JP2018140358A - Photocatalysis functional member and production method thereof - Google Patents

Photocatalysis functional member and production method thereof Download PDF

Info

Publication number
JP2018140358A
JP2018140358A JP2017036719A JP2017036719A JP2018140358A JP 2018140358 A JP2018140358 A JP 2018140358A JP 2017036719 A JP2017036719 A JP 2017036719A JP 2017036719 A JP2017036719 A JP 2017036719A JP 2018140358 A JP2018140358 A JP 2018140358A
Authority
JP
Japan
Prior art keywords
functional member
tio
noble metal
surface layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017036719A
Other languages
Japanese (ja)
Other versions
JP6814473B2 (en
Inventor
尚之 成島
Naoyuki Narishima
尚之 成島
恭介 上田
Kyosuke Ueda
恭介 上田
隆統志 上田
Kotoshi Ueda
隆統志 上田
翔太 佐渡
Shota Sado
翔太 佐渡
康悦 小笠原
Koetsu Ogasawara
康悦 小笠原
甲雄 伊藤
Koyu Ito
甲雄 伊藤
弘恭 金高
Hiroyasu Kanetaka
弘恭 金高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2017036719A priority Critical patent/JP6814473B2/en
Publication of JP2018140358A publication Critical patent/JP2018140358A/en
Application granted granted Critical
Publication of JP6814473B2 publication Critical patent/JP6814473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalysis functional member capable of improving visible light responsivity.SOLUTION: A photocatalysis functional member 10 comprises: a base material 11; and a surface layer 12 formed on the surface of the base material, and has a rutile type titanium oxide crystal as a main phase, or has a rutile type titanium oxide crystal and a brookite type titanium oxide crystal as main phases, and includes a noble metal. The noble metal included in the surface layer 12 preferably forms nanoparticles 12A. The photocatalysis functional member 10 may further comprise an intermediate layer 13 between the base material 11 and the surface layer 12. The noble metal is at least one kind selected from Au, Ag, Pt and Pd. An amount of the noble metal included in the surface layer 12 is 0.007 at% or more of a total amount of the titanium and the noble metal included in the surface layer 12, an average particle diameter of the nanoparticles 12A is preferably 100 nm or less, in the photocatalysis functional member 10.SELECTED DRAWING: Figure 1

Description

本発明は、光触媒機能性部材およびその製造方法に関する。   The present invention relates to a photocatalytic functional member and a method for producing the same.

Tiの酸化物であるTiO2(チタニア)は光触媒活性、すなわち光誘起有機物分解能および光誘起親水性を示す。TiO2の光触媒活性向上には元素添加が有効であるが、貴金属元素であるAuを金属ナノ微粒子として担持させた場合においても、表面プラズモン共鳴(SPR)によりTiO2の可視光応答性を向上できることが知られている(例えば非特許文献1参照)。 TiO 2 (titania), which is an oxide of Ti, exhibits photocatalytic activity, that is, photoinduced organic matter resolution and photoinduced hydrophilicity. Although elements added to the photocatalytic activity increase of the TiO 2 is effective, when the Au is noble metal element was supported metal nanoparticles also can improve the visible light responsive properties of the TiO 2 by surface plasmon resonance (SPR) Is known (see, for example, Non-Patent Document 1).

X.Z. Li and F.B. Li: Environ. Sci. Technol. 35 (2001) 2381-2387.X.Z. Li and F.B.Li: Environ. Sci. Technol. 35 (2001) 2381-2387.

本発明の目的は、可視光応答性を向上できる光触媒機能性部材およびその製造方法を提供することにある。   The objective of this invention is providing the photocatalyst functional member which can improve visible light responsiveness, and its manufacturing method.

上述の課題を解決するために、第1の発明は、基材と、基材表面に形成されており、ルチル型の酸化チタン結晶を主相とするか、またはルチル型の酸化チタン結晶とブルッカイト型の酸化チタン結晶とを主相とし、貴金属を含む表面層とを備える光触媒機能性部材である。   In order to solve the above-mentioned problems, the first invention is a base material and formed on the surface of the base material, and has a rutile type titanium oxide crystal as a main phase, or a rutile type titanium oxide crystal and brookite. It is a photocatalytic functional member comprising a surface layer containing a noble metal as a main phase with a titanium oxide crystal of a type.

第2の発明は、酸素を含む雰囲気中において、チタンおよび貴金属を含む基材を熱酸化処理する工程を含む光触媒機能性部材の製造方法である。   2nd invention is a manufacturing method of the photocatalyst functional member including the process of thermally oxidizing the base material containing titanium and a noble metal in the atmosphere containing oxygen.

本発明によれば、光触媒機能性部材の可視光応答性を向上できる。   According to the present invention, the visible light response of the photocatalytic functional member can be improved.

図1は、本発明の一実施形態に係る光触媒機能性部材の構成の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of the configuration of a photocatalytic functional member according to an embodiment of the present invention. 図2は、実施例1〜4、比較例1、2の大気酸化TiO2膜のα-2θ XRDパターンを示す図である。FIG. 2 is a diagram showing α-2θ XRD patterns of atmospheric oxidized TiO 2 films of Examples 1 to 4 and Comparative Examples 1 and 2 . 図3Aは、実施例4の大気酸化TiO2膜の断面STEM像である。図3Bは、実施例3の大気酸化TiO2膜の断面STEM像である。3A is a cross-sectional STEM image of the atmospheric oxidized TiO 2 film of Example 4. FIG. FIG. 3B is a cross-sectional STEM image of the atmospheric oxidized TiO 2 film of Example 3. 図4は、実施例1〜4、比較例2、3の大気酸化TiO2膜のα-2θ XRDによる解析結果およびSTEMによる断面観察結果をまとめて示す図表である。FIG. 4 is a table summarizing the analysis results by α-2θ XRD and the cross-sectional observation results by STEM of the atmospheric oxidized TiO 2 films of Examples 1 to 4 and Comparative Examples 2 and 3. 図5は、比較例6〜8の二段階熱酸化TiO2膜のα-2θ XRDパターンを示す図である。FIG. 5 is a diagram showing α-2θ XRD patterns of the two-stage thermally oxidized TiO 2 films of Comparative Examples 6-8. 図6Aは、比較例8の二段階熱酸化TiO2膜の断面TEM像である。図6Bは、比較例8の二段階熱酸化TiO2膜のAu4fXPSスペクトルを示す図である。6A is a cross-sectional TEM image of the two-stage thermally oxidized TiO 2 film of Comparative Example 8. FIG. 6B is a diagram showing an Au4fXPS spectrum of the two-stage thermally oxidized TiO 2 film of Comparative Example 8. FIG. 図7は、比較例6、7、9、10の二段階熱酸化TiO2膜のα-2θ XRDによる解析結果およびTEMによる断面観察結果をまとめて示す図表である。FIG. 7 is a chart collectively showing the analysis results by α-2θ XRD and the cross-sectional observation results by TEM of the two-stage thermally oxidized TiO 2 films of Comparative Examples 6, 7, 9, and 10. 図8は、実施例1、2、比較例2、3の大気酸化TiO2膜、および比較例4の純Ti基板の水接触角の変化を示すグラフである。FIG. 8 is a graph showing changes in the water contact angle of the atmospheric oxidized TiO 2 films of Examples 1 and 2, Comparative Examples 2 and 3, and the pure Ti substrate of Comparative Example 4. 図9は、実施例1、3、4の大気酸化TiO2膜、および比較例4の純Ti基板の水接触角の変化を示すグラフである。FIG. 9 is a graph showing changes in water contact angles of the atmospheric oxidized TiO 2 films of Examples 1, 3, and 4 and the pure Ti substrate of Comparative Example 4. 図10は、実施例5、6、比較例11の大気酸化TiO2膜の水接触角の変化を示すグラフである。FIG. 10 is a graph showing changes in the water contact angle of the atmospheric oxidized TiO 2 films of Examples 5 and 6 and Comparative Example 11. 図11は、比較例6、8の二段階熱酸化TiO2膜、比較例4の純Ti基板、比較例5のTi−Au合金基板の水接触角の変化を示すグラフである。FIG. 11 is a graph showing changes in water contact angles of the two-stage thermally oxidized TiO 2 films of Comparative Examples 6 and 8, the pure Ti substrate of Comparative Example 4, and the Ti—Au alloy substrate of Comparative Example 5. 図12は、比較例6、7、9、10の二段階熱酸化TiO2膜、および比較例4の純Ti基板の水接触角の変化を示すグラフである。FIG. 12 is a graph showing changes in the water contact angle of the two-stage thermally oxidized TiO 2 films of Comparative Examples 6, 7, 9, and 10 and the pure Ti substrate of Comparative Example 4. 図13Aは、初期接触角半減時間t1/2の求め方を説明するためのグラフである。図13Bは、実施例1〜4、比較例2、3、6、7、9、10のTiO2膜、および比較例4の純Ti基板の初期接触角半減時間t1/2の測定結果を示すグラフである。FIG. 13A is a graph for explaining how to obtain the initial contact angle half-life time t 1/2 . FIG. 13B shows the measurement results of the initial contact angle half-time t 1/2 of the TiO 2 films of Examples 1 to 4, Comparative Examples 2, 3, 6, 7, 9, and 10 and the pure Ti substrate of Comparative Example 4. It is a graph to show. 図14Aは、実施例1〜4、比較例3の大気酸化TiO2膜の表面近傍におけるAuの含有量と初期接触角半減時間t1/2との関係を示すグラフである。図14Bは、比較例6、7、9、10の二段階熱酸化TiO2膜の表面近傍におけるAuおよびCの総量と初期接触角半減時間t1/2との関係を示すグラフである。FIG. 14A is a graph showing the relationship between the Au content in the vicinity of the surface of the atmospheric oxidized TiO 2 film of Examples 1 to 4 and Comparative Example 3 and the initial contact angle half-time t 1/2 . FIG. 14B is a graph showing the relationship between the total amount of Au and C in the vicinity of the surface of the two-stage thermally oxidized TiO 2 film of Comparative Examples 6, 7, 9, and 10 and the initial contact angle half time t 1/2 . 図15Aは、実施例3、4の大気酸化TiO2膜中におけるAuナノ粒子の平均粒径と初期接触角半減時間t1/2との関係を示すグラフである。図15Bは、実施例1、2、4の大気酸化TiO2膜表面、および比較例9、10の二段階熱酸化TiO2膜表面におけるAuナノ粒子の平均粒径と初期接触角半減時間t1/2との関係を示すグラフである。FIG. 15A is a graph showing the relationship between the average particle diameter of Au nanoparticles in the atmospheric oxidized TiO 2 film of Examples 3 and 4 and the initial contact angle half time t 1/2 . FIG. 15B shows the average particle diameter and initial contact angle half-time t 1 of Au nanoparticles on the surfaces of the atmospheric oxidized TiO 2 films of Examples 1, 2 , and 4 and the two-stage thermally oxidized TiO 2 films of Comparative Examples 9 and 10. It is a graph which shows the relationship with / 2 . 図16は、実施例1の大気酸化TiO2膜、比較例6、9の二段階熱酸化TiO2膜、比較例4の純Ti基板、およびSiO2基板の抗菌性試験の評価結果を示すグラフである。FIG. 16 is a graph showing the antibacterial test results of the atmospheric oxidation TiO 2 film of Example 1, the two-stage thermal oxidation TiO 2 film of Comparative Examples 6 and 9, the pure Ti substrate of Comparative Example 4, and the SiO 2 substrate. It is.

以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[光触媒機能性部材の構成]
本発明の一実施形態に係る光触媒機能性部材10は、図1に示すように、基材11と、この基材11の表面に形成されており、ルチル型の酸化チタン結晶を主相とするか、またはルチル型の酸化チタン結晶とブルッカイト型の酸化チタン結晶とを主相とし、貴金属を含む表面層12とを備える。光触媒機能性部材10が、基材11と表面層12との間に設けられた中間層13をさらに備えていてもよい。
[Configuration of photocatalytic functional member]
As shown in FIG. 1, the photocatalytic functional member 10 according to an embodiment of the present invention is formed on a base material 11 and the surface of the base material 11, and has a rutile type titanium oxide crystal as a main phase. Or a surface layer 12 containing a rutile-type titanium oxide crystal and a brookite-type titanium oxide crystal as a main phase and containing a noble metal. The photocatalytic functional member 10 may further include an intermediate layer 13 provided between the base material 11 and the surface layer 12.

(基材)
基材11の形状としては、例えば、板状、立方体状等の多面体状、球形状、円柱状等の柱状または不定形状を挙げることができるが、特にこれらの形状に限定されるものではない。また、表面層12が設けられる基材11の表面の形状としては、例えば、平面状、曲面状、凹凸面状または不定形状を挙げることができるが、特にこれらの形状に限定されるものではない。
(Base material)
Examples of the shape of the base material 11 include a polyhedron shape such as a plate shape and a cubic shape, a columnar shape such as a spherical shape and a columnar shape, and an indefinite shape, but are not particularly limited to these shapes. Further, examples of the shape of the surface of the substrate 11 on which the surface layer 12 is provided include a planar shape, a curved surface shape, an uneven surface shape, or an indefinite shape, but are not particularly limited to these shapes. .

基材11は、チタンおよび貴金属を含んでいる。貴金属は、金、銀、プラチナおよびパラジウムのうちの少なくとも1種であることが好ましい。基材11に含まれる貴金属の含有量は、好ましくは2atomic%(以下「at%」という。)以上、より好ましくは3at%、更により好ましくは4at%以上、特に好ましくは5at%以上である。貴金属の含有量が2at%以上であると、後述の大気酸化処理により、優れた可視光応答性を有する表面層12を基材11に形成することができる。基材11に含まれる貴金属の含有量の上限値は特に限定されるものではないが、光触媒機能性部材10のコストの低減の観点からすると、好ましくは20at%以下、より好ましくは15at%以下、更により好ましくは12at%以下、特に好ましくは10at%以下である。   The base material 11 contains titanium and a noble metal. The noble metal is preferably at least one of gold, silver, platinum and palladium. The content of the noble metal contained in the substrate 11 is preferably 2 atomic% (hereinafter referred to as “at%”) or more, more preferably 3 at%, even more preferably 4 at% or more, and particularly preferably 5 at% or more. When the content of the noble metal is 2 at% or more, the surface layer 12 having excellent visible light responsiveness can be formed on the substrate 11 by the atmospheric oxidation treatment described later. The upper limit of the content of the noble metal contained in the substrate 11 is not particularly limited, but from the viewpoint of reducing the cost of the photocatalytic functional member 10, it is preferably 20 at% or less, more preferably 15 at% or less, Even more preferably, it is 12 at% or less, and particularly preferably 10 at% or less.

上述の基材11に含まれる貴金属の含有量は、ICP質量分析法(Inductively Coupled Plasma Mass Spectrometry:ICP−MS)により測定される値である。   The content of the noble metal contained in the substrate 11 is a value measured by ICP mass spectrometry (ICP-MS).

(表面層)
表面層12に含まれる貴金属は、金、銀、プラチナおよびパラジウムのうちの少なくとも1種であることが好ましい。表面層12に含まれる貴金属およびチタンの総量Maに対する、表面層12に含まれる貴金属の量Mbのat%(Mb/(Mb+Ma)×100)は、好ましくは0.007、より好ましくは0.098以上である。上記at%(Mb/(Mb+Ma)×100)が0.007以上であると、優れた可視光応答性を有する表面層12が得られる。上記at%(Mb/(Mb+Ma)×100)の上限値は特に限定されるものではないが、例えば1以下、0.9以下、0.8以下、0.7以下、0.6以下または0.5以下である。
(Surface layer)
The noble metal contained in the surface layer 12 is preferably at least one of gold, silver, platinum and palladium. The at% (Mb / (Mb + Ma) × 100) of the amount Mb of the noble metal contained in the surface layer 12 with respect to the total amount Ma of the noble metal and titanium contained in the surface layer 12 is preferably 0.007, more preferably 0.098. That's it. When the at% (Mb / (Mb + Ma) × 100) is 0.007 or more, the surface layer 12 having excellent visible light response can be obtained. The upper limit value of the above at% (Mb / (Mb + Ma) × 100) is not particularly limited, but is, for example, 1 or less, 0.9 or less, 0.8 or less, 0.7 or less, 0.6 or less, or 0 .5 or less.

上述の表面層12に含まれる貴金属の含有量は、XPS(X-ray Photoelectron Spectroscopy)により測定される値である。   The content of the noble metal contained in the surface layer 12 is a value measured by XPS (X-ray Photoelectron Spectroscopy).

表面層12に含まれる貴金属は、ナノ粒子12Aを構成していることが好ましい。表面層12にナノ粒子12Aが含まれていると、表面層12に対する可視光照射によりナノ粒子が表面プラズモン共鳴を発現し、ナノ粒子12A中で電子が励起する。励起した電子は、酸化チタン中に移動し、光触媒反応を進行させる。したがって、優れた可視光応答性を実現できる。   The noble metal contained in the surface layer 12 preferably constitutes the nanoparticles 12A. When the surface layer 12 includes the nanoparticles 12A, the nanoparticles exhibit surface plasmon resonance by the visible light irradiation on the surface layer 12, and electrons are excited in the nanoparticles 12A. The excited electrons move into the titanium oxide and cause the photocatalytic reaction to proceed. Therefore, excellent visible light responsiveness can be realized.

ナノ粒子12Aは、表面層12の全体に存在してもよいし、表面層12の表面に局在していてもよいし、表面層12の表面およびその近傍に局在していてもよい。ナノ粒子12Aは、表面層12の厚さ方向に濃度分布を有していてもよい。ナノ粒子12Aが濃度分布を有する場合、表面層12の表面またはその近傍におけるナノ粒子12Aの濃度が、表面層12の内部におけるナノ粒子12Aの濃度よりも高いことが好ましい。具体的には、ナノ粒子12Aの濃度が表面層12の表面またはその近傍において最も高く、表面層12の表面から厚さ方向に向かって減少していることが好ましい。表面層12の表面に光を照射した場合、表面層12の表面またはその近傍に含まれるナノ粒子12Aは、表面層12の内部に含まれるナノ粒子12Aに比べて表面プラズモン共鳴を発現しやすい。このため、上記のように表面層12の表面またはその近傍のナノ粒子12Aの濃度が高いと、更に優れた可視光応答性が得られる。ここで、表面層12の近傍とは、表面層12の表面から500nmの深さの範囲をいう。   The nanoparticles 12A may exist on the entire surface layer 12, may be localized on the surface of the surface layer 12, or may be localized on the surface of the surface layer 12 and in the vicinity thereof. The nanoparticles 12 </ b> A may have a concentration distribution in the thickness direction of the surface layer 12. When the nanoparticles 12A have a concentration distribution, the concentration of the nanoparticles 12A on or near the surface of the surface layer 12 is preferably higher than the concentration of the nanoparticles 12A inside the surface layer 12. Specifically, it is preferable that the concentration of the nanoparticles 12 </ b> A is highest at the surface of the surface layer 12 or in the vicinity thereof, and decreases from the surface of the surface layer 12 in the thickness direction. When the surface of the surface layer 12 is irradiated with light, the nanoparticles 12A included in or near the surface of the surface layer 12 are more likely to exhibit surface plasmon resonance than the nanoparticles 12A included in the surface layer 12. For this reason, when the density | concentration of the nanoparticle 12A of the surface of the surface layer 12 or its vicinity is high as mentioned above, the further outstanding visible light responsiveness will be acquired. Here, the vicinity of the surface layer 12 refers to a range of a depth of 500 nm from the surface of the surface layer 12.

表面層12に含まれる貴金属は、表面層12内に固溶していることが好ましい。このように貴金属が固溶していることで電子の励起が容易になり、優れた可視光応答性を実現できる。例えば、金、銀、プラチナ、パラジウムはそれぞれ、Au3+イオン、Ag+イオン、Pt2+イオン、Pd2+イオンとして表面層12内に固溶している。可視光応答性の向上の観点からすると、表面層12が、貴金属のナノ粒子12Aを含み、かつ固溶した貴金属を含んでいることが好ましい。 The noble metal contained in the surface layer 12 is preferably dissolved in the surface layer 12. In this way, the precious metal is in a solid solution, so that excitation of electrons becomes easy and excellent visible light response can be realized. For example, gold, silver, platinum, and palladium are dissolved in the surface layer 12 as Au 3+ ions, Ag + ions, Pt 2+ ions, and Pd 2+ ions, respectively. From the viewpoint of improving the visible light responsiveness, it is preferable that the surface layer 12 includes the noble metal nanoparticles 12 </ b> A and includes a solid solution noble metal.

ナノ粒子12Aの平均粒径は、好ましくは100nm以下、より好ましくは60nm以下、更により好ましくは50nm以下、特に好ましくは40nm以下である。ナノ粒子12Aの粒径が100nmを超えると、吸収スペクトル強度が減少し、表面プラズモン共鳴による可視光応答化が困難になる虞がある。   The average particle diameter of the nanoparticles 12A is preferably 100 nm or less, more preferably 60 nm or less, still more preferably 50 nm or less, and particularly preferably 40 nm or less. When the particle diameter of the nanoparticles 12A exceeds 100 nm, the absorption spectrum intensity decreases, and there is a possibility that it becomes difficult to make visible light response by surface plasmon resonance.

ナノ粒子12Aの平均粒径は、以下のようにして求められる。まず、イオンミリング等により光触媒機能性部材10の断面薄片を作製し、その断面STEM(Scanning Transmission Electron Microscope)像を取得する。次に、取得した断面STEM像から、無作為に20個のナノ粒子12Aを選び出し、STEM像からそれらのナノ粒子12Aの粒径(直径)を求める。また、表面に存在するナノ粒子12Aの粒径(直径)はSEM(Scanning Electron Microscope)像から求める。ここで、ナノ粒子12Aが球形でない場合には、ナノ粒子12Aの輪郭に接するように、あらゆる角度から引いた2本の平行線間の距離のうち最大のもの(いわゆる最大フェレ径)をナノ粒子12Aの粒径とする。続いて、求めた20個のナノ粒子12Aの粒径を単純に平均(算術平均)して、ナノ粒子12Aの平均粒径を求める。   The average particle diameter of the nanoparticles 12A is obtained as follows. First, a cross-sectional thin piece of the photocatalytic functional member 10 is prepared by ion milling or the like, and a cross-sectional STEM (Scanning Transmission Electron Microscope) image is acquired. Next, 20 nanoparticles 12A are randomly selected from the acquired cross-sectional STEM image, and the particle size (diameter) of these nanoparticles 12A is obtained from the STEM image. Further, the particle diameter (diameter) of the nanoparticles 12A existing on the surface is obtained from an SEM (Scanning Electron Microscope) image. Here, when the nanoparticles 12A are not spherical, the largest one (the so-called maximum ferret diameter) of the distances between two parallel lines drawn from all angles so as to contact the contour of the nanoparticles 12A is selected. The particle size is 12A. Subsequently, the average particle diameter of the 20 nanoparticles 12A is simply averaged (arithmetic average) to determine the average particle diameter of the nanoparticles 12A.

(中間層)
中間層13は、貴金属を主成分として含む貴金属リッチ層またはTiとの金属間化合物層である。
(Middle layer)
The intermediate layer 13 is a noble metal rich layer containing a noble metal as a main component or an intermetallic compound layer with Ti.

[光触媒機能性部材の製造方法]
次に、本発明の一実施形態に係る光触媒機能性部材の製造方法の一例について説明する。
[Method for producing photocatalytic functional member]
Next, an example of a method for producing a photocatalytic functional member according to an embodiment of the present invention will be described.

まず、チタンおよび貴金属を含む基材11を作製する。次に、この基材11を加熱炉に搬送し、酸素を含む雰囲気中において、基材11を熱酸化処理する。これにより、基材11に表面層12が形成される。この際、表面層12にナノ粒子12Aが生成されてもよいし、表面層12に貴金属が固溶されてもよいし、表面層12にナノ粒子12Aが生成されると共に、貴金属が固溶されてもよい。   First, the base material 11 containing titanium and a noble metal is produced. Next, this base material 11 is conveyed to a heating furnace, and the base material 11 is thermally oxidized in an atmosphere containing oxygen. Thereby, the surface layer 12 is formed on the base material 11. At this time, the nanoparticles 12A may be generated on the surface layer 12, the noble metal may be dissolved in the surface layer 12, the nanoparticles 12A may be generated on the surface layer 12, and the noble metal may be dissolved. May be.

熱酸化処理の温度は、例えば673K以上1073K以下である。ここで、熱酸化処理の温度は、基材11の表面温度である。熱酸化処理の時間は、例えば86.4ks以下である。熱酸化処理の時間の下限値は、0ksより大きければよく特に限定されるものではないが、例示するなら、0.1ks以上または0.3ks以上である。なお、熱酸化処理は、基材11を加熱炉に一定時間保持されることで行われてもよいし、基材11が加熱炉内を通過することで行われてもよい。   The temperature of the thermal oxidation treatment is, for example, 673K or more and 1073K or less. Here, the temperature of the thermal oxidation treatment is the surface temperature of the substrate 11. The time for the thermal oxidation treatment is, for example, 86.4 ks or less. The lower limit value of the time for the thermal oxidation treatment is not particularly limited as long as it is larger than 0 ks. However, for example, it is 0.1 ks or more or 0.3 ks or more. The thermal oxidation treatment may be performed by holding the base material 11 in the heating furnace for a certain period of time, or may be performed by passing the base material 11 through the heating furnace.

酸素を含む雰囲気は、大気雰囲気であってもよいし、酸素雰囲気(酸素濃度100%の雰囲気)であってもよいし、酸素および酸素以外のガスを含む混合ガス雰囲気であってもよい。酸素以外のガスは、アルゴン等の不活性ガスのうちの少なくとも1種を含むことが好ましい。酸素と酸素以外のガスとの混合比(酸素:酸素以外のガス)は、例えば0.1vol%:99.9vol%〜100vol%:0vol%、または1vol%:99vol%〜100vol%:0vol%である。   The atmosphere containing oxygen may be an air atmosphere, an oxygen atmosphere (an atmosphere having an oxygen concentration of 100%), or a mixed gas atmosphere containing oxygen and a gas other than oxygen. The gas other than oxygen preferably contains at least one of inert gases such as argon. The mixing ratio of oxygen and a gas other than oxygen (oxygen: gas other than oxygen) is, for example, 0.1 vol%: 99.9 vol% to 100 vol%: 0 vol%, or 1 vol%: 99 vol% to 100 vol%: 0 vol% is there.

[効果]
本発明の一実施形態に係る光触媒機能性部材10では、表面層12が、ルチル型の酸化チタン結晶を主相とするか、またはルチル型の酸化チタン結晶とブルッカイト型の酸化チタン結晶とを主相とし、貴金属を含むので、光触媒機能性部材の可視光応答性を向上できる。また、可視光照射下における抗菌性も発現することができる。
[effect]
In the photocatalytic functional member 10 according to one embodiment of the present invention, the surface layer 12 is mainly composed of a rutile type titanium oxide crystal or a rutile type titanium oxide crystal and a brookite type titanium oxide crystal. Since the phase contains a noble metal, the visible light responsiveness of the photocatalytic functional member can be improved. Moreover, the antibacterial property under visible light irradiation can also be expressed.

本発明の一実施形態に係る光触媒機能性部材の製造方法では、チタンおよび貴金属を含む基材11を、酸素を含む雰囲気中において熱酸化処理することで、ルチル型の酸化チタン結晶を主相とするか、またはルチル型の酸化チタン結晶とブルッカイト型の酸化チタン結晶とを主相とする表面層12を基材11に形成することができる。したがって、簡便かつ安価なプロセスで、可視光応答性を有する光触媒機能性部材を提供することができる。   In the method for producing a photocatalytic functional member according to an embodiment of the present invention, a rutile-type titanium oxide crystal is used as a main phase by thermally oxidizing the substrate 11 containing titanium and a noble metal in an atmosphere containing oxygen. Alternatively, the surface layer 12 having a rutile type titanium oxide crystal and a brookite type titanium oxide crystal as a main phase can be formed on the substrate 11. Therefore, a photocatalytic functional member having visible light responsiveness can be provided by a simple and inexpensive process.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.

本実施例において、Ti−Au合金基板におけるAuの含有量、およびTi−Ag合金基板におけるAgの含有量は、ICP−MSにより測定された値である。   In this example, the Au content in the Ti—Au alloy substrate and the Ag content in the Ti—Ag alloy substrate are values measured by ICP-MS.

本実施例において、実施例1〜6、比較例1〜11のサンプルを、表1、表2の備考欄に示すサンプル名にて表記することがある。   In this example, the samples of Examples 1 to 6 and Comparative Examples 1 to 11 may be indicated by the sample names shown in the remarks column of Tables 1 and 2.

[実施例1]
まず、原料として純Ti(CP Ti(Commercially Pure Titanium))とAuとを準備し、アーク溶解によりTi−5at%Au合金のインゴットを作製した。次に、このインゴットを熱間圧延し、正方形状または円形状にカット後、片面を鏡面研磨することにより、厚さ1mmのTi−Au合金基板を得た。
[Example 1]
First, pure Ti (CP Ti (Commercially Pure Titanium)) and Au were prepared as raw materials, and a Ti-5 at% Au alloy ingot was produced by arc melting. Next, this ingot was hot-rolled, cut into a square shape or a circular shape, and then one side was mirror-polished to obtain a Ti-Au alloy substrate having a thickness of 1 mm.

続いて、Ti−5at%Au合金基板をSiO2ボードに置き、マッフル炉にてTi−5at%Au合金基板の表面を大気酸化させることにより、TiO2膜(以下では、大気酸化により形成したTiO2膜を「大気酸化TiO2膜」という。)を形成した。この際、酸化処理の温度を873K、時間を1.8ksとした。ここで、酸化処理の温度は、Au合金基板の表面における温度である。以上により、目的とする光触媒機能性部材が得られた。 Subsequently, a Ti-5 at% Au alloy substrate is placed on a SiO 2 board, and the surface of the Ti-5 at% Au alloy substrate is air-oxidized in a muffle furnace, whereby a TiO 2 film (hereinafter referred to as TiO 2 formed by air oxidation). Two films were referred to as “atmospheric oxidized TiO 2 films”. At this time, the temperature of the oxidation treatment was set to 873 K and the time was set to 1.8 ks. Here, the temperature of the oxidation treatment is the temperature at the surface of the Au alloy substrate. As a result, the intended photocatalytic functional member was obtained.

[実施例2]
アーク溶解によりTi−10at%Au合金のインゴットを作製したこと以外は実施例1と同様にして光触媒機能性部材を得た。
[Example 2]
A photocatalytic functional member was obtained in the same manner as in Example 1 except that an ingot of a Ti-10 at% Au alloy was produced by arc melting.

[実施例3]
大気酸化処理の温度を673K、時間を86.4ksとしたこと以外は実施例1と同様にして光触媒機能性部材を得た。
[Example 3]
A photocatalytic functional member was obtained in the same manner as in Example 1 except that the temperature of the atmospheric oxidation treatment was 673 K and the time was 86.4 ks.

[実施例4]
大気酸化処理の温度を1073K、時間を0.3ksとしたこと以外は実施例1と同様にして光触媒機能性部材を得た。
[Example 4]
A photocatalytic functional member was obtained in the same manner as in Example 1 except that the temperature of the atmospheric oxidation treatment was 1073 K and the time was 0.3 ks.

[実施例5]
アーク溶解によりTi−4at%Au合金のインゴットを作製したこと、および大気酸化処理の温度を873K、時間を10.8ksとしたこと以外は実施例1と同様にして光触媒機能性部材を得た。
[Example 5]
A photocatalytic functional member was obtained in the same manner as in Example 1 except that an ingot of a Ti-4 at% Au alloy was produced by arc melting, and that the temperature of the atmospheric oxidation treatment was 873 K and the time was 10.8 ks.

[実施例6]
アーク溶解によりTi−3at%Ag合金のインゴットを作製したこと、および大気酸化処理の温度を873K、時間を10.8ksとしたこと以外は実施例1と同様にして光触媒機能性部材を得た。
[Example 6]
A photocatalytic functional member was obtained in the same manner as in Example 1 except that an ingot of a Ti-3 at% Ag alloy was produced by arc melting and that the temperature of the atmospheric oxidation treatment was set to 873 K and the time was set to 10.8 ks.

[比較例1]
原料として純Tiを準備し、アーク溶解により純Tiのインゴットを作製し、このインゴットを熱間圧延し、正方形状にカット後、片面を鏡面研磨することにより、厚さ1mmの純Ti基板を得た。また、大気酸化処理の温度を873K、時間を0.3ksとした。上記以外のことは実施例1と同様にして光触媒機能性部材を得た。
[Comparative Example 1]
Pure Ti is prepared as a raw material, a pure Ti ingot is prepared by arc melting, this ingot is hot-rolled, cut into a square shape, and then one side is mirror-polished to obtain a pure Ti substrate having a thickness of 1 mm. It was. The temperature of the atmospheric oxidation treatment was set to 873 K and the time was set to 0.3 ks. Except for the above, a photocatalytic functional member was obtained in the same manner as in Example 1.

[比較例2]
アーク溶解によりTi−1at%Au合金のインゴットを作製したこと、および大気酸化処理の温度を873K、時間を21.6ksとしたこと以外は実施例1と同様にして光触媒機能性部材を得た。
[Comparative Example 2]
A photocatalytic functional member was obtained in the same manner as in Example 1 except that an ingot of a Ti-1 at% Au alloy was produced by arc melting and that the temperature of the atmospheric oxidation treatment was set to 873 K and the time was set to 21.6 ks.

[比較例3]
大気酸化処理の温度を873K、時間を43.2ksとしたこと以外は比較例1と同様にして光触媒機能性部材を得た。
[Comparative Example 3]
A photocatalytic functional member was obtained in the same manner as in Comparative Example 1 except that the temperature of the atmospheric oxidation treatment was 873 K and the time was 43.2 ks.

[比較例4]
比較例1と同様にして、純Ti基板を作製し、これを大気酸化処理せずにそのままの状態でサンプルとした。
[Comparative Example 4]
A pure Ti substrate was produced in the same manner as in Comparative Example 1, and this was used as a sample without being subjected to atmospheric oxidation treatment.

[比較例5]
実施例5と同様にしてTi−4at%Au合金基板を作製し、これを大気酸化処理せずにそのままの状態でサンプルとした。
[Comparative Example 5]
A Ti-4 at% Au alloy substrate was produced in the same manner as in Example 5, and this was used as a sample without being subjected to atmospheric oxidation treatment.

[比較例6]
まず、比較例4と同様にして純Ti基板を作製した。次に、以下の第1ステップおよび第2ステップの処理を実施することで、目的とする光触媒機能性部材を得た。
[Comparative Example 6]
First, a pure Ti substrate was produced in the same manner as in Comparative Example 4. Next, the target photocatalytic functional member was obtained by performing the following first and second steps.

第1ステップでは、電気抵抗炉に置かれたSiO2製の反応管内に純Ti基板を保持し、1%のCOガスを導入しながら、温度1073Kの環境下で、3.6ks間の熱処理を純Ti基板に実施することにより、純Ti基板の表面にTi(C、O)膜を形成した。 In the first step, a pure Ti substrate is held in a reaction tube made of SiO 2 placed in an electric resistance furnace, and heat treatment for 3.6 ks is performed in an environment of a temperature of 1073 K while introducing 1% CO gas. By carrying out on a pure Ti substrate, a Ti (C, O) film was formed on the surface of the pure Ti substrate.

第2ステップでは、Ti(C、O)膜を形成した純Ti基板をSiO2ボードに置き、マッフル炉にて、Ti(C、O)膜を大気酸化させることにより、TiO2膜(以下では、二段階熱酸化により形成したTiO2膜を「二段階熱酸化TiO2膜」という。)を形成した。この際、酸化処理の温度を673K、時間を10.8ksとした。ここで、酸化処理の温度は、Ti合金基板表面における温度である。 In the second step, a pure Ti substrate on which a Ti (C, O) film is formed is placed on an SiO 2 board, and the Ti (C, O) film is oxidized in the air in a muffle furnace, whereby a TiO 2 film (hereinafter referred to as “TiO 2 film”) The TiO 2 film formed by two-stage thermal oxidation was referred to as “two-stage thermal oxidation TiO 2 film”). At this time, the temperature of the oxidation treatment was 673 K, and the time was 10.8 ks. Here, the temperature of the oxidation treatment is the temperature on the surface of the Ti alloy substrate.

[比較例7〜10]
アーク溶解によりTi−1at%Au合金、Ti−4at%Au合金、Ti−5at%Au合金、Ti−10at%Au合金のインゴットを作製したこと以外は比較例6と同様にして光触媒機能性部材を得た。
[Comparative Examples 7 to 10]
A photocatalytic functional member was prepared in the same manner as in Comparative Example 6 except that ingots of Ti-1 at% Au alloy, Ti-4 at% Au alloy, Ti-5 at% Au alloy, and Ti-10 at% Au alloy were prepared by arc melting. Obtained.

[比較例11]
アーク溶解によりTi−0.3at%Ag合金のインゴットを作製したこと、および大気酸化処理の温度を873K、時間を10.8ksとしたこと以外は実施例1と同様にして光触媒機能性部材を得た。
[Comparative Example 11]
A photocatalytic functional member was obtained in the same manner as in Example 1 except that an ingot of a Ti-0.3 at% Ag alloy was produced by arc melting and that the temperature of the atmospheric oxidation treatment was set to 873 K and the time was set to 10.8 ks. It was.

(TiO2膜の構造および化学状態の評価)
CuKα線を用いたα-2θ XRD(X-Ray Diffraction)により、大気酸化TiO2膜および二段階熱酸化TiO2膜の構造を解析した。
STEMにより大気酸化TiO2膜の断面、SEMにより大気酸化TiO2膜および二段階熱酸化TiO2膜の表面を観察した。そして、Auナノ粒子が観察された場合には、その平均粒径を求めた。
TEM(Transmission Electron Microscope)により、二段階熱酸化TiO2膜の断面を観察した。そして、断面TEM像にてAuナノ粒子が観察された場合には、その平均粒径を断面TEM像から求めた。
XPSにより、大気酸化TiO2膜および二段階熱酸化TiO2膜中に存在する貴金属の化学状態を分析した。
(Evaluation of structure and chemical state of TiO 2 film)
The structures of the atmospheric oxidized TiO 2 film and the two-stage thermally oxidized TiO 2 film were analyzed by α-2θ XRD (X-Ray Diffraction) using CuKα rays.
Atmospheric oxidation TiO 2 film cross-section by STEM, and observing the surface of the atmospheric oxidation TiO 2 film and the two-stage thermal oxide TiO 2 film by SEM. And when Au nanoparticle was observed, the average particle diameter was calculated | required.
The cross section of the two-stage thermally oxidized TiO 2 film was observed with a TEM (Transmission Electron Microscope). And when Au nanoparticle was observed by the cross-sectional TEM image, the average particle diameter was calculated | required from the cross-sectional TEM image.
The chemical state of the noble metal present in the atmospheric oxidized TiO 2 film and the two-stage thermally oxidized TiO 2 film was analyzed by XPS.

<大気酸化TiO2膜>
図2は、実施例1〜4、比較例1、2の大気酸化TiO2膜のα-2θ XRDパターンを示す。図3A、図3Bはそれぞれ、実施例4、3の大気酸化TiO2膜の断面STEM像を示す。図4は、実施例1〜4、比較例2、3の大気酸化TiO2膜のα-2θ XRDによる解析結果およびSTEMによる断面観察結果をまとめて示す。
<Atmospheric oxidation TiO 2 film>
FIG. 2 shows the α-2θ XRD patterns of the atmospheric oxidized TiO 2 films of Examples 1 to 4 and Comparative Examples 1 and 2 . 3A and 3B show cross-sectional STEM images of the atmospheric oxidized TiO 2 films of Examples 4 and 3, respectively. FIG. 4 collectively shows the analysis results of the atmospheric oxidized TiO 2 films of Examples 1 to 4 and Comparative Examples 2 and 3 by α-2θ XRD and the cross-sectional observation results by STEM.

図4から以下のことがわかる。
高温873K、1073Kにより形成された大気酸化TiO2膜(実施例1、2、4、比較例2、3)は、ルチル型の酸化チタン結晶を含むのに対して、低温673Kにより形成された大気酸化TiO2膜(実施例3)は、ルチル型の酸化チタン結晶とブルッカイト型の酸化チタン結晶との混合体を含んでいる。
基材としてTi−Au合金基板を用いて形成した大気酸化TiO2膜(実施例1〜4、比較例2)では、大気酸化TiO2膜にAuナノ粒子が導入され、かつ固溶Au3+イオンがドープされている。また、Auナノ粒子の平均粒径は、Ti−Au合金基板に含まれるAuの含有量の増加、または大気酸化処理の温度の上昇に応じて増加する傾向を示す。
大気酸化TiO2膜中におけるAuナノ粒子の分布は、大気酸化処理の温度により変化する。具体的には、高温873K、1073Kにより形成された大気酸化TiO2膜(実施例1、2、4、比較例2)では、Auナノ粒子が最表面または最表面近傍に存在しているのに対して、低温673Kにより形成された大気酸化TiO2膜(実施例3)では、Auナノ粒子が大気酸化TiO2膜のほぼ全体に存在する。
The following can be seen from FIG.
The atmospheric oxidation TiO 2 films (Examples 1, 2, 4 and Comparative Examples 2 and 3) formed by the high temperatures 873K and 1073K include rutile type titanium oxide crystals, whereas the atmospheric oxidation TiO 2 films formed by the low temperature 673K. The oxide TiO 2 film (Example 3) includes a mixture of a rutile type titanium oxide crystal and a brookite type titanium oxide crystal.
In an atmospheric oxidation TiO 2 film (Examples 1 to 4 and Comparative Example 2) formed using a Ti—Au alloy substrate as a base material, Au nanoparticles are introduced into the atmospheric oxidation TiO 2 film, and solute Au 3+ Ions are doped. Moreover, the average particle diameter of Au nanoparticles shows a tendency to increase as the content of Au contained in the Ti—Au alloy substrate increases or the temperature of atmospheric oxidation treatment increases.
The distribution of Au nanoparticles in the atmospheric oxidation TiO 2 film varies depending on the temperature of the atmospheric oxidation treatment. Specifically, in the atmospheric oxidation TiO 2 films (Examples 1, 2, 4, and Comparative Example 2) formed at high temperatures of 873K and 1073K, Au nanoparticles are present on the outermost surface or in the vicinity of the outermost surface. On the other hand, in the atmospheric oxidation TiO 2 film (Example 3) formed at a low temperature of 673 K, Au nanoparticles are present in almost the entire atmospheric oxidation TiO 2 film.

<二段階熱酸化TiO2膜>
図5は、比較例6〜8の二段階熱酸化TiO2膜のα-2θ XRDパターンを示す。図6Aは、比較例8の二段階熱酸化TiO2膜の断面TEM像を示す。図6Bは、比較例8の二段階熱酸化TiO2膜のAu4fXPSスペクトルを示す。図7は、比較例6、7、9、10の二段階熱酸化TiO2膜のα-2θ XRDによる解析結果およびTEMによる断面観察結果をまとめて示す。
<Two-stage thermal oxide TiO 2 film>
FIG. 5 shows α-2θ XRD patterns of the two-stage thermally oxidized TiO 2 films of Comparative Examples 6-8. 6A shows a cross-sectional TEM image of the two-stage thermally oxidized TiO 2 film of Comparative Example 8. FIG. FIG. 6B shows an Au4fXPS spectrum of the two-stage thermally oxidized TiO 2 film of Comparative Example 8. FIG. 7 collectively shows the analysis results by α-2θ XRD and the cross-sectional observation results by TEM of the two-stage thermally oxidized TiO 2 films of Comparative Examples 6, 7, 9, and 10.

図7から以下のことがわかる。
二段階熱酸化TiO2膜(比較例6、7、9、10)は、アナターゼ型の酸化チタン結晶とルチル型の酸化チタン結晶との混合体を含んでいる。
基材としてTi−Au合金基板を用いて形成した二段階熱酸化TiO2膜(比較例7、9、10)では、二段階熱酸化TiO2膜にAuナノ粒子が導入され、かつ固溶Au3+イオンおよび固溶Cがドープされている。また、Auナノ粒子の平均粒径は、Ti−Au合金基板に含まれるAuの含有量の増加に応じて増加する傾向を示すことがわかる。
The following can be seen from FIG.
The two-stage thermally oxidized TiO 2 film (Comparative Examples 6, 7, 9, and 10) contains a mixture of anatase type titanium oxide crystals and rutile type titanium oxide crystals.
In the two-stage thermally oxidized TiO 2 film (Comparative Examples 7, 9, and 10) formed using a Ti—Au alloy substrate as a base material, Au nanoparticles are introduced into the two-stage thermally oxidized TiO 2 film, and solid solution Au 3+ ions and solute C are doped. Moreover, it turns out that the average particle diameter of Au nanoparticle shows the tendency which increases with the increase in content of Au contained in a Ti-Au alloy substrate.

(可視光応答性評価(1))
可視光応答性の評価には、ステアリン酸分解試験を用いた。本試験はJIS R 1753:2013を基礎にした試験法であり、可視光照射下におけるステアリン酸塗布膜の分解に伴う水接触角の減少から光触媒活性を評価するものである。ステアリン酸の塗布にはステアリン酸−ヘプタン溶液を用いた。光源にはXeランプを使用し、フィルターを用いて紫外光成分を除去した可視光をサンプルに照射した。放射照度はサンプル表面において10mW・cm-2とした。
(Visible light response evaluation (1))
A stearic acid decomposition test was used for evaluation of the visible light response. This test is a test method based on JIS R 1753: 2013, and evaluates photocatalytic activity from the decrease in water contact angle accompanying the decomposition of the stearic acid coating film under visible light irradiation. A stearic acid-heptane solution was used for the application of stearic acid. A Xe lamp was used as the light source, and the sample was irradiated with visible light from which ultraviolet light components were removed using a filter. The irradiance was 10 mW · cm −2 on the sample surface.

<大気酸化TiO2膜>
図8は、実施例1、2、比較例2、3の大気酸化TiO2膜、および比較例4の純Ti基板の水接触角の変化を示す。図8から以下のことがわかる。基板としてAuを5at%、10at%含有するTi−Au合金基板を用いて形成した大気酸化TiO2膜(実施例1、2)では、可視光応答性の向上が認められる。一方、基材として純Ti基板を用いて形成した大気酸化TiO2膜(比較例3)、および基材としてAuを1at%含有するTi−Au合金基板を用いて形成した大気酸化TiO2膜(比較例2)では、可視光応答性の向上は認められない。
<Atmospheric oxidation TiO 2 film>
FIG. 8 shows changes in the water contact angle of the atmospheric oxidized TiO 2 films of Examples 1 and 2, Comparative Examples 2 and 3, and the pure Ti substrate of Comparative Example 4. The following can be seen from FIG. In the atmospheric oxidation TiO 2 film (Examples 1 and 2) formed using a Ti—Au alloy substrate containing 5 at% and 10 at% of Au as the substrate, an improvement in visible light response is recognized. On the other hand, an atmospheric oxidation TiO 2 film (Comparative Example 3) formed using a pure Ti substrate as a base material, and an atmospheric oxidation TiO 2 film formed using a Ti—Au alloy substrate containing 1 at% Au as a base material ( In Comparative Example 2), no improvement in visible light responsiveness is observed.

図9は、実施例1、3、4の大気酸化TiO2膜、および比較例4の純Ti基板の水接触角の変化を示す。なお、実施例1、3、4は、Ti−Au合金基板に含まれるAu含有量がいずれも5at%であるのに対して、大気酸化処理の条件(温度、時間)が異なっているサンプルである。図9から、大気酸化処理の条件によって可視光応答性が変化することがわかる。 FIG. 9 shows changes in the water contact angle of the atmospheric oxidized TiO 2 films of Examples 1, 3, and 4 and the pure Ti substrate of Comparative Example 4. Examples 1, 3, and 4 are samples in which the Au content in the Ti—Au alloy substrate is 5 at%, whereas the conditions (temperature, time) of atmospheric oxidation treatment are different. is there. FIG. 9 shows that the visible light responsiveness changes depending on the atmospheric oxidation treatment conditions.

図10は、実施例5、6、比較例11の大気酸化TiO2膜の水接触角の変化を示す。基板としてAgを3at%含有するTi−Ag合金基板を用いて形成した大気酸化TiO2膜(実施例6)では、可視光応答性の向上が認められる。一方、基材としてAgを0.3at%含有するTi−Ag合金基板を用いて形成した大気酸化TiO2膜(比較例11)では、可視光応答性の向上は認められない。 FIG. 10 shows changes in the water contact angle of the atmospheric oxidized TiO 2 films of Examples 5 and 6 and Comparative Example 11. In the atmospheric oxidation TiO 2 film (Example 6) formed using a Ti—Ag alloy substrate containing 3 at% of Ag as a substrate, an improvement in visible light responsiveness is recognized. On the other hand, in the atmospheric oxidation TiO 2 film (Comparative Example 11) formed using a Ti—Ag alloy substrate containing 0.3 at% of Ag as a base material, an improvement in visible light response is not recognized.

<二段階熱酸化TiO2膜>
図11は、比較例6、8の二段階熱酸化TiO2膜、比較例4の純Ti基板、および比較例5のTi−4at%Au合金基板の水接触角の変化を示す。図11から以下のことがわかる。基材としてAuを4at%含有するTi−Au合金基板を用いて形成した二段階熱酸化TiO2膜(比較例8)では、可視光応答性の向上が認められる。基材として純Ti基板を用いて形成した二段階熱酸化TiO2膜(比較例6)でも、可視光応答性の向上が認められる。しかしながら、Ti−4at%Au合金基板を用いて形成した二段階熱酸化TiO2膜(比較例8)の方が、純Ti基板を用いて形成した二段階熱酸化TiO2膜(比較例6)に比べて可視光応答性の向上が顕著に現れる。
<Two-stage thermal oxide TiO 2 film>
FIG. 11 shows changes in water contact angles of the two-stage thermally oxidized TiO 2 films of Comparative Examples 6 and 8, the pure Ti substrate of Comparative Example 4, and the Ti-4 at% Au alloy substrate of Comparative Example 5. The following can be seen from FIG. In the two-stage thermally oxidized TiO 2 film (Comparative Example 8) formed using a Ti—Au alloy substrate containing 4 at% Au as a base material, an improvement in visible light response is recognized. Even in a two-stage thermally oxidized TiO 2 film (Comparative Example 6) formed using a pure Ti substrate as a base material, an improvement in visible light response is recognized. However, the two-stage thermally oxidized TiO 2 film (Comparative Example 8) formed using a Ti-4 at% Au alloy substrate is more two-stage thermally oxidized TiO 2 film (Comparative Example 6) formed using a pure Ti substrate. Compared with the above, the improvement in the visible light response remarkably appears.

図12は、比較例6、7、9、10の二段階熱酸化TiO2膜、および比較例4の純Ti基板の水接触角の変化を示す。なお、比較例6、7、9、10は、Ti−Au合金基板に含まれるAu含有量を0〜10at%の範囲で変化させたサンプルである。図12から以下のことがわかる。基材としてAuを1〜10at%の範囲で含有するTi−Au合金基板を用いて形成した二段階熱酸化TiO2膜(比較例6、7、9、10)では、可視光応答性の向上が認められる。 FIG. 12 shows changes in the water contact angle of the two-stage thermally oxidized TiO 2 films of Comparative Examples 6, 7, 9, and 10 and the pure Ti substrate of Comparative Example 4. Comparative Examples 6, 7, 9, and 10 are samples in which the Au content contained in the Ti—Au alloy substrate was changed in the range of 0 to 10 at%. The following can be understood from FIG. In the two-stage thermally oxidized TiO 2 film (Comparative Examples 6, 7, 9, 10) formed using a Ti—Au alloy substrate containing Au in the range of 1 to 10 at% as a base material, the visible light response is improved. Is recognized.

(可視光応答性評価(2))
図13Aに示すように、上述の“可視光応答性評価(1)”で測定した水接触角を用いて、初期接触角が半減する時間t1/2を求めた。図13Aに例として示した曲線A、Bの場合、曲線Aの水接触角の半減時間t1/2は、曲線Bの水接触角の半減時間t1/2’よりも小さいため、曲線Aのサンプルの光触媒活性は、曲線Bのサンプルの光触媒活性よりも優れていると言える。
(Visible light response evaluation (2))
As shown in FIG. 13A, the time t 1/2 at which the initial contact angle is halved was determined using the water contact angle measured in the above “visible light response evaluation (1)”. In the case of the curves A and B shown as examples in FIG. 13A, the half time t 1/2 of the water contact angle of the curve A is smaller than the half time t 1/2 ′ of the water contact angle of the curve B. It can be said that the photocatalytic activity of this sample is superior to the photocatalytic activity of the curve B sample.

図13Bは、実施例1〜4、比較例2、3、6、7、9、10のTiO2膜、および比較例4の純Ti基板の初期接触角半減時間t1/2の測定結果を示す。図13Bから、Auを5、10at%含有するTi−Au合金基板を大気酸化することにより得られた大気酸化TiO2膜では、純Ti基板およびTi−Au合金基板を二段階熱酸化することにより得られた二段階熱酸化TiO2膜とほぼ同等の可視光応答型光触媒活性が得られることがわかる。 FIG. 13B shows the measurement results of the initial contact angle half-time t 1/2 of the TiO 2 films of Examples 1 to 4, Comparative Examples 2, 3, 6, 7, 9, and 10 and the pure Ti substrate of Comparative Example 4. Show. From FIG. 13B, the atmospheric oxidation TiO 2 film obtained by atmospheric oxidation of a Ti—Au alloy substrate containing 5, 10 at% Au is obtained by subjecting a pure Ti substrate and a Ti—Au alloy substrate to two-step thermal oxidation. It can be seen that a visible light responsive photocatalytic activity almost equivalent to that of the obtained two-stage thermally oxidized TiO 2 film can be obtained.

(可視光応答性評価(3))
大気酸化TiO2膜の表面近傍におけるAuのat%を次のようにして求めた。まず、XPSにより大気酸化TiO2膜の表面近傍におけるAuおよびTiの含有量を測定した。次に、測定したAuおよびTiの含有量を用いて、以下の式(1)から、大気酸化TiO2膜の表面近傍のAuのat%を求めた。
Auのat%=CAu/(CAu+CTi)×100 ・・・(1)
(但し、式(1)中、CAuは、大気酸化TiO2膜の表面近傍におけるAuの含有量であり、CTiは、大気酸化TiO2膜の表面近傍におけるTiの含有量である。)
(Visible light response evaluation (3))
The at% of Au in the vicinity of the surface of the atmospheric oxidized TiO 2 film was determined as follows. First, the contents of Au and Ti in the vicinity of the surface of the atmospheric oxidized TiO 2 film were measured by XPS. Next, at% of Au in the vicinity of the surface of the atmospheric oxidation TiO 2 film was obtained from the following formula (1) using the measured contents of Au and Ti.
At% of Au = C Au / (C Au + C Ti ) × 100 (1)
(In the formula (1), C Au is the Au content near the surface of the atmospheric oxidized TiO 2 film, and C Ti is the Ti content near the surface of the atmospheric oxidized TiO 2 film.)

二段階熱酸化TiO2膜の表面近傍におけるAuおよびCの総量のat%を次のようにして求めた。まず、XPSにより大気酸化TiO2膜の表面近傍におけるAu、CおよびTiの含有量を測定した。次に、測定したAu、CおよびTiの含有量を用いて、以下の式(2)から、二段階熱酸化TiO2膜の表面近傍のAuおよびCの総量のat%を求めた。
AuおよびCの総量のat%=(CAu+CC)/(CAu+CC+CTi)×100 ・・・(2)
(但し、式(2)中、CAuは、二段階熱酸化TiO2膜の表面近傍におけるAuの含有量であり、CCは、二段階熱酸化TiO2膜の表面近傍におけるCの含有量であり、CTiは、二段階熱酸化TiO2膜の表面近傍におけるTiの含有量である。)
At% of the total amount of Au and C in the vicinity of the surface of the two-step thermally oxidized TiO 2 film was determined as follows. First, the contents of Au, C and Ti in the vicinity of the surface of the atmospheric oxidized TiO 2 film were measured by XPS. Next, using the measured contents of Au, C and Ti, at% of the total amount of Au and C in the vicinity of the surface of the two-stage thermally oxidized TiO 2 film was obtained from the following formula (2).
At% of the total amount of Au and C = (C Au + C C ) / (C Au + C C + C Ti ) × 100 (2)
(In the formula (2), C Au is the content of Au in the vicinity of the surface of the two-stage thermally oxidized TiO 2 film, and C C is the content of C in the vicinity of the surface of the two-stage thermally oxidized TiO 2 film. C Ti is the Ti content in the vicinity of the surface of the two-stage thermally oxidized TiO 2 film.)

上述のようにして求めたAuのat%を横軸とし、上述の“可視光応答性評価(2)”で求めた初期接触角半減時間t1/2を縦軸とするグラフを作成した(図14A参照)。また、上述のようにして求めたAuおよびCの総量のat%を横軸とし、上述の“可視光応答性評価(2)”で求めた初期接触角半減時間t1/2を縦軸とするグラフを作成した(図14B参照)。 A graph was prepared in which the at% of Au determined as described above is the horizontal axis, and the initial contact angle half-time t 1/2 determined in the above-mentioned “Visible light response evaluation (2)” is the vertical axis ( 14A). Further, the horizontal axis represents at% of the total amount of Au and C determined as described above, and the vertical axis represents the initial contact angle half time t 1/2 determined in the above-mentioned “Visible light response evaluation (2)”. A graph was created (see FIG. 14B).

図14Aは、実施例1〜4、比較例3の大気酸化TiO2膜の表面近傍におけるAuのat%と初期接触角半減時間t1/2との関係を示す。図14Aから、大気酸化TiO2膜では、表面近傍におけるAuの含有量(導入量)が増加するに従って、初期接触角半減時間t1/2が短くなる、すなわち可視光応答性が向上することがわかる。表面近傍におけるAuのat%が0.098以上であると、初期接触角半減時間t1/2が著しく短くなる、すなわち可視光応答性が著しく向上することがわかる。 FIG. 14A shows the relationship between the at% of Au in the vicinity of the surface of the atmospheric oxidized TiO 2 film of Examples 1 to 4 and Comparative Example 3 and the initial contact angle half time t 1/2 . From FIG. 14A, in the atmospheric oxidation TiO 2 film, as the Au content (introduction amount) in the vicinity of the surface increases, the initial contact angle half-time t 1/2 decreases, that is, the visible light response improves. Recognize. It can be seen that when the at% of Au in the vicinity of the surface is 0.098 or more, the initial contact angle half-life time t 1/2 is remarkably shortened, that is, the visible light response is remarkably improved.

図14Bは、比較例6、7、9、10の二段階熱酸化TiO2膜の表面近傍におけるAuのat%と初期接触角半減時間t1/2との関係を示す。図14Bから、二段階熱酸化TiO2膜では、表面近傍におけるAuおよびCの含有量(導入量)が増加するに従って、初期接触角半減時間t1/2が短くなる、すなわち可視光応答性が向上することがわかる。 FIG. 14B shows the relationship between the at% of Au in the vicinity of the surface of the two-stage thermally oxidized TiO 2 film of Comparative Examples 6, 7, 9, and 10 and the initial contact angle half time t 1/2 . From FIG. 14B, in the two-stage thermally oxidized TiO 2 film, the initial contact angle half-time t 1/2 becomes shorter as the contents of Au and C (introduced amounts) in the vicinity of the surface increase, that is, the visible light response is improved. It turns out that it improves.

(可視光応答性評価(4))
上述の“TiO2膜の構造および化学状態の評価”で求めたAuナノ粒子の平均粒径を横軸とし、上述の“可視光応答性評価(2)”で求めた初期接触角半減時間t1/2を縦軸とするグラフを作成した(図15A、図15B参照)。
(Visible light response evaluation (4))
Using the average particle diameter of Au nanoparticles determined in the above-mentioned “Evaluation of the structure and chemical state of the TiO 2 film” as the horizontal axis, the initial contact angle half-time t determined in the above-mentioned “Visible light response evaluation (2)” Graphs having 1/2 as the vertical axis were created (see FIGS. 15A and 15B).

図15Aは、実施例3、4の大気酸化TiO2膜中におけるAuナノ粒子の平均粒径と初期接触角半減時間t1/2との関係を示す。図15Bは、実施例1、2、4の大気酸化TiO2膜表面、および比較例9、10の二段階熱酸化TiO2膜表面におけるAuナノ粒子の平均粒径と初期接触角半減時間t1/2との関係を示す。 FIG. 15A shows the relationship between the average particle diameter of Au nanoparticles in the atmospheric oxidized TiO 2 film of Examples 3 and 4 and the initial contact angle half time t 1/2 . FIG. 15B shows the average particle diameter and initial contact angle half-time t 1 of Au nanoparticles on the surfaces of the atmospheric oxidized TiO 2 films of Examples 1, 2 , and 4 and the two-stage thermally oxidized TiO 2 films of Comparative Examples 9 and 10. Indicates the relationship with / 2 .

図15A、図15Bから、以下のことがわかる。
大気酸化TiO2膜および二段階熱酸化TiO2膜に導入されたAuナノ粒子の平均粒径が小さくなるに従って、初期接触角半減時間t1/2が短くなる、すなわち可視光応答性が向上することがわかる。
また、大気酸化TiO2膜および二段階熱酸化TiO2膜に導入されたAuナノ粒子の粒径は、100nm以下である。なお、Auナノ粒子の粒径が100nmを超えると、吸収スペクトル強度が減少し、表面プラズモン共鳴による可視光応答化が困難になる虞がある。
図14A、図15Aの比較から以下のことがわかる。
大気酸化TiO2膜中におけるAuの含有量の方が、大気酸化TiO2膜に含まれるAuナノ粒子の平均粒径よりも、可視光応答性に対する影響が大きい。
15A and 15B show the following.
As the average particle diameter of Au nanoparticles introduced into the atmospheric oxidized TiO 2 film and the two-stage thermally oxidized TiO 2 film becomes smaller, the initial contact angle half-time t 1/2 becomes shorter, that is, the visible light responsiveness improves. I understand that.
The particle diameter of the Au nanoparticles introduced into the atmospheric oxidized TiO 2 film and the two-stage thermally oxidized TiO 2 film is 100 nm or less. When the particle size of the Au nanoparticles exceeds 100 nm, the absorption spectrum intensity decreases, and there is a possibility that it becomes difficult to make visible light response by surface plasmon resonance.
The following can be understood from the comparison between FIGS. 14A and 15A.
Towards the content of Au in the atmospheric oxidation TiO 2 film is, than the average particle diameter of the Au nanoparticles contained in the atmospheric oxidation TiO 2 film, a large influence on visible light responsive properties.

(抗菌性評価)
実施例1の大気酸化TiO2膜、比較例6、9の二段階熱酸化TiO2膜、比較例4の純Ti基板、およびSiO2基板の抗菌性を次のようにして評価した。すなわち、ガラス密着法(ISO 27447:2009)に準拠して可視光照射前後の生菌数(照射前:N0、照射後:N)を測定し、生菌率(N/N0)を算出した。以下に、試験菌液および可視光照射の条件を示す。
試験菌液
細菌:Escherichia coli(E. coli) DH5α
菌濃度:108CFU mL-1 in 1/500 NB培地
可視光
光源:Xeランプ(UVフィルター使用)
放射照度:1mW・cm-2
(Antimicrobial evaluation)
The antibacterial properties of the atmospheric oxidized TiO 2 film of Example 1, the two-stage thermally oxidized TiO 2 film of Comparative Examples 6 and 9, the pure Ti substrate of Comparative Example 4, and the SiO 2 substrate were evaluated as follows. That is, based on the glass adhesion method (ISO 27447: 2009), the number of viable bacteria before and after irradiation with visible light (before irradiation: N 0 , after irradiation: N) is measured, and the viable cell rate (N / N 0 ) is calculated. did. The test bacterial solution and visible light irradiation conditions are shown below.
Test Bacteria Bacteria: Escherichia coli (E. coli) DH5α
Bacterial concentration: 10 8 CFU mL −1 in 1/500 NB medium Visible light Light source: Xe lamp (using UV filter)
Irradiance: 1mW · cm -2

図16は、実施例1の大気酸化TiO2膜、比較例6、9の二段階熱酸化TiO2膜、比較例4の純Ti基板、およびSiO2基板の抗菌性試験の評価結果を示す。図16から、Auを5at%含有するTi−Au合金基板を用いて形成した大気酸化TiO2膜、およびAuを5at%含有するTi−Au合金基板を用いて形成した二段階熱酸化TiO2膜では、抗菌性が発現することがわかる。一方、SiO2基板および鏡面研磨の純Ti基板では、抗菌性が発現しないことがわかる。また、純Ti基板を用いて形成した二段階熱酸化TiO2膜では、抗菌性が発現するものの、その効果は実施例1や比較例9よりも低いことがわかる。 FIG. 16 shows the evaluation results of the antibacterial test of the atmospheric oxidized TiO 2 film of Example 1, the two-stage thermally oxidized TiO 2 film of Comparative Examples 6 and 9, the pure Ti substrate of Comparative Example 4, and the SiO 2 substrate. FIG. 16 shows that an atmospheric oxidation TiO 2 film formed using a Ti—Au alloy substrate containing 5 at% Au and a two-stage thermally oxidized TiO 2 film formed using a Ti—Au alloy substrate containing 5 at% Au. Then, it turns out that antibacterial property develops. On the other hand, it can be seen that antibacterial properties are not exhibited in the SiO 2 substrate and the mirror-polished pure Ti substrate. In addition, although the two-stage thermally oxidized TiO 2 film formed using a pure Ti substrate exhibits antibacterial properties, it can be seen that the effect is lower than that of Example 1 and Comparative Example 9.

表1は、実施例1〜6、比較例1〜5、11の光触媒機能性部材の構成および大気酸化処理の条件を示す。
Table 1 shows the configurations of the photocatalytic functional members of Examples 1 to 6 and Comparative Examples 1 to 5 and 11, and the conditions for the atmospheric oxidation treatment.

表2は、比較例6〜10の光触媒機能性部材の構成および二段階酸化処理の条件を示す。
Table 2 shows the structures of the photocatalytic functional members of Comparative Examples 6 to 10 and the conditions for the two-stage oxidation treatment.

以上の評価結果を総合すると、大気酸化処理では、二段階熱酸化処理とほぼ同等の可視光応答型光触媒活性を有するTiO2膜を得ることができる。なお、大気酸化処理は、二段階熱酸化処理に比して簡便かつ安価であるという利点を有している。 Summarizing the above evaluation results, in the atmospheric oxidation treatment, it is possible to obtain a TiO 2 film having visible light responsive photocatalytic activity substantially equivalent to the two-stage thermal oxidation treatment. Note that the atmospheric oxidation treatment has an advantage that it is simpler and less expensive than the two-stage thermal oxidation treatment.

以上、本発明の実施形態および実施例について具体的に説明したが、本発明は、上述の実施形態および実施例に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。   Although the embodiments and examples of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments and examples, and various modifications based on the technical idea of the present invention are possible. It is.

例えば、上述の実施形態および実施例において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。   For example, the configurations, methods, processes, shapes, materials, numerical values, and the like given in the above-described embodiments and examples are merely examples, and different configurations, methods, processes, shapes, materials, numerical values, and the like are necessary as necessary. May be used.

また、上述の実施形態および実施例の構成、方法、工程、形状、材料および数値等は、本発明の主旨を逸脱しない限り、互いに組み合わせることが可能である。   The configurations, methods, processes, shapes, materials, numerical values, and the like of the above-described embodiments and examples can be combined with each other without departing from the gist of the present invention.

10 光触媒機能性部材
11 基材
12 表面層
12A ナノ粒子
13 中間層
DESCRIPTION OF SYMBOLS 10 Photocatalyst functional member 11 Base material 12 Surface layer 12A Nanoparticle 13 Intermediate | middle layer

Claims (12)

基材と、
前記基材表面に形成されており、ルチル型の酸化チタン結晶を主相とするか、またはルチル型の酸化チタン結晶とブルッカイト型の酸化チタン結晶とを主相とし、貴金属を含む表面層と
を備える光触媒機能性部材。
A substrate;
A surface layer formed on the surface of the base material and having a rutile-type titanium oxide crystal as a main phase or a rutile-type titanium oxide crystal and a brookite-type titanium oxide crystal as a main phase and containing a noble metal; Photocatalyst functional member provided.
前記貴金属は、金、銀、プラチナおよびパラジウムのうちの少なくとも1種である請求項1に記載の光触媒機能性部材。   The photocatalytic functional member according to claim 1, wherein the noble metal is at least one of gold, silver, platinum, and palladium. 前記表面層に含まれる貴金属は、ナノ粒子を構成している請求項1又は2に記載の光触媒機能性部材。   The photocatalytic functional member according to claim 1 or 2, wherein the noble metal contained in the surface layer constitutes a nanoparticle. 前記表面層における前記ナノ粒子の濃度が、前記表面層の表面またはその近傍において最も高い請求項3に記載の光触媒機能性部材。   The photocatalytic functional member according to claim 3, wherein the concentration of the nanoparticles in the surface layer is the highest at or near the surface of the surface layer. 前記ナノ粒子の平均粒径は、100nm以下である請求項3又は4に記載の光触媒機能性部材。   The photocatalytic functional member according to claim 3 or 4, wherein the average particle diameter of the nanoparticles is 100 nm or less. 前記表面層に含まれるチタンおよび貴金属の総量に対する、前記表面層に含まれる貴金属の量のat%が、0.007以上である請求項1〜5のいずれか1項に記載の光触媒機能性部材。   The photocatalytic functional member according to any one of claims 1 to 5, wherein at% of the amount of the noble metal contained in the surface layer is 0.007 or more with respect to the total amount of titanium and the noble metal contained in the surface layer. . 前記貴金属は、前記表面層に固溶している請求項1〜6のいずれか1項に記載の光触媒機能性部材。   The photocatalytic functional member according to any one of claims 1 to 6, wherein the noble metal is dissolved in the surface layer. 前記基材は、チタンおよび貴金属を含む請求項1〜7のいずれか1項に記載の光触媒機能性部材。   The photocatalytic functional member according to claim 1, wherein the base material contains titanium and a noble metal. 酸素を含む雰囲気中において、チタンおよび貴金属を含む基材を熱酸化処理する工程を含む光触媒機能性部材の製造方法。   A method for producing a photocatalytic functional member, comprising a step of thermally oxidizing a base material containing titanium and a noble metal in an atmosphere containing oxygen. 前記熱酸化処理の温度は、673K以上1073K以下である請求項9に記載の光触媒機能性部材の製造方法。   The method for producing a photocatalytic functional member according to claim 9, wherein a temperature of the thermal oxidation treatment is 673 K or more and 1073 K or less. 前記酸素を含む雰囲気は、大気雰囲気である請求項9又は10に記載の光触媒機能性部材の製造方法。   The method for producing a photocatalytic functional member according to claim 9 or 10, wherein the atmosphere containing oxygen is an air atmosphere. 上記基材に含まれる貴金属の含有量は、2at%以上である請求項9〜11のいずれか1項に記載の光触媒機能性部材の製造方法。   The method for producing a photocatalytic functional member according to any one of claims 9 to 11, wherein the content of the noble metal contained in the substrate is 2 at% or more.
JP2017036719A 2017-02-28 2017-02-28 Photocatalytic functional member and its manufacturing method Active JP6814473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017036719A JP6814473B2 (en) 2017-02-28 2017-02-28 Photocatalytic functional member and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017036719A JP6814473B2 (en) 2017-02-28 2017-02-28 Photocatalytic functional member and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018140358A true JP2018140358A (en) 2018-09-13
JP6814473B2 JP6814473B2 (en) 2021-01-20

Family

ID=63527457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017036719A Active JP6814473B2 (en) 2017-02-28 2017-02-28 Photocatalytic functional member and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6814473B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228022A (en) * 1995-12-22 1997-09-02 Toto Ltd Hydrophilic member and hydrophilicity maintaining method
JPH10121266A (en) * 1996-08-22 1998-05-12 Takenaka Komuten Co Ltd Metallic material having photocatalytic activity and its production
JP2000254449A (en) * 1999-03-11 2000-09-19 Sharp Corp Base material for decomposing harmful or odor gas and device therefor
JP2001219073A (en) * 2000-02-10 2001-08-14 Sharp Corp Photooxidation catalyst
JP2011120998A (en) * 2009-12-10 2011-06-23 Tohoku Univ Visible light responsive rutile type titanium dioxide photocatalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228022A (en) * 1995-12-22 1997-09-02 Toto Ltd Hydrophilic member and hydrophilicity maintaining method
JPH10121266A (en) * 1996-08-22 1998-05-12 Takenaka Komuten Co Ltd Metallic material having photocatalytic activity and its production
JP2000254449A (en) * 1999-03-11 2000-09-19 Sharp Corp Base material for decomposing harmful or odor gas and device therefor
JP2001219073A (en) * 2000-02-10 2001-08-14 Sharp Corp Photooxidation catalyst
JP2011120998A (en) * 2009-12-10 2011-06-23 Tohoku Univ Visible light responsive rutile type titanium dioxide photocatalyst

Also Published As

Publication number Publication date
JP6814473B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
Zanella et al. New preparation method of gold nanoparticles on SiO2
Akhavan Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation
Es‐Souni et al. Brookite Formation in TiO2 Ag Nanocomposites and Visible‐Light‐Induced Templated Growth of Ag Nanostructures in TiO2
Nah et al. Doped TiO2 and TiO2 nanotubes: synthesis and applications
Zhao et al. The effects of sintering on the photocatalytic activity of N-doped TiO2 nanoparticles
US11833488B2 (en) Highly active thermally stable nanoporous gold catalyst
Chen et al. Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles
Garlisi et al. E-beam evaporated TiO2 and Cu-TiO2 on glass: Performance in the discoloration of methylene blue and 2-propanol oxidation
Sayegh et al. Tunable TiO 2–BN–Pd nanofibers by combining electrospinning and atomic layer deposition to enhance photodegradation of acetaminophen
Nguyen et al. Nanoporous AuPt and AuPtAg alloy co-catalysts formed by dewetting–dealloying on an ordered TiO 2 nanotube surface lead to significantly enhanced photocatalytic H 2 generation
KR101339114B1 (en) Copper(Ⅱ) oxide nanonods coated with palladium, a preparation method thereof, and gas sensor using the same
US10809220B1 (en) Method for chemical sensing and photocatalysis with silver nanoparticles/mesoporous silicon nanocomposite
US20150111724A1 (en) Visible light responsive photocatalyst by hydrophilic modification using polymer material and a method for preparing the same
TW201014793A (en) Cerium oxide and method for producing the same
JP2008264611A (en) Photocatalyst structure
Datcu et al. One-step preparation of nitrogen doped titanium oxide/Au/reduced graphene oxide composite thin films for photocatalytic applications
US10000841B2 (en) Hydrophilic-hydrophobic transformable composite film and the method of fabricating the same
Khan et al. Ag-enriched TiO2 nanocoating apposite for self-sanitizing/self-sterilizing/self-disinfecting of glass surfaces
Goddeti et al. Chemical Doping of TiO 2 with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation
Sauthier et al. Laser synthesis and characterization of nitrogen-doped TiO2 vertically aligned columnar array photocatalysts
Samadi et al. Synthesis, characterization, and application of Nd, Zr–TiO 2/SiO 2 nanocomposite thin films as visible light active photocatalyst
Ranjbar et al. A new process for preparation of Zr doped TiO2 nanopowders using APCVS method
Ueda et al. TiO2 layers on Ti-Au alloy formed by two-step thermal oxidation and their photocatalytic activity in visible-light
JP6814473B2 (en) Photocatalytic functional member and its manufacturing method
Sheel et al. Biocidal silver and silver/titania composite films grown by chemical vapour deposition

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201214

R150 Certificate of patent or registration of utility model

Ref document number: 6814473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250