JP2018142448A - Wound battery - Google Patents

Wound battery Download PDF

Info

Publication number
JP2018142448A
JP2018142448A JP2017035567A JP2017035567A JP2018142448A JP 2018142448 A JP2018142448 A JP 2018142448A JP 2017035567 A JP2017035567 A JP 2017035567A JP 2017035567 A JP2017035567 A JP 2017035567A JP 2018142448 A JP2018142448 A JP 2018142448A
Authority
JP
Japan
Prior art keywords
battery case
electrode
battery
adhesive
electrode group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017035567A
Other languages
Japanese (ja)
Other versions
JP7022909B2 (en
Inventor
三浦 照久
Teruhisa Miura
照久 三浦
祐基 末弘
Yuki Suehiro
祐基 末弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017035567A priority Critical patent/JP7022909B2/en
Publication of JP2018142448A publication Critical patent/JP2018142448A/en
Application granted granted Critical
Publication of JP7022909B2 publication Critical patent/JP7022909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To restrict movements of an electrode group inside of a battery case through simple work in a wound battery and to suppress breaking of a lead in a case where big impact is applied to the battery.SOLUTION: A wound battery comprises: a battery case including an opening; an electrode group and an electrolyte that are accommodated in the battery case; a sealing body which closes the opening of the battery case; a gasket which insulates the battery case and the sealing body; and an adhesive which is interposed between the electrode group and the battery case. The wound battery is characterized in that the electrode group includes: a first electrode; a second electrode of which the polarity is different from the first electrode; and a separator which is interposed between the first electrode and the second electrode. The electrode group is formed by winding the first electrode and the second electrode via the separator. The first electrode and the sealing body are connected by a first collector lead, and the second electrode and the battery case are connected by a second collector lead.SELECTED DRAWING: Figure 5

Description

本発明は、捲回型の電極群を含む電池に関し、中でも小型の捲回型電池に関する。   The present invention relates to a battery including a wound electrode group, and more particularly to a small wound battery.

捲回型電池は、開口を有する電池ケースと、電池ケース内に収容された捲回型の電極群とを具備する。電極群では、極間抵抗を低減する観点から、第1電極と第2電極とがセパレータを介して緊迫状態で捲回されている。一方、電極群を電池ケースに挿入するためには、電池ケースの内容積の寸法を電極群よりも大きくする必要がある。また、各部品の寸法には不可避的なバラツキが生じるため、電池ケースの内容積の寸法に余裕を持たせる必要もある。従って、電極群が電解質を吸収した状態であっても、電池ケースと電極群との間には隙間が形成されることがある。   A wound battery includes a battery case having an opening and a wound electrode group housed in the battery case. In the electrode group, from the viewpoint of reducing interelectrode resistance, the first electrode and the second electrode are wound in a tight state via a separator. On the other hand, in order to insert the electrode group into the battery case, it is necessary to make the size of the internal volume of the battery case larger than that of the electrode group. In addition, since there is an unavoidable variation in the dimensions of each component, it is necessary to provide a margin for the dimensions of the internal volume of the battery case. Therefore, even when the electrode group absorbs the electrolyte, a gap may be formed between the battery case and the electrode group.

一方、携帯端末をはじめとする機器の進展に伴い、機器の電源である電池は、振動や落下の衝撃を受けやすくなっている。電池ケースと電極群との間に隙間がある場合、電池が大きな衝撃を受けると、電極群が電池ケース内を移動するため、電極群と外部端子とを接続するリードが切断されることがある。   On the other hand, with the development of devices such as mobile terminals, the battery that is the power source of the device is more susceptible to vibration and drop impacts. If there is a gap between the battery case and the electrode group, when the battery is subjected to a large impact, the electrode group moves in the battery case, so the lead connecting the electrode group and the external terminal may be cut. .

そこで、特許文献1は、耐衝撃性および耐振動性に優れた電池を提供するために、発電要素とケースとの間に電解液により膨張する材料からなる緩衝材を配置することを提案している。   Therefore, Patent Document 1 proposes to dispose a buffer material made of a material that expands due to the electrolyte between the power generation element and the case in order to provide a battery having excellent impact resistance and vibration resistance. Yes.

特開2013−77465号公報JP 2013-77465 A

捲回型電池において、電池ケース内に電解液を注液し、電極群に含浸させる作業の効率化を図ることは重要である。しかし、特許文献1のように、発電要素とケースとの間に電解液により膨張する材料を介在させると、電解液の移動経路が大きく制限されてしまい、電解液の注液に長い時間を要し、電池の製造コストの上昇を招く。   In a wound battery, it is important to increase the efficiency of the work of injecting an electrolyte into a battery case and impregnating the electrode group. However, when a material that expands due to the electrolyte is interposed between the power generation element and the case as in Patent Document 1, the movement path of the electrolyte is greatly limited, and it takes a long time to inject the electrolyte. In addition, the manufacturing cost of the battery is increased.

本発明の一側面は、開口を有する電池ケースと、前記電池ケースに収容された電極群および電解質と、前記電池ケースの前記開口を塞ぐ封口体と、前記電池ケースと前記封口体とを絶縁するガスケットと、前記電極群と前記電池ケースとの間に介在する接着剤と、を具備し、前記電極群は、第1電極と、前記第1電極とは極性が異なる第2電極と、前記第1電極と前記第2電極との間に介在するセパレータと、を具備し、前記第1電極と前記第2電極とが前記セパレータを介して捲回されて前記電極群を形成しており、前記第1電極と前記封口体とが、第1集電リードで接続されており、前記第2電極と前記電池ケースとが、第2集電リードで接続されている、捲回型電池に関する。   One aspect of the present invention insulates a battery case having an opening, an electrode group and an electrolyte accommodated in the battery case, a sealing body that closes the opening of the battery case, and the battery case and the sealing body. A gasket, and an adhesive interposed between the electrode group and the battery case. The electrode group includes a first electrode, a second electrode having a polarity different from that of the first electrode, and the first electrode. A separator interposed between one electrode and the second electrode, wherein the first electrode and the second electrode are wound through the separator to form the electrode group, The present invention relates to a wound battery in which a first electrode and the sealing body are connected by a first current collecting lead, and the second electrode and the battery case are connected by a second current collecting lead.

本発明によれば、簡易な作業により電極群の電池ケース内での移動を制限することができるとともに、電池に大きな衝撃が加わった場合でもリードの破断を抑制することができる。   According to the present invention, the movement of the electrode group in the battery case can be limited by a simple operation, and breakage of the lead can be suppressed even when a large impact is applied to the battery.

第1集電リードが接続された第1電極を概略的に示す平面図(a)およびそのIb−Ib線断面図(b)である。It is the top view (a) which shows schematically the 1st electrode to which the 1st current collection lead was connected, and its Ib-Ib sectional view (b). 第1集電リードが接続された別の第1電極を概略的に示す平面図(a)およびそのIIb−IIb線断面図(b)である。It is the top view (a) which shows another 1st electrode to which the 1st current collection lead was connected, and its IIb-IIb sectional view (b). 第2集電リードが接続された第2電極を概略的に示す平面図(a)およびそのIIIb−IIIb線断面図である。It is the top view (a) which shows schematically the 2nd electrode to which the 2nd current collection lead was connected, and its IIIb-IIIb line sectional view. 捲回前の電極群の構成を概略的に示す平面図である。It is a top view which shows roughly the structure of the electrode group before winding. 第1実施形態に係る円筒形の捲回型電池の縦断面図である。1 is a longitudinal sectional view of a cylindrical wound battery according to a first embodiment. 第1実施形態に係る接着剤の配置を示す図である。It is a figure which shows arrangement | positioning of the adhesive agent which concerns on 1st Embodiment. 第2実施形態に係る接着剤の配置を示す図である。It is a figure which shows arrangement | positioning of the adhesive agent which concerns on 2nd Embodiment. 第3実施形態に係る接着剤の配置を示す図である。It is a figure which shows arrangement | positioning of the adhesive agent which concerns on 3rd Embodiment. 第4実施形態に係る接着剤の配置を示す図である。It is a figure which shows arrangement | positioning of the adhesive agent which concerns on 4th Embodiment. 第5実施形態に係る接着剤の配置を示す図である。It is a figure which shows arrangement | positioning of the adhesive agent which concerns on 5th Embodiment.

本発明の一実施形態に係る捲回型電池は、開口を有する電池ケースと、電池ケースに収容された電極群および電解質と、電池ケースの開口を塞ぐ封口体と、電池ケースと封口体とを絶縁するガスケットと、電極群と電池ケースとの間に介在する接着剤とを具備する。電極群は、第1電極と、第1電極とは極性が異なる第2電極と、第1電極と第2電極との間に介在するセパレータとを具備する。第1電極と第2電極とは、セパレータを介して捲回されて電極群を形成している。第1電極と封口体とは、第1集電リードで接続されている。第2電極と電池ケースとは、第2集電リードで接続されている。   A wound battery according to an embodiment of the present invention includes a battery case having an opening, an electrode group and an electrolyte accommodated in the battery case, a sealing member that closes the opening of the battery case, and a battery case and a sealing member. An insulating gasket and an adhesive interposed between the electrode group and the battery case are provided. The electrode group includes a first electrode, a second electrode having a polarity different from that of the first electrode, and a separator interposed between the first electrode and the second electrode. The first electrode and the second electrode are wound through a separator to form an electrode group. The first electrode and the sealing body are connected by a first current collecting lead. The second electrode and the battery case are connected by a second current collecting lead.

電極群と電池ケースとを接着剤で接合するには、電極群および電池ケースの少なくとも一方に接着剤を塗布してから、電池ケースに電極群を収容すればよい。このような作業は、電池ケースと電極群との間に緩衝材を配置する作業に比べて簡易である。   In order to join the electrode group and the battery case with an adhesive, it is only necessary to apply the adhesive to at least one of the electrode group and the battery case, and then accommodate the electrode group in the battery case. Such an operation is simpler than the operation of disposing a buffer material between the battery case and the electrode group.

電極群と電池ケースとの間に接着剤が介在することで、電極群の電池ケース内での移動が大きく抑制され、電池に大きな衝撃が加わった場合でもリードの破断が抑制される。このような効果は、電池が小型であり、電極群の質量が小さいほど大きくなる。中でも電池ケースの外径が10mm以下の円筒形電池において顕著な効果が得られる。電池ケースの外径は6mm以下がより好ましく、5mm以下もしくは3mm以下が更に好ましい。   Since the adhesive is interposed between the electrode group and the battery case, the movement of the electrode group in the battery case is greatly suppressed, and the breakage of the lead is suppressed even when a large impact is applied to the battery. Such an effect becomes larger as the battery is smaller and the mass of the electrode group is smaller. In particular, a remarkable effect can be obtained in a cylindrical battery whose outer diameter is 10 mm or less. The outer diameter of the battery case is more preferably 6 mm or less, and further preferably 5 mm or less or 3 mm or less.

電池が小型であるほど、電極群と電池ケースとを接合するのに必要な接着剤量を低減でき、接着剤を塗布する作業も簡易になる。接着剤は、例えば、電極群と電池ケースとの間にスポット状または線状に配置すればよい。また、接着剤は、電池ケースの底部および側壁内面の少なくとも一方と電極群との間に配置すれば十分である。具体的には、電池ケースの底部と電極群の底部側の端面との間に接着剤を配置し、もしくは電極群の周面と電池ケースの側壁内面との間に接着剤を配置すればよい。   The smaller the battery, the smaller the amount of adhesive required to join the electrode group and the battery case, and the easier the operation of applying the adhesive. The adhesive may be arranged in a spot shape or a line shape between the electrode group and the battery case, for example. Further, it is sufficient that the adhesive is disposed between at least one of the bottom of the battery case and the inner surface of the side wall and the electrode group. Specifically, an adhesive may be disposed between the bottom of the battery case and the end surface on the bottom side of the electrode group, or an adhesive may be disposed between the peripheral surface of the electrode group and the side wall inner surface of the battery case. .

電極群の周面と電池ケースの側壁内面との間に接着剤を配置する場合、電池ケースの底部側寄り、中央部または電池ケースの開口側寄りの領域に接着剤を配置するだけでもよい。接着剤は、電池ケースの側壁内面に、電池ケースの軸方向に沿って線状に配置することが好ましい。   When the adhesive is disposed between the peripheral surface of the electrode group and the inner surface of the side wall of the battery case, the adhesive may be disposed only in the region near the bottom of the battery case, in the center, or near the opening of the battery case. It is preferable that the adhesive is arranged linearly on the inner surface of the side wall of the battery case along the axial direction of the battery case.

電池ケースの底部と電極群の底部側の端面との間に接着剤を配置する場合、電池ケースの底部内面にラジアル方向に沿って線状に接着剤を配置することが好ましい。   When the adhesive is disposed between the bottom of the battery case and the end surface on the bottom side of the electrode group, it is preferable to dispose the adhesive linearly along the radial direction on the inner surface of the bottom of the battery case.

接着剤は、硬化性接着剤でもよく、非硬化性接着剤でもよい。硬化性接着剤の中では、熱硬化性、湿気硬化性、硬化剤混合型(二液型)などが好ましい。非硬化性接着剤としては、溶剤揮散型、熱溶融型などが好ましい。   The adhesive may be a curable adhesive or a non-curable adhesive. Among the curable adhesives, thermosetting, moisture curable, hardener mixed type (two-component type) and the like are preferable. As the non-curable adhesive, a solvent evaporation type, a heat melting type, and the like are preferable.

より具体的には、接着剤は、エポキシ樹脂または弾性材料を含むことが好ましい。弾性材料としては、ゴム材料が好ましく、天然ゴム、ニトリルゴム、ブチルゴム、イソプレンゴム、スチレンブタジエンゴム、クロロプレンゴムなどを用いることができる。これらの材料によれば、電極群と電池ケースとを適度な力で接合できる。よって、電極群の電池ケース内での移動が大きく抑制されるだけでなく、僅かな電極群の移動が許容され、電池ケースに負荷が集中しにくくなる。これにより、電池が大きな衝撃を受けた場合でも、電池ケースの変形が抑制される。ゴム材料の中では、粘着性と安定性が高いブチルゴムが特に好ましい。   More specifically, the adhesive preferably includes an epoxy resin or an elastic material. As the elastic material, a rubber material is preferable, and natural rubber, nitrile rubber, butyl rubber, isoprene rubber, styrene butadiene rubber, chloroprene rubber, and the like can be used. According to these materials, the electrode group and the battery case can be joined with an appropriate force. Therefore, not only the movement of the electrode group within the battery case is greatly suppressed, but also a slight movement of the electrode group is allowed, and the load is less likely to concentrate on the battery case. Thereby, even when a battery receives a big impact, a deformation | transformation of a battery case is suppressed. Among rubber materials, butyl rubber having high adhesiveness and stability is particularly preferable.

なお、捲回型電池の電極群は、巻芯を用いて形成される。一般的な捲回型電池の電極群では、巻芯を抜いた後の電極群中心部の中空の空間に溶接棒が挿入され、リードが電池ケースの内底面に溶接される。一方、小型の捲回型電池では、電極群中心部の空間に溶接棒を挿入することが難しいため、リードは、電極群から電池ケースの開口側に引き出されて電池ケースの側壁内面に溶接され得る。この場合、第1集電リードは、一端部が、第1電極に接続され、他端部が、電極群の開口側の端面から引き出されて封口体の内側に接続される。第2集電リードは、一端部が、第2電極に接続され、他端部が、端面から引き出されて電池ケースの開口側の側壁内面に接続される。   The electrode group of the wound battery is formed using a winding core. In an electrode group of a general wound battery, a welding rod is inserted into a hollow space at the center of the electrode group after the winding core is removed, and a lead is welded to the inner bottom surface of the battery case. On the other hand, in a small wound battery, it is difficult to insert a welding rod into the space at the center of the electrode group, so the lead is drawn from the electrode group to the opening side of the battery case and welded to the inner surface of the side wall of the battery case. obtain. In this case, one end of the first current collecting lead is connected to the first electrode, and the other end is pulled out from the end surface on the opening side of the electrode group and connected to the inside of the sealing body. One end of the second current collecting lead is connected to the second electrode, and the other end is drawn from the end surface and connected to the inner surface of the side wall on the opening side of the battery case.

電池ケースの開口側の側壁内面にリードを溶接するには、電池ケースの開口側に溶接治具を挿入するための空間が必要である。そのような空間が存在すると、使用機器の落下などによって電池に大きな衝撃が加わったときに、電極群が電池ケース内で移動しやすくなるため、リードに大きな応力が印加されやすい。例えば、電極群が電池ケースの開口側に移動すると、リードが局部的に大きな曲率で屈曲することがある。また、電池に逆方向の衝撃が加わり、電極群が電池ケースの開口から離れるように移動すると、リードに強い張力が印加される。よって、上記構造の電池は、電極群の電池ケース内での移動を抑制する要請が特に大きい。これに対し、電極群と電池ケースとの間に接着剤を介在させることで、上記構造の電池においてもリードの破断を顕著に抑制することができる。   In order to weld the lead to the inner surface of the side wall on the opening side of the battery case, a space for inserting a welding jig is required on the opening side of the battery case. When such a space exists, the electrode group easily moves in the battery case when a large impact is applied to the battery due to a fall of a device used, and thus a large stress is easily applied to the lead. For example, when the electrode group moves to the opening side of the battery case, the lead may be locally bent with a large curvature. Further, when a reverse impact is applied to the battery and the electrode group moves away from the opening of the battery case, a strong tension is applied to the lead. Therefore, the battery having the above structure is particularly demanded to suppress the movement of the electrode group in the battery case. In contrast, by interposing an adhesive between the electrode group and the battery case, breakage of the lead can be remarkably suppressed even in the battery having the above structure.

以下、図面を参照しながら本実施形態に係る捲回型電池についてより詳細に説明する。ここでは、第1電極が正極であり、第2電極が負極である場合を例に説明する。   Hereinafter, the wound battery according to the present embodiment will be described in more detail with reference to the drawings. Here, a case where the first electrode is a positive electrode and the second electrode is a negative electrode will be described as an example.

(正極)
図1は、第1集電リード(正極集電リード)が接続された第1電極(正極)の一例を概略的に示す平面図(a)およびそのIb−Ib線断面図(b)である。正極4は、正極集電体シート40と、正極集電体シート40の両面に形成された正極活物質層41とを具備する。正極集電体シート40は矩形であり、本実施形態の場合、長辺方向(図1のY方向)が捲回軸方向に一致する。Y方向における一端部(以下、第一端部)には、正極集電体シート40が露出している第一未塗工部40aが設けられている。第一未塗工部40aは、第一端部に沿って帯状に設けられる。第一未塗工部40aには、短冊状の正極集電リード24の一端部が接続されている。
(Positive electrode)
FIG. 1A is a plan view schematically showing an example of a first electrode (positive electrode) to which a first current collecting lead (positive current collecting lead) is connected, and FIG. 1B is a cross-sectional view taken along line Ib-Ib. . The positive electrode 4 includes a positive electrode current collector sheet 40 and a positive electrode active material layer 41 formed on both surfaces of the positive electrode current collector sheet 40. The positive electrode current collector sheet 40 is rectangular, and in the case of the present embodiment, the long side direction (the Y direction in FIG. 1) coincides with the winding axis direction. A first uncoated portion 40a where the positive electrode current collector sheet 40 is exposed is provided at one end portion in the Y direction (hereinafter referred to as a first end portion). The first uncoated portion 40a is provided in a strip shape along the first end portion. One end of a strip-like positive electrode current collector lead 24 is connected to the first uncoated portion 40a.

一方、Y方向における他端部(以下、第二端部)には、正極集電体シート40が露出しておらず、第二端部の端面40bを除き、両面の全面に正極活物質層41が形成されている。また、正極集電体シート40の短辺方向(図1のX方向)における両端部も、それらの端面および第一未塗工部に対応する部分を除き、両方の全面が正極活物質層41で覆われている。なお、「端面」とは、集電体シートを裁断するときに形成される厚さ方向の断面に対応する。   On the other hand, the positive electrode current collector sheet 40 is not exposed at the other end in the Y direction (hereinafter referred to as the second end), and the positive electrode active material layer is formed on the entire surface except for the end face 40b of the second end. 41 is formed. In addition, both ends of the positive electrode current collector sheet 40 in the short side direction (X direction in FIG. 1) except for portions corresponding to the end surfaces and the first uncoated portion are both positive electrode active material layers 41. Covered with. The “end face” corresponds to a cross section in the thickness direction formed when the current collector sheet is cut.

正極集電体シート40のY方向における幅W10は、電池ケースの長さまたは電池容量に応じて選択すればよい。第一未塗工部40aの幅W11は、例えば2mm〜4mmであればよい。 The width W 10 in the Y direction of the positive electrode current collector sheet 40 may be selected according to the length of the battery case or the battery capacity. Width W 11 of the first uncoated portion 40a may be any example 2 mm to 4 mm.

図2は、第1集電リード(正極集電リード)が接続された第1電極(正極)の他の例を概略的に示す平面図(a)およびそのIIb−IIb線断面図(b)である。図2では、第一未塗工部40aが絶縁層5で裏表両面から覆われている。絶縁層5は、第一端部の端面40cが覆われるように、第一端部に沿って帯状に設けられる。第一端部の端面40cが絶縁層5で覆われることで、絶縁層5は第一端部の端面40cから、僅かに張り出すことになる。これにより、第一未塗工部40aの存在による内部短絡のリスクが低減するとともに、正極集電リード24の根本が絶縁層5で固定される。   2A is a plan view schematically showing another example of the first electrode (positive electrode) to which the first current collecting lead (positive current collecting lead) is connected, and FIG. 2B is a cross-sectional view taken along the line IIb-IIb. It is. In FIG. 2, the first uncoated portion 40 a is covered with the insulating layer 5 from the front and back surfaces. The insulating layer 5 is provided in a strip shape along the first end so that the end surface 40c of the first end is covered. By covering the end surface 40c of the first end portion with the insulating layer 5, the insulating layer 5 slightly protrudes from the end surface 40c of the first end portion. Thereby, the risk of an internal short circuit due to the presence of the first uncoated portion 40a is reduced, and the base of the positive electrode current collecting lead 24 is fixed by the insulating layer 5.

絶縁層5の第一端部の端面40cからの張り出し幅W12は、0.1m〜1mmであることが好ましく、0.4mm〜0.6mmであることが更に好ましい。これにより、正極集電リード24の根本を絶縁層5で固定する効果が大きくなり、かつ電極群の第一方向の長さの不要な増大を避けることができる。 Overhang width W 12 of the first end portion of the end face 40c of the insulating layer 5 is preferably 0.1M~1mm, and further preferably from 0.4 mm to 0.6 mm. Thereby, the effect of fixing the root of the positive electrode current collecting lead 24 with the insulating layer 5 is increased, and an unnecessary increase in the length of the electrode group in the first direction can be avoided.

絶縁層5は、第一未塗工部40aの両面の合計面積の70%以上を被覆することが好ましく、第一未塗工部40aの90%以上が絶縁層5で被覆されることが更に好ましい。   The insulating layer 5 preferably covers 70% or more of the total area of both surfaces of the first uncoated portion 40a, and 90% or more of the first uncoated portion 40a is further covered with the insulating layer 5. preferable.

絶縁層5は、絶縁性の樹脂成分を含む粘着剤で形成することが好ましく、例えばゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤などを用いることができる。絶縁層5として、絶縁テープを用いてもよい。絶縁テープを用いると、第一未塗工部40aを絶縁層で被覆する作業が容易となる。絶縁テープは、絶縁シート(基材フィルム)と、絶縁シートの一方の面に設けられた粘着層とを有する。絶縁シートには、例えば、ポリプロピレン製フィルムが用いられる。絶縁層5の厚さは、正極活物質層の厚さの20%〜50%であることが好ましい。   The insulating layer 5 is preferably formed of an adhesive containing an insulating resin component. For example, a rubber adhesive, an acrylic adhesive, a silicone adhesive, a urethane adhesive, or the like can be used. An insulating tape may be used as the insulating layer 5. If an insulating tape is used, the operation | work which coat | covers the 1st uncoated part 40a with an insulating layer will become easy. The insulating tape includes an insulating sheet (base film) and an adhesive layer provided on one surface of the insulating sheet. For example, a polypropylene film is used as the insulating sheet. The thickness of the insulating layer 5 is preferably 20% to 50% of the thickness of the positive electrode active material layer.

円筒形電池がリチウムイオン電池である場合、正極集電体シート40には、例えばアルミニウム、アルミニウム合金などの金属箔が好ましく使用される。正極集電体シート40の厚さは、特に限定されないが、10μm〜20μmが好ましい。   When the cylindrical battery is a lithium ion battery, a metal foil such as aluminum or aluminum alloy is preferably used for the positive electrode current collector sheet 40. The thickness of the positive electrode current collector sheet 40 is not particularly limited, but is preferably 10 μm to 20 μm.

正極活物質層41は、正極活物質を含み、任意成分として結着剤、導電剤などを含む。リチウムイオン二次電池の正極活物質としては、リチウム含有複合酸化物が好ましく、例えばLiCoO2、LiNiO2、LiMn24などが用いられる。正極活物質層の厚さは、特に限定されないが、70μm〜130μmが好ましい。 The positive electrode active material layer 41 includes a positive electrode active material, and includes a binder, a conductive agent, and the like as optional components. As the positive electrode active material of the lithium ion secondary battery, a lithium-containing composite oxide is preferable, and for example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and the like are used. Although the thickness of a positive electrode active material layer is not specifically limited, 70 micrometers-130 micrometers are preferable.

正極集電リード24には、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、鉄、ステンレス鋼などが用いられる。正極集電リード24の厚さは、例えば20μm〜80μmが好ましい。正極集電リード24の形状は、電池ケースの外径が10mm以下の円筒形である場合、幅0.5mm〜3mm、長さ3mm〜10mmの短冊状であることが好ましい。   For the positive electrode current collecting lead 24, aluminum, aluminum alloy, nickel, nickel alloy, iron, stainless steel or the like is used. The thickness of the positive electrode current collector lead 24 is preferably 20 μm to 80 μm, for example. When the battery case has a cylindrical shape with an outer diameter of 10 mm or less, the shape of the positive electrode current collecting lead 24 is preferably a strip shape having a width of 0.5 mm to 3 mm and a length of 3 mm to 10 mm.

(負極)
図3は、第2集電リード(負極集電リード)が接続された第2電極(負極)を概略的に示す平面図(a)およびそのIIIb−IIIb線断面図である。負極2は、負極集電体シート20と、負極集電体シート20の両面に形成された負極活物質層21とを具備する。負極集電体シート20は、X方向の長さが正極集電体シート40よりも大きく設定された矩形である。負極集電体シート20のX方向における一端部(以下、第一端部)には、負極集電体シートが露出している第二未塗工部20aが設けられている。第二未塗工部20aは、当該第一端部に沿って帯状に設けられる。第二未塗工部20aには、短冊状の負極集電リード22の一端部が溶接により接続されている。
(Negative electrode)
FIG. 3 is a plan view schematically showing the second electrode (negative electrode) to which the second current collecting lead (negative electrode current collecting lead) is connected, and a sectional view taken along line IIIb-IIIb. The negative electrode 2 includes a negative electrode current collector sheet 20 and negative electrode active material layers 21 formed on both surfaces of the negative electrode current collector sheet 20. The negative electrode current collector sheet 20 has a rectangular shape whose length in the X direction is set to be larger than that of the positive electrode current collector sheet 40. A second uncoated portion 20a where the negative electrode current collector sheet is exposed is provided at one end portion (hereinafter referred to as a first end portion) in the X direction of the negative electrode current collector sheet 20. The second uncoated portion 20a is provided in a strip shape along the first end portion. One end of a strip-shaped negative electrode current collector lead 22 is connected to the second uncoated portion 20a by welding.

負極集電体シート20のX方向における他端部(以下、第二端部)にも、負極集電体シート20が露出している第三未塗工部20bが帯状に設けられている。このような負極集電体シート20の露出部は、負極活物質層の剥離を抑制するために設けられる。   A third uncoated portion 20b in which the negative electrode current collector sheet 20 is exposed is also provided in a band shape at the other end portion (hereinafter, second end portion) in the X direction of the negative electrode current collector sheet 20. Such an exposed portion of the negative electrode current collector sheet 20 is provided to suppress peeling of the negative electrode active material layer.

負極集電体シート20のY方向における両端部は、各端部の端面20c、20d、第二未塗工部20a、第三未塗工部20bに対応する部分を除き、負極活物質層21で覆われている。これにより、正極活物質層41と負極活物質層21との対向面積を十分に大きくすることができる。   Both ends of the negative electrode current collector sheet 20 in the Y direction are the negative electrode active material layers 21 except for the portions corresponding to the end faces 20c and 20d of each end, the second uncoated portion 20a, and the third uncoated portion 20b. Covered with. Thereby, the opposing area of the positive electrode active material layer 41 and the negative electrode active material layer 21 can be made large enough.

第二未塗工部20aの幅W21は、負極集電体シート20のX方向における幅W20の0.7%〜50%であることが好ましい。一方、第三未塗工部20bの幅W22は、幅W20の0.7%〜10%であればよい。第三未塗工部20bは存在しなくてもよい。第二未塗工部20a、第三未塗工部20bの裏面には、その少なくとも一部に負極活物質層が形成されていてもよい。あるいは、第二未塗工部20a、第三未塗工部20bの裏面は、表面と同様に、負極集電体シートが露出する未塗工部であってもよい。 The width W 21 of the second uncoated portion 20 a is preferably 0.7% to 50% of the width W 20 of the negative electrode current collector sheet 20 in the X direction. On the other hand, the width W 22 of the third non-coating portion 20b may be a 0.7% to 10% of the width W 20. The third uncoated portion 20b may not exist. A negative electrode active material layer may be formed on at least a part of the back surfaces of the second uncoated portion 20a and the third uncoated portion 20b. Or the back surface of the 2nd uncoated part 20a and the 3rd uncoated part 20b may be the uncoated part which a negative electrode collector sheet exposes similarly to the surface.

円筒形電池がリチウムイオン電池である場合、負極集電体シート20には、例えばステンレス鋼、ニッケル、銅、銅合金、アルミニウムなどの金属箔が好ましく使用される。負極集電体シート20の厚さは、特に限定されないが、5μm〜20μmが好ましい。   When the cylindrical battery is a lithium ion battery, a metal foil such as stainless steel, nickel, copper, copper alloy, and aluminum is preferably used for the negative electrode current collector sheet 20. The thickness of the negative electrode current collector sheet 20 is not particularly limited, but is preferably 5 μm to 20 μm.

負極活物質層21は、負極活物質を含み、任意成分として結着剤、導電剤などを含む。リチウムイオン電池の負極活物質としては、金属リチウム、珪素合金、炭素材料(黒鉛、ハードカーボンなど)、珪素化合物、錫化合物、チタン酸リチウム化合物などが用いられる。負極活物質層の厚さは、特に限定されないが、70μm〜150μmが好ましい。   The negative electrode active material layer 21 includes a negative electrode active material, and includes a binder, a conductive agent, and the like as optional components. As the negative electrode active material of the lithium ion battery, metallic lithium, silicon alloy, carbon material (graphite, hard carbon, etc.), silicon compound, tin compound, lithium titanate compound and the like are used. Although the thickness of a negative electrode active material layer is not specifically limited, 70 micrometers-150 micrometers are preferable.

負極集電リード22には、ニッケル、ニッケル合金、鉄、ステンレス鋼、銅、銅合金などが用いられる。負極集電リード22の厚さは、20μm〜80μmが好ましい。負極集電リード22の形状は、金属缶が直径10mm以下の円筒型である場合、例えば幅0.5mm〜3mm、長さ9mm〜15mmの短冊状であることが好ましい。   For the negative electrode current collector lead 22, nickel, nickel alloy, iron, stainless steel, copper, copper alloy or the like is used. The thickness of the negative electrode current collector lead 22 is preferably 20 μm to 80 μm. When the metal can has a cylindrical shape with a diameter of 10 mm or less, the shape of the negative electrode current collecting lead 22 is preferably a strip shape having a width of 0.5 mm to 3 mm and a length of 9 mm to 15 mm, for example.

図3では、第二未塗工部20aと負極集電リード22との接続部分が、固定用絶縁テープ54で覆われている。固定用絶縁テープ54は、捲回後の電極群の最外周を固定するものである。これにより、負極集電リード22と負極集電体シート20との接続部分の強度を確保しやすくなる。   In FIG. 3, the connecting portion between the second uncoated portion 20 a and the negative electrode current collector lead 22 is covered with a fixing insulating tape 54. The fixing insulating tape 54 fixes the outermost periphery of the electrode group after winding. Thereby, it becomes easy to ensure the strength of the connection portion between the negative electrode current collector lead 22 and the negative electrode current collector sheet 20.

図4は、捲回前の電極群の構成を概略的に示す平面図である。図示例では、セパレータ6を中心に、セパレータ6の左側かつ背面側に正極4が配置され、セパレータ6の右側かつ表面側に負極2が配置されている。正極活物質層41の捲回軸方向(Y方向)における幅W13は、負極活物質層21のY方向における幅W23より僅かに小さく、正極活物質層41が完全に負極活物質層21と重複するように正極4と負極2とが積層される。このような正極4、セパレータ6および負極2の積層体が、巻芯50を中心として捲回され、電極群が構成される。 FIG. 4 is a plan view schematically showing the configuration of the electrode group before winding. In the illustrated example, with the separator 6 as the center, the positive electrode 4 is disposed on the left side and the back side of the separator 6, and the negative electrode 2 is disposed on the right side and the surface side of the separator 6. The width W 13 of the positive electrode active material layer 41 in the winding axis direction (Y direction) is slightly smaller than the width W 23 of the negative electrode active material layer 21 in the Y direction, and the positive electrode active material layer 41 is completely made of the negative electrode active material layer 21. The positive electrode 4 and the negative electrode 2 are laminated so as to overlap. Such a laminate of the positive electrode 4, the separator 6 and the negative electrode 2 is wound around the core 50 to form an electrode group.

セパレータ6のY方向における両端部は、正極4および負極2の対応する端部よりも突出している。これにより、内部短絡のリスクが更に低減する。また、第一端部の端面40cは、負極集電体シート20の端面20cよりも突出している。上記位置関係では、負極集電体シート20の端面20cの位置が、正極集電体シート40の第一未塗工部40aを被覆する絶縁層5と対向することとなり、負極集電体シートの端面による内部短絡のリスクが大きく低減する。なお、図示例では、Y方向の正極集電リード24が突出する側で、絶縁層5のY方向の端部がセパレータ6の対応する端部よりも突出しているが、これに限定されない。   Both end portions of the separator 6 in the Y direction protrude from the corresponding end portions of the positive electrode 4 and the negative electrode 2. This further reduces the risk of an internal short circuit. Further, the end face 40 c of the first end portion protrudes from the end face 20 c of the negative electrode current collector sheet 20. In the above positional relationship, the position of the end surface 20c of the negative electrode current collector sheet 20 is opposed to the insulating layer 5 covering the first uncoated portion 40a of the positive electrode current collector sheet 40, and the negative electrode current collector sheet The risk of an internal short circuit due to the end face is greatly reduced. In the illustrated example, the Y-direction end of the insulating layer 5 protrudes beyond the corresponding end of the separator 6 on the side where the Y-direction positive current collecting lead 24 protrudes. However, the present invention is not limited to this.

負極2のX方向における一端部(第二未塗工部20a)は、セパレータ6から張り出している。張り出した部分は、固定用絶縁テープ54を介して電池ケースの側壁内面と対向する。   One end portion (second uncoated portion 20 a) of the negative electrode 2 in the X direction protrudes from the separator 6. The overhanging portion faces the inner surface of the side wall of the battery case through the fixing insulating tape 54.

図5は、本発明の第1実施形態に係る円筒形の捲回型電池の縦断面図である。正極4と負極2は、セパレータ6を介して捲回されて電極群を形成している。電極群は、電解質(図示せず)とともに有底円筒形の電池ケース8と、電池ケース8の開口を封口する封口体12とで形成される空間に密閉されている。巻芯50を抜き取った後の電極群の捲回軸の近傍には中空部18が形成される。電池ケース8の開口端部は、ガスケット16を介して封口体12の周縁に加締められる。図示例では、封口体12の周縁に絶縁性リング部材30が配置され、電池ケース8と封口体12との絶縁が担保されている。   FIG. 5 is a longitudinal sectional view of a cylindrical wound battery according to the first embodiment of the present invention. The positive electrode 4 and the negative electrode 2 are wound through a separator 6 to form an electrode group. The electrode group is sealed in a space formed by a bottomed cylindrical battery case 8 together with an electrolyte (not shown) and a sealing body 12 that seals the opening of the battery case 8. A hollow portion 18 is formed in the vicinity of the winding axis of the electrode group after the winding core 50 is extracted. The open end of the battery case 8 is crimped to the periphery of the sealing body 12 via the gasket 16. In the example of illustration, the insulating ring member 30 is arrange | positioned at the periphery of the sealing body 12, and the insulation with the battery case 8 and the sealing body 12 is ensured.

負極集電リード22および正極集電リード24は、いずれも電池ケース8の開口側に配置される。すなわち、正極集電リード24は、一端部が、正極4に接続され、他端部が、電極群の開口側の端面から引き出されて封口体12の内側に接続されている。一方、負極集電リード22は、一端部が、負極2に接続され、他端部が、電極群の開口側の端面から引き出されて、電池ケース8の開口側の側壁内面に抵抗溶接により接続されている。電池ケース8の底面の外面は負極端子10となり、封口体12の外面は正極端子14となる。なお、図5では、固定用絶縁テープ54は省略している。   Both the negative electrode current collector lead 22 and the positive electrode current collector lead 24 are arranged on the opening side of the battery case 8. That is, one end of the positive electrode current collecting lead 24 is connected to the positive electrode 4, and the other end is drawn from the end face on the opening side of the electrode group and connected to the inside of the sealing body 12. On the other hand, one end of the negative electrode current collector lead 22 is connected to the negative electrode 2, and the other end is pulled out from the end surface on the opening side of the electrode group and connected to the inner surface of the side wall on the opening side of the battery case 8 by resistance welding. Has been. The outer surface of the bottom surface of the battery case 8 becomes the negative electrode terminal 10, and the outer surface of the sealing body 12 becomes the positive electrode terminal 14. In FIG. 5, the fixing insulating tape 54 is omitted.

上記構造の場合、正極集電リード24を封口体12の内面に接続する作業や、封口体12で電池ケース8の開口を塞ぐ作業を行うためには、正極集電リード24が所定のリード長さを有する必要がある、よって、正極集電リード24は、屈曲された状態で、電池ケース8内の空間に収容される。   In the case of the above structure, in order to connect the positive electrode current collecting lead 24 to the inner surface of the sealing body 12 or to close the opening of the battery case 8 with the sealing body 12, the positive electrode current collecting lead 24 has a predetermined lead length. Therefore, the positive electrode current collecting lead 24 is accommodated in the space in the battery case 8 in a bent state.

一方、負極集電リード22を電池ケース8の側壁内面に溶接するには、抵抗溶接を行うための溶接用電極を開口から電池ケース8内に挿入する必要がある。よって、電池ケース8の開口側に、溶接用電極を挿入するための空間が設けられる。通常、抵抗溶接を行なう溶接治具は、一対の溶接用電極を具備している。一方の溶接用電極は、開口から電池ケース8内に挿入され、これに対向するように他方の溶接用電極が開口端部の外側に配置される。一対の溶接用電極によって電池ケース8の開口端部が第2集電リードとともに挟み込まれる。この状態で溶接用電極間に電流を流すことで、負極集電リード22と電池ケース8とが溶接される。   On the other hand, in order to weld the negative electrode current collecting lead 22 to the inner surface of the side wall of the battery case 8, it is necessary to insert a welding electrode for performing resistance welding into the battery case 8 from the opening. Therefore, a space for inserting the welding electrode is provided on the opening side of the battery case 8. Usually, a welding jig for performing resistance welding includes a pair of welding electrodes. One welding electrode is inserted into the battery case 8 from the opening, and the other welding electrode is disposed outside the opening end so as to face the welding electrode. The opening end of the battery case 8 is sandwiched with the second current collecting lead by the pair of welding electrodes. In this state, by passing a current between the welding electrodes, the negative electrode current collector lead 22 and the battery case 8 are welded.

負極集電リード22は、電池ケース8の側壁内面に溶接されるため、電極群の端面からの負極集電リード22の突出長さは短くてよい。そのため、負極集電リード22は、ほとんど屈曲することなく、電極群の最外周と電池ケース8の側壁とで狭まれるように電池ケース8内に収容されている。   Since the negative electrode current collector lead 22 is welded to the inner surface of the side wall of the battery case 8, the protruding length of the negative electrode current collector lead 22 from the end surface of the electrode group may be short. Therefore, the negative electrode current collecting lead 22 is accommodated in the battery case 8 so as to be narrowed by the outermost periphery of the electrode group and the side wall of the battery case 8 without being bent.

負極集電リード22と電池ケース8とが溶接された後、電池ケース8の開口側の空間には絶縁筒体28が配置される。なお、絶縁筒体28はガスケット16と一体化させてもよい。正極集電リード24は、絶縁筒体28の中空部を通って封口体12の内面まで導出される。   After the negative electrode current collector lead 22 and the battery case 8 are welded, the insulating cylinder 28 is disposed in the space on the opening side of the battery case 8. The insulating cylinder 28 may be integrated with the gasket 16. The positive electrode current collecting lead 24 is led out to the inner surface of the sealing body 12 through the hollow portion of the insulating cylinder 28.

絶縁筒体28により、電池ケース8に対する電極群の移動は概ね制限されている。ただし、絶縁筒体28や電極群などの寸法にはバラツキがある。よって、絶縁筒体28と電極群との間および電池ケース8と電極群との間には隙間が形成される。これに対し、電池ケース8に対する電極群の移動を抑制するために、電池ケース8の底部と当該底部側の電極群の端面との間には、ブチルゴムのような接着剤27が配置され、電池ケース8と電極群とを接着している。   The movement of the electrode group with respect to the battery case 8 is generally restricted by the insulating cylinder 28. However, there are variations in the dimensions of the insulating cylinder 28 and the electrode group. Therefore, a gap is formed between the insulating cylinder 28 and the electrode group and between the battery case 8 and the electrode group. On the other hand, in order to suppress the movement of the electrode group with respect to the battery case 8, an adhesive 27 such as butyl rubber is disposed between the bottom of the battery case 8 and the end face of the electrode group on the bottom side. The case 8 and the electrode group are bonded.

接着剤27は、電極群の底部側の端面の全体もしくは電池ケース8の底部内面の全体に設けてもよいが、電池ケース8と電極群とを適度な力で接合する観点からは、限定された領域に設けることが好ましい。例えば、電池ケース8の内空間を軸方向から見た投影面積Sの1%〜50%に相当する面積に接着剤が付着していればよい。   The adhesive 27 may be provided on the entire bottom end surface of the electrode group or on the entire bottom inner surface of the battery case 8, but is limited from the viewpoint of joining the battery case 8 and the electrode group with an appropriate force. It is preferable to provide in the region. For example, the adhesive may be attached to an area corresponding to 1% to 50% of the projected area S when the internal space of the battery case 8 is viewed from the axial direction.

図6に、接着剤27が塗布された電池ケース8を開口側から見た平面図(a)およびそのb−b線断面図(b)を示す。図6では、接着剤27は、電池ケース8の底部内面に線状に塗布されており、中央部からラジアル方向に延びている。ただし、接着剤27の塗布形状は特に限定されず、例えば、1つ以上のスポット状に配置してもよい。接着剤27の塗布幅(ラジアル方向に対して垂直な方向の幅)もしくはスポット径は、例えば0.1mm〜4.8mmであればよい。   FIG. 6 shows a plan view (a) and a cross-sectional view (b) taken along the line bb of the battery case 8 coated with the adhesive 27 as seen from the opening side. In FIG. 6, the adhesive 27 is applied linearly to the inner surface of the bottom of the battery case 8 and extends in the radial direction from the center. However, the application shape of the adhesive 27 is not particularly limited, and for example, it may be arranged in one or more spots. The application width of the adhesive 27 (the width in the direction perpendicular to the radial direction) or the spot diameter may be, for example, 0.1 mm to 4.8 mm.

接着剤の塗布方法は、特に限定されないが、スタンプ方式、ディスペンス方式などが挙げられ、複数方式を併用してもよい。例えば、ディスペンス方式で変性ブチル系ゴム溶液を塗布する場合、電池ケースの側壁内面もしくは電極群の周面の所定範囲に所定量の粘度調整された溶液を塗布すればよい。スタンプ方式の場合、所定量の変性ブチル系ゴム溶液を所定のシート上にディスペンス方式で滴下した後、シート上で溶液の溶媒を蒸発させ、適正粘性となったゴム材料を転写棒でピックアップして、電池ケースの側壁内面もしくは電極群の周面に塗布してもよい。   A method for applying the adhesive is not particularly limited, and examples thereof include a stamp method and a dispensing method, and a plurality of methods may be used in combination. For example, when the modified butyl rubber solution is applied by the dispensing method, a predetermined amount of the viscosity-adjusted solution may be applied to a predetermined range of the inner surface of the side wall of the battery case or the peripheral surface of the electrode group. In the case of the stamp method, after a predetermined amount of modified butyl rubber solution is dropped onto a predetermined sheet by a dispensing method, the solvent of the solution is evaporated on the sheet, and the rubber material having an appropriate viscosity is picked up by a transfer rod. It may be applied to the inner surface of the side wall of the battery case or the peripheral surface of the electrode group.

次に、図7〜10を参照しながら接着剤の配置のバリエーションについて説明する。
図7は、第2実施形態に係る接着剤27が塗布された電池ケース8を開口側から見た平面図(a)およびそのb−b線断面図(b)を示す。図8は、第3実施形態に係る接着剤27が塗布された電池ケース8を開口側から見た平面図(a)およびそのb−b線断面図(b)を示す。図9は、第4実施形態に係る接着剤27が塗布された電池ケース8を開口側から見た平面図(a)およびそのb−b線断面図(b)を示す。これらの実施形態では、いずれも接着剤27が、電極群の周面と電池ケース8の側壁内面との間に配置されている。
Next, variations in the arrangement of the adhesive will be described with reference to FIGS.
FIG. 7: shows the top view (a) which looked at the battery case 8 with which the adhesive agent 27 concerning 2nd Embodiment was apply | coated from the opening side, and its bb sectional view (b). FIG. 8: shows the top view (a) which looked at the battery case 8 with which the adhesive agent 27 concerning 3rd Embodiment was apply | coated from the opening side, and its bb sectional view (b). FIG. 9: shows the top view (a) which looked at the battery case 8 with which the adhesive agent 27 which concerns on 4th Embodiment was applied from the opening side, and its bb sectional view (b). In these embodiments, the adhesive 27 is disposed between the peripheral surface of the electrode group and the inner surface of the side wall of the battery case 8.

図7、8では、接着剤27が、電池ケース8の軸方向に沿って線状に塗布されている。このように軸方向に沿って線状に配置された接着剤は、電池ケース8に対する電極群の当該軸方向に沿った移動を抑制するのに効果的である。   7 and 8, the adhesive 27 is applied linearly along the axial direction of the battery case 8. Thus, the adhesive arranged linearly along the axial direction is effective in suppressing movement of the electrode group with respect to the battery case 8 along the axial direction.

電池ケース8の軸方向に沿って接着剤を配置する場合でも、必ずしも線状に接着剤を塗布する必要はない。図9に示すように、接着剤27を、電池ケース8の軸方向に沿って複数スポット状に配置してもよい。   Even when the adhesive is disposed along the axial direction of the battery case 8, it is not always necessary to apply the adhesive in a linear shape. As shown in FIG. 9, the adhesive 27 may be arranged in a plurality of spots along the axial direction of the battery case 8.

電池ケース8と電極群とを適度な力で接合する観点から、接着剤27は電池ケース8の側壁内面もしくは電極群の周面の限定的な領域に配置することが好ましい。例えば、電池ケース8の軸方向における電池の高さHが15〜65mmであるとき、図7では、電池ケース8の開口側寄りに幅0.5mm〜1mm、高さ1.5mm〜35mmの線状の接着剤を配置することが好ましい。図8では、電池ケース8の高さ方向における中央部に図7と同等以上のサイズ(例えば幅0.5mm〜1.5mm、高さ1.5mm〜35mm)の線状の接着剤を配置することが好ましい。また、電池高さをHとするとき、線状の接着剤の高さは、0.02H〜0.5Hとすることが好ましい。図9では、電池ケース8の底部側寄りの幅0.5mm〜1.5mm、高さ1.5mm〜6mmの帯状領域に複数のスポット状の接着剤を配置することが好ましい。   From the viewpoint of joining the battery case 8 and the electrode group with an appropriate force, the adhesive 27 is preferably disposed in a limited region on the inner surface of the side wall of the battery case 8 or the peripheral surface of the electrode group. For example, when the height H of the battery in the axial direction of the battery case 8 is 15 to 65 mm, in FIG. 7, a line having a width of 0.5 mm to 1 mm and a height of 1.5 mm to 35 mm near the opening side of the battery case 8. It is preferable to dispose an adhesive. In FIG. 8, a linear adhesive having a size equal to or larger than that of FIG. 7 (for example, a width of 0.5 mm to 1.5 mm and a height of 1.5 mm to 35 mm) is arranged at the center in the height direction of the battery case 8. It is preferable. Further, when the battery height is H, the height of the linear adhesive is preferably 0.02H to 0.5H. In FIG. 9, it is preferable to arrange a plurality of spot-like adhesives in a band-like region having a width of 0.5 mm to 1.5 mm and a height of 1.5 mm to 6 mm near the bottom side of the battery case 8.

上記実施形態では、接着剤を電池ケースに塗布する場合のバリエーションを示したが、電極群に接着剤を塗布してもよい。図10は、第5実施形態に係る接着剤27が塗布された電極群をリード引き出し側から見た平面図(a)およびそのb−b線断面図(b)を示す。この場合にも、幅0.5mm〜1mm、高さ1.5mm〜35mmの線状の接着剤を配置すればよい。   In the said embodiment, although the variation in the case of apply | coating an adhesive agent to a battery case was shown, you may apply | coat an adhesive agent to an electrode group. FIG. 10 shows a plan view (a) and a cross-sectional view (b) taken along the line bb of the electrode group to which the adhesive 27 according to the fifth embodiment is applied as viewed from the lead drawing side. Also in this case, a linear adhesive having a width of 0.5 mm to 1 mm and a height of 1.5 mm to 35 mm may be disposed.

(セパレータ)
セパレータ6には、例えば、樹脂製の微多孔膜、不織布が挙げられる。樹脂としては、ポリプロピレン、ポリエチレンなどのポリオレフィン樹脂、ポリアミド樹脂、および/またはポリイミド樹脂などが例示できる。セパレータの厚さは、好ましくは5〜40μmもしくは5〜30μmである。
(Separator)
Examples of the separator 6 include a resin microporous film and a nonwoven fabric. Examples of the resin include polyolefin resins such as polypropylene and polyethylene, polyamide resins, and / or polyimide resins. The thickness of the separator is preferably 5 to 40 μm or 5 to 30 μm.

(電解質)
電解質は、電池の種類に応じて適宜選択できる。電解質は、溶媒と、溶媒に溶解した溶質(支持塩)を含んでいる。電解質は、液状であってもよく、ゲル状であってもよい。例えば、リチウムイオン二次電池では、支持塩(またはリチウム塩)としては、フッ素含有酸のリチウム塩[ヘキサフルオロリン酸リチウム(LiPF6)、テトラフルオロ硼酸リチウム(LiBF4)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)など]などが使用される。溶媒としては、非水溶媒が使用される。非水溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などの環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート(EMC)などの鎖状カーボネート、鎖状エーテル、環状エーテル、ラクトンなどが挙げられる。電解質における支持塩の濃度は、特に制限されず、例えば、0.5〜2mol/Lである。
(Electrolytes)
The electrolyte can be appropriately selected depending on the type of battery. The electrolyte includes a solvent and a solute (supporting salt) dissolved in the solvent. The electrolyte may be liquid or gel. For example, in a lithium ion secondary battery, the supporting salt (or lithium salt) is a lithium salt of a fluorine-containing acid [lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate. (LiCF 3 SO 3 ) etc.] are used. A non-aqueous solvent is used as the solvent. Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate (EMC), chain ethers, cyclic ethers, and lactones. Etc. The concentration of the supporting salt in the electrolyte is not particularly limited, and is, for example, 0.5 to 2 mol / L.

(電池ケース)
電池ケース8は、開口を有する有底円筒形である。電池ケース8の底部の厚さ(最大厚さ)は、例えば0.08〜0.2mm、好ましくは0.09〜0.15mmである。電池ケースの側壁の厚さ(最大厚さ)は、例えば0.08〜0.2mm、好ましくは0.08〜0.15mmである。
(Battery case)
The battery case 8 has a bottomed cylindrical shape having an opening. The thickness (maximum thickness) of the bottom of the battery case 8 is, for example, 0.08 to 0.2 mm, preferably 0.09 to 0.15 mm. The thickness (maximum thickness) of the side wall of the battery case is, for example, 0.08 to 0.2 mm, preferably 0.08 to 0.15 mm.

電池ケース8は、金属缶であることが好ましい。電池ケース8を構成する材料としては、アルミニウム、アルミニウム合金、鉄、鉄合金(ステンレス鋼を含む)などが例示できる。電池ケースには、必要に応じてニッケルなどのめっき処理を施してもよい。   The battery case 8 is preferably a metal can. Examples of the material constituting the battery case 8 include aluminum, aluminum alloy, iron, and iron alloy (including stainless steel). The battery case may be plated with nickel or the like as necessary.

(封口体)
封口板の形状は、特に制限されず、円盤状または円盤の中央部が厚さ方向に突出した形状(ハット状)などが例示できる。封口体の材質としては、アルミニウム、アルミニウム合金、鉄、鉄合金(ステンレス鋼を含む)などが例示できる。
(Sealing body)
The shape of the sealing plate is not particularly limited, and examples thereof include a disk shape or a shape (hat shape) in which the central portion of the disk protrudes in the thickness direction. Examples of the material of the sealing body include aluminum, aluminum alloy, iron, iron alloy (including stainless steel), and the like.

以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
以下の手順に従って、円筒形リチウムイオン二次電池を作製した。
(1)正極の作製
正極活物質としてニッケル酸リチウム100質量部、導電剤としてアセチレンブラック4質量部、および結着剤としてポリフッ化ビニリデン(PVdF)4質量部に、分散媒としてNMPを加えて混合することにより、正極合剤スラリーを調製した。正極合剤スラリーを正極集電体としてのアルミニウム箔(厚さ15μm)の両面に塗布し、乾燥後、厚さ方向に圧縮することにより、正極活物質層を形成し、正極(厚さ0.14mm)を得た。正極には、正極の幅方向に沿って正極活物質層を有さない第一未塗工部を設け、リボン状のアルミニウム製の正極集電リード(幅1.0mm、厚さ50μm)の一端部を第一未塗工部に接続した。その後、第一未塗工部に絶縁性の粘着テープを貼り付けて絶縁層を形成した。
Example 1
A cylindrical lithium ion secondary battery was produced according to the following procedure.
(1) Preparation of positive electrode 100 parts by mass of lithium nickelate as a positive electrode active material, 4 parts by mass of acetylene black as a conductive agent, and 4 parts by mass of polyvinylidene fluoride (PVdF) as a binder, NMP as a dispersion medium is added and mixed Thus, a positive electrode mixture slurry was prepared. The positive electrode mixture slurry was applied to both surfaces of an aluminum foil (thickness: 15 μm) as a positive electrode current collector, dried, and then compressed in the thickness direction to form a positive electrode active material layer. 14 mm). The positive electrode is provided with a first uncoated portion having no positive electrode active material layer along the width direction of the positive electrode, and one end of a ribbon-shaped positive electrode current collecting lead (width 1.0 mm, thickness 50 μm) made of aluminum The part was connected to the first uncoated part. Then, the insulating adhesive tape was affixed on the 1st uncoated part, and the insulating layer was formed.

(2)負極の作製
負極活物質として人造黒鉛粉末100質量部、結着剤としてスチレン−メタクリル酸−ブタジエン共重合体1質量部、増粘剤としてカルボキシメチルセルロース(CMC)1質量部を混合し、得られた混合物を、脱イオン水に分散させることにより、負極合剤スラリーを調製した。負極集電体としての銅箔(厚さ10μm)の両面に、負極合剤スラリーを塗布し、乾燥後、厚さ方向に圧縮することにより、負極活物質層を形成し、負極(厚さ0.15mm)を得た。負極の電極群における最外周に相当する部分には、両面に負極活物質層を有さない第二未塗工部を形成した。第二未塗工部にはリボン状のニッケル製負極リード(幅1.5mm、厚さ50μm)の一端部を接続した。
(2) Production of negative electrode 100 parts by mass of artificial graphite powder as a negative electrode active material, 1 part by mass of styrene-methacrylic acid-butadiene copolymer as a binder, and 1 part by mass of carboxymethyl cellulose (CMC) as a thickener, The obtained mixture was dispersed in deionized water to prepare a negative electrode mixture slurry. A negative electrode mixture slurry was applied to both surfaces of a copper foil (thickness 10 μm) as a negative electrode current collector, dried, and then compressed in the thickness direction to form a negative electrode active material layer. .15 mm). In a portion corresponding to the outermost periphery in the negative electrode group, a second uncoated portion having no negative electrode active material layer on both surfaces was formed. One end of a ribbon-like nickel negative electrode lead (width 1.5 mm, thickness 50 μm) was connected to the second uncoated portion.

(3)電極群の作製
帯状のセパレータを、巻芯(直径0.8mmの円柱状)のスリット部に挟み込み、スリット部で折り曲げて二枚重ねた状態にした。正極と負極との間にセパレータが介在した状態となるように、セパレータと、正極と、負極とを重ね合わせ、正極活物質層と負極活物質層とを対向させた。この状態で、巻芯を中心にして、正極、負極およびセパレータを捲回して電極群を形成した。その後、巻芯を抜き取り、巻き終わり端部に巻止めテープを貼り付けて電極群を固定した。電極群の端面(電池ケース内で開口側に位置する端面)から正極集電リードおよび負極集電リードを延出させた。
(3) Production of electrode group A strip-shaped separator was sandwiched between slit portions of a core (columnar shape with a diameter of 0.8 mm), bent at the slit portions, and two sheets were stacked. The separator, the positive electrode, and the negative electrode were overlapped so that the separator was interposed between the positive electrode and the negative electrode, and the positive electrode active material layer and the negative electrode active material layer were opposed to each other. In this state, the positive electrode, the negative electrode, and the separator were wound around the core to form an electrode group. Thereafter, the winding core was removed, and a winding stopper tape was applied to the end of winding to fix the electrode group. A positive electrode current collecting lead and a negative electrode current collecting lead were extended from an end surface of the electrode group (an end surface located on the opening side in the battery case).

(4)非水電解質の調製
ECとEMCとを1:1の質量比で含む混合溶媒に、LiPF6を溶解させることにより、非水電解質を調製した。非水電解質中のLiPF6の濃度は1.0mol/Lとした。
(4) Preparation of non-aqueous electrolyte A non-aqueous electrolyte was prepared by dissolving LiPF 6 in a mixed solvent containing EC and EMC at a mass ratio of 1: 1. The concentration of LiPF 6 in the nonaqueous electrolyte was 1.0 mol / L.

(5)円筒形電池の作製
ニッケルめっき鉄板から形成された、開口を有する有底円筒形の電池ケースを2種類準備した。一方は、外径φ3.51〜3.63mmの電池ケースAであり、他方は外径φ4.54〜4.66mmの電池ケースBである。各電池ケースの底部内面に接着剤としてブチルゴムを塗布した。ブチルゴムの塗布形状は、幅0.5〜1mmの線状であり、中央部からラジアル方向に沿って電池ケースの内径の1/2の長さで塗布した。その後、電極群を電池ケース内に挿入し、負極集電リードの他端部を、電池ケースの側壁内面に抵抗溶接により接続した。電極群の開口側の端面上に、ガスケットと一体の絶縁筒体を配置し、電極群から引き出した正極リードの他端部を絶縁筒体およびガスケットの孔部を通して封口体の内面に接続した。電池ケース内に非水電解質を所定量注液した後、封口体で電池ケースの開口を封口し、ガスケットの周縁部に電池ケースの開口端部をかしめた。このようにして、公称容量15mAh、高さ20mmの電池A1(電池ケースAを使用)および公称容量50mAh、高さ35mmの電池B1(電池ケースBを使用)を得た。同様の電池A1、B1を合計3個ずつ作製した。
(5) Production of Cylindrical Battery Two types of bottomed cylindrical battery cases having openings and formed from nickel-plated iron plates were prepared. One is a battery case A having an outer diameter of φ3.51 to 3.63 mm, and the other is a battery case B having an outer diameter of φ4.54 to 4.66 mm. Butyl rubber was applied as an adhesive to the bottom inner surface of each battery case. The application shape of butyl rubber was a linear shape having a width of 0.5 to 1 mm, and the butyl rubber was applied with a length ½ of the inner diameter of the battery case along the radial direction from the center. Thereafter, the electrode group was inserted into the battery case, and the other end of the negative electrode current collecting lead was connected to the inner surface of the side wall of the battery case by resistance welding. An insulating cylinder integrated with the gasket was disposed on the end face on the opening side of the electrode group, and the other end of the positive electrode lead pulled out from the electrode group was connected to the inner surface of the sealing body through the hole of the insulating cylinder and the gasket. After pouring a predetermined amount of nonaqueous electrolyte into the battery case, the opening of the battery case was sealed with a sealing body, and the opening end of the battery case was caulked to the peripheral edge of the gasket. In this way, a battery A1 (using battery case A) with a nominal capacity of 15 mAh and a height of 20 mm and a battery B1 (using battery case B) with a nominal capacity of 50 mAh and a height of 35 mm were obtained. A total of three similar batteries A1 and B1 were produced.

[評価]
得られた電池を電極群の捲回軸が鉛直方向で、かつ電池ケースの開口側が下向きとなるように、高さ1mの位置から地面に10回落下させた。次いで、開口側が上向きとなるように電池の向きを反転させ、上記と同様に5回落下させた。これを1セットとして繰り返し、負極集電リードが破断するまでの合計セット数(N:3個の平均)を確認した。
[Evaluation]
The obtained battery was dropped to the ground 10 times from the position of 1 m height so that the winding axis of the electrode group was vertical and the opening side of the battery case was downward. Next, the direction of the battery was reversed so that the opening side was upward, and dropped five times in the same manner as described above. This was repeated as one set, and the total number of sets (N: average of 3) until the negative electrode current collecting lead broke was confirmed.

(実施例2)
電池ケースの底部内面に対向する電極群の端面の全面に接着剤としてブチルゴムを塗布したこと以外、実施例1と同様に電池A2(電池ケースAを使用)、B2(電池ケースBを使用)を作製し、評価した。
(Example 2)
Batteries A2 (using battery case A) and B2 (using battery case B) are the same as in Example 1 except that butyl rubber is applied as an adhesive to the entire end face of the electrode group facing the inner bottom surface of the battery case. Prepared and evaluated.

(実施例3)
電池ケースの底部内面の全面に接着剤として二液型エポキシ樹脂を含む接着剤を塗布したこと以外、実施例2と同様に電池A3(電池ケースAを使用)、B3(電池ケースBを使用)を作製し、評価した。
(Example 3)
Batteries A3 (using battery case A) and B3 (using battery case B), as in Example 2, except that an adhesive containing a two-component epoxy resin was applied as an adhesive to the entire inner surface of the bottom of the battery case Were made and evaluated.

(比較例1)
接着剤を用いなかったこと以外、実施例1と同様に電池AR(電池ケースAを使用)、BR(電池ケースBを使用)を作製し、評価した。
(Comparative Example 1)
A battery AR (using battery case A) and BR (using battery case B) were prepared and evaluated in the same manner as in Example 1 except that no adhesive was used.

Figure 2018142448
Figure 2018142448

表1に示すように、実施例1、2、3の場合、落下を30セット繰り返しても、負極集電リードの破断は生じなかった。ただし、実施例1、2では確認できなかったが、実施例3では、電極群が過度に強固に電池ケースに接合されたためか、僅かに電池ケースの端部に変形が見られた。   As shown in Table 1, in Examples 1, 2, and 3, the negative electrode current collecting lead was not broken even when the dropping was repeated 30 sets. However, although it could not be confirmed in Examples 1 and 2, in Example 3, the end of the battery case was slightly deformed because the electrode group was joined to the battery case excessively firmly.

本発明の実施形態によれば、捲回型電池が落下した場合でも集電リードの破断が抑制され、電池の高い品質を確保することができる。上記捲回型電池は、各種携帯電子機器の電源として好適に用いることができる。   According to the embodiment of the present invention, even when the wound battery is dropped, the breakage of the current collecting lead is suppressed, and the high quality of the battery can be ensured. The wound battery can be suitably used as a power source for various portable electronic devices.

2:負極、4:正極、5:絶縁層、6:セパレータ、8:電池ケース、10:負極端子、12:封口体、14:正極端子、16:ガスケット、18:中空部、20:負極集電体シート、20a:第二未塗工部、20b:第三未塗工部、20c,20d:端面、21:負極活物質層、22:負極集電リード、24:正極集電リード、26:溶接点、27:接着剤、28:絶縁筒体、30:リング部材、40:正極集電体シート、41:正極活物質層、40a:第一未塗工部、40b:第二端部の端面、40c:第一端部の端面、50:巻芯、54 固定用絶縁テープ   2: negative electrode, 4: positive electrode, 5: insulating layer, 6: separator, 8: battery case, 10: negative electrode terminal, 12: sealing body, 14: positive electrode terminal, 16: gasket, 18: hollow part, 20: negative electrode collection Electrical sheet, 20a: second uncoated portion, 20b: third uncoated portion, 20c, 20d: end face, 21: negative electrode active material layer, 22: negative electrode current collecting lead, 24: positive electrode current collecting lead, 26 : Welding point, 27: adhesive, 28: insulating cylinder, 30: ring member, 40: positive electrode current collector sheet, 41: positive electrode active material layer, 40a: first uncoated part, 40b: second end part 40c: end surface of the first end portion, 50: winding core, 54 insulating tape for fixing

Claims (10)

開口を有する電池ケースと、
前記電池ケースに収容された電極群および電解質と、
前記電池ケースの前記開口を塞ぐ封口体と、
前記電池ケースと前記封口体とを絶縁するガスケットと、
前記電極群と前記電池ケースとの間に介在する接着剤と、を具備し、
前記電極群は、第1電極と、前記第1電極とは極性が異なる第2電極と、前記第1電極と前記第2電極との間に介在するセパレータと、を具備し、前記第1電極と前記第2電極とが前記セパレータを介して捲回されて前記電極群を形成しており、
前記第1電極と前記封口体とが、第1集電リードで接続されており、
前記第2電極と前記電池ケースとが、第2集電リードで接続されている、捲回型電池。
A battery case having an opening;
An electrode group and an electrolyte contained in the battery case;
A sealing body for closing the opening of the battery case;
A gasket for insulating the battery case and the sealing body;
An adhesive interposed between the electrode group and the battery case,
The electrode group includes a first electrode, a second electrode having a polarity different from that of the first electrode, and a separator interposed between the first electrode and the second electrode. And the second electrode are wound through the separator to form the electrode group,
The first electrode and the sealing body are connected by a first current collecting lead,
A wound battery in which the second electrode and the battery case are connected by a second current collecting lead.
前記第1集電リードは、一端部が、前記第1電極に接続され、他端部が、前記電極群の前記開口側の端面から引き出されて前記封口体の内側に接続され、
前記第2集電リードは、一端部が、前記第2電極に接続され、他端部が、前記端面から引き出されて前記電池ケースの前記開口側の側壁内面に接続されている、請求項1に記載の捲回型電池。
One end of the first current collecting lead is connected to the first electrode, and the other end is pulled out from the end surface on the opening side of the electrode group and connected to the inside of the sealing body,
The one end of the second current collecting lead is connected to the second electrode, and the other end is pulled out from the end surface and connected to the inner surface of the side wall on the opening side of the battery case. The wound battery according to 1.
前記接着剤が、前記電池ケースの底部と、前記電極群の前記底部側の端面との間に配置されている、請求項1または2に記載の捲回型電池。   The wound battery according to claim 1 or 2, wherein the adhesive is disposed between a bottom portion of the battery case and an end surface on the bottom side of the electrode group. 前記接着剤が、前記電極群の周面と、前記電池ケースの側壁内面との間に配置されている、請求項1または2に記載の捲回型電池。   The wound battery according to claim 1 or 2, wherein the adhesive is disposed between a peripheral surface of the electrode group and an inner surface of a side wall of the battery case. 前記接着剤が、前記電極群の周面の前記電池ケースの底部側寄りに配置されている、請求項4に記載の捲回型電池。   The wound type battery according to claim 4, wherein the adhesive is disposed near the bottom side of the battery case on the peripheral surface of the electrode group. 前記接着剤が、前記電極群と前記電池ケースとの間にスポット状または線状に配置されている、請求項1〜5のいずれか1項に記載の捲回型電池。   The wound battery according to any one of claims 1 to 5, wherein the adhesive is disposed in a spot shape or a line shape between the electrode group and the battery case. 前記接着剤が、前記電池ケースの側壁内面に、前記電池ケースの軸方向に沿って線状に配置されている、請求項6に記載の捲回型電池。   The wound battery according to claim 6, wherein the adhesive is linearly arranged on the inner surface of the side wall of the battery case along the axial direction of the battery case. 前記接着剤が、前記電池ケースの底部内面に、ラジアル方向に沿って線状に配置されている、請求項6に記載の捲回型電池。   The wound battery according to claim 6, wherein the adhesive is linearly arranged along the radial direction on the bottom inner surface of the battery case. 前記接着剤が、エポキシ樹脂または弾性材料を含む、請求項1〜8のいずれか1項に記載の捲回型電池。   The wound battery according to any one of claims 1 to 8, wherein the adhesive includes an epoxy resin or an elastic material. 前記弾性材料が、ゴム材料である、請求項9に記載の捲回型電池。   The wound battery according to claim 9, wherein the elastic material is a rubber material.
JP2017035567A 2017-02-27 2017-02-27 Revolving battery Active JP7022909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017035567A JP7022909B2 (en) 2017-02-27 2017-02-27 Revolving battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017035567A JP7022909B2 (en) 2017-02-27 2017-02-27 Revolving battery

Publications (2)

Publication Number Publication Date
JP2018142448A true JP2018142448A (en) 2018-09-13
JP7022909B2 JP7022909B2 (en) 2022-02-21

Family

ID=63526783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017035567A Active JP7022909B2 (en) 2017-02-27 2017-02-27 Revolving battery

Country Status (1)

Country Link
JP (1) JP7022909B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288703A (en) * 1998-04-01 1999-10-19 Gs Melcotec Kk Battery
JP2001093576A (en) * 1999-09-27 2001-04-06 Japan Storage Battery Co Ltd Non-aqueous electrolyte battery and manufacturing method thereof
JP2006093130A (en) * 2004-09-22 2006-04-06 Samsung Sdi Co Ltd Lithium secondary battery
JP2011054539A (en) * 2009-09-04 2011-03-17 Toyota Motor Corp Method of manufacturing battery
US20110076533A1 (en) * 2009-09-28 2011-03-31 Samsung Sdi Co., Ltd. Secondary battery
WO2012039497A1 (en) * 2010-09-24 2012-03-29 新神戸電機株式会社 Energy storage device and energy storage device production method
US20120141849A1 (en) * 2010-12-07 2012-06-07 E-One Moli Energy (Canada) Limited Drop and Vibration Resistant Lithium-Ion Battery
JP2012529753A (en) * 2010-10-04 2012-11-22 エルジー・ケム・リミテッド SEAL TAPE AND SECONDARY BATTERY USING THE SAME
JP2013073796A (en) * 2011-09-28 2013-04-22 Panasonic Corp Battery
JP2013073788A (en) * 2011-09-28 2013-04-22 Panasonic Corp Nonaqueous electrolyte secondary battery
WO2014132660A1 (en) * 2013-03-01 2014-09-04 パナソニック株式会社 Lithium ion secondary battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288703A (en) * 1998-04-01 1999-10-19 Gs Melcotec Kk Battery
JP2001093576A (en) * 1999-09-27 2001-04-06 Japan Storage Battery Co Ltd Non-aqueous electrolyte battery and manufacturing method thereof
JP2006093130A (en) * 2004-09-22 2006-04-06 Samsung Sdi Co Ltd Lithium secondary battery
JP2011054539A (en) * 2009-09-04 2011-03-17 Toyota Motor Corp Method of manufacturing battery
US20110076533A1 (en) * 2009-09-28 2011-03-31 Samsung Sdi Co., Ltd. Secondary battery
WO2012039497A1 (en) * 2010-09-24 2012-03-29 新神戸電機株式会社 Energy storage device and energy storage device production method
JP2012529753A (en) * 2010-10-04 2012-11-22 エルジー・ケム・リミテッド SEAL TAPE AND SECONDARY BATTERY USING THE SAME
US20120141849A1 (en) * 2010-12-07 2012-06-07 E-One Moli Energy (Canada) Limited Drop and Vibration Resistant Lithium-Ion Battery
JP2013073796A (en) * 2011-09-28 2013-04-22 Panasonic Corp Battery
JP2013073788A (en) * 2011-09-28 2013-04-22 Panasonic Corp Nonaqueous electrolyte secondary battery
WO2014132660A1 (en) * 2013-03-01 2014-09-04 パナソニック株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP7022909B2 (en) 2022-02-21

Similar Documents

Publication Publication Date Title
JP6735445B2 (en) Wound battery
KR101678318B1 (en) Battery
JP5135847B2 (en) Battery and battery manufacturing method
KR20130125819A (en) Battery and method for manufacturing battery
JP6857872B2 (en) Revolving battery
JP2013012405A (en) Nonaqueous secondary battery
CN107851768B (en) Method for manufacturing electrochemical device
JP2009087727A (en) Battery
JP2020205269A (en) Wound battery
JP2010086780A (en) Square secondary battery
WO2018168628A1 (en) Non-aqueous electrolyte secondary battery
WO2017010042A1 (en) Winding-type battery
JP5677373B2 (en) battery
JP2011198742A (en) Laminated type battery
CN109891640B (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2018100853A1 (en) Cylindrical battery
JP2011129446A (en) Laminated type battery
JP2011222128A (en) Secondary battery
JP2017139085A (en) Sealed battery
JP6670086B2 (en) Sealed battery
JP7022909B2 (en) Revolving battery
JP5567462B2 (en) Secondary battery
JP2018139187A (en) Wound type battery
JP2022153675A (en) Nonaqueous electrolyte secondary battery
JP5954339B2 (en) Rectangular secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220118

R151 Written notification of patent or utility model registration

Ref document number: 7022909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151