JP2018141586A - burner - Google Patents

burner Download PDF

Info

Publication number
JP2018141586A
JP2018141586A JP2017035880A JP2017035880A JP2018141586A JP 2018141586 A JP2018141586 A JP 2018141586A JP 2017035880 A JP2017035880 A JP 2017035880A JP 2017035880 A JP2017035880 A JP 2017035880A JP 2018141586 A JP2018141586 A JP 2018141586A
Authority
JP
Japan
Prior art keywords
burner
burner body
flame
wavelength
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017035880A
Other languages
Japanese (ja)
Other versions
JP6627805B2 (en
Inventor
真光 二瓶
Masamitsu Nihei
真光 二瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017035880A priority Critical patent/JP6627805B2/en
Publication of JP2018141586A publication Critical patent/JP2018141586A/en
Application granted granted Critical
Publication of JP6627805B2 publication Critical patent/JP6627805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a burner which is used in an iron mill etc. and can stably detect its accidental fire with high accuracy and responsiveness for a long time.SOLUTION: An oxygen containing gas supply port for supplying an oxygen containing gas to a burner body and a fuel gas supply port for supplying a fuel gas to the burner body are provided from the rear end side to the tip side of the burner body in a written order on a side surface of the burner body. The burner includes an infrared type accidental fire detector for detecting accidental fire of the burner at a rear end of the burner body.SELECTED DRAWING: Figure 1

Description

本発明は、製鉄所等において用いるバーナーに関するものである。   The present invention relates to a burner used in a steelworks or the like.

例えば、製鉄所の製鋼工程では、使用している鍋(溶銑鍋、溶講鍋)の補修を行う際、鍋の内壁に付着している地金を除去しなければならない。この地金の除去には、地金を溶解する必要があり、鍋の口から下方に向かってバーナーで鍋の内壁を高温に加熱する工程が必須となっている。なお、バーナーの燃料ガスとしては、製鉄所の副生ガス(例えば、COを主成分とするガス)が用いられることが多い。   For example, in the steelmaking process of a steel mill, when repairing the pots (hot metal pots, melting pots) that are being used, the bullion attached to the inner wall of the pot must be removed. In order to remove the bullion, it is necessary to dissolve the bullion, and a process of heating the inner wall of the pan to a high temperature with a burner from the mouth of the pan downward is essential. As the burner fuel gas, a by-product gas (for example, a gas containing CO as a main component) is often used.

ただし、その際に、何らかの原因でバーナーが失火して、そのまま気が付かなかった場合は、折角途中まで加熱した鍋が冷えてしまい、再度加熱し直すことが必要になって、操業スケジュールに支障をきたす可能性がある。   However, at that time, if the burner misfires for some reason and you do not notice it as it is, the heated pan will be cooled halfway down and it will be necessary to reheat it, which will hinder the operation schedule. there is a possibility.

そこで、その対策として、バーナーに、火炎の有無を検知する火炎検知装置(言い換えれば、失火検知装置)を設置することが提案されており、その方式として、火炎の紫外線を検知する光電管を用いる方式(特許文献1)、火炎の導電作用を利用するフレームロッドを用いる方式(特許文献2)、火炎直近の温度を熱電対により直接測定する方式(特許文献3)が開示されている。   Therefore, as a countermeasure, it has been proposed to install a flame detection device (in other words, a misfire detection device) in the burner to detect the presence or absence of a flame. (Patent Document 1), a system using a flame rod that utilizes the conductive action of a flame (Patent Document 2), and a system (Patent Document 3) that directly measures the temperature immediately near the flame using a thermocouple.

特開平8−170823号公報JP-A-8-170823 特開平2−40415号公報JP-A-2-40415 特開平8−285275号公報JP-A-8-285275

しかしながら、上記の特許文献1〜3はそれぞれに次のような問題点や難点がある。   However, each of the above Patent Documents 1 to 3 has the following problems and difficulties.

まず、特許文献1のように、紫外線を用いた火炎検出方式(失火検知方式)は、紫外線の放射強度や紫外線センサーの視野角に依存する。例えば、紫外線は燃料ガス(例えば、COガス)の紫外線吸収により紫外線放射強度が低下してしまい、誤検知の原因となり得る。また、紫外線センサーの視野角が十分でないと、燃料ガスの流量変化によって火炎の形成位置が変化することや、火炎の揺らぎによって、火炎が紫外線センサーの視野角から外れてしまって、誤検知の原因となり得る。   First, as in Patent Document 1, the flame detection method (misfire detection method) using ultraviolet rays depends on the radiation intensity of ultraviolet rays and the viewing angle of the ultraviolet sensor. For example, the ultraviolet radiation intensity of ultraviolet rays is reduced due to the ultraviolet absorption of fuel gas (for example, CO gas), which may cause false detection. Also, if the viewing angle of the UV sensor is not sufficient, the position of the flame will change due to changes in the flow rate of the fuel gas, or the flame will deviate from the viewing angle of the UV sensor due to the fluctuation of the flame, causing false detection. Can be.

また、文献2や特許文献3のように、火炎に直接センサー(フレームロッド、熱電対)が接触する方法では、応答性や寿命に問題がある。   Moreover, in the method in which a sensor (frame rod, thermocouple) is in direct contact with the flame as in Document 2 and Patent Document 3, there is a problem in responsiveness and life.

本発明は、上記のような事情に鑑みてなされたものであり、製鉄所等において用いるバーナーとして、高精度で、応答性よく、長期間安定して、自らの失火を検知することが可能なバーナーを提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and as a burner used in a steel mill or the like, it is possible to detect its own misfire with high accuracy, responsiveness, and stability for a long period of time. The purpose is to provide a burner.

上記課題を解決するために、本発明は以下の特徴を有する。   In order to solve the above problems, the present invention has the following features.

[1]バーナー本体の側面に、バーナー本体の後端側から先端側に向かって順に、バーナー本体に酸素含有ガスを供給するための酸素含有ガス供給口と、バーナー本体に燃料ガスを供給するための燃料ガス供給口とを備えているとともに、バーナー本体の後端に、当該バーナーの失火を検知するための赤外線式失火検知装置を備えていることを特徴とするバーナー。   [1] An oxygen-containing gas supply port for supplying an oxygen-containing gas to the burner body in order from the rear end side to the front end side of the burner body, and fuel gas to the burner body. And an infrared misfire detection device for detecting misfire of the burner at the rear end of the burner body.

[2]赤外線式失火検知装置は、波長4.4±0.1μmにおける赤外線放射強度と、波長3.8±0.1μmまたは5.2±0.1μmにおける赤外線放射強度とを比較して、当該バーナーの失火を検知することを特徴とする前記[1]に記載のバーナー。   [2] The infrared misfire detection device compares the infrared radiation intensity at a wavelength of 4.4 ± 0.1 μm with the infrared radiation intensity at a wavelength of 3.8 ± 0.1 μm or 5.2 ± 0.1 μm, The burner according to [1], wherein misfire of the burner is detected.

[3]バーナー本体の側面に、燃料ガス供給口からさらにバーナー本体の先端側の位置に、バーナー本体に固体燃料を供給するための固体燃料供給口を備えていることを特徴とする前記[1]または[2]に記載のバーナー。   [3] The solid fuel supply port for supplying solid fuel to the burner main body is provided on the side surface of the burner main body at a position on the tip side of the burner main body from the fuel gas supply port. ] Or the burner according to [2].

本発明においては、製鉄所等において用いるバーナーとして、高精度で、応答性よく、長期間安定して、自らの失火を検知することが可能なバーナーを提供することができる。   In the present invention, as a burner used in an ironworks or the like, it is possible to provide a burner capable of detecting its own misfire with high accuracy, good responsiveness, and stably for a long period of time.

本発明の実施形態1を示す図である。It is a figure which shows Embodiment 1 of this invention. 火炎の赤外線放射強度分布と高温物体の赤外線放射強度分布を比較した図である。It is the figure which compared the infrared radiation intensity distribution of a flame, and the infrared radiation intensity distribution of a high temperature object. 本発明の実施形態2を示す図である。It is a figure which shows Embodiment 2 of this invention.

本発明の実施形態を図面に基づいて説明する。なお、ここでは、製鉄所の製鋼工程で使用している鍋(溶銑鍋、溶講鍋)の補修を行う際に、鍋の口から下方に向かってバーナーで鍋の内壁を高温に加熱する場合を念頭において述べる。   Embodiments of the present invention will be described with reference to the drawings. In addition, here, when repairing a pan (hot metal pan, hot pot) used in the steelmaking process of a steel mill, the inner wall of the pan is heated to a high temperature with a burner downward from the pan mouth With this in mind.

[実施形態1]
図1は、本発明の実施形態1におけるバーナー1を示す図である。
[Embodiment 1]
FIG. 1 is a view showing a burner 1 according to Embodiment 1 of the present invention.

図1に示すように、この実施形態1におけるバーナー1は、バーナー本体2の側面に、バーナー本体2の後端側から先端側に向かって順に、バーナー本体2に酸素含有ガス(例えば、燃焼用空気)を供給するための酸素含有ガス供給口3と、バーナー本体2に燃料ガス(例えば、COガス)を供給するための燃料ガス供給口4とを備えているとともに、バーナー本体2の後端に、バーナー2自身の失火を検知するための開口部6と赤外線式失火検知装置7とを備えている。   As shown in FIG. 1, the burner 1 according to Embodiment 1 includes an oxygen-containing gas (for example, for combustion) on the side surface of the burner body 2 in order from the rear end side to the front end side of the burner body 2. An oxygen-containing gas supply port 3 for supplying air) and a fuel gas supply port 4 for supplying fuel gas (for example, CO gas) to the burner body 2, and a rear end of the burner body 2 Further, an opening 6 for detecting misfire of the burner 2 itself and an infrared misfire detecting device 7 are provided.

これにより、酸素含有ガス供給口3からバーナー本体2に供給された酸素含有ガスと、燃料ガス供給口4からバーナー本体2に供給された燃料ガスとが混合して燃焼し、火炎5が形成される。そして、開口部6を通過してきた赤外線を赤外線式失火検知装置7が感知することで、火炎5の有無を検知するようになっている。   As a result, the oxygen-containing gas supplied from the oxygen-containing gas supply port 3 to the burner body 2 and the fuel gas supplied from the fuel gas supply port 4 to the burner body 2 are mixed and burned to form a flame 5. The And the presence or absence of the flame 5 is detected when the infrared misfire detection device 7 senses the infrared rays that have passed through the opening 6.

ここで、図2は、火炎の赤外線放射強度分布(分光特性)と、火炎を伴わない高温物体の赤外線放射強度分布(分光特性)とを比較した図である。なお、図2では、ピーク値を1とした相対強度で表している。   Here, FIG. 2 is a diagram comparing the infrared radiation intensity distribution (spectral characteristics) of a flame with the infrared radiation intensity distribution (spectral characteristics) of a high-temperature object not accompanied by a flame. In FIG. 2, the relative intensity is expressed with a peak value of 1.

まず、火炎を伴わない高温物体(図2では、700Kの物体、1400Kの物体)の赤外線放射強度分布は、下記の(1)式に示すプランクの法則に従い、図2に示すように、比較的なだらかな分布パターンとなる。   First, the infrared radiation intensity distribution of a high-temperature object not accompanied by a flame (in FIG. 2, 700K object, 1400K object) is relatively high in accordance with Planck's law shown in the following equation (1) as shown in FIG. The distribution pattern is gentle.

これに対して、火炎の赤外線放射強度分布は、(1)式のプランクの法則に従わず、CO共鳴放射現象によって、図2に示すように、波長4.4μmで急激にピークとなる急峻な分布パターンとなる。 On the other hand, the infrared radiation intensity distribution of the flame does not follow Planck's law of the equation (1), and is steep that peaks suddenly at a wavelength of 4.4 μm due to the CO 2 resonance radiation phenomenon as shown in FIG. Distribution pattern.

したがって、赤外線式失火検知装置7が感知した赤外線放射強度分布が急峻な分布パターンであれば、火炎5から放射された赤外線を感知しており、火炎5が存在し、失火していないと判断される。   Therefore, if the infrared radiation intensity distribution sensed by the infrared misfire detection device 7 is a steep distribution pattern, it is determined that the infrared radiation radiated from the flame 5 is sensed and the flame 5 exists and has not misfired. The

これに対して、赤外線式失火検知装置7が感知した赤外線放射強度分布が比較的なだらかな分布パターンであれば、高温物体(例えば、加熱中の鍋の内壁レンガ)から放射された赤外線を感知しており、火炎5が存在せず、失火していると判断される。   On the other hand, if the infrared radiation intensity distribution sensed by the infrared misfire detection device 7 is a comparatively gentle distribution pattern, infrared radiation emitted from a high-temperature object (for example, an inner wall brick of a heating pan) is sensed. Therefore, it is determined that the flame 5 does not exist and is misfired.

ちなみに、火炎5が存在する場合は、赤外線式失火検知装置7が感知する赤外線放射の強度は、火炎5からの赤外線の方が高温物体(例えば、加熱中の鍋の内壁レンガ)からの赤外線よりも格段に強いので、赤外線式失火検知装置7が感知する赤外線放射強度分布に及ぼす高温物体(例えば、加熱中の鍋の内壁レンガ)からの赤外線の影響は非常に小さくなる。   By the way, when the flame 5 is present, the infrared radiation intensity detected by the infrared misfire detection device 7 is higher in the infrared radiation from the flame 5 than the infrared radiation from a hot object (for example, the inner wall brick of the pot being heated). Since it is extremely strong, the influence of infrared rays from a high-temperature object (for example, the inner wall brick of the pot being heated) on the infrared radiation intensity distribution sensed by the infrared-type misfire detection device 7 is very small.

また、火炎の赤外線放射強度分布では、波長4.4μmで急激にピーク値となり、そこから少し短くなった波長(例えば、波長3.8μm)では非常に小さな値(例えば、相対強度が0.01程度)になることから、波長4.4μmにおける赤外線放射強度と、赤外線放射強度が非常に小さな値になる波長(例えば、波長3.8μm)における赤外線放射強度とを比較して、バーナーの失火を検知するようにしてもよい。   In addition, in the infrared radiation intensity distribution of the flame, a peak value is abruptly reached at a wavelength of 4.4 μm, and a very small value (for example, a relative intensity of 0.01 is used at a wavelength slightly shorter than that (for example, a wavelength of 3.8 μm) Therefore, comparing the infrared radiation intensity at a wavelength of 4.4 μm with the infrared radiation intensity at a wavelength (for example, a wavelength of 3.8 μm) at which the infrared radiation intensity is very small, You may make it detect.

例えば、波長4.4μmにおける赤外線放射強度をWaとし、波長3.8μmにおける赤外線放射強度をWbとして、その比Wa/Wbが所定の値(閾値)以上であれば、火炎が存在しており失火していないと判断し、その比Wa/Wbが所定の値(閾値)未満であれば、火炎が存在せず失火していると判断する。   For example, if the infrared radiation intensity at a wavelength of 4.4 μm is Wa and the infrared radiation intensity at a wavelength of 3.8 μm is Wb, and the ratio Wa / Wb is equal to or greater than a predetermined value (threshold), a flame exists and misfires occur. If the ratio Wa / Wb is less than a predetermined value (threshold value), it is determined that no flame is present and misfire has occurred.

なお、上記の閾値については、図2に示すように、火炎の場合は、Wa/Wbが100程度であるのに対して、火炎を伴わない高温物体の場合はWa/Wbが0.7〜1.0程度であることから、閾値を10程度とすることが考えられる。あるいは、予め実験等によって閾値を定めておいてもよい。   For the above threshold, as shown in FIG. 2, Wa / Wb is about 100 in the case of a flame, whereas Wa / Wb is 0.7 to 0.7 in the case of a high-temperature object not accompanied by a flame. Since it is about 1.0, it can be considered that the threshold value is about 10. Alternatively, the threshold value may be determined in advance by experiments or the like.

ちなみに、図2に示すように、赤外線放射強度がピーク値になる波長(波長4.4μm)から少し長くなった波長(例えば、波長5.2μm)でも非常に小さな値(例えば、相対強度が0.01程度)になることから、波長3.8μmに替えて波長5.2μmを採用するようにしてもよい。   Incidentally, as shown in FIG. 2, a very small value (for example, the relative intensity is 0) even at a wavelength (for example, a wavelength of 5.2 μm) slightly longer than the wavelength (wavelength of 4.4 μm) at which the infrared radiation intensity reaches a peak value. Therefore, the wavelength of 5.2 μm may be adopted instead of the wavelength of 3.8 μm.

そして、赤外線式失火検知装置7の検出精度等を考慮して、赤外線放射強度がピーク値になる波長(波長4.4μm)と、赤外線放射強度が非常に小さな値になる波長(波長3.8μmまたは5.2μm)については、それぞれに検出波長範囲を設定することが好ましい。具体的には、赤外線放射強度がピーク値(または、赤外線放射強度が非常に大きな値)になる波長を4.4±0.1μmとし、赤外線放射強度が非常に小さな値になる波長を3.8±0.1μmまたは5.2±0.1μmとすることが好ましい。   Then, considering the detection accuracy of the infrared misfire detection device 7 and the like, the wavelength at which the infrared radiation intensity reaches a peak value (wavelength 4.4 μm) and the wavelength at which the infrared radiation intensity becomes a very small value (wavelength 3.8 μm). Or 5.2 μm), it is preferable to set a detection wavelength range for each. Specifically, the wavelength at which the infrared radiation intensity reaches the peak value (or the infrared radiation intensity is very large) is set to 4.4 ± 0.1 μm, and the wavelength at which the infrared radiation intensity is extremely small is set to 3. It is preferably 8 ± 0.1 μm or 5.2 ± 0.1 μm.

このようにして、この実施形態1においては、赤外線式失火検知装置7を用いて失火検知を行うことで、特許文献1のような、燃料ガス(例えば、COガス)の紫外線吸収による誤検知が防止される。また、バーナー本体2の軸線上に赤外線式失火検知装置7が位置していることに加えて、酸素含有ガス供給口3から供給された清浄な酸素含有ガスで粉塵などの付着や汚れが防止されることによって、赤外線式失火検知装置7の視野を充分に確保することができる。しかも、供給された酸素含有ガスで赤外線式失火検知装置7が冷却されることによって、火炎5の熱風による寿命低下を防ぐことができる。また、文献2や特許文献3のように、火炎に直接センサー(フレームロッド、熱電対)が接触するわけではないので、応答性や寿命の問題は生じない。   In this way, in the first embodiment, misfire detection is performed using the infrared misfire detection device 7, so that erroneous detection due to ultraviolet absorption of fuel gas (for example, CO gas) as in Patent Document 1 can be performed. Is prevented. Further, in addition to the infrared misfire detection device 7 being positioned on the axis of the burner main body 2, the clean oxygen-containing gas supplied from the oxygen-containing gas supply port 3 prevents adhesion of dust and dirt. By this, the visual field of the infrared misfire detection device 7 can be sufficiently secured. In addition, since the infrared misfire detection device 7 is cooled by the supplied oxygen-containing gas, the life of the flame 5 due to hot air can be prevented from being reduced. In addition, as in Document 2 and Patent Document 3, since the sensor (frame rod, thermocouple) is not in direct contact with the flame, there is no problem of responsiveness or life.

したがって、この実施形態1におけるバーナー1は、高精度で、応答性よく、長期間安定して、自らの失火を検知することができる。   Therefore, the burner 1 in the first embodiment can detect its own misfire with high accuracy, good responsiveness, and stably for a long period of time.

[実施形態2]
図3は、本発明の実施形態2におけるバーナー11を示す図である。
[Embodiment 2]
FIG. 3 is a diagram illustrating the burner 11 according to the second embodiment of the present invention.

図3に示すように、この実施形態2におけるバーナー11は、基本的な構成は、上記の実施形態1におけるバーナー1と同じであるが、それに加えて、バーナー本体2の側面に、燃料ガス供給口4からさらにバーナー本体2の先端側の位置に、バーナー本体2に固体燃料(例えば、微粉炭)を供給するための固体燃料供給口12を備えている。   As shown in FIG. 3, the basic structure of the burner 11 in the second embodiment is the same as that of the burner 1 in the first embodiment, but in addition, the fuel gas is supplied to the side surface of the burner body 2. A solid fuel supply port 12 for supplying solid fuel (for example, pulverized coal) to the burner body 2 is further provided at a position on the tip side of the burner body 2 from the port 4.

これによって、この実施形態2におけるバーナー11は、上記の実施形態1におけるバーナー1と同様に、高精度で、応答性よく、長期間安定して、自らの失火を検知することができることに加えて、製鉄所等で生じる燃料化可能な固体(例えば、微粉炭)を有効活用することができる。   As a result, the burner 11 according to the second embodiment can detect its own misfire in the same manner as the burner 1 according to the first embodiment. Thus, it is possible to effectively use solids (for example, pulverized coal) that can be converted into fuel, which are produced in steelworks and the like.

なお、上記の実施形態1、2においては、鍋(溶銑鍋、溶講鍋)をバーナーで高温に加熱する場合を念頭において述べたが、もちろん、本発明はそれに限定されるものではない。   In addition, in said Embodiment 1, 2, although the case where a pan (hot metal ladle, molten metal ladle) was heated with a burner in mind was described in mind, of course, this invention is not limited to it.

また、バーナー本体2の軸線を下方に向けていたが、上方、水平方向、斜め方向のいずれの方向に向けてもよい。   Moreover, although the axis of the burner body 2 is directed downward, it may be directed in any direction of upward, horizontal, and oblique directions.

1 バーナー
2 バーナー本体
3 酸素含有ガス供給口
4 燃料ガス供給口
5 火炎
6 開口部
7 赤外線式失火検知装置
11 バーナー
12 固体燃料供給口
DESCRIPTION OF SYMBOLS 1 Burner 2 Burner main body 3 Oxygen containing gas supply port 4 Fuel gas supply port 5 Flame 6 Opening part 7 Infrared type misfire detection apparatus 11 Burner 12 Solid fuel supply port

Claims (3)

バーナー本体の側面に、バーナー本体の後端側から先端側に向かって順に、バーナー本体に酸素含有ガスを供給するための酸素含有ガス供給口と、バーナー本体に燃料ガスを供給するための燃料ガス供給口とを備えているとともに、バーナー本体の後端に、当該バーナーの失火を検知するための赤外線式失火検知装置を備えていることを特徴とするバーナー。   An oxygen-containing gas supply port for supplying oxygen-containing gas to the burner body in order from the rear end side to the front end side of the burner body on the side surface of the burner body, and fuel gas for supplying fuel gas to the burner body A burner characterized in that it comprises an inlet and an infrared misfire detection device for detecting misfire of the burner at the rear end of the burner body. 赤外線式失火検知装置は、波長4.4±0.1μmにおける赤外線放射強度と、波長3.8±0.1μmまたは5.2±0.1μmにおける赤外線放射強度とを比較して、当該バーナーの失火を検知することを特徴とする請求項1に記載のバーナー。   The infrared misfire detection device compares the infrared radiation intensity at a wavelength of 4.4 ± 0.1 μm with the infrared radiation intensity at a wavelength of 3.8 ± 0.1 μm or 5.2 ± 0.1 μm. The burner according to claim 1, wherein misfire is detected. バーナー本体の側面に、燃料ガス供給口からさらにバーナー本体の先端側の位置に、バーナー本体に固体燃料を供給するための固体燃料供給口を備えていることを特徴とする請求項1または2に記載のバーナー。   The solid fuel supply port for supplying the solid fuel to the burner body is provided on the side surface of the burner body at a position further from the fuel gas supply port on the tip side of the burner body. The burner described.
JP2017035880A 2017-02-28 2017-02-28 burner Active JP6627805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017035880A JP6627805B2 (en) 2017-02-28 2017-02-28 burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017035880A JP6627805B2 (en) 2017-02-28 2017-02-28 burner

Publications (2)

Publication Number Publication Date
JP2018141586A true JP2018141586A (en) 2018-09-13
JP6627805B2 JP6627805B2 (en) 2020-01-08

Family

ID=63527973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017035880A Active JP6627805B2 (en) 2017-02-28 2017-02-28 burner

Country Status (1)

Country Link
JP (1) JP6627805B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435426A (en) * 1977-08-24 1979-03-15 Showa Yuka Kk Apparatus for monitoring flame from flare stack
JP2004077092A (en) * 2002-08-22 2004-03-11 Sumitomo Metal Ind Ltd Burner for powder combustion
JP2008518186A (en) * 2004-10-22 2008-05-29 サンドビック インテレクチュアル プロパティー アクティエボラーグ Method and apparatus for igniting and monitoring a burner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435426A (en) * 1977-08-24 1979-03-15 Showa Yuka Kk Apparatus for monitoring flame from flare stack
JP2004077092A (en) * 2002-08-22 2004-03-11 Sumitomo Metal Ind Ltd Burner for powder combustion
JP2008518186A (en) * 2004-10-22 2008-05-29 サンドビック インテレクチュアル プロパティー アクティエボラーグ Method and apparatus for igniting and monitoring a burner

Also Published As

Publication number Publication date
JP6627805B2 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
Lee et al. An observation of combustion behavior of a single coal particle entrained into hot gas flow
CA2721723C (en) Method for feeding pulverised coal into a blast furnace
CA2816005C (en) Method and apparatus for heating metals
JP6179286B2 (en) Blast furnace operating status judgment method
JPS6149569B2 (en)
KR20150140305A (en) Apparatus for temperature measurements of a molten bath in a top submerged injection lance installation
BR112017006512B1 (en) INTEGRATED SENSOR SYSTEM AND METHOD OF CONTROLLING ONE OR BOTH OF ENERGY INPUT AND ENERGY DISTRIBUTION IN A FURNACE
Matthes et al. A new camera-based method for measuring the flame stability of non-oscillating and oscillating combustions
JP2018141586A (en) burner
CZ286292A3 (en) Process of joining burned ceramic articles with metallic articles by heating and apparatus for making the same
CN106795573A (en) Method and apparatus for determining the ignition time point during oxygen blowing
JP7350366B2 (en) Method and apparatus for measuring the flow rate of a gas stream
JP6983015B2 (en) Clinker removal device, boiler and clinker removal method
JP2006308110A (en) Burner and combustion device
JP2007132544A (en) Secondary combustion method and device in incineration disposal system
EP3770496B1 (en) Gas swirling state determination system and gasification melting furnace
EP4033149A1 (en) Monitoring combustible matter in a gaseous stream
JP6699629B2 (en) Operation method of oxygen blast furnace
JP6421938B2 (en) Combustion status measurement method and combustion status measurement system
US9873926B2 (en) System and method for control of a copper melting furnace
JP2005016839A (en) Flame detecting device
JP2020159568A (en) Combustion determination device and combustion device
US20200284513A1 (en) Method for controlling a combustion and furnace
JP2005069763A (en) Flame type atomic absorption photometer
EAF In recent years, EAF process promoted the use of chemical energy for both enhancing productivity and reducing electricity consumption. Combined burners and sidewall oxygen lances are now currently operated in modern EAF. However, these tools are operated following pre-set patterns, without any feedback information from the process. This leads both to non-optimised operations and to occasional blow-back problems, resulting in damages to burners, lances, water-cooled panels and refractory lining.

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R150 Certificate of patent or registration of utility model

Ref document number: 6627805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250