 than: 00-13: 00 Q total [W] it is large, further 13: 00-14: 00 Q total of [W] of it is big, 14:00 to 15:00 of Q total [W] is 13:00 to 14:00 of Q total [W] less than the 11: 00-12: greater than 00 Q total [W] In this case, the suppression target PV device 3 selected at 11:00 to 12:00 is continuously selected as the suppression target until approximately 11:00 to 15:00, and the suppression target PV device 3 of 13: 0 to 14:00 The number is the largest, and at 14:00 to 15:00, a selection is made such that some of the suppression target PV devices 3 are excluded from the suppression targets.

そして、次回(例えば、Y日の翌日)の抑制では、処理部1b1は、今回選ばれなかったPV装置3(クラスタ)を優先して優先順位順に選び、上述した抑制を実施する。   In the next time (for example, the day after the Y day), the processing unit 1b1 preferentially selects the PV devices 3 (clusters) not selected this time in order of priority, and performs the above-described suppression.

そして何回か上述した抑制を実施後、全分類C1~C4に属するPV装置3が全て選ばれた段階で、分類毎に、例えば分類C1に属するPV装置3(総数NC1)に対して、処理部1b1は、分類C1の属するPV装置に対して公平性状態を計算する。
処理部1b1は、分類C1に属するPV装置3にて構成されるPV装置群3a-C1についての基準指標Aとして、

Figure 2018143092
を算出して決定する。
数16に示した基準指標Aは、分類C1の各PV装置3の積算抑制時間を考慮した総発電抑制量の平均値である。基準指標Aは、第1指標の一例である。
ここで、nC1は、分類C1に属する個別のPV装置3を表す。分類C1に属するPV装置3の総数はNC1である。TnC1は、PV装置nC1の抑制実施時間である。MnC1は、PV装置nC1の契約容量である。WTnC1 nC1は TnC1における、発電量上限値である。今回 WTnC1 nC1は0となっている。
また、処理部1b1は、個別指標BnC1として、
Figure 2018143092
を算出して決定する。個別指標BnC1は、第2指標の一例である。
なお、数16および数17に示した発電量上限値WTnC1 nC1は、本来、個別PV装置3の総発電電力量となるべきなので、この部分は、個別PV装置3の実際の発電量で置き換えられるべきである。今回は、0であるため、簡単のためにWTnC1 nC1(=0)とした。また、契約容量MnC1は、各PV装置3の発電量推定値で置き換えられてもよい。
また、数16および数17において、総発電抑制量の平均値の代わりに、総発電量の平均値が用いられてもよい。
そして、処理部1b1は、分類C1に属するPV装置3の中から、制御対象のPV装置3を決定する際、基準指標Aと個別指標BnC1とを用いる。
本実施形態では、処理部1b1は、基準指標Aに対する分類C1の各PV装置3の個別指標BnC1の“正”の乖離の大きさ(基準指標A−個別指標BnC1の値で正のとき)に応じて、乖離が大きいPV装置3を以降の抑制実施の機会には、抑制対象として優先的に選択し、抑制実施を行う。このとき、処理部1b1は、処理対象のPV装置3に対して、引き続きWTnC1 nC1を0とする抑制を実施する。ここで、WTnC1 nC1は、出力抑制情報の一例である。
処理部1b1は、基準指標Aに対する分類C1の各PV装置における個別指標BnC1の乖離の大きさがゼロのとき(基準指標A=個別指標BnC1)、もしくは剥離の大きさが負の値であるとき(基準指標A−個別指標BnC1が負に値のとき)は、個別指標BnC1に対応するPV装置3を抑制対象として選択しない。
つまり、各PV装置3は個別指標BnC1の乖離の大きさがゼロ以下になるまでは抑制対象として選択される。 And after implementing the suppression described above several times, at the stage where all the PV devices 3 belonging to all the categories C1 to C4 are selected, for example, for the PV devices 3 belonging to the category C1 (total number N C1 ), The processing unit 1b1 calculates the fairness state for the PV device to which the classification C1 belongs.
The processing unit 1b1 is a reference index A for the PV device group 3a-C1 configured by the PV devices 3 belonging to the classification C1.
Figure 2018143092
Is calculated and determined.
The reference index A shown in Equation 16 is an average value of the total power generation suppression amount in consideration of the integration suppression time of each PV device 3 of the classification C1. The reference index A is an example of a first index.
Here, n C1 represents an individual PV device 3 belonging to the classification C1. The total number of PV devices 3 belonging to the classification C1 is N C1 . T nC1 is the suppression execution time of the PV device n C1 . M nC1 is the contract capacity of the PV device n C1 . W TnC1 nC1 is the upper limit of power generation at T nC1 . This time W TnC1 nC1 is 0.
Further, the processing unit 1b1 uses the individual indicator Bn C1 as
Figure 2018143092
Is calculated and determined. The individual index Bn C1 is an example of a second index.
Since the power generation amount upper limit value W TnC1 nC1 shown in Equations 16 and 17 should be the total power generation amount of the individual PV device 3, this part is replaced with the actual power generation amount of the individual PV device 3. Should be done. Since it is 0 this time, W TnC1 nC1 (= 0) is used for simplicity. Further, the contract capacity M nC1 may be replaced with the estimated power generation amount of each PV device 3.
Further, in the equations 16 and 17, the average value of the total power generation amount may be used instead of the average value of the total power generation suppression amount.
The processing unit 1b1 uses the reference index A and the individual index Bn C1 when determining the PV apparatus 3 to be controlled from the PV apparatuses 3 belonging to the classification C1.
In the present embodiment, the processing unit 1b1 determines the magnitude of the “positive” deviation of the individual index Bn C1 of each PV device 3 of the classification C1 with respect to the reference index A (when the value of the reference index A−the individual index Bn C1 is positive) ), The PV device 3 having a large divergence is preferentially selected as the suppression target at the subsequent suppression execution opportunity, and the suppression is performed. At this time, the processing unit 1b1 continues to suppress the W TnC1 nC1 to 0 for the PV device 3 to be processed. Here, W TnC1 nC1 is an example of output suppression information.
When the magnitude of deviation of the individual index Bn C1 in each PV device of classification C1 with respect to the reference index A is zero (reference index A = individual index Bn C1 ), the processing unit 1b1 is a negative value. In some cases (when the reference index A-individual index Bn C1 is a negative value), the PV device 3 corresponding to the individual index Bn C1 is not selected as a suppression target.
That is, each PV device 3 is selected as a suppression target until the magnitude of the deviation of the individual index Bn C1 becomes zero or less.

今回は、抑制が必要な時間帯が10時〜15時であったとする。
処理部1b1は、分類C1に属するPV装置3について、エリアごとに、上述した乖離量に基づいて新たな優先順位を付ける。
処理部1b1は、その新たな優先順位順に、エリアは番号順にエリアごとにPV装置3を選択する。
この時も、制御の簡略化のため、当日、一度抑制対象に選ばれたPV装置3は、必要な抑制量を満たすように、その日の抑制が終わるまで選び続けられる。
This time, it is assumed that the time zone that needs to be suppressed is from 10:00 to 15:00.
The processing unit 1b1 assigns a new priority to the PV devices 3 belonging to the classification C1 based on the above-described deviation amount for each area.
The processing unit 1b1 selects the PV device 3 for each area in the order of the new priorities and in the order of the numbers.
Also at this time, for simplification of control, the PV device 3 that is once selected as the suppression target on the day is continuously selected until the suppression of the day is completed so as to satisfy the required suppression amount.

なお、処理部1b1は、他の分類(C2〜C4)に対しても、分類C1で行ったように、基準指標Aと個別指標Bとを用いた新たな優先順位を設定し、その新たな優先順位に従って抑制対象となるPV装置3を決定する。   Note that the processing unit 1b1 sets a new priority order using the reference index A and the individual index B for the other classifications (C2 to C4) as in the classification C1, and then sets the new priority. The PV device 3 to be suppressed is determined according to the priority order.

次に、本実施形態の効果を説明する。
本実施形態では、上述したように公平性の指標(基準指標Aと個別指標B)を用いて出力抑制対象のPV装置3の選択を行っていくことで、抑制実行回数が増えれば増えるほど、同じ分類(C1〜C4)に属するPV装置3間の公平性を担保した発電抑制を実施可能になる。
Next, the effect of this embodiment will be described.
In the present embodiment, as described above, as the number of suppression executions increases, by selecting the PV device 3 that is the output suppression target using the fairness index (the reference index A and the individual index B), It becomes possible to implement power generation suppression that ensures fairness among the PV devices 3 belonging to the same classification (C1 to C4).

次に、本実施形態の変形例を説明する。
本実施形態では、抑制実施の日単位で、一度抑制対象に選ばれたPV装置3は、その日の抑制が終わるまで選び続けられる可能性がある制御が行われた。ここで、同一のPV装置3が選び続けられる期間を、日単位ではなく、時間単位等、より細かい粒度で変える制御が行われてもよい。その場合は、上記実施形態で日毎に行っていた処理を所定の時間ごとに行えばよい。この場合、制御が複雑にはなるが、より短い期間で公平性を満足する抑制を実施することができる。
Next, a modification of this embodiment will be described.
In the present embodiment, the PV device 3 that has been selected as the suppression target once in the day of suppression execution is controlled so that it may be selected until the suppression of the day ends. Here, control may be performed in which the period during which the same PV device 3 is continuously selected is changed with a finer granularity such as a time unit instead of a day unit. In that case, what is necessary is just to perform the process performed every day in the said embodiment for every predetermined time. In this case, although the control is complicated, it is possible to implement suppression that satisfies fairness in a shorter period of time.

また、本実施形態では、処理部1b1は、例えば同一エリア内の同一の分類に属するPV装置3の全てを選択してから、次のエリアの同一の分類に属するPV装置3のすべてを選択する。
しかしながら、処理部1b1は、同一エリア内の同一の分類に属するPV装置3の所定の一部を選択したら、次のエリアの同一の分類に属するPV装置3の選択に移ってもよい。
例えば、処理部1b1は、同じ分類(C1等)に属するPV装置3に対してエリア内で番号をつけ、その番号順に全体の30%の数だけ選択して、次のエリアの同一分類のPV装置3の選択へ移る、といった制御を行ってもよい。
このような場合、例えば、上記実施形態では抑制時間Ttt1においてクラスタE1,C1〜E40,C1までしか選ばれなかったが、クラスタE1,C1〜E100,C1まで選ばれるようになる。その結果として、抑制実施において抑制対象PV装置3の地理的分散性が高まり(本実施形態では、太陽光発電の均し効果を考慮し、各エリアの中心間距離が少なくとも10km以上離れるようにエリア区分を行っている)、太陽光発電の均し効果を促進する形での抑制が実施でき、電力系統の安定性向上に効果的となる。
In the present embodiment, the processing unit 1b1 selects, for example, all the PV devices 3 belonging to the same category in the same area, and then selects all the PV devices 3 belonging to the same category in the next area. .
However, if the processing unit 1b1 selects a predetermined part of the PV devices 3 belonging to the same classification in the same area, the processing unit 1b1 may move to selection of the PV devices 3 belonging to the same classification in the next area.
For example, the processing unit 1b1 assigns numbers in the area to the PV devices 3 belonging to the same classification (C1 or the like), selects only 30% of the total number in order of the numbers, and PVs of the same classification in the next area Control such as shifting to selection of the apparatus 3 may be performed.
In such a case, for example, in the above embodiment was chosen only in suppression time Ttt 1 to cluster E 1, C1 ~E 40, C1 , so selected to cluster E 1, C1 ~E 100, C1 . As a result, the geographical dispersibility of the PV device 3 to be suppressed is increased in the suppression implementation (in this embodiment, considering the leveling effect of photovoltaic power generation, the areas such that the distance between the centers of each area is at least 10 km or more. Can be implemented in a manner that promotes the leveling effect of photovoltaic power generation, which is effective in improving the stability of the power system.

なお、処理部1b1は、クラスタを、クラスタ群の発電抑制総量推定値ΣPm_total[W](該当時間帯において、各PV装置3の発電を0にした場合に、総発電量推定値からの抑制が期待される電力量)が、必要な抑制総量Qtotal[W]の値以上でQtotal[W]の値のJ(Jは2以上の整数)倍になるまで、優先順位順に選択してもよい。
この場合、処理部1b1は、例えば以下のようにして、抑制対象クラスタ群内のPV装置3の発電抑制を実施する。
まず、処理部1b1は、必要な抑制総量Qtotalを抑制対象クラスタ群の発電抑制総量推定値ΣPm_totalから差し引いてクラスタ群の発電許可総量P’m_totalを導出する。
続いて、処理部1b1は、抑制対象クラスタ群の発電許可総量P’m_totalと、抑制対象クラスタ群内のPV装置3の総契約容量PT_totalと、の比率(=P’m_total/PT_total)を導出する。
続いて、処理部1b1は、比率(=P’m_total/PT_total)を抑制対象クラスタ群内のPV装置3の契約容量Mnにかけた値を、抑制対象クラスタ群内のPV装置3の発電量上限値Wnとして導出する。
続いて、処理部1b1は、抑制対象クラスタ群内のPV装置3の発電量上限値Wnを用いて、抑制対象クラスタ群内のPV装置3の発電抑制を実施する(この場合、上限値が0ではなく、契約容量の何割かの発電が許可される)。
Note that the processing unit 1b1 determines that the cluster is the power generation suppression total estimated value ΣP m_total [W] of the cluster group (when the power generation of each PV device 3 is set to 0 in the corresponding time zone, the suppression from the total power generation estimated value Is selected in order of priority until the required total suppression amount Q total [W] is equal to or greater than the value of Q total [W] J (where J is an integer equal to or greater than 2). Also good.
In this case, the processing unit 1b1 performs power generation suppression of the PV devices 3 in the suppression target cluster group as follows, for example.
First, the processing unit 1b1 derives the power generation permission total amount P ′ m_total of the cluster group by subtracting the necessary total suppression amount Q total from the power generation suppression total amount estimated value ΣP m_total of the suppression target cluster group.
Subsequently, the processing unit 1b1 calculates a ratio (= P′m_total / P T_total ) between the power generation permission total amount P ′ m_total of the suppression target cluster group and the total contract capacity P T_total of the PV device 3 in the suppression target cluster group. To derive.
Subsequently, the processing unit 1b1 uses the value obtained by multiplying the ratio (= P ′ m_total / P T_total ) by the contract capacity M n of the PV device 3 in the suppression target cluster group, and the power generation amount of the PV device 3 in the suppression target cluster group. Derived as the upper limit value W n .
Subsequently, the processing unit 1b1 uses the power generation amount upper limit value W n of the PV device 3 in the suppression target clusters, to implement the power generation suppression of PV device 3 in the suppression target clusters (in this case, an upper limit value Power generation of some percent of the contracted capacity is permitted, not zero).

なお、蓄電池がPV装置3に併設されている場合、若しくは蓄電池とPV装置3とが物理的な距離としては離れた場所に設置されている場合でも、両者をペアリングし仮想的にPV装置3に併設された蓄電池と見なす場合、発電制御装置2内の制御部2bは、発電量上限値Wnを受信したら、対応するPV装置3の発電を抑制するのではなく、対応するPV装置3の発電量のうち発電量上限値を超えた分を蓄電池へ充電してもよい。この場合も、PV装置3から電力系統4への出力を抑制することが可能である。なお蓄電池とPV装置3とのペアリングでは、複数の蓄電池と複数のPV装置3の組み合わせや、1つの蓄電池と複数のPV装置3の組み合わせや、複数の蓄電池と1つのPV装置3の組み合わせなど、自由な組み合わせでのペアリングが考えられる。
このような抑制を複数回実施することによって、同一分類に属するPV装置3間での出力抑制の公平性を精度よく制御することが可能になる。
Even when the storage battery is installed in the PV device 3 or when the storage battery and the PV device 3 are installed at a physical distance, the PV device 3 is virtually paired by pairing them. when viewed as features have been storage battery, the control unit 2b of the power generation control apparatus 2, upon receiving the power generation amount upper limit value W n, instead of suppressing the generation of the corresponding PV device 3, the corresponding PV device 3 You may charge to a storage battery the part which exceeded the electric power generation amount upper limit among electric power generation amounts. Also in this case, output from the PV device 3 to the power system 4 can be suppressed. In the pairing of the storage battery and the PV device 3, a combination of a plurality of storage batteries and a plurality of PV devices 3, a combination of one storage battery and a plurality of PV devices 3, a combination of a plurality of storage batteries and a single PV device 3, etc. , Pairing in any combination is possible.
By performing such suppression a plurality of times, it becomes possible to accurately control the fairness of output suppression between the PV devices 3 belonging to the same classification.

なお、第1実施形態の外部装置および第2〜第5実施形態の制御装置は、必ずしも電力会社によって管理されている必要はなく、PPSやIPPやアグリゲータなどにて管理されてもよい。   Note that the external device of the first embodiment and the control devices of the second to fifth embodiments are not necessarily managed by an electric power company, and may be managed by a PPS, IPP, aggregator, or the like.

(第6実施形態)
本発明の第6実施形態では、PV装置の管理者がPV装置の出力を電力系統に供給することで利益を得ている状況において、PV装置の出力抑制にて生じる損失の公平性を考慮して、PV装置の出力抑制が行われる。
(Sixth embodiment)
In the sixth embodiment of the present invention, in the situation where the administrator of the PV device is profited by supplying the output of the PV device to the power system, the fairness of the loss caused by the output suppression of the PV device is considered. Thus, output suppression of the PV device is performed.

第6実施形態においても、第4実施形態と同様に、PV装置は、発電装置および再エネ電源の一例である。発電装置は、PV装置に限らず適宜変更可能である。例えば、発電装置として、WT装置が用いられてもよい。
また、同一のクラスタに属する複数のPV装置の一部が、PV装置以外の発電装置(例えば、WT装置)に変更されてもよい。
In the sixth embodiment, as in the fourth embodiment, the PV device is an example of a power generation device and a renewable energy power source. The power generation device is not limited to the PV device and can be changed as appropriate. For example, a WT device may be used as the power generation device.
Further, some of the plurality of PV devices belonging to the same cluster may be changed to a power generation device (for example, a WT device) other than the PV device.

図14は、第6実施形態の制御システム100Bを示した図である。図14において、図5に示したものと同一構成のものには同一符号を付してある。
第6実施形態の制御システム100Bと第4実施形態の制御システム100との主な相違点は、第6実施形態の制御システム100Bが、図5に示した制御装置1と処理部1bの代わりに制御装置12と処理部1b2を用いる点である。
以下、第6実施形態の制御システム100Bについて、第4実施形態の制御システム100と異なる点をメインに説明する。
FIG. 14 is a diagram illustrating a control system 100B of the sixth embodiment. In FIG. 14, the same components as those shown in FIG.
The main difference between the control system 100B of the sixth embodiment and the control system 100 of the fourth embodiment is that the control system 100B of the sixth embodiment replaces the control device 1 and the processing unit 1b shown in FIG. The control device 12 and the processing unit 1b2 are used.
Hereinafter, the difference of the control system 100B of the sixth embodiment from the control system 100 of the fourth embodiment will be mainly described.

制御システム100Bは、制御装置12と複数の発電制御装置2とを含む。
制御装置12は、アグリゲータにて管理されている。
制御装置12は、処理部1b2と通信部1aとを含む。
処理部1b2は、決定部の一例である。
処理部1b2は、電力系統4において電力需給バランスをとるために各PV装置3の出力抑制情報を決定する。
処理部1b2は、各PV装置3の実際の発電量(発電実績量)を通信部1aから受信して入手する。
処理部1b2は、各PV装置3の発電実績量に基づいて、PV装置群3aでの出力抑制状態に関する第1指標と、各PV装置3での出力抑制状態に関する第2指標と、を決定する。
処理部1b2は、PV装置3ごとに、第1指標とPV装置3の第2指標とに基づいて出力抑制情報を決定する。
The control system 100B includes a control device 12 and a plurality of power generation control devices 2.
The control device 12 is managed by an aggregator.
The control device 12 includes a processing unit 1b2 and a communication unit 1a.
The processing unit 1b2 is an example of a determination unit.
The processing unit 1b2 determines the output suppression information of each PV device 3 in order to balance the power supply and demand in the power system 4.
The processing unit 1b2 receives and acquires the actual power generation amount (power generation result amount) of each PV device 3 from the communication unit 1a.
The processing unit 1b2 determines a first index related to the output suppression state in the PV device group 3a and a second index related to the output suppression state in each PV device 3 based on the actual power generation amount of each PV device 3. .
The processing unit 1b2 determines the output suppression information for each PV device 3 based on the first index and the second index of the PV device 3.

次に、動作を説明する。
図15は、制御システム100Bの動作を説明するための図である。図15では、火力発電所と揚水式発電所とをまとめて「火力・水力電源」として表している。
Next, the operation will be described.
FIG. 15 is a diagram for explaining the operation of the control system 100B. In FIG. 15, the thermal power plant and the pumped-storage power plant are collectively represented as “thermal power / hydropower source”.

まず、制御システム100Bによる抑制開始時の動作を説明する。
電力会社において、翌日の0時から24時までの時間帯について、例えば前日の9時に、管轄する電力系統4の管内の全需要家(負荷5)の需要量と、全PV装置3を含む再エネ電源の発電量の予測を行う。なお、予測を行う時刻は9時に限らず適宜変更可能である。
その予測の結果、優先給電規定に則り火力発電等の出力抑制や揚水式発電のポンプくみ上げ(揚水運転)による需要創出を行った後でも、10時以降にPV装置起因の余剰電力の発生が予測されたとする。
このため、電力会社は、必要な発電抑制の一部を、アグリゲータが管理・制御するPV装置3を対象にして実施することを決定する。ここで、アグリゲータは、複数考えられるが、どのアグリゲータについても、同様の手法で抑制が実施できるので、アグリゲータ別に抑制実施の詳細な記述は省略する。
抑制当日の9時に、アグリゲータが管理する処理部1b2は、電力会社から、10時から15時までの時間帯において、アグリゲータが管理・制御するPV装置3を対象として、契約容量の50%以下に発電を抑制するよう依頼を受けたとする。
抑制時間帯が10時から15時までと通知されたため、処理部1b2は、その5時間の時間帯を1時間ごとに区分して区分時間帯をTtjとする。今回は、10時からの各区分時間帯はTt0、Tt1、Tt2、Tt3、Tt4となる。ここで、区分時間帯の長さは1時間に限らず適宜変更可能である。
今回は、区分時間帯Tt0でのPV装置群3aの発電量を契約容量の50%以下にする発電抑制が実施される。
First, the operation at the start of suppression by the control system 100B will be described.
In the electric power company, for the time zone from 0:00 to 24:00 on the next day, for example, at 9:00 on the previous day, the demand amount of all customers (load 5) in the jurisdiction of the power system 4 under the jurisdiction and all PV devices 3 are included. Estimate the amount of power generated by energy sources. Note that the prediction time is not limited to 9 o'clock and can be changed as appropriate.
As a result of forecasting, generation of surplus power due to PV equipment is predicted after 10 o'clock even after generating demand by suppressing output of thermal power generation and pumping pumping (pumping operation) in accordance with the priority power supply regulations Suppose that
For this reason, the electric power company decides to implement part of necessary power generation suppression on the PV device 3 managed and controlled by the aggregator. Here, a plurality of aggregators are conceivable. However, since suppression can be performed with the same method for any aggregator, detailed description of suppression execution for each aggregator is omitted.
At 9:00 on the day of suppression, the processing unit 1b2 managed by the aggregator reduces the contracted capacity to 50% or less for the PV device 3 managed and controlled by the aggregator from the power company in the time zone from 10:00 to 15:00. Suppose you receive a request to reduce power generation.
Since the suppression time zone is notified from 10 o'clock to 15 o'clock, the processing unit 1b2 divides the time zone of 5 hours every hour and sets the division time zone as Tt j . In this time, the divided time zones from 10:00 are Tt 0 , Tt 1 , Tt 2 , Tt 3 , and Tt 4 . Here, the length of the segment time zone is not limited to one hour and can be changed as appropriate.
This time, the power generation suppression of the power generation amount of the PV device group 3a of the piecewise time period Tt 0 to less than 50% of the contract capacity is performed.

処理部1b2は、10時の15分前(9時45分)に、計画個別指標P’0,n=0.5と、区分時間帯Tt0を示す区分時間帯情報I0とを、通信部1aから各発電制御装置2へ配信する。
ここで、計画個別指標P’0,n=0.5を決定するタイミングは、区分時間帯Tt0の開始時点の15分前に限らない。このタイミングは、計画個別指標P’0,n=0.5と区分時間帯情報I0との送信タイミングが区分時間帯Tt0の開始時点よりも前になることを条件として適宜変更可能である。
各発電制御装置2では、制御部2bは、通信部2aを介して、計画個別指標P’0,n=0.5と区分時間帯情報I0と受信すると、計画個別指標P’0,n=0.5と区分時間帯情報I0を保持する。
The processing unit 1b2 sends the planned individual index P ′ 0, n = 0.5 and the segment time zone information I 0 indicating the segment time zone Tt 0 to the communication unit 1a 15 minutes before 10 o'clock (9:45). To each power generation control device 2.
Here, the timing for determining the planned individual index P ′ 0, n = 0.5 is not limited to 15 minutes before the start time of the segment time zone Tt 0 . This timing can be changed as appropriate on the condition that the transmission timing of the planned individual index P ′ 0, n = 0.5 and the segment time zone information I 0 is before the start time of the segment time zone Tt 0 .
In each power generation control device 2, the control unit 2 b receives the planned individual index P ′ 0, n = 0.5 and the divided time zone information I 0 via the communication unit 2 a, and then the planned individual index P ′ 0, n = 0.5. And the divided time zone information I 0 are held.

制御部2bは、区分時間帯情報I0が示す開始時刻(この場合10時)になると、対応するPV装置3の発電量上限値が、その契約容量[W]に計画個別指標P’0,n=0.5を乗じた発電量になるように、対応するPV装置3内のPCSを周期T2で制御する。制御部2bは、この制御を区分時間帯情報I0が示す終了時刻(この場合11時)まで実行する。
なお、各PV装置3が、共通の計画個別指標P’0,n=0.5にて出力抑制されても、天候の状況により、各PV装置3の出力に間にばらつきが生じる可能性がある。このばらつきは、出力抑制の実績に影響する。
When the start time (in this case, 10 o'clock) indicated by the segment time zone information I 0 is reached, the control unit 2b sets the power generation amount upper limit value of the corresponding PV device 3 to the contracted capacity [W] and the planned individual index P ′ 0, The PCS in the corresponding PV device 3 is controlled with the period T2 so that the power generation amount multiplied by n = 0.5. Control unit 2b performs the end time indicating the control segment time zone information I 0 (at this case 11).
Even if the output of each PV device 3 is suppressed at the common planned individual index P ′ 0, n = 0.5, there is a possibility that the output of each PV device 3 varies depending on the weather conditions. This variation affects the performance of output suppression.

一方、制御装置12では、処理部1b2が、周期Ts3(Ts3=5分程度、T2<Ts3<区分時間帯の時間長)で、各PV装置3の発電実績量を示す発電量情報を各発電制御装置2の通信部2aから継続的に収集する。   On the other hand, in the control device 12, the processing unit 1b2 generates power generation amount information indicating the actual power generation amount of each PV device 3 in the cycle Ts3 (Ts3 = about 5 minutes, T2 <Ts3 <time length of the segment time zone). Data are continuously collected from the communication unit 2a of the control device 2.

本実施形態では、処理部1b2は、個々のPV装置3で得られる売電収益の公平性を担保できるように、各PV装置3の出力を制御する。
ここで、処理部1b2は、各PV装置3の単位売電価格Znを予め保持している。
処理部1b2は、基準指標として

Figure 2018143092
を算出して決定する。基準指標は、第1指標の一例である
また、処理部1b2は、実績個別指標として、
Figure 2018143092
を算出して決定する。実績個別指標は、第2指標の一例である。
また、処理部1b2は、
Figure 2018143092
を算出する。
処理部1b2は、その後、各区分時間帯での計画個別指標P’J,nを算出する際に、逐次フィードバックを与えながら、区分時間帯Ttjにおいて、
Figure 2018143092
Figure 2018143092
の2つの式を解くことで得られるWj 1,・・・,Wj nを、区分時間帯Ttjにおける各PV装置3nの発電量上限値Wj nとする。 In the present embodiment, the processing unit 1b2 controls the output of each PV device 3 so as to ensure the fairness of the power sales revenue obtained by each PV device 3.
Here, the processing unit 1b2 holds a unit power selling price Zn of each PV device 3 in advance.
The processing unit 1b2 is used as a reference index.
Figure 2018143092
Is calculated and determined. The reference index is an example of a first index. Further, the processing unit 1b2 is a performance individual index,
Figure 2018143092
Is calculated and determined. The performance individual index is an example of a second index.
In addition, the processing unit 1b2
Figure 2018143092
Is calculated.
After that, the processing unit 1b2 gives sequential feedback when calculating the planned individual index P ′ J, n in each segment time zone, while in the segment time zone Tt j ,
Figure 2018143092
Figure 2018143092
W j 1 ,..., W j n obtained by solving the two equations are set as the power generation amount upper limit value W j n of each PV device 3n in the segment time zone Tt j .

処理部1b2は、各区分時間帯Ttjで、発電量上限値Wj nを契約容量Mnで割った値である計画個別指標P’j,nと、区分時間帯Ttjを示す区分時間帯情報Ijを、通信部1aから、対応する発電制御装置2に配信する。計画個別指標は、出力抑制情報の一例である。
各発電制御装置2の動作は第3実施形態での動作と同様であるので省略する。
The processing unit 1b2 is a divided time indicating the planned individual index P ′ j, n that is a value obtained by dividing the power generation amount upper limit value W j n by the contract capacity M n and the divided time zone Tt j in each divided time zone Tt j. The band information I j is distributed from the communication unit 1 a to the corresponding power generation control device 2. The plan individual index is an example of output suppression information.
Since the operation of each power generation control device 2 is the same as that in the third embodiment, a description thereof will be omitted.

次に、本実施形態の効果について説明する。
上述したフィードバック制御の繰り返し回数が増えれば増えるほど、PV装置3の間で経済性指標に基づく公平な抑制を実施することができる。
Next, the effect of this embodiment will be described.
As the number of repetitions of the above-described feedback control increases, fair suppression based on the economic index can be performed between the PV devices 3.

次に、本実施形態の変形例を説明する。
基準指標として、発電装置群に属する各発電装置の出力抑制時間帯のうちの経過済みの時間帯での抑制電力量に応じた売電損益の平均値が用いられ、計画個別指標として、PV装置の該経過済みの時間帯での抑制電力量に応じた売電損益が用いられてもよい。
Next, a modification of this embodiment will be described.
As a reference index, the average value of the power sales profit / loss according to the amount of suppressed power in the elapsed time zone of the output suppression time zone of each power plant belonging to the power plant group is used. The power sale profit / loss according to the amount of restrained power in the elapsed time period of the may be used.

ここで、第4〜第6実施形態において、抑制時間帯と関連する、制御装置から出力抑制情報(計画個別指標や発電量上限値)を送信する周期(以下「T10」と称する)は、以下のように決定されてもよい。
ある連続した抑制制御が必要な時間Tがあるとき、抑制制御の公平性を担保するためのフィードバックを、できるだけ多くM回実施するために、T/Mのように抑制制御時間を分割し、関連する周期T10として、T10=T/Mとし、周期T10として、抑制制御時間を分割し、周期T10ごとに異なる公平性指標を用いて、抑制制御を実施する。
一方、周期T10は、最適化計算処理を行うのに必要な時間以上の周期でなければならず、
(>15分程度)、他方、発電機の起動停止の再計画を行う周期に対しては、同等か、天候の変動が激しい場合は(公平性担保が難しくなるので)より短い周期(<1h程度)が望ましい。しかしながら、周期T10を一日単位としてもよい。その場合、安定性の観点では電力系統側に負担がかかる、若しくは再エネ電源の発電効率を悪化させる等の弊害があるが、制御が簡単になるというメリットが生じる。
Here, in the fourth to sixth embodiments, a cycle (hereinafter referred to as “T 10 ”) for transmitting output suppression information (plan individual index and power generation amount upper limit value) from the control device related to the suppression time zone is as follows. It may be determined as follows.
When there is a time T that requires a certain suppression control, in order to perform feedback as many as M times as much as possible to divide the suppression control time as T / M As the cycle T 10 to be performed, T 10 = T / M, and as the cycle T 10 , the suppression control time is divided, and the suppression control is performed using a fairness index that is different for each cycle T 10 .
On the other hand, the period T 10 must be a period longer than the time necessary for performing the optimization calculation process,
(> 15 minutes) On the other hand, the period for rescheduling the generator start / stop is the same or shorter (<1h if fair weather fluctuations are difficult) Degree) is desirable. However, the period T 10 may be a daily basis. In that case, from the viewpoint of stability, there is a problem that the power system side is burdened or the power generation efficiency of the renewable energy power source is deteriorated, but there is an advantage that the control is simplified.

ここで、第1指標と第2指標との組合せ例についてまとめて示す。以下では、PV装置3nに対応する構成として「再エネ電源n」が用いられている。
ここで指標計算が対象とする“再エネ電源”は、公平性、を考えなければならない再エネ電源についてであって、“再エネ電源全て”という表現を用いている場合でも、公平性を考えなくても良い再エネ電源は除外している点に注意が必要である(例えば、あるケースでは、再エネ電源を、発電抑制の実施が想定される500kW以上の太陽光発電のみしか考えず、500kW未満の再エネ電源は、そもそも抑制はしなくて良いため、指標計算では考慮しない、など)。
またΣはnについて総数Nまでの積算である。また、以下では、定格値または契約容量という表現を用いているが、これは、再エネ電源では、例えば、太陽光発電の場合、PCSの定格値よりも太陽光パネルの契約容量が大きい場合も小さい場合もあるため、PCSの定格値よりも契約容量を用いた方が良い場合があるからである。
Here, a combination example of the first index and the second index will be collectively shown. In the following, “renewable power source n” is used as a configuration corresponding to the PV device 3n.
The “renewable power source” that is the target of the index calculation here refers to a renewable energy source that must consider fairness. Even when the expression “all renewable energy sources” is used, consider fairness. It should be noted that renewable energy sources that do not have to be excluded are excluded (for example, in some cases, only renewable power generation of 500 kW or more, which is expected to suppress power generation, is considered, Renewable power sources of less than 500kW do not need to be suppressed in the first place, so they are not considered in the index calculation.)
Σ is an integration up to the total number N for n. In the following, the expression rated value or contracted capacity is used. For renewable energy, for example, in the case of photovoltaic power generation, the contracted capacity of the solar panel may be larger than the rated value of the PCS. This is because the contracted capacity may be better than the rated value of the PCS because it may be small.

<組合せ例1>
再エネ電源の抑制を実施した総抑制時間(の平均値)。
第1指標=X/Y
ただし、
X=Σ(再エネ電源nの抑制を実施した抑制時間の積分値∫tn「X」)[h]
Y=再エネ電源nの総数=N
第2指標=X
=再エネ電源nの抑制を実施した抑制時間の積分値∫tn[h]
組合せ例1は、例えば、第1〜第4実施形態に適用される。
<Combination example 1>
Total suppression time (average value) for suppressing renewable energy sources.
First index = X / Y
However,
X = Σ (integral value of suppression time し た t n “X n ” in which the renewable power source n is suppressed) [h]
Y = total number of renewable energy sources n = N
Second index = X n
X n = integration value of suppression time when suppression of renewable energy source n is performed ∫t n [h]
Combination example 1 is applied to the first to fourth embodiments, for example.

<組合せ例2>
抑制時間Tに対する定格電力または契約容量での発電電力量に対する、抑制時間Tでの発電した電力量、の比率。
第1指標=X/Y
ただし、
X=抑制時間Tでの再エネ電源全ての抑制後の総発電量[Wh]
=Σ(再エネ電源nの抑制後の抑制時間Tでの抑制後の発電量「X」)[Wh]
Y=(再エネ電源nの定格値または契約容量の総和)×抑制時間T[Wh]
=Σ(再エネ電源nの定格値または契約容量)×抑制時間T[Wh]
第2指標=X/Y
ただし、
=再エネ電源nの抑制時間Tでの再エネ電源nの抑制後の発電量[Wh]
=(再エネ電源nの定格値または契約容量)×抑制時間T[Wh]
注)抑制時間Tを、積分抑制時間∫t(=経過済みの抑制時間の積分値)としてもよい。
なお、この指標は、抑制を実施した(積分)抑制時間が等しい再エネ電源間で比較する場合に用いる(これは積分抑制時間について、再エネ電源nに対する∫tnがnによらず等しいことを意味する。以下では、この場合∫tn=∫tとも表現する)。
組合せ例2は、例えば、第1〜第4実施形態に適用される。
<Combination example 2>
The ratio of the amount of power generated during the suppression time T to the amount of power generated at the rated power or contracted capacity for the suppression time T.
First index = X / Y
However,
X = Total power generation amount after suppression of all renewable energy sources at suppression time T [Wh]
= Σ (power generation amount “X n ” after suppression at suppression time T after suppression of renewable energy source n) [Wh]
Y = (Rated value of renewable energy source n or total of contracted capacity) × Suppression time T [Wh]
= Σ (Rated value of renewable energy source n or contracted capacity) x suppression time T [Wh]
Second index = X n / Y n
However,
X n = Power generation amount [Wh] after the suppression of the renewable energy source n at the suppression time T of the renewable energy source n
Y n = (Rated value of renewable energy n or contracted capacity) × Suppression time T [Wh]
Note) The suppression time T may be set as the integral suppression time ∫t (= integral value of the elapsed suppression time).
This index is used when comparing between renewable power sources that have the same suppression (integration) suppression time (this means that the integral suppression time is equal to ∫t n for the renewable energy source n regardless of n. In the following, this is also expressed as ∫t n = ∫t).
Combination example 2 is applied to the first to fourth embodiments, for example.

<組合せ例3>
単位時間あたりの、定格での発電電力量または契約容量での発電電力量に対する、積分抑制時間∫tにおける発電した電力量の比率。
第1指標=X/Y
ただし、
X=積分抑制時間∫tにおける再エネ電源全ての抑制後の総発電量[Wh]
=Σ(積分抑制時間∫tnにおける再エネ電源nの抑制後の総発電量X
Y=Σ(再エネ電源nの定格値または契約容量)×(1時間)[Wh]
第2指標=X/Y
ただし、
=積分抑制時間∫tnにおける再エネ電源nの抑制後の総発電量[Wh]
=(再エネ電源nの定格値または契約容量)×(1時間)[Wh]
注)積分抑制時間∫tを、抑制時間Tとしてもよい。
この指標は、抑制を実施した(積分)抑制時間が等しい再エネ電源間で比較する場合に用いる。
組合せ例3は、例えば、第1〜第4実施形態に適用される。
<Combination example 3>
The ratio of the amount of power generated during the integral suppression time ∫t to the amount of power generated at the rated or contracted capacity per unit time.
First index = X / Y
However,
X = Total power generation amount [Wh] after suppression of all renewable energy sources in integral suppression time ∫t
= Sigma (total power generation X n after suppression of renewable energy power n in the integration suppression time ∫T n)
Y = Σ (Rated value of renewable energy source n or contracted capacity) × (1 hour) [Wh]
Second index = X n / Y n
However,
X n = total power generation amount [Wh] after suppression of the renewable energy source n in the integration suppression time ∫t n
Y n = (Rated value or contracted capacity of renewable energy source n) × (1 hour) [Wh]
Note) The integration suppression time ∫t may be the suppression time T.
This index is used when comparing between renewable energy power sources in which suppression (integration) suppression times are equal.
Combination example 3 is applied to the first to fourth embodiments, for example.

<組合せ例4>
抑制時間Tに対する定格電力または契約容量での発電電力量に対する、抑制時間Tにおける発電抑制された電力量、の比率。
第1指標=(Y−X)/Y
ただし、
X=Σ(再エネ電源nの抑制時間Tでの抑制後の発電量「X」)[Wh]
Y=Σ(再エネ電源nの定格値または契約容量)×抑制時間T[Wh]
第2指標=(Y−X)/Y
ただし、
=再エネ電源nの抑制時間Tでの抑制後の発電量[Wh]
=(再エネ電源nの定格値または契約容量)×抑制時間T[Wh]
注)抑制時間Tを、積分抑制時間∫tとしてもよい。
この指標は、抑制を実施した(積分)抑制時間、が等しい電源間で比較する場合に用いる。
組合せ例4は、例えば、第1〜第4実施形態に適用される。
<Combination example 4>
The ratio of the amount of power that has been suppressed during the suppression time T to the amount of power generated at the rated power or contracted capacity for the suppression time T.
First index = (Y−X) / Y
However,
X = Σ (power generation amount “X n ” after suppression at the suppression time T of the renewable energy power source n) [Wh]
Y = Σ (Rated value of renewable energy source n or contracted capacity) × Suppression time T [Wh]
Second index = (Y n −X n ) / Y n
However,
X n = Power generation amount [Wh] after suppression at the suppression time T of the renewable energy source n
Y n = (Rated value of renewable energy n or contracted capacity) × Suppression time T [Wh]
Note) The suppression time T may be the integration suppression time ∫t.
This index is used for comparison between power sources having the same suppression (integration) suppression time.
Combination example 4 is applied to, for example, the first to fourth embodiments.

<組合せ例5>
単位時間あたりの、定格での発電電力量または契約容量での発電電力量に対する、積分抑制時間∫tにおける発電抑制された電力量、の比率。
第1指標=(Y1−X)/Y
ただし、
X=Σ(積分抑制時間∫tnにおける再エネ電源nの抑制後の総発電量X)[Wh]
Y1=Σ(再エネ電源nの定格値または契約容量×∫tn)[Wh]
Y=Σ(再エネ電源nの定格値または契約容量)×(1時間)[Wh]
第2指標=(Yn1−X)/Y
ただし、
=積分抑制時間∫tnにおける再エネ電源nの抑制後の総発電量[Wh]
n1=再エネ電源nの定格値または契約容量×∫tn[Wh]
=(再エネ電源nの定格値または契約容量)×(1時間)[Wh]
注)積分抑制時間∫tを、抑制時間Tとしてもよい。
この指標は、抑制を実施した(積分)抑制時間が等しい再エネ電源間で比較する場合に用いる。
組合せ例5は、例えば、第1〜第4実施形態に適用される。
<Combination example 5>
The ratio of the amount of power that has been suppressed during the integral suppression time ∫t to the amount of power that is generated at the rated or contracted capacity per unit time.
First index = (Y1-X) / Y
However,
X = sigma (total power generation X n after suppression of renewable energy power n in the integration suppression time ∫t n) [Wh]
Y1 = Σ (Rated value of renewable energy source n or contracted capacity × ∫t n ) [Wh]
Y = Σ (Rated value of renewable energy source n or contracted capacity) × (1 hour) [Wh]
Second index = (Y n1 −X n ) / Y n
However,
X n = total power generation amount [Wh] after suppression of the renewable energy source n in the integration suppression time ∫t n
Y n1 = Rated value of renewable energy source n or contracted capacity × ∫t n [Wh]
Y n = (Rated value or contracted capacity of renewable energy source n) × (1 hour) [Wh]
Note) The integration suppression time ∫t may be the suppression time T.
This index is used when comparing between renewable energy power sources in which suppression (integration) suppression times are equal.
Combination example 5 is applied to the first to fourth embodiments, for example.

<組合せ例6>
再エネ電源の、抑制時間Tにおける、発電した電力量。
第1指標=X/Y
ただし、
X=抑制時間Tでの再エネ電源全ての抑制後の総発電量[Wh]
=Σ(再エネ電源nの抑制時間Tでの抑制後の発電量「X」)[Wh]
Y=再エネ電源nの総数=N
第2指標=X
=再エネ電源nの抑制時間Tでの抑制後の発電量[Wh]
注)抑制時間Tを、積分抑制時間∫t(=経過済みの抑制時間の積分値)としてもよい。
この指標は、抑制を実施した(積分)抑制時間が等しい再エネ電源間で比較する場合に用いる。
組合せ例6は、例えば、第1〜第4実施形態に適用される。
<Combination example 6>
The amount of power generated during the suppression time T of the renewable energy power source.
First index = X / Y
However,
X = Total power generation amount after suppression of all renewable energy sources at suppression time T [Wh]
= Σ (power generation amount “X n ” after suppression at the suppression time T of the renewable energy source n) [Wh]
Y = total number of renewable energy sources n = N
Second index = X n
= Power generation amount [Wh] after suppression at the suppression time T of the renewable energy source n
Note) The suppression time T may be set as the integral suppression time ∫t (= integral value of the elapsed suppression time).
This index is used when comparing between renewable energy power sources in which suppression (integration) suppression times are equal.
The combination example 6 is applied to the first to fourth embodiments, for example.

<組合せ例7>
再エネ電源の、積分抑制時間∫tにおける、発電抑制された電力量。
第1指標=(Y1−X)/Y
ただし、
X=Σ(積分抑制時間∫tnにおける再エネ電源nの抑制後の総発電量X)[Wh]
Y1=Σ(再エネ電源nの定格値または契約容量×∫tn)[Wh]
Y=再エネ電源nの総数=N
第2指標=(Yn1−X
ただし、
=積分抑制時間∫tnにおける再エネ電源nの抑制後の総発電量[Wh]
n1=再エネ電源nの定格値または契約容量×∫tn[Wh]
注)積分抑制時間∫tを、抑制時間Tとしてもよい。
この指標は、抑制を実施した(積分)抑制時間が等しい再エネ電源間で比較する場合に用いる。
組合せ例7は、例えば、第1〜第4実施形態に適用される。
<Combination example 7>
The amount of power that has been suppressed during the integration suppression time ∫t of the renewable energy power source.
First index = (Y1-X) / Y
However,
X = sigma (total power generation X n after suppression of renewable energy power n in the integration suppression time ∫t n) [Wh]
Y1 = Σ (Rated value of renewable energy source n or contracted capacity × ∫t n ) [Wh]
Y = total number of renewable energy sources n = N
Second index = (Y n1 −X n )
However,
X n = total power generation amount [Wh] after suppression of the renewable energy source n in the integration suppression time ∫t n
Y n1 = Rated value of renewable energy source n or contracted capacity × ∫t n [Wh]
Note) The integration suppression time ∫t may be the suppression time T.
This index is used when comparing between renewable energy power sources in which suppression (integration) suppression times are equal.
The combination example 7 is applied to the first to fourth embodiments, for example.

<組合せ例8>
公平性の指標を考える際、物理指標である発電電力量ではなく、経済指標である売電損失を考えることもできる。その場合は、FIT(Feed-in Tariff:固定価格買い取り制度)の契約年度等に依存して変わる、単位売電価格Zn[円/kWh]の情報が用いられる(第6実施形態)。
抑制時間Tにおける定格電力または契約容量で発電したら得られたであろう売電収益に対する、抑制時間Tでの売電にて実際に得られた売電収益の比率
第1指標=P/Q
ただし、
P=抑制時間Tにおける再エネ電源全ての抑制後の総売電収益[円]
=Σ(再エネ電源nの抑制後の抑制時間Tでの抑制後の発電量「X」×「Z」)[円]
Q=抑制時間Tにおける再エネ電源全ての抑制なしの場合の総売電収益[円]
=Σ((再エネ電源nの定格値または契約容量)×抑制時間T×Z)[円]
第2指標=P/Q
ただし、
=抑制時間Tにおける再エネ電源nの抑制後の売電収益[円]
=再エネ電源nの抑制後の抑制時間Tでの抑制後の発電量「X」×「Z」[円]
=抑制時間Tにおける再エネ電源nの抑制なしの場合の売電収益[円]
=(再エネ電源nの定格値または契約容量)×抑制時間T×Z)[円]
注)抑制時間Tを、積分抑制時間∫tとしてもよい。
この指標は、(積分)抑制時間、が等しい電源間での比較である必要がある。
注2)再エネ電源では、例えば、太陽光発電の場合、PCSの定格値よりも太陽光パネルの契約容量が大きい場合も小さい場合もあるため、PCSの定格値よりも契約容量を用いた方が良い場合もある。
組合せ例8は、例えば、第6実施形態に適用される。
<Combination example 8>
When considering the fairness index, it is possible to consider not only the amount of generated power, which is a physical index, but also the power sales loss, which is an economic index. In this case, information on the unit power selling price Z n [yen / kWh] that changes depending on the contract year of FIT (Feed-in Tariff: fixed price purchase system) is used (sixth embodiment).
Ratio of power sales revenue actually obtained by selling power at the restraint time T to the power sale revenue that would have been obtained if the power was generated with the rated power or contracted capacity at the restraint time T
1st index = P / Q
However,
P = Total electricity sales revenue after suppression of all renewable energy sources at suppression time T [yen]
= Σ (the amount of power generation “X n ” × “Z n ” after suppression at the suppression time T after suppression of the renewable energy source n) [yen]
Q = Total power revenue [yen] when there is no suppression of all renewable energy sources during the suppression time T
= Σ ((Rated value of renewable energy source n or contracted capacity) × Inhibition time T × Z n ) [yen]
Second index = P n / Q n
However,
P n = Revenue from selling electricity after suppression of renewable energy n at suppression time T [yen]
= Power generation amount “X n ” × “Z n ” [yen] after suppression at suppression time T after suppression of renewable energy source n
Q n = Revenue from selling electricity [yen] when there is no suppression of renewable energy source n at suppression time T
= (Rated value of renewable energy source n or contracted capacity) × Inhibition time T × Z n ) [yen]
Note) The suppression time T may be the integration suppression time ∫t.
This index needs to be a comparison between power supplies having the same (integration) suppression time.
Note 2) In the case of photovoltaic power generation, for example, in the case of photovoltaic power generation, the contract capacity of the solar panel may be larger or smaller than the rated value of the PCS, so the person using the contracted capacity rather than the rated value of the PCS May be good.
The combination example 8 is applied to the sixth embodiment, for example.

再エネ電源を電源の契約容量(10kW、50kW、500kW等)でクラスタ化して、契約容量のクラスタ毎に、発電抑制時間の絶対値(組合せ例9)、発電(抑制)電力量の絶対値(組合せ例10)、または、売電(収益)損失の絶対値(組合せ例11)、を公平性の指標とすることも考えられる。   Renewable power sources are clustered with the contracted capacity of the power supply (10kW, 50kW, 500kW, etc.). Combination example 10) or the absolute value of power sale (revenue) loss (combination example 11) may be used as an indicator of fairness.

<組合せ例9>
同じ契約容量、同一クラスタ(エリア別や再エネ・カテゴリ別のクラスタを含む)、または同一クラスタで且つ同じ契約容量の再エネ電源を公平化の対象とし、組合せ例1の手法を用いる。
組合せ例9は、例えば、第5実施形態に適用される。
<Combination example 9>
The same contracted capacity, the same cluster (including clusters by area and renewable energy category), or the renewable energy power sources of the same cluster and the same contracted capacity are targeted for fairing, and the method of combination example 1 is used.
Combination example 9 is applied to the fifth embodiment, for example.

<組合せ例10>
同じ契約容量、同一クラスタ(エリア別や再エネ・カテゴリ別のクラスタを含む)、または同一クラスタで且つ同じ契約容量の再エネ電源を公平化の対象とし、組合せ例6や7の手法を用いる。
組合せ例10は、例えば、第5実施形態に適用される。
<Combination Example 10>
The same contracted capacity, the same cluster (including clusters by area or renewable energy category), or the renewable energy power sources of the same cluster and the same contracted capacity are targeted for fairing, and the methods of combination examples 6 and 7 are used.
The combination example 10 is applied to the fifth embodiment, for example.

<組合せ例11>
同じ契約容量、同一クラスタ(エリア別や再エネ・カテゴリ別のクラスタを含む)、または同一クラスタで且つ同じ契約容量の再エネ電源を公平化の対象とする。
抑制時間Tにおける、売電収益、又は、売電損失、そのもの。
第1指標=抑制時間Tでの同じ契約容量の各第エネ電源の売電収益(損失)の平均値[円]
第2指標=抑制時間Tでの同じ契約容量の第エネ電源nの抑制後の売電収益P
=該再エネ電源nの抑制後の発電量「X」×「Z」[円]、
または、
=該再エネ電源nの抑制後の売電損失R
=(該再エネ電源nの契約容量×「Z」=Q)−「P」[円]
注)抑制時間Tを、積分抑制時間∫tとしてもよい。
この指標は、(積分)抑制時間、が等しい電源間での比較である必要がある。
組合せ例11は、例えば、第5実施形態に適用される。
<Combination Example 11>
The same contracted capacity, the same cluster (including clusters by area and renewable energy category), or renewable energy power sources of the same cluster and the same contracted capacity are targeted for fairing.
Electricity sales profit or electric power sales loss in the suppression time T itself.
1st index = average value [yen] of electricity sales revenue (loss) of each energy source with the same contracted capacity at restraint time T
Second index = power sales revenue P n after suppression of energy source n of the same contract capacity at suppression time T
= Power generation amount “X n ” × “Z n ” [yen] after suppression of the renewable energy source n
Or
= Selling loss R n after suppression of the renewable energy source n
= (The contracted capacity of the renewable energy source n × “Z n ” = Q n ) − “P n ” [yen]
Note) The suppression time T may be the integration suppression time ∫t.
This index needs to be a comparison between power supplies having the same (integration) suppression time.
The combination example 11 is applied to the fifth embodiment, for example.

上記組合せ例1〜11における、“定格での発電電力量または契約容量での発電電力量”の部分を、“発電可能推定量”に置き換えた指標も考えられる。
<組合せ例12>
抑制時間Tにおける発電可能推定量に対する、抑制時間Tにおける発電した電力量、の比率。
第1指標=X/Y
ただし、
X=抑制時間Tにおける再エネ電源全ての抑制後の総発電量[Wh]
=Σ(再エネ電源nの抑制後の抑制時間Tでの発電量X)[Wh]
Y=抑制時間Tにおける再エネ電源全ての総発電可能推定量[Wh]
=Σ(再エネ電源nの抑制時間Tでの発電可能推定量)[Wh]
第2指標=X/Y
ただし、
=抑制時間Tにおける再エネ電源nの抑制後の発電量[Wh]
=再エネ電源nの抑制時間Tでの発電可能推定量[Wh]
注)抑制時間Tを、積分抑制時間∫tとしてもよい。
In the above combination examples 1 to 11, an index in which “the amount of generated power at the rated value or the amount of generated power at the contracted capacity” is replaced with “estimated amount of power generation” is also conceivable.
<Combination Example 12>
The ratio of the amount of power generated during the suppression time T to the estimated power generation amount during the suppression time T.
First index = X / Y
However,
X = Total power generation amount after suppression of all renewable energy sources during suppression time T [Wh]
= Σ (Power generation amount X n at the suppression time T after suppression of the renewable energy source n ) [Wh]
Y = Total estimated amount of power generation possible for all renewable energy sources during the suppression time T [Wh]
= Σ (estimated amount of power generation at the suppression time T of the renewable energy source n) [Wh]
Second index = X n / Y n
However,
X n = Power generation amount [Wh] after suppression of the renewable energy power source n at the suppression time T
Y n = Estimated power generation amount [Wh] at the suppression time T of the renewable energy source n
Note) The suppression time T may be the integration suppression time ∫t.

<組合せ例13>
再エネ電源群から構成されるクラスタmが複数M個ある状況で、クラスタ間の公平性を実現する指標(例えば、県別にクラスタを形成することが考えられる)。
第1指標=X/Y
ただし、
X=Σ(クラスタmの抑制時間Tでの抑制後の発電量X)[Wh]
Y=Σ(クラスタmの所定期間における平均発電量Y)[Wh]
第2指標=X/Y
ただし、
=クラスタmの抑制時間Tでの抑制後の発電量[Wh]
=クラスタmの所定期間における平均発電量[Wh]
注)抑制時間Tを、積分抑制時間∫tとしてもよい。
注)平均発電量を求める際の所定期間は、年間、季間、月間等、様々な期間を用いてよい。
<Example of combination 13>
An index for realizing fairness between clusters in a situation where there are a plurality M of clusters m composed of renewable energy power supply groups (for example, it is conceivable to form clusters for each prefecture).
First index = X / Y
However,
X = Σ (power generation amount X m after suppression at suppression time T of cluster m ) [Wh]
Y = Σ (average power generation Y m in a predetermined period of cluster m ) [Wh]
Second index = X m / Y m
However,
X m = Power generation amount after suppression at suppression time T of cluster m [Wh]
Y m = average power generation amount [Wh] in a predetermined period of cluster m
Note) The suppression time T may be the integration suppression time ∫t.
Note) Various periods such as annual, seasonal, monthly, etc. may be used as the predetermined period when calculating the average power generation amount.

上記実施形態において、発電制御装置A、AA、2、制御装置B、BB、C、1、11、12は、それぞれ、コンピュータにて実現されてもよい。この場合、コンピュータは、コンピュータにて読み取り可能な記録媒体に記録されたプログラムを読込み実行して、発電制御装置A、AA、2、制御装置B、BB、C、1、11、12のいずれか有する機能を実行する。記録媒体は、例えば、CD-ROM(Compact Disk Read Only Memory)である。記録媒体は、CD-ROMに限らず適宜変更可能である。
以上説明した各実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。
In the above embodiment, the power generation control devices A, AA, 2, and the control devices B, BB, C, 1, 11, and 12 may each be realized by a computer. In this case, the computer reads and executes a program recorded on a computer-readable recording medium, and any one of the power generation control devices A, AA, 2, control devices B, BB, C, 1, 11, 12 The function which has is performed. The recording medium is, for example, a CD-ROM (Compact Disk Read Only Memory). The recording medium is not limited to the CD-ROM and can be changed as appropriate.
In each embodiment described above, the illustrated configuration is merely an example, and the present invention is not limited to the configuration.

A、AA 発電制御装置
A1 通信部
AA1 決定部
A2、AA2 制御部
B、BB、C 制御装置
B1、C1 処理部
B2、C2 通信部
BB2 制御部
100、100A、100B 制御システム
1、11、12 制御装置
1a 通信部
1b、1b1、1b2 処理部
2 発電制御装置
2a 通信部
2b 制御部
3 PV装置
4 電力系統
4a 火力発電所
4b 揚水式発電所
5 負荷
6 測定部
A, AA power generation control device A1 communication unit AA1 determination unit A2, AA2 control unit B, BB, C control device B1, C1 processing unit B2, C2 communication unit BB2 control unit 100, 100A, 100B control system 1, 11, 12 control Device 1a Communication unit 1b, 1b1, 1b2 Processing unit 2 Power generation control device 2a Communication unit 2b Control unit 3 PV device 4 Power system 4a Thermal power plant 4b Pumped storage power plant 5 Load 6 Measurement unit

Claims (27)

発電装置群の出力状態に関する第1指標と、前記発電装置群に属する複数の所定発電装置の出力状態に関する第2指標と、に基づいて、前記複数の所定発電装置の出力制御情報を決定する決定部と、
前記出力制御情報を対応する前記複数の所定発電装置に送信する通信部と、を備え、
前記決定部は、出力制御時間帯における前記発電装置群の出力状態と、前記発電装置群に属する前記複数の所定発電装置の出力状態との差に応じて前記出力制御情報を決定する制御装置。
Determination to determine output control information of the plurality of predetermined power generation devices based on a first index regarding the output state of the power generation device group and a second index regarding the output states of the plurality of predetermined power generation devices belonging to the power generation device group And
A communication unit that transmits the output control information to the corresponding predetermined power generation devices, and
The said determination part is a control apparatus which determines the said output control information according to the difference of the output state of the said power generation device group in an output control time slot | zone, and the output state of these predetermined power generation devices which belong to the said power generation device group.
前記出力制御時間帯は、経過済みの時間帯である請求項1に記載の制御装置。   The control device according to claim 1, wherein the output control time zone is an elapsed time zone. 発電装置群の出力状態に関する第1指標と、前記発電装置群に属する複数の所定発電装置の出力状態に関する第2指標と、に基づいて、前記複数の所定発電装置の出力制御情報を決定する決定部と、
前記出力制御情報を対応する前記複数の所定発電装置に送信する通信部と、を備え、
前記決定部は、さらに前記発電装置群の出力状態に関する第1指標と、前記発電装置群とは異なる発電装置群の出力状態に関する第1指標との差に応じて前記出力制御情報を決定する制御装置。
Determination to determine output control information of the plurality of predetermined power generation devices based on a first index regarding the output state of the power generation device group and a second index regarding the output states of the plurality of predetermined power generation devices belonging to the power generation device group And
A communication unit that transmits the output control information to the corresponding predetermined power generation devices, and
The determination unit further controls the output control information according to a difference between a first index related to an output state of the power generation device group and a first index related to an output state of a power generation device group different from the power generation device group. apparatus.
発電装置群の出力状態に関する指標に基づいて、前記発電装置群に属する複数の所定発電装置の出力制御情報を決定する決定部と、
前記出力制御情報を対応する前記複数の所定発電装置に送信する通信部と、を備え、
前記決定部は、前記発電装置群の出力状態に関する指標と、前記発電装置群とは異なる発電装置群の出力状態に関する指標との差に応じて前記出力制御情報を決定する制御装置。
A determination unit that determines output control information of a plurality of predetermined power generation devices belonging to the power generation device group, based on an index relating to an output state of the power generation device group;
A communication unit that transmits the output control information to the corresponding predetermined power generation devices, and
The said determination part is a control apparatus which determines the said output control information according to the difference of the parameter | index regarding the output state of the said power generation device group, and the parameter | index regarding the output state of the power generation device group different from the said power generation device group.
前記出力状態は、前記発電装置群または前記複数の所定発電装置における、出力制御された発電量、発電抑制量、発電量上限値、発電出力の上限値、所定発電装置のオン/オフ状態、抑制回数、出力制御時間、出力制御された結果としての売電収益または売電損失、の少なくとも一つである請求項1から4のいずれか1項に記載の制御装置。   The output state includes the power generation amount, the power generation suppression amount, the power generation amount upper limit value, the power generation output upper limit value, the on / off state of the predetermined power generation device, and the suppression in the power generation device group or the plurality of predetermined power generation devices 5. The control device according to claim 1, wherein the control device is at least one of a number of times, an output control time, and a power sale profit or a power sale loss as a result of the output control. 発電装置群に属する複数の第1発電装置の出力状態に関する指標と、前記発電装置群に属する、前記複数の第1発電装置とは異なる複数の第2発電装置の出力状態に関する指標と、に基づいて、前記複数の第1発電装置の出力制御情報を決定する決定部と、
前記出力制御情報を対応する前記複数の第1発電装置に送信する通信部と、を備え、
前記決定部は、出力制御時間帯における前記複数の第1発電装置の出力状態と、前記複数の第2発電装置の出力状態との差に応じて前記出力制御情報を決定する制御装置。
Based on an index related to output states of a plurality of first power generation devices belonging to the power generation device group and an index related to output states of a plurality of second power generation devices different from the plurality of first power generation devices belonging to the power generation device group. A determination unit that determines output control information of the plurality of first power generation devices;
A communication unit that transmits the output control information to the corresponding first power generation devices,
The said determination part is a control apparatus which determines the said output control information according to the difference of the output state of the said some 1st electric power generating apparatus in the output control time slot | zone, and the output state of the said several 2nd electric power generating apparatus.
発電装置群の出力状態に関する第1指標と、前記発電装置群に属する複数の所定発電装置の出力状態に関する第2指標と、に基づいて、前記複数の所定発電装置の出力制御情報を決定する決定部と、
前記出力制御情報を対応する前記複数の所定発電装置に送信する通信部と、を備え、
前記出力制御情報は、
所定時間帯の前記発電装置群の基準発電量と、経過済みの時間帯の前記発電装置群の抑制回数または抑制時間の少なくともいずれか一方とに基づいて設定された前記第1指標と、
前記所定時間帯の前記発電装置群に属する前記複数の所定発電装置の基準発電量と、前記経過済みの時間帯の前記複数の所定発電装置の抑制回数または抑制時間の少なくともいずれか一方とに基づいて設定された前記第2指標との差に応じて決定される制御装置。
Determination to determine output control information of the plurality of predetermined power generation devices based on a first index regarding the output state of the power generation device group and a second index regarding the output states of the plurality of predetermined power generation devices belonging to the power generation device group And
A communication unit that transmits the output control information to the corresponding predetermined power generation devices, and
The output control information is
The first index set based on a reference power generation amount of the power generation device group in a predetermined time zone and at least one of the number of suppressions or the suppression time of the power generation device group in an elapsed time zone;
Based on a reference power generation amount of the plurality of predetermined power generation devices belonging to the power generation device group in the predetermined time zone and at least one of the number of times of suppression or the suppression time of the plurality of predetermined power generation devices in the elapsed time zone. And a control device that is determined according to a difference from the second index that is set.
前記発電装置群の基準発電量は、前記発電装置群に属する各発電装置の出力電力の上限値に基づいて設定され、
前記複数の所定発電装置の基準発電量は、前記複数の所定発電装置の出力電力の上限値に基づいて設定される請求項7に記載の制御装置。
The reference power generation amount of the power generation device group is set based on the upper limit value of the output power of each power generation device belonging to the power generation device group,
The control device according to claim 7, wherein the reference power generation amount of the plurality of predetermined power generation devices is set based on an upper limit value of output power of the plurality of predetermined power generation devices.
前記発電装置群の基準発電量は、前記所定時間帯の前記発電装置群の発電量であり、
前記複数の所定発電装置の基準発電量は、前記所定時間帯の前記複数の所定発電装置の発電量である請求項7に記載の制御装置。
The reference power generation amount of the power generation device group is the power generation amount of the power generation device group in the predetermined time zone,
The control device according to claim 7, wherein the reference power generation amount of the plurality of predetermined power generation devices is a power generation amount of the plurality of predetermined power generation devices in the predetermined time period.
前記第1指標は、所定時間帯の前記発電装置群の基準発電量と経過済みの時間帯の前記発電装置群の発電量とに基づいて設定され、
前記第2指標は、前記所定時間帯の前記複数の所定発電装置の基準発電量と前記経過済みの時間帯の前記複数の所定発電装置の発電量とに基づいて設定される請求項1から3のいずれか1項に記載の制御装置。
The first index is set based on a reference power generation amount of the power generation device group in a predetermined time zone and a power generation amount of the power generation device group in an elapsed time zone,
The second index is set based on a reference power generation amount of the plurality of predetermined power generation devices in the predetermined time zone and a power generation amount of the plurality of predetermined power generation devices in the elapsed time zone. The control device according to any one of the above.
前記第1指標は、所定時間帯の前記発電装置群の基準発電量と経過済みの時間帯の前記発電装置群の抑制電力量とに基づいて設定され、
前記第2指標は、前記所定時間帯の前記複数の所定発電装置の基準発電量と前記経過済みの時間帯の前記複数の所定発電装置の抑制電力量とに基づいて設定される請求項1から3のいずれか1項に記載の制御装置。
The first index is set based on a reference power generation amount of the power generation device group in a predetermined time zone and a suppression power amount of the power generation device group in an elapsed time zone,
The second index is set based on a reference power generation amount of the plurality of predetermined power generation devices in the predetermined time zone and a suppressed power amount of the plurality of predetermined power generation devices in the elapsed time zone. 4. The control device according to any one of 3.
前記第1指標は、所定時間帯の前記発電装置群の基準売電収益と経過済みの時間帯の前記発電装置群の発電量に応じた売電収益とに基づいて設定され、
前記第2指標は、前記所定時間帯の前記複数の所定発電装置の基準売電収益と前記経過済みの時間帯の前記複数の所定発電装置の発電量に応じた売電収益とに基づいて設定される請求項1から3のいずれか1項に記載の制御装置。
The first index is set based on a reference power sales revenue of the power generation device group in a predetermined time zone and a power sales revenue according to the power generation amount of the power generation device group in an elapsed time zone,
The second index is set based on the reference power sales revenue of the plurality of predetermined power generation devices in the predetermined time zone and the power sales revenue according to the power generation amount of the plurality of predetermined power generation devices in the elapsed time zone. The control device according to any one of claims 1 to 3.
前記発電装置群の基準売電収益は、前記発電装置群に属する各発電装置の出力電力の上限値と前記所定時間帯の長さと当該発電装置の単位売電価格とに基づいて設定され、
前記複数の所定発電装置の基準売電収益は、前記複数の所定発電装置の出力電力の上限値と前記所定時間帯の長さと前記複数の所定発電装置の単位売電価格とに基づいて設定される請求項9に記載の制御装置。
The reference power sales revenue of the power generation device group is set based on the upper limit value of the output power of each power generation device belonging to the power generation device group, the length of the predetermined time zone, and the unit power sales price of the power generation device,
The reference power sales revenue of the plurality of predetermined power generation devices is set based on the upper limit value of the output power of the plurality of predetermined power generation devices, the length of the predetermined time zone, and the unit power selling price of the plurality of predetermined power generation devices. The control device according to claim 9.
前記各発電装置の出力電力の上限値は、前記各発電装置の出力電力の定格値、または契約上の上限値であり、
前記複数の所定発電装置の出力電力の上限値は、前記複数の所定発電装置の出力電力の定格値、または契約上の上限値である請求項8または13に記載の制御装置。
The upper limit value of the output power of each power generator is a rated value of the output power of each power generator, or a contractual upper limit value,
The control device according to claim 8 or 13, wherein the upper limit value of output power of the plurality of predetermined power generation devices is a rated value of output power of the plurality of predetermined power generation devices or a contractual upper limit value.
前記通信部は、前記第1指標と前記第2指標とに基づいて前記複数の所定発電装置を出力制御対象として決定した場合、前記出力制御情報を送信する請求項1から3のいずれか1項に記載の制御装置。   The said communication part transmits the said output control information, when the said several predetermined electric power generating apparatus is determined as an output control object based on the said 1st parameter | index and the said 2nd parameter | index. The control device described in 1. 前記複数の所定発電装置の出力が、前記通信部における前記出力制御情報の送信間隔以下の時間間隔で、最新の前記出力制御情報に基づいて制御される請求項1から15のいずれか1項に記載の制御装置。   The output of the plurality of predetermined power generation devices is controlled based on the latest output control information at a time interval equal to or less than a transmission interval of the output control information in the communication unit. The control device described. 前記通信部は、前記出力制御情報の送信元の所定発電装置から、該所定発電装置の発電量を、前記送信間隔以下の時間間隔で受信する請求項16に記載の制御装置。   The control device according to claim 16, wherein the communication unit receives the power generation amount of the predetermined power generation device at a time interval equal to or less than the transmission interval from a predetermined power generation device that is a transmission source of the output control information. 発電装置群の出力状態に関する第1指標と、前記発電装置群に属する複数の所定発電装置の出力状態に関する第2指標と、に基づいて、前記複数の所定発電装置の出力制御情報を決定し、
前記出力制御情報を対応する前記複数の所定発電装置に送信し、
前記出力制御情報を、出力制御時間帯における前記発電装置群の出力状態と、前記発電装置群に属する前記複数の所定発電装置の出力状態との差に応じて決定する制御方法。
Determining output control information of the plurality of predetermined power generation devices based on a first index relating to an output state of the power generation device group and a second index relating to an output state of the plurality of predetermined power generation devices belonging to the power generation device group;
Transmitting the output control information to the corresponding predetermined power generation devices,
A control method for determining the output control information according to a difference between an output state of the power generation device group in an output control time zone and output states of the plurality of predetermined power generation devices belonging to the power generation device group.
発電装置群の出力状態に関する第1指標と、前記発電装置群に属する複数の所定発電装置の出力状態に関する第2指標と、に基づいて、前記複数の所定発電装置の出力制御情報を決定し、
前記出力制御情報を対応する前記複数の所定発電装置に送信し、
前記出力制御情報を、前記発電装置群の出力状態に関する第1指標と、前記発電装置群とは異なる発電装置群の出力状態に関する第1指標との差に応じて決定する制御方法。
Determining output control information of the plurality of predetermined power generation devices based on a first index relating to an output state of the power generation device group and a second index relating to an output state of the plurality of predetermined power generation devices belonging to the power generation device group;
Transmitting the output control information to the corresponding predetermined power generation devices,
The control method which determines the said output control information according to the difference of the 1st parameter | index regarding the output state of the said power generation device group, and the 1st parameter | index regarding the output state of the power generation device group different from the said power generation device group.
発電装置群の出力状態に関する指標に基づいて、前記発電装置群に属する複数の所定発電装置の出力制御情報を決定し、
前記出力制御情報を対応する前記複数の所定発電装置に送信し、
前記出力制御情報を、前記発電装置群の出力状態に関する指標と、前記発電装置群とは異なる発電装置群の出力状態に関する指標との差に応じて決定する制御方法。
Based on an index related to the output state of the power generation device group, determine output control information of a plurality of predetermined power generation devices belonging to the power generation device group,
Transmitting the output control information to the corresponding predetermined power generation devices,
The control method which determines the said output control information according to the difference of the parameter | index regarding the output state of the said power generation device group, and the parameter | index regarding the output state of the power generation device group different from the said power generation device group.
発電装置群に属する複数の第1発電装置の出力状態に関する指標と、前記発電装置群に属する、前記複数の第1発電装置とは異なる複数の第2発電装置の出力状態に関する指標と、に基づいて、前記複数の第1発電装置の出力制御情報を決定し、
前記出力制御情報を対応する前記複数の第1発電装置に送信し、
前記出力制御情報を、出力制御時間帯における前記複数の第1発電装置の出力状態と、前記複数の第2発電装置の出力状態との差に応じて決定する制御方法。
Based on an index related to output states of a plurality of first power generation devices belonging to the power generation device group and an index related to output states of a plurality of second power generation devices different from the plurality of first power generation devices belonging to the power generation device group. And determining output control information of the plurality of first power generation devices,
Transmitting the output control information to the corresponding first power generators;
A control method for determining the output control information according to a difference between an output state of the plurality of first power generation devices and an output state of the plurality of second power generation devices in an output control time period.
発電装置群の出力状態に関する第1指標と、前記発電装置群に属する複数の所定発電装置の出力状態に関する第2指標と、に基づいて、前記複数の所定発電装置の出力制御情報を決定し、
前記出力制御情報を対応する前記複数の所定発電装置に送信し、
前記出力制御情報を、
所定時間帯の前記発電装置群の基準発電量と、経過済みの時間帯の前記発電装置群の抑制回数または抑制時間の少なくともいずれか一方とに基づいて設定された前記第1指標と、前記所定時間帯の前記発電装置群に属する前記複数の所定発電装置の基準発電量と、前記経過済みの時間帯の前記複数の所定発電装置の抑制回数または抑制時間の少なくともいずれか一方とに基づいて設定された前記第2指標との差に応じて決定する制御方法。
Determining output control information of the plurality of predetermined power generation devices based on a first index relating to an output state of the power generation device group and a second index relating to an output state of the plurality of predetermined power generation devices belonging to the power generation device group;
Transmitting the output control information to the corresponding predetermined power generation devices,
The output control information is
The first index set based on a reference power generation amount of the power generation device group in a predetermined time zone and at least one of the number of suppressions or the suppression time of the power generation device group in an elapsed time zone; and the predetermined index Set based on a reference power generation amount of the plurality of predetermined power generation devices belonging to the power generation device group in the time zone and at least one of the number of suppressions or the suppression time of the plurality of predetermined power generation devices in the elapsed time zone The control method which determines according to the difference with the said 2nd parameter | index performed.
コンピュータに、
発電装置群の出力状態に関する第1指標と、前記発電装置群に属する複数の所定発電装置の出力状態に関する第2指標と、に基づいて、前記複数の所定発電装置の出力制御情報を決定する決定手順と、
前記出力制御情報を対応する前記複数の所定発電装置に送信する送信手順と、を実行させるためのものであり、
前記決定手順にて、出力制御時間帯における前記発電装置群の出力状態と、前記発電装置群に属する前記複数の所定発電装置の出力状態との差に応じて前記出力制御情報を決定させるためのプログラム。
On the computer,
Determination to determine output control information of the plurality of predetermined power generation devices based on a first index regarding the output state of the power generation device group and a second index regarding the output states of the plurality of predetermined power generation devices belonging to the power generation device group Procedure and
A transmission procedure for transmitting the output control information to the corresponding plurality of predetermined power generation devices, and
In the determination procedure, the output control information is determined according to a difference between an output state of the power generation device group in an output control time zone and an output state of the plurality of predetermined power generation devices belonging to the power generation device group. program.
コンピュータに、
発電装置群の出力状態に関する第1指標と、前記発電装置群に属する複数の所定発電装置の出力状態に関する第2指標と、に基づいて、前記複数の所定発電装置の出力制御情報を決定する決定手順と、
前記出力制御情報を対応する前記複数の所定発電装置に送信する送信手順と、を実行させるためのものであり、
前記決定手順にて、前記発電装置群の出力状態に関する第1指標と、前記発電装置群とは異なる発電装置群の出力状態に関する第1指標との差に応じて前記出力制御情報を決定させるためのプログラム。
On the computer,
Determination to determine output control information of the plurality of predetermined power generation devices based on a first index regarding the output state of the power generation device group and a second index regarding the output states of the plurality of predetermined power generation devices belonging to the power generation device group Procedure and
A transmission procedure for transmitting the output control information to the corresponding plurality of predetermined power generation devices, and
In the determination procedure, the output control information is determined according to a difference between a first index related to the output state of the power generation device group and a first index related to the output state of the power generation device group different from the power generation device group. Program.
コンピュータに、
発電装置群の出力状態に関する指標に基づいて、前記発電装置群に属する複数の所定発電装置の出力制御情報を決定する決定手順と、
前記出力制御情報を対応する前記複数の所定発電装置に送信する送信手順と、を実行させるためのものであり、
前記決定手順にて、前記発電装置群の出力状態に関する指標と、前記発電装置群とは異なる発電装置群の出力状態に関する指標との差に応じて前記出力制御情報を決定させるためのプログラム。
On the computer,
A determination procedure for determining output control information of a plurality of predetermined power generation devices belonging to the power generation device group, based on an index relating to an output state of the power generation device group;
A transmission procedure for transmitting the output control information to the corresponding plurality of predetermined power generation devices, and
The program for determining the said output control information according to the difference of the parameter | index regarding the output state of the said power generation device group in the said determination procedure, and the parameter | index regarding the output state of the power generation device group different from the said power generation device group.
コンピュータに、
発電装置群に属する複数の第1発電装置の出力状態に関する指標と、前記発電装置群に属する、前記複数の第1発電装置とは異なる複数の第2発電装置の出力状態に関する指標と、に基づいて、前記複数の第1発電装置の出力制御情報を決定する決定手順と、
前記出力制御情報を対応する前記複数の第1発電装置に送信する送信手順と、を実行させるためのものであり、
前記決定手順にて、出力制御時間帯における前記複数の第1発電装置の出力状態と、前記複数の第2発電装置の出力状態との差に応じて前記出力制御情報を決定するプログラム。
On the computer,
Based on an index related to output states of a plurality of first power generation devices belonging to the power generation device group and an index related to output states of a plurality of second power generation devices different from the plurality of first power generation devices belonging to the power generation device group. A determination procedure for determining output control information of the plurality of first power generators;
A transmission procedure for transmitting the output control information to the corresponding first power generation devices, and
A program for determining the output control information according to a difference between an output state of the plurality of first power generation devices and an output state of the plurality of second power generation devices in an output control time period in the determination procedure.
コンピュータに、
発電装置群の出力状態に関する第1指標と、前記発電装置群に属する複数の所定発電装置の出力状態に関する第2指標と、に基づいて、前記複数の所定発電装置の出力制御情報を決定する決定手順と、
前記出力制御情報を対応する前記複数の所定発電装置に送信する送信手順と、を実行させるためのものであり、
前記決定手順にて、所定時間帯の前記発電装置群の基準発電量と、経過済みの時間帯の前記発電装置群の抑制回数または抑制時間の少なくともいずれか一方とに基づいて設定された前記第1指標と、前記所定時間帯の前記発電装置群に属する前記複数の所定発電装置の基準発電量と、前記経過済みの時間帯の前記複数の所定発電装置の抑制回数または抑制時間の少なくともいずれか一方とに基づいて設定された前記第2指標との差に応じて前記出力制御情報を決定させるためのプログラム。
On the computer,
Determination to determine output control information of the plurality of predetermined power generation devices based on a first index regarding the output state of the power generation device group and a second index regarding the output states of the plurality of predetermined power generation devices belonging to the power generation device group Procedure and
A transmission procedure for transmitting the output control information to the corresponding plurality of predetermined power generation devices, and
In the determining procedure, the first power generation amount set based on the reference power generation amount of the power generation device group in a predetermined time zone and at least one of the number of suppression times or the suppression time of the power generation device group in the elapsed time zone. At least one of one index, a reference power generation amount of the plurality of predetermined power generation devices belonging to the power generation device group in the predetermined time zone, and a suppression frequency or a suppression time of the plurality of predetermined power generation devices in the elapsed time zone A program for determining the output control information in accordance with a difference from the second index set based on one.
JP2018095556A 2018-05-17 2018-05-17 Control device, control method and program Active JP6508392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018095556A JP6508392B2 (en) 2018-05-17 2018-05-17 Control device, control method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018095556A JP6508392B2 (en) 2018-05-17 2018-05-17 Control device, control method and program

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017044116A Division JP6341309B2 (en) 2015-03-04 2017-03-08 Control device, control method and program

Publications (2)

Publication Number Publication Date
JP2018143092A true JP2018143092A (en) 2018-09-13
JP6508392B2 JP6508392B2 (en) 2019-05-08

Family

ID=63526916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018095556A Active JP6508392B2 (en) 2018-05-17 2018-05-17 Control device, control method and program

Country Status (1)

Country Link
JP (1) JP6508392B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090319415A1 (en) * 2004-08-23 2009-12-24 Georgi Dimov Stoilov Momentary Power Market
JP2012196116A (en) * 2011-02-28 2012-10-11 Sekisui Chem Co Ltd Operation control method and operation control device for photovoltaic power generation system
JP2013005537A (en) * 2011-06-14 2013-01-07 Sharp Corp Power generation system and power generation device
JP2013126260A (en) * 2011-12-13 2013-06-24 Hokkaido Electric Power Co Inc:The Operation apparatus and method of natural variation power supply
JP2014090665A (en) * 2011-06-28 2014-05-15 Hitachi Ltd Operation control system, operation control device, and operation control method for utility grid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090319415A1 (en) * 2004-08-23 2009-12-24 Georgi Dimov Stoilov Momentary Power Market
JP2012196116A (en) * 2011-02-28 2012-10-11 Sekisui Chem Co Ltd Operation control method and operation control device for photovoltaic power generation system
JP2013005537A (en) * 2011-06-14 2013-01-07 Sharp Corp Power generation system and power generation device
JP2014090665A (en) * 2011-06-28 2014-05-15 Hitachi Ltd Operation control system, operation control device, and operation control method for utility grid
JP2013126260A (en) * 2011-12-13 2013-06-24 Hokkaido Electric Power Co Inc:The Operation apparatus and method of natural variation power supply

Also Published As

Publication number Publication date
JP6508392B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP6341309B2 (en) Control device, control method and program
Mohandes et al. A review of power system flexibility with high penetration of renewables
US20220121260A1 (en) Power distribution management based on distributed networking protocol analytics
Liu et al. Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization
Wang et al. Aggregated electric vehicle load modeling in large-scale electric power systems
Ghofrani et al. A framework for optimal placement of energy storage units within a power system with high wind penetration
JP5101675B2 (en) Supply-demand balance control device
US8880355B2 (en) Emission factor calculating apparatus and emission factor calculating method
EP3046200A1 (en) Control device, electricity storage device, battery control system, battery control device, control method, battery control method, and recording medium
US20190228481A1 (en) Intelligent energy management system for distributed energy resources and energy storage systems using machine learning
KR20180046174A (en) Operating System and Method for Optimal Operation of a Renewable Energy based Islanded Micro-grid
JP2014517671A (en) Control unit for power generation / consumption system
Ding et al. A market based scheme to integrate distributed wind energy
JP6520517B2 (en) Supply and demand planning device, program
JP6602949B2 (en) Power management system
Kim et al. Field study on operational performance and economics of lithium-polymer and lead-acid battery systems for consumer load management
JP6069738B2 (en) Charge / discharge control system, charge / discharge control method, and charge / discharge control program
JP2022050126A (en) Distributed energy resource management device, distributed energy resource management method, and distributed energy resource management program
KR101581685B1 (en) Apparatus and method for charge and discharge scheduling in energy storage device
KR102471609B1 (en) Photovoltaics generation forecasting system
JP6453104B2 (en) Wind power generation system
JP2017046507A (en) System stabilization system
JP6508392B2 (en) Control device, control method and program
Muttaqi et al. An effective power dispatch strategy to improve generation schedulability by mitigating wind power uncertainty with a data driven flexible dispatch margin for a wind farm using a multi-unit battery energy storage system
JP6104071B2 (en) Power supply management system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R150 Certificate of patent or registration of utility model

Ref document number: 6508392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150