JP2018139975A - Walking training device, walking diagnostic device, body weight relieving device, walking training method, and walking diagnostic method - Google Patents

Walking training device, walking diagnostic device, body weight relieving device, walking training method, and walking diagnostic method Download PDF

Info

Publication number
JP2018139975A
JP2018139975A JP2017036437A JP2017036437A JP2018139975A JP 2018139975 A JP2018139975 A JP 2018139975A JP 2017036437 A JP2017036437 A JP 2017036437A JP 2017036437 A JP2017036437 A JP 2017036437A JP 2018139975 A JP2018139975 A JP 2018139975A
Authority
JP
Japan
Prior art keywords
weight
subject
walking
saddle
motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017036437A
Other languages
Japanese (ja)
Other versions
JP6858400B2 (en
Inventor
平井 宏明
Hiroaki Hirai
宏明 平井
ハーマノ イゴ クレブス
Igo Krebs Hermano
ハーマノ イゴ クレブス
英知 渡邉
Hidetomo Watanabe
英知 渡邉
祐磨 長川
Yuma NAGAKAWA
祐磨 長川
史哲 吉川
Fumiaki Yoshikawa
史哲 吉川
晃 黒岩
Akira Kuroiwa
晃 黒岩
夏美 片岡
Natsumi Kataoka
夏美 片岡
友里 佐伯
Yuri Saeki
友里 佐伯
雄大 二ノ丸
Yuta Ninomaru
雄大 二ノ丸
充典 植村
Mitsunori Uemura
充典 植村
文夫 宮崎
Fumio Miyazaki
文夫 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2017036437A priority Critical patent/JP6858400B2/en
Publication of JP2018139975A publication Critical patent/JP2018139975A/en
Application granted granted Critical
Publication of JP6858400B2 publication Critical patent/JP6858400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrotherapy Devices (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Rehabilitation Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable walking training that promotes gain of function by actively drawing patient's exercise recovery capability in robot therapy of stroke patients, etc.SOLUTION: A walking training device 1 includes a saddle 13 for supporting a subject in a crotch part. The walking training device also includes a body weight relieving part 10 employing a seesaw type mechanism for relieving a portion of a body weight of the subject, a treadmill 20 positioned below the saddle 13 and having a floor on which the subject walks, and an electrical stimulation part 50 for performing electrical stimulation to an ankle joint plantar flexion muscle of the subject at a start timing of a swing phase.SELECTED DRAWING: Figure 4

Description

本発明は、歩行能力の回復を支援する歩行訓練装置、歩行診断装置、体重免荷装置、歩行訓練方法、及び歩行診断方法に関する。   The present invention relates to a gait training device, a gait diagnosis device, a weight-bearing device, a gait training method, and a gait diagnosis method that support recovery of walking ability.

近年、脳卒中患者や脊髄損傷患者の歩行能力の回復を目的として、下肢のロボット療法による種々の歩行訓練装置が提案されている。そのうち特に、体重の一部を免荷しながらトレッドミル上で歩行訓練を行うBody-weight-supported treadmilltraining (BWSTT)に注目が集まっている(特許文献1、非特許文献1)。   In recent years, various gait training devices using robot therapy for the lower limbs have been proposed for the purpose of restoring the walking ability of stroke patients and spinal cord injury patients. Among them, in particular, Body-weight-supported treadmilltraining (BWSTT), in which walking training is performed on a treadmill while releasing a part of the body weight, has attracted attention (Patent Document 1, Non-Patent Document 1).

ところで、今日、人口の高齢化が急激に進む中、人々の健康増進を支援する科学や技術に多くの期待が寄せられている。適切な支援には正しい理論とそれを裏付ける科学的根拠が必要である。力学的に極めて冗長で多自由度の身体運動システムの制御において、中枢神経系がどのように自由度を操作し、筋活動パターンを決定しているのか、また、その制御規範はどのようなものかは運動制御領域における古典的な未解決問題である。本発明者らは、筋対群の共活性に基づく身体協調性に注目することでヒト随意運動の解析を行ってきた。より具体的には、本発明者らは、これまで、運動解析装置、運動解析方法及び運動解析プログラムとして、筋電位情報から身体運動の協調性を抽出し、身体適所、例えば上肢先端の運動制御に関わる特徴量(筋シナジー、平衡点、インピーダンス(剛性楕円))を推定する運動解析技術を発明し、ヒト随意運動の運動生成機序の解明やロボットによるヒトの運動支援に貢献してきた(特許文献2、非特許文献2)。これらの技術は、正しい介入と誤った介入とを適切に見極めながら効果的な介入を探索し、有意な手法を確立するのに極めて有用なツールである。   By the way, with the rapid aging of the population today, there are many expectations for science and technology that support people's health promotion. Proper support requires the right theory and the scientific evidence to support it. In the control of a body movement system that is extremely redundant and multi-degrees of dynamics, how the central nervous system manipulates the degrees of freedom and determines the muscle activity pattern, and what are the control rules? This is a classic open problem in the motion control domain. The present inventors have analyzed human voluntary movement by paying attention to physical coordination based on the co-activity of muscle pairs. More specifically, the present inventors have so far extracted, as a motion analysis device, a motion analysis method, and a motion analysis program, the coordination of body motion from the myoelectric potential information, and the motion control of the body extremity, for example, the tip of the upper limb. Has invented a motion analysis technology that estimates the features (muscle synergy, equilibrium point, impedance (rigid ellipse)) related to humans, and has contributed to elucidation of the motion generation mechanism of human voluntary motion and human motion support by robots (patents) Document 2, Non-Patent Document 2). These technologies are extremely useful tools for exploring effective interventions while properly identifying correct and incorrect interventions and establishing meaningful methods.

US8684890 B2, Apr.16, 2010.(出願日)US 8684890 B2, Apr. 16, 2010. (Application date) 特開2015−112453公報JP2015-112453A

T. Susko, K. Swaminathan, and H. I. Krebs, “MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Strokeand Cerebral Palsy,” IEEE Transactions on NeuralSystems and Rehabilitation Engineering, vol. 24, no.10, pp. 1089-1099, 2016.T. Susko, K. Swaminathan, and HI Krebs, “MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Strokeand Cerebral Palsy,” IEEE Transactions on NeuralSystems and Rehabilitation Engineering, vol. 24, no.10, pp. 1089-1099, 2016. H. Hirai, F. Miyazaki, H.Naritomi, K. Koba, T. Oku, K. Uno, M. Uemura, T. Nishi, M. Kageyama and H. I.Krebs, “ On the Origin of Muscle Synergies: InvariantBalance in the Co-activation of Agonist and Antagonist Muscle Pairs,” Frontiers in Bioengineering and Biotechnology, vol.3, no.192,pp. 1-16, 2015.H. Hirai, F. Miyazaki, H. Naritomi, K. Koba, T. Oku, K. Uno, M. Uemura, T. Nishi, M. Kageyama and HIKrebs, “On the Origin of Muscle Synergies: InvariantBalance in the Co-activation of Agonist and Antagonist Muscle Pairs, ”Frontiers in Bioengineering and Biotechnology, vol.3, no.192, pp. 1-16, 2015.

しかしながら、現在の下肢のロボット療法は、良好な訓練効果(バランス機能や運動機能の回復、歩行速度、耐久性、対称性の改善等)を示唆する報告があるものの、エンドエフェクタ型および外骨格型のいずれの形式においても、通常のマニュアル治療以上の治療効果は明らかにされておらず、効果的な介入法を探索し、科学的根拠を蓄積することが求められている。   However, the current lower-limb robot therapy has been reported to suggest good training effects (restoration of balance function and motor function, walking speed, durability, improvement of symmetry, etc.), but end effector type and exoskeleton type In any of these forms, the therapeutic effect over the usual manual treatment has not been clarified, and it is required to search for effective intervention methods and accumulate scientific evidence.

本発明は、上記に鑑みてなされたもので、前記した新しい運動解析技術を、脳卒中患者等のロボット療法(現在、黎明期である下肢のロボット療法)へ展開し、障害後の運動学習機序の解明へ向けた歩行運動の診断装置、及び患者の運動回復能力を積極的に引き出して機能獲得を促進する歩行訓練装置、及びそれに用いる体重免荷装置を提供することを目的とする。   The present invention has been made in view of the above, and has developed the above-described new motion analysis technology to robot therapy for stroke patients and the like (currently in the early stages of robot therapy for the lower limbs). It is an object of the present invention to provide a walking motion diagnosis device for elucidating the above, a walking training device that actively extracts the motion recovery ability of a patient and promotes the acquisition of the function, and a weight-bearing device used therefor.

本発明は、介入として床面とエンドエフェクタ(足部)の相互作用を操作する体重免荷とエンドエフェクタに隣接した足関節へ作用する機能的電気刺激とを組み合わせた歩行訓練装置を提案する。すなわち、本発明に係る歩行訓練装置は、対象者を股下部で支持するサドルを備え、前記対象者の体重の一部を免荷する体重免荷部と、前記サドルの下方に位置し、対象者が歩行する床面を有する床部と、対象者の足関節底屈筋への電気刺激を行う電気刺激部とを備えたことを特徴とするものである。   The present invention proposes a gait training device that combines weight relief for manipulating the interaction between the floor and the end effector (foot) as an intervention and functional electrical stimulation acting on the ankle joint adjacent to the end effector. That is, the walking training apparatus according to the present invention includes a saddle that supports the subject at the crotch, and is located below the saddle, a weight-loading portion that unloads part of the subject's weight, and the subject A floor portion having a floor surface on which the person walks and an electrical stimulation unit that performs electrical stimulation to the ankle plantar flexor muscle of the subject are provided.

また、本発明に係る歩行訓練方法は、床部の床面上で体重免荷部のサドルによって対象者を股下部で支持して体重の一部を免荷した状態で、前記床部の床面を前記サドルで指示された対象者の前方から後方方向に向けて移動させつつ、前記対象者の足関節底屈筋へ電気刺激を行うことを特徴とするものである。   Further, the walking training method according to the present invention is the floor of the floor portion in a state in which the subject is supported on the crotch by the saddle of the weight-loading portion on the floor surface of the floor portion and a part of the weight is unloaded. Electrical stimulation is performed on the ankle plantar flexor muscle of the subject while moving the surface from the front to the rear of the subject indicated by the saddle.

ヒトの歩行では股、膝、足関節の正仕事は、股関節と足関節とで80%以上を占めるとされている((D. J. Farris and G. S. Sawicki,“Themechanics and energetics of human walking and running: a joint levelperspective,” Journal of the RoyalSociety Interface, vol. 9, no. 66, pp. 110-118, 2012))。特に、股関節伸展と足関節のPush-off (蹴り出し)時に大きな仕事を行うことが知られている。本発明によれば、第1の介入となる体重免荷部と歩行する床面を有する床部との組み合わせによって、バランス制御と股関節伸展の機能が図れ、さらに第2の介入となる足関節底屈筋への電気刺激によって、足関節によるPush-offの機能の支援及び訓練が図れる。なお、床面は水平面に限らず、傾斜面に設定してもよく、これによって傾斜歩行の訓練にも対応可能となる。   In human gait, the hip, knee and ankle work account for more than 80% of the hip and ankle joints (DJ Farris and GS Sawicki, “Themechanics and energetics of human walking and running: a joint levelperspective, ”Journal of the Royal Society Interface, vol. 9, no. 66, pp. 110-118, 2012)). In particular, it is known to perform large tasks during hip extension and ankle push-off. According to the present invention, the combination of the weight-bearing portion serving as the first intervention and the floor portion having the floor surface for walking allows balance control and the function of hip joint extension, and the ankle joint sole serving as the second intervention. The electrical stimulation of the flexor muscles can support and train the push-off function by the ankle joint. Note that the floor surface is not limited to a horizontal plane, and may be set to an inclined surface, which makes it possible to support training for inclined walking.

また、前記電気刺激部は、対象者の足関節底屈筋の表面に貼着される電極と、前記電極に刺激信号を印加する刺激信号生成部と、前記刺激信号の印加を指示する指示部とを備えたものである。この構成によれば、指示部からの指示に応じて、対象者の足関節底屈筋の表面に刺激信号が印加されるので、足関節によるPush-offの機能が実行される。なお、指示部からの指示は、対象者自身が行ってもよいし、訓練対象となる脚が遊脚期の開始タイミングであることを検出し、この検出結果に従って自動的に指示する態様でもよい。   The electrical stimulation unit includes an electrode attached to the surface of the subject's ankle plantar flexor muscle, a stimulation signal generation unit that applies a stimulation signal to the electrode, and an instruction unit that instructs the application of the stimulation signal. It is equipped with. According to this configuration, since the stimulation signal is applied to the surface of the subject's ankle plantar flexor muscle in accordance with an instruction from the instruction unit, the push-off function by the ankle joint is executed. Note that the instruction from the instruction unit may be performed by the subject himself or by detecting that the leg to be trained is the start timing of the swing phase and automatically instructing according to the detection result. .

また、本発明は、対象者の下肢における各筋の筋電位及び前記対象者の下肢の各関節の動きを検出する検出部と、前記検出部による検出結果から下肢先端の運動制御に関わる特徴量を算出する演算部とを備えたものである。この構成によれば、対象者の下肢の各筋の筋電位及び前記対象者の下肢の各関節の動きを検出することで、歩行診断のための特徴量が得られ、効率的な歩行訓練に供される。   In addition, the present invention provides a detection unit that detects a myoelectric potential of each muscle in the lower limb of the subject and a movement of each joint of the lower limb of the subject, and a feature amount related to motion control of the lower limb tip from the detection result by the detection unit And an arithmetic unit for calculating According to this configuration, by detecting the myoelectric potential of each muscle of the subject's lower limbs and the movement of each joint of the subject's lower limbs, a feature amount for gait diagnosis can be obtained for efficient walking training. Provided.

また、前記検出部は、前記筋活動として筋電位を測定する筋電位検出部と、前記下肢運動として関節の動きを検出する運動検出部とを備え、前記演算部は、前記筋電位検出部の検出結果及び前記運動検出部の検出結果から、筋シナジー、平衡点及び剛性の少なくとも1つを前記特徴量として算出するものである。この構成によれば、歩行診断の判断に有効な特徴量として、足関節の並進運動に関わる筋シナジー、平衡点及び剛性楕円、また足関節の回転運動に関わる平衡点及び剛性の少なくとも1つが算出される。従って、かかる特徴量を参照することで、歩行時の情報から下肢の回復状況を判断することが可能となる。   The detection unit includes a myoelectric potential detection unit that measures myoelectric potential as the muscle activity, and a movement detection unit that detects joint movement as the lower limb movement, and the calculation unit includes: At least one of muscle synergy, equilibrium point, and rigidity is calculated as the feature amount from the detection result and the detection result of the motion detection unit. According to this configuration, at least one of muscle synergy, equilibrium point and stiffness ellipse related to the translational motion of the ankle joint, and equilibrium point and stiffness related to the rotational motion of the ankle joint are calculated as effective feature quantities for the determination of the gait diagnosis. Is done. Therefore, it is possible to determine the recovery status of the lower limb from the information at the time of walking by referring to the feature amount.

また、前記床部は、互いに平行に配置された、水平に軸支された回転体の間に周回可能に掛け渡され、上面側が前記床面を構成する無端ベルトと、前記床面への前記対象者の足裏の踏み出し位置及び床反力を検出する荷重検出部とを備えたものである。この構成によれば、対象者は体重免荷部に体重の一部を免荷した状態で、相対的な歩行が実現される。また、踏み出し位置及び床反力を歩行状況の情報として得ることができ、診断情報やその他の目的(訓練を兼ねるゲームなど)に利用することが可能となる。   Further, the floor portion is arranged in parallel with each other and is laid around a horizontally supported rotating body so as to be able to circulate, and the upper surface side constitutes the endless belt, and the floor surface is provided with the endless belt. A load detection unit that detects the stepping position of the sole of the subject and the floor reaction force is provided. According to this configuration, the target person can realize relative walking in a state where a part of the body weight is released from the body weight-unloading unit. Further, the stepping position and the floor reaction force can be obtained as information on the walking situation, and can be used for diagnostic information and other purposes (games that also serve as training).

また、本発明は、前記床部の床面に訓練映像を投影する映像投影部と、前記床面への前記対象者の足裏の踏み出し位置及び床反力を検出する荷重検出部と、前記訓練映像の床面上の表示位置と、前記運動検出部及び前記荷重検出部の一方で検出された前記踏み出し位置とから訓練の評価を行う訓練評価部とを備えたものである。この構成によれば、歩行する床面に訓練映像を投影し、訓練映像との相関(一致度など)によって評価を行うようにしたので、ゲーム感覚が煽られて訓練効率の向上が期待される。   Further, the present invention is a video projection unit that projects a training video on the floor surface of the floor unit, a load detection unit that detects a stepping position and a floor reaction force of the subject's foot on the floor surface, A training evaluation unit that evaluates training from the display position of the training video on the floor and the stepping position detected by one of the motion detection unit and the load detection unit is provided. According to this configuration, the training video is projected on the floor to be walked, and the evaluation is performed based on the correlation with the training video (such as the degree of coincidence). .

また、前記体重免荷部は、基台と、基台に軸支され、垂直面内で支軸周りに揺動するアームと、錘とを備え、前記サドルは、前記アームの先端に取り付けられ、前記錘は、前記アームの基端側に垂設されることを特徴とする。この構成によれば、いわゆるシーソー型機構を採用して、カウンターウェイトすることで、簡易な構成でサドルに跨る対象者の体重の一部とバランスさせることが可能となる。   The weight loader includes a base, an arm that is pivotally supported by the base and swings around the pivot within a vertical plane, and a weight, and the saddle is attached to a tip of the arm. The weight is suspended from the base end side of the arm. According to this configuration, by adopting a so-called seesaw type mechanism and counterweighting, it becomes possible to balance with a part of the weight of the subject straddling the saddle with a simple configuration.

また、本発明は、前記錘を前記アームに垂設させる錘係合部を備え、前記錘は、前記基台に複数個積層配置されてなり、前記錘係合部は、上方側から任意の複数個の錘を前記アームの基端に係合させるものである。この構成によれば、シーソー型機構においてカウンターウェイト用の錘の設定が容易に行われる。   Further, the present invention includes a weight engaging portion that vertically suspends the weight on the arm, and the weight is formed by stacking a plurality of weights on the base. A plurality of weights are engaged with the base end of the arm. According to this configuration, the counterweight weight is easily set in the seesaw type mechanism.

また、本発明に係る歩行診断装置は、対象者を股下部で支持するサドルを備え、前記対象者の体重の一部を免荷する体重免荷部と、前記サドルの下方に位置し、対象者が歩行する床面を有する床部と、対象者の下肢における各筋の筋電位及び前記対象者の下肢の各関節の動きを検出する検出部と、前記検出部による検出結果から運動診断情報を演算する演算部とを備え、前記検出部は、前記筋活動として筋電位を測定する筋電位検出部と、前記下肢運動として関節の動きを検出する運動検出部とを備え、前記演算部は、前記筋電位検出部の検出結果及び前記運動検出部の検出結果から、下肢先端の運動制御に関わる特徴量である筋シナジー、平衡点及び剛性の少なくとも1つを特徴量として算出するものである。   The gait diagnostic apparatus according to the present invention includes a saddle that supports the subject at the crotch, is located below the saddle, and a weight-bearing portion that unloads a part of the subject's weight. Motion diagnosis information from the detection result of the floor part having the floor surface on which the person walks, the detection unit for detecting the myoelectric potential of each muscle in the lower limb of the subject and the movement of each joint of the lower limb of the subject A calculating unit that calculates a myoelectric potential as the muscle activity, and a movement detecting unit that detects a joint movement as the lower limb movement, the calculating unit comprising: From the detection result of the myoelectric potential detection unit and the detection result of the motion detection unit, at least one of muscle synergy, equilibrium point, and rigidity, which is a feature amount related to the motion control of the lower limb tip, is calculated as a feature amount. .

また、本発明に係る歩行診断方法は、対象者を股下部で支持するサドルを備え、前記対象者の体重の一部を免荷する体重免荷部と、前記サドルの下方に位置し、対象者が歩行する床面を有する床部と、対象者の下肢における各筋の筋電位及び前記対象者の下肢の各関節の動きを検出する検出部と、前記検出部による検出結果から運動診断情報を演算する演算部とを備え、前記検出部は、前記筋活動として筋電位を測定すると共に、前記下肢運動として関節の動きを検出し、前記演算部は、前記筋電位の検出結果、及び前記下肢運動として関節の動きの検出結果から、下肢先端の運動制御に関わる特徴量である筋シナジー、平衡点及び剛性の少なくとも1つを特徴量として算出するものである。   The gait diagnosis method according to the present invention includes a saddle that supports the subject at the crotch, and is located below the saddle, and a weight relief portion that unloads part of the subject's weight. Motion diagnosis information from the detection result of the floor part having the floor surface on which the person walks, the detection unit for detecting the myoelectric potential of each muscle in the lower limb of the subject and the movement of each joint of the lower limb of the subject A calculation unit that calculates a muscle potential as the muscle activity, and detects joint movement as the lower limb movement, and the calculation unit detects the myoelectric potential detection result, and As a lower limb movement, at least one of muscle synergy, equilibrium point, and rigidity, which is a characteristic amount related to the motion control of the lower limb tip, is calculated as a feature amount from the detection result of joint movement.

これらの発明に係る歩行訓練の効果は、下肢先端の運動制御に関わる特徴量である筋シナジー、平衡点、剛性(並進運動、回転運動双方を含めてもよい。)の少なくとも1つに基づき定量評価され、患者や療法士にフィードバックされる。   The effects of walking training according to these inventions are quantified based on at least one of muscle synergy, equilibrium point, and rigidity (which may include both translational and rotational motions), which are characteristic amounts related to motion control of the lower limb tip. Evaluated and fed back to patients and therapists.

本発明では、脳卒中等のリハビリテーションを、身体協調に基づく中枢神経系の機能回復と捉え、患者の身体協調の再獲得と保持を促進する歩行再建のためのロボット訓練を行う。特に、(1)発明者らのこれまでの研究(特許文献2、非特許文献2他)によって明らかにされた一連の筋シナジー技術を用いて患者の身体協調を診断し、(2)その診断結果に基づき、運動改善を促す数種のロボット訓練を行う点を特徴とする。身体を協調させる技能は、脳卒中患者に失われがちな滑らかな運動(平衡点・剛性(インピーダンス)の調整)の実現に不可欠であり、その獲得は患者の劇的な運動能力の向上に繋がる。   In the present invention, rehabilitation such as stroke is regarded as functional recovery of the central nervous system based on physical cooperation, and robot training for gait reconstruction that promotes reacquisition and maintenance of physical cooperation of the patient is performed. In particular, (1) Diagnose the patient's physical coordination using a series of muscle synergy technologies revealed by the inventors' previous research (Patent Document 2, Non-Patent Document 2, etc.), and (2) the diagnosis Based on the results, it is characterized by several types of robot training that promotes motion improvement. The skill of coordinating the body is indispensable for realizing the smooth movement (adjustment of equilibrium point and rigidity (impedance)) that is apt to be lost in stroke patients, and the acquisition leads to the dramatic improvement of the patient's motor ability.

また、本発明に係る体重免荷装置は、対象者を股下部で支持するサドルを備え、前記対象者の体重の一部を免荷する、歩行訓練装置の体重免荷装置において、基台と、基台に軸支され、垂直面内で揺動するアームと、錘と、前記錘を前記アームに垂設させる錘係合部とを備え、前記サドルは、前記アームの先端に取り付けられ、前記錘は、前記基台に複数個積層配置されてなり、前記錘係合部は、上方側から任意の複数個の錘を前記アームの基端に係合させるものである。本発明によれば、いわゆるシーソー型機構を採用して、カウンターウェイトすることで、簡易な構成でサドルに跨る対象者の体重の一部とバランスさせることが可能となる。また、カウンターウェイト用の錘の設定が容易となる。   In addition, a weight loader according to the present invention includes a saddle that supports a subject at the crotch, and a part of the subject's weight is unloaded. An arm that is pivotally supported by the base and swings in a vertical plane; a weight; and a weight engaging portion that suspends the weight from the arm; and the saddle is attached to a tip of the arm, A plurality of weights are stacked on the base, and the weight engaging portion engages an arbitrary plurality of weights with the base end of the arm from above. According to the present invention, by adopting a so-called seesaw type mechanism and counterweighting, it is possible to balance with a part of the weight of the subject straddling the saddle with a simple configuration. In addition, it is easy to set the weight for the counterweight.

本発明によれば、新たな運動解析技術を、脳卒中患者等のロボット療法(現在、黎明期である下肢のロボット療法)へ展開し、障害後の運動学習機序の解明へ向けた歩行運動の診断、患者の運動回復能力を積極的に引き出して機能獲得を促進する歩行訓練を可能にする。   According to the present invention, a new motion analysis technique is developed for robot therapy for stroke patients and the like (currently the robot therapy for the lower limbs in the early stages), and the walking motion toward the elucidation of the motor learning mechanism after the disorder is developed. Diagnosis, enabling gait training to actively acquire the ability of the patient to recover and promote function acquisition.

本発明に係る歩行訓練装置の一実施形態を示す全体概要図で、(a)は後方斜めから見た外観概要図、(b)、(c)は床部の床面に投影された訓練映像の各例を示す平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole schematic diagram which shows one Embodiment of the walking training apparatus which concerns on this invention, (a) is the external appearance schematic diagram seen from back diagonally, (b), (c) is the training image | video projected on the floor surface of a floor part It is a top view which shows each example of. 図1に示す歩行訓練装置の全体概要図で、(a)は前方斜めから見た外観概要図、(b)は床部の側面概要図、(c)は床部の平面図である。FIG. 2 is an overall schematic diagram of the walking training apparatus shown in FIG. 1, where (a) is an external schematic diagram viewed from an oblique front, (b) is a side schematic diagram of the floor, and (c) is a plan view of the floor. サドルの外観図で、(a)は構造を説明する斜視図、(b)はヨーイングを説明する平面視の概略図である。It is an external view of a saddle, (a) is a perspective view explaining a structure, (b) is the schematic of the planar view explaining a yawing. 歩行訓練装置の一実施形態を示す機能構成図である。It is a functional lineblock diagram showing one embodiment of a walking training device. 下肢に取り付ける部材の説明図で、(a)は被験筋、(b)はマーカ、検出電極、及び刺激電極の取り付け位置の一例を示す図である。It is explanatory drawing of the member attached to a leg, (a) is a test muscle, (b) is a figure which shows an example of the attachment position of a marker, a detection electrode, and a stimulation electrode. 下肢の筋骨格モデルで採用する座標系(股関節角θh、膝関節角θk、足関節角θa、動径R、偏角Φ)を示す図である。It is a figure which shows the coordinate system (The hip joint angle | corner (theta) h, the knee joint angle | corner (theta) k, the foot joint angle | corner (theta) a, the radial radius R, the deflection angle (PHI)) employ | adopted with the musculoskeletal model of a leg. 制御部が実行する歩行訓練における歩行解析処理を示すフローチャートである。It is a flowchart which shows the walk analysis process in the walk training which a control part performs. 運動解析結果をリアルタイムでモニタに表示する表示例を示す図で、(a)は筋シナジーの表示例、(b)は歩行相における足関節の並進運動に関わる剛性楕円および平衡点の表示例、(c)は足関節の回転運動に関わる剛性の表示例である。It is a figure which shows the example of a display which displays a motion analysis result on a monitor in real time, (a) is a display example of a muscle synergy, (b) is a display example of the rigid ellipse and the equilibrium point regarding the translational movement of the ankle joint in a gait phase, (C) is a display example of the rigidity related to the rotational motion of the ankle joint. 免荷方式の違い及び電気刺激の有無の違いによる歩容の変化を示す図である。It is a figure which shows the change of the gait by the difference in an unloading system and the presence or absence of an electrical stimulus. 免荷方式の違いによる、1歩行における垂直踏力、足関節角度の測定結果を示す図である。It is a figure which shows the measurement result of the vertical treading force in 1 walk by the difference in an unloading system, and an ankle joint angle. 実験2の実験条件一覧を示す図表である。6 is a chart showing a list of experimental conditions in Experiment 2. ハーネス支持型体重免荷装置とサドル支持型体重免荷装置の免荷量に応じた、快適と感じる歩行速度の変化を示す図表である。It is a table | surface which shows the change of the walking speed felt comfortable according to the amount of loads of a harness support type body weight load apparatus and a saddle support type body weight load apparatus. 免荷方式の違いによる被験者Aの1歩行分(横軸0―100%)の歩行相(a)、および股(b)、膝(c)、足関節(d)の各関節角度変化を示す図である。Shows the gait phase (a) for one gait of subject A (horizontal axis 0-100%), and hip joint (b), knee (c), and ankle joint (d) joint angle changes due to different unloading methods. FIG. 免荷方式の違いによる被験者Aの1歩行分における床反力の垂直成分(a)、前後剪断成分(b)、左右剪断成分(c)を示す図である。It is a figure which shows the perpendicular | vertical component (a) of the floor reaction force in 1 walk of the test subject A by the difference in an unloading system, the front-back shear component (b), and the left-right shear component (c). 非体重免荷歩行での歩行速度の違いによる被験者Aの1歩行分における床反力の垂直成分(a)、前後剪断成分(b)、左右剪断成分(c)を示す図である。It is a figure which shows the perpendicular | vertical component (a) of the floor reaction force in one walk of the test subject A by the difference in walking speed in non-weight-free walking, the front-rear shear component (b), and the left-right shear component (c). サドル支持型体重免荷歩行(中程度の体重免荷)での歩行速度による被験者Aの1歩行分における股(a)、膝(b)、足関節(c)の各関節角度変化を示す図である。The figure which shows each joint angle change of the crotch (a), the knee (b), and the ankle joint (c) in one walk of the test subject A by the walking speed in the saddle support type weight-free walking (medium weight-free). It is. サドル支持型体重免荷歩行(中程度の体重免荷)での歩行速度による被験者Aの1歩行分における床反力の垂直成分(a)、前後剪断成分(b)、左右剪断成分(c)の変化を示す図である。Vertical component (a), front-rear shear component (b), left-right shear component (c) of floor reaction force in one walk of subject A based on walking speed in saddle-supported weight-free walking (medium weight-bearing) It is a figure which shows the change of. サドル支持型体重免荷歩行での免荷量による被験者Aの1歩行分における股(a)、膝(b)、足関節(c)の各関節角度変化を示す図である。It is a figure which shows each joint angle change of the crotch (a), the knee (b), and the ankle joint (c) in 1 walk of the test subject A by the load-carrying amount in saddle support type body weight-free walking. サドル支持型体重免荷歩行における免荷量による被験者Aの1歩行分における床反力の垂直成分(a)、前後剪断成分(b)、左右剪断成分(c)を示す図である。It is a figure which shows the perpendicular | vertical component (a) of the floor reaction force in one walk of the test subject A by the amount of load in the saddle support type body weight-free walk, the front-rear shear component (b), and the left-right shear component (c). ハーネス支持型およびサドル支持型体重免荷歩行(中程度の体重免荷)と非体重免荷歩行、およびFES介入の有無による被験者A,B,Cの1歩行分における床反力の垂直成分(a)、前後剪断成分(b)、左右剪断成分(c)を示す図である。Harness-supported and saddle-supported weight-free walking (moderate weight-loading) and non-weight-free walking, and the vertical component of floor reaction force in one walk of subjects A, B, and C with or without FES intervention ( It is a figure which shows a) front-back shear component (b) and right-and-left shear component (c).

図1は、本発明に係る歩行訓練装置1の一実施形態を示す全体概要図で、図2は、その一部を示す外観概要図である。図3は、サドルの外観図である。図4は、歩行訓練装置1の一実施形態を示す機能構成図である。   FIG. 1 is an overall schematic diagram showing an embodiment of a walking training apparatus 1 according to the present invention, and FIG. 2 is an external schematic diagram showing a part thereof. FIG. 3 is an external view of the saddle. FIG. 4 is a functional configuration diagram showing an embodiment of the walking training apparatus 1.

本発明に係る歩行訓練装置1は、例えば脳卒中患者や脊髄損傷患者(以下、対象者という)の歩行能力の回復を目的とする下肢のロボット療法用の装置である。歩行訓練装置1は、対象者の体重の一部を免荷する体重免荷部10と、対象者が歩行する床部の一例であるトレッドミル20と、動き検出部30と、筋電位検出部40と、足関節に作用する筋に電気刺激を与える電気刺激部50と、制御部60(図4参照)と、対象者を撮像し、表示する運動観察部70と、脚の動きを誘導するようなゲーム等を訓練映像の表示を行うと共に、必用に応じてその訓練結果を評価する訓練処理部80とを備える。   The walking training device 1 according to the present invention is a device for robot therapy of the lower limbs for the purpose of recovering the walking ability of, for example, a stroke patient or a spinal cord injury patient (hereinafter referred to as a subject). The gait training device 1 includes a weight-loading unit 10 that unloads a part of the subject's weight, a treadmill 20 that is an example of a floor portion on which the subject walks, a motion detection unit 30, and a myoelectric potential detection unit. 40, an electrical stimulation unit 50 that applies electrical stimulation to muscles acting on the ankle joint, a control unit 60 (see FIG. 4), a motion observation unit 70 that captures and displays a subject, and a leg motion is induced. Such a game or the like is provided with a training processing unit 80 that displays a training video and evaluates the training result as necessary.

体重免荷部10は、本実施形態では、カウンターウェイトとシーソー型機構によって対象者の股下部に作用する「サドル支持型体重免荷装置」((長川祐磨、吉川史哲、 平井宏明、 黒岩晃、 渡邉英知、 植村充典、 宮崎文夫、“サドル支持型体重免荷トレッドミル歩行の運動解析:下肢の平衡点軌道、足先剛性の可視化”、第10回モーターコントロール研究会抄録、A36,2016.)、及び(吉川史哲、長川祐磨、 平井宏明、 黒岩晃、 渡邉英知、 植村充典、 宮崎文夫、“体重免荷方式の違いが歩行に与える影響:吊り上げ型とサドル支持型の比較”、第10 回モーターコントロール研究会抄録、A37,2016.)参照)を採用している。   In this embodiment, the weight loader 10 is a “saddle-supported weight loader device” ((Yuma Nagakawa, Fumiyoshi Yoshikawa, Hiroaki Hirai, Satoshi Kuroiwa, Hidetomo Watanabe, Mitsunori Uemura, Fumio Miyazaki, “Analysis of Saddle-supported Weight-Unloading Treadmill Walking: Visualization of Lower Limb Equilibrium Trajectory and Toe Stiffness”, 10th Motor Control Study Group Abstract, A36, (2016.), and (Fumiaki Yoshikawa, Yuma Nagakawa, Hiroaki Hirai, Satoshi Kuroiwa, Hidenori Watanabe, Mitsunori Uemura, Fumio Miyazaki, “Effects of weight-loading methods on walking: lifting and saddle-supporting “Comparison”, 10th Motor Control Study Group Abstract, A37, 2016.)).

より具体的には、体重免荷部10は、図1(a)、図2(a)に示すように、床に設置される基台11と、基台11の上部で左右方向(図1(a)、矢印X−X方向)に平行な水平軸121に軸支されて垂直面内で揺動可能なアーム12と、アーム12の先端に取り付けられたサドル13と、アーム12の基端から垂設された錘係合部14と、アーム12の基端に対応して立設されたフレーム部15と、フレーム部15の下部に積層載置された複数個の錘16とを備える。アーム12の基端から先端に向かう方向が前方方向となる。   More specifically, as shown in FIGS. 1 (a) and 2 (a), the weight loader 10 has a base 11 installed on the floor and a left-right direction (see FIG. 1) on the top of the base 11. (A) an arm 12 that is supported by a horizontal shaft 121 parallel to the arrow XX direction and can swing within a vertical plane, a saddle 13 attached to the tip of the arm 12, and a base end of the arm 12 And a plurality of weights 16 stacked and mounted on the lower portion of the frame portion 15. The direction from the base end to the tip end of the arm 12 is the forward direction.

フレーム部15は、互いに平行な一対の立直ステー151を有する。錘16は、本実施形態では平板状をなし、板厚方向に錘係合部14が挿入される挿通孔、また立直ステー151を遊嵌する一対の孔が穿設されている。錘16は、かかる立直ステー151に沿って昇降可能にされ、かつ錘係合部14に係合されることでアーム12の揺動に応じて昇降されることになる。   The frame part 15 has a pair of upright stays 151 parallel to each other. The weight 16 has a flat plate shape in the present embodiment, and is provided with an insertion hole into which the weight engaging portion 14 is inserted and a pair of holes in which the upright stay 151 is loosely fitted. The weight 16 can be moved up and down along the upright stay 151 and is moved up and down in accordance with the swing of the arm 12 by being engaged with the weight engaging portion 14.

錘係合部14と錘16との係合構造は、種々の形態が採用可能であるが、本実施形態では以下の形態を採用している。すなわち、錘係合部14は、所定長を有する変形可能な紐状物、例えば鎖部141とその下部の棒状体142とが連結して構成されている、棒状体142は、長さ方向に長孔(図示せず)が穿設されている。長孔にはピン143が嵌挿される。各錘16には横方向からピン143が差し込み可能なように、例えば下面側に横溝161などが形成されている。ピン143は横溝に沿って挿入されて長孔に嵌挿される。ピン143が差し込まれた錘16を含む上部の錘16がピン143によって持ち上げられることでカウンターウェイトとされる。カウンターウェイトされる錘16の個数を調整することで、シーソー型機構を介してサドル13を跨いだ対象者に対する免荷量が調整される。なお、錘係合部の他の例としては、底板を備え、その上部に錘を1枚ずつ積層する形態でもよいし、予め準備された各カウンターウェイトを交換使用するものでもよい。あるいは、より単純に、アーム12の後端側に錘を懸架し、アーム12の長手方向にスライドさせることで、ウェイトバランスを取る態様でもよい。   Various forms of the engagement structure between the weight engaging portion 14 and the weight 16 can be adopted. In the present embodiment, the following forms are adopted. That is, the weight engaging portion 14 is configured by connecting a deformable string-like object having a predetermined length, for example, a chain portion 141 and a rod-like body 142 below the chain portion 141. The rod-like body 142 is formed in the length direction. A long hole (not shown) is formed. A pin 143 is inserted into the long hole. For example, a lateral groove 161 is formed on the lower surface side of each weight 16 so that the pin 143 can be inserted from the lateral direction. The pin 143 is inserted along the lateral groove and is inserted into the long hole. The upper weight 16 including the weight 16 into which the pin 143 is inserted is lifted by the pin 143 to be used as a counterweight. By adjusting the number of weights 16 to be counterweighted, the amount of unloading with respect to the subject who straddles the saddle 13 via the seesaw type mechanism is adjusted. In addition, as another example of the weight engaging portion, a configuration in which a bottom plate is provided and weights are stacked one by one on the top may be used, or each counterweight prepared in advance may be replaced and used. Alternatively, a mode in which a weight balance is achieved by suspending a weight on the rear end side of the arm 12 and sliding the arm 12 in the longitudinal direction may be used.

サドル13は、図2、図3に示すように、座席形状を有するサドル本体13Aと、必要に応じて設けられる、サドル本体13Aを覆う弾性材からなる表皮13Bとを備える。サドル13は、アーム12の先端の取付具122に設けられた前後方向に平行な水平軸131と、水平軸131を介して取り付けられた垂直軸132とを備え、サドル本体13Aは垂直軸132を介して取り付けられている。この構成により、サドル13は、それぞれ所定の角度範囲内で、図3(a)に矢印Rollで示すように水平軸131周りにローリングし、かつ図3(b)に矢印Yawで示すように垂直軸132周りにヨーイングする。サドル13がローリング及びヨーイングすることで、より自然な歩行動作を対象者に提供することが可能となる。   2 and 3, the saddle 13 includes a saddle body 13A having a seat shape, and a skin 13B made of an elastic material that covers the saddle body 13A provided as necessary. The saddle 13 includes a horizontal shaft 131 parallel to the front-rear direction provided on the fixture 122 at the tip of the arm 12, and a vertical shaft 132 attached via the horizontal shaft 131. The saddle body 13A includes the vertical shaft 132. Is attached through. With this configuration, the saddle 13 rolls around the horizontal axis 131 as shown by an arrow Roll in FIG. 3A and vertically as shown by an arrow Yaw in FIG. Yawing around axis 132. As the saddle 13 rolls and yaws, a more natural walking motion can be provided to the subject.

トレッドミル20は、本実施形態では床反力計を内蔵したスプリットベルトトレッドミル(ITR5018,Bertec Corp., USA)を採用する。より具体的には、トレッドミル20は、直方体形状をなす基台21を備える。基台21の前後方向には、図2(b)、(c)に示すように、互いに平行で水平な回転軸を有する一対のローラ22と、一対のローラ22間に張設されたベルト23と、一方のローラ22に、例えばベルト等の駆動力伝達構造241を介して連結されるモータ等の駆動部24とを備える。駆動部24を駆動させることで、図2(a)(b)に矢印で示す方向に、ベルト23が周回動作を行う。ベルト23の周回動作の条件は、設定部240(図4参照)によって適宜に設定される。対象者は、図2(b)に示すように、周回動作中の、あるいは歩行に合わせて間欠的に動作されるベルト23上を歩行する。ベルト23の上面は歩行面を構成し、本実施形態では水平にされている。   In this embodiment, the treadmill 20 employs a split belt treadmill (ITR5018, Bertec Corp., USA) incorporating a floor reaction force meter. More specifically, the treadmill 20 includes a base 21 having a rectangular parallelepiped shape. In the front-rear direction of the base 21, as shown in FIGS. 2 (b) and 2 (c), a pair of rollers 22 having a horizontal rotation axis parallel to each other, and a belt 23 stretched between the pair of rollers 22. And a driving unit 24 such as a motor connected to one roller 22 via a driving force transmission structure 241 such as a belt. By driving the drive unit 24, the belt 23 rotates in the direction indicated by the arrows in FIGS. Conditions for the rotation operation of the belt 23 are appropriately set by the setting unit 240 (see FIG. 4). As shown in FIG. 2 (b), the subject walks on a belt 23 that is rotating or intermittently operated along with walking. The upper surface of the belt 23 constitutes a walking surface and is horizontal in this embodiment.

荷重検出部25は、センサ本体部251と床反力演算部252を備える。センサ本体部251は、前後のローラ22の間、かつベルト23の周回内側の上部に近接して配置されている(図2(b)参照)。センサ本体部251は、図2(b)、(c)に示すように、直方体形状のフォースプレート2511と、複数の所定位置、例えばフォースプレート2511の4隅に配置される荷重センサ(機械―電気変換素子であるロードセル)2512とを備え、フォースプレート2511上にかかる荷重に対応して、歪みゲージの抵抗値の変化を、各荷重センサ2512で電流値の変化として検出することで、床反力の3方向分力(Fx,Fy,Fz)として計測する。さらに、床反力演算部252によって床反力の作用点(COP:Centerof Pressure)を演算で求める。従って、サドル13に股下部を作用させて体重の一部が免荷された対象者の足裏踏力の床反力及びその重心位置が、ベルト23を介して荷重検出部25で得られる。   The load detection unit 25 includes a sensor main body 251 and a floor reaction force calculation unit 252. The sensor main body 251 is disposed between the front and rear rollers 22 and in the vicinity of the upper part on the inner side of the belt 23 (see FIG. 2B). 2B and 2C, the sensor main body 251 includes a rectangular parallelepiped force plate 2511 and load sensors (mechanical-electrical devices) arranged at a plurality of predetermined positions, for example, four corners of the force plate 2511. A load cell 2512 which is a conversion element), and a change in the resistance value of the strain gauge corresponding to the load applied on the force plate 2511 is detected as a change in the current value by each load sensor 2512. The three-way component force (Fx, Fy, Fz) is measured. Further, the floor reaction force calculation unit 252 calculates a floor reaction force action point (COP: Center of Pressure). Accordingly, the floor detection force and the center of gravity position of the foot pedal force of the subject who has received a part of his / her weight by applying the crotch portion to the saddle 13 can be obtained by the load detection unit 25 via the belt 23.

なお、荷重検出部25は、スプリットベルトトレッドミル型の場合、各ベルト23に対応して配設されてもよい。この構造では、対象者の歩行訓練を各脚の回復程度などに合った方法、例えば左右ベルトで異なる周回速度で行うことが可能となる。また、荷重検出部25は、少なくとも床反力の作用点を得ることができる態様でもよい。さらに、他の感圧部材を採用して荷重位置を計測する方法でもよい。なお、トレッドミル20は、スプリットベルトトレッドミル型でなくてもよい。   In addition, the load detection part 25 may be arrange | positioned corresponding to each belt 23 in the case of a split belt treadmill type. In this structure, it becomes possible to perform the walking training of the subject at a method that matches the degree of recovery of each leg, for example, at different lap speeds with the left and right belts. Moreover, the aspect which can obtain the action point of floor reaction force at least may be sufficient as the load detection part 25. FIG. Further, a method of measuring the load position by using another pressure-sensitive member may be used. The treadmill 20 may not be a split belt treadmill type.

このようにトレッドミル20と体重免荷部10とを組み合わせることで、体重による重力の影響を軽減しながら、対象者のエンドエフェクタ(足)へ介入し、バランス制御と股関節伸展とを好適に支援しつつ訓練することができる。   By combining the treadmill 20 and the weight loader 10 in this manner, while interfering with the end effector (foot) of the subject while reducing the influence of gravity due to body weight, the balance control and hip joint extension are suitably supported. You can train while doing.

運動解析の対象部位となる下肢の被験筋は、図5(a)に示すように、本実施例では、足関節位置の並進に関する下肢3対6筋に、足関節の回転に関する足関節周りの1対2筋を加えた4対8筋の筋骨格系としてモデル化したものである。   As shown in FIG. 5 (a), the test muscles of the lower limbs that are the target site of the motion analysis are, in this example, the 3-6 muscles of the lower limbs related to translation of the ankle position, Modeled as a 4 to 8 musculoskeletal system with 1 to 2 muscles added.

本実施形態では、動き検出部30として、撮像手段であるカメラ31を左右に配置したモーションキャプチャ等の光学トラッキングシステムを採用している。左右のカメラ31は、対象者の下肢を左右側から撮像する。カメラ31から観測可能な位置、本実施例では、図5(b)に示すように、対象者の股関節、膝関節、足関節及び爪先の各側面の計4箇所には、マーカ301が貼着乃至は装着されている。マーカ301は、特定色、例えば遠赤外光を発する部材、あるいは発光素子を採用してもよい。カメラ31は、各マーカ301をカメラ視野内で位置情報を表す輝点として撮像するものである。対象者の股関節及び足関節に対応するマーカ301は、後述する動径R情報、偏角Φ情報(図6参照)を計測するために使用される。なお、カメラ31の台数は2台に限らず、例えば各マーカ301に対応して配置してもよい。   In the present embodiment, an optical tracking system such as a motion capture in which cameras 31 as imaging means are arranged on the left and right sides is employed as the motion detection unit 30. The left and right cameras 31 image the subject's lower limbs from the left and right sides. In this embodiment, as shown in FIG. 5 (b), markers 301 are attached to a total of four positions on each side of the subject's hip joint, knee joint, ankle joint, and toe as shown in FIG. 5B. Or it is installed. The marker 301 may employ a specific color, for example, a member that emits far infrared light, or a light emitting element. The camera 31 images each marker 301 as a bright spot representing position information within the camera field of view. The markers 301 corresponding to the subject's hip joint and ankle joint are used to measure radius R information and declination Φ information (see FIG. 6), which will be described later. The number of cameras 31 is not limited to two, and may be arranged corresponding to each marker 301, for example.

筋電位検出部40は、図5(b)に示すように、片足につき8個の筋の筋電位を検出する。対象者の下肢の皮膚上には、複数の電極401が貼着される。各電極401は、図5(b)に示すように、8個の筋の各表面側に貼着されて、対応する筋に発生する筋電位を検出する。筋電位は、EMG(筋活動を直接計測する筋電図:electromyography)計測で得られる。各電極401は筋電位検出回路41と有線あるいは無線で接続されている。なお、無線で接続されている態様では、電極401は筋電位検出回路41のアンテナ部と近接通信するアンテナ部を少なくとも備えている。   As shown in FIG. 5B, the myoelectric potential detection unit 40 detects myoelectric potentials of eight muscles per one foot. A plurality of electrodes 401 are attached on the skin of the lower limbs of the subject. As shown in FIG. 5B, each electrode 401 is affixed to each surface side of eight muscles and detects myoelectric potentials generated in the corresponding muscles. The myoelectric potential is obtained by EMG (electromyography that directly measures muscle activity). Each electrode 401 is connected to the myoelectric potential detection circuit 41 by wire or wirelessly. In the wirelessly connected mode, the electrode 401 includes at least an antenna unit that performs near field communication with the antenna unit of the myoelectric potential detection circuit 41.

電気刺激部50は、対象者の足関節に作用、具体的には遊脚開始時における足関節角度を底屈方向に変化させるための機能的電気刺激を行うものである。電気刺激部50は、刺激信号生成部51と刺激信号の出力を指示するスイッチ52とを備える。刺激信号は、足関節によるPush-offを支援することを目的に、対象の随意的なキュー(スイッチ52の押下)に基づき、足関節底屈筋群を電気刺激する。刺激信号は、例えば60Hzのパルス搬送波で、腓腹筋の外側頭へ例えば7mA、内側頭へ例えば8mAのレベルで、例えば0.35秒間の出力時間に設定されている。これにより、Push-offの増加と随意的運動の促通を導くことが期待できる。なお、スイッチ52は対象者自身で押下する態様の他、荷重検出部25からの荷重検出情報や動き検出部30からの動き検出内容、または下記の運動観察部70からの運動観察内容を利用して遊脚開始タイミングを自動認識してスイッチオンさせる態様としてもよい。   The electrical stimulation unit 50 acts on the ankle joint of the subject, and specifically performs functional electrical stimulation for changing the ankle joint angle at the start of the swing leg in the plantar flexion direction. The electrical stimulation unit 50 includes a stimulation signal generation unit 51 and a switch 52 that instructs output of the stimulation signal. The stimulation signal electrically stimulates the ankle plantar flexor muscle group based on an optional cue (pressing of the switch 52) of the subject for the purpose of supporting push-off by the ankle joint. The stimulation signal is a pulse carrier wave of 60 Hz, for example, and is set to an output time of, for example, 0.35 seconds at a level of, for example, 7 mA to the outer head of the gastrocnemius, for example, 8 mA to the inner head. This can be expected to lead to increased push-off and voluntary movement. The switch 52 uses the load detection information from the load detection unit 25, the motion detection content from the motion detection unit 30, or the motion observation content from the motion observation unit 70 described below, in addition to a mode of being pressed by the subject himself / herself. The swing leg start timing may be automatically recognized and switched on.

運動観察部70は、トレッドミル20の前方に、対象者の歩行動作を正面側から撮影するKinectセンサ(Kinect for Windows v2,Microsoft Corp., USA)71を備え、さらに撮像した映像を表示するモニタ711を前方に備える。また、必要に応じて左右の撮像部72,73と、左右の映像を表示する左右のモニタ721,731とを備えてもよい。Kinectセンサ71は、公知のように、撮影画像とレーザビームを併用して撮像された対象者の画像の3次元情報を得て、その結果をモニタ711に撮影映像と併記表示することで、歩行中における対象者の左右バランスに関する運動学情報を提示する。なお、Kinectセンサ71に代えて、通常の撮像部であってもよい。   The motion observation unit 70 includes a Kinect sensor (Kinect for Windows v2, Microsoft Corp., USA) 71 that captures the walking motion of the subject from the front side in front of the treadmill 20, and further displays a captured image. 711 is provided forward. Moreover, you may provide the left and right imaging parts 72 and 73 and the left and right monitors 721 and 731 which display a left and right image as needed. As is well known, the Kinect sensor 71 obtains the three-dimensional information of the image of the subject imaged by using the captured image and the laser beam together, and displays the result together with the captured image on the monitor 711, thereby walking. The kinematics information about the left-right balance of the subject is presented. Instead of the Kinect sensor 71, a normal imaging unit may be used.

訓練処理部80は、必要に応じて設けられるもので、対象者の歩行を支援する画像を生成し、表示する。訓練処理部80は、訓練画像生成部81と、生成された訓練画像をベルト23上に投影するプロジェクタ82とを備え、また、対象者が見やすいように、必要に応じてベルト23の前方乃至は斜め前方に配置されたモニタ83に訓練画像の表示を行う。なお、訓練画像生成部81は、ベルト23の移動速度と同期して訓練画像をベルト後方に移動するように生成され、あるいはベルト23上の固定位置で表示される態様でもよい。   The training processing unit 80 is provided as necessary, and generates and displays an image that supports the walking of the subject. The training processing unit 80 includes a training image generation unit 81 and a projector 82 that projects the generated training image onto the belt 23. Further, the training processing unit 80 may be provided in front of or in front of the belt 23 as necessary so that the subject can easily see the training image. The training image is displayed on the monitor 83 arranged obliquely forward. The training image generation unit 81 may be configured to generate the training image so as to move rearward of the belt in synchronization with the moving speed of the belt 23 or to display the training image at a fixed position on the belt 23.

訓練処理部80は、応答性判定部84を備える。応答性判定部84は、訓練画像と、駆動部24からの周回動作情報及び床反力演算部252からの作用点の情報から、サドル13に跨った状態の対象者が訓練画像に対して作用した結果の評価も行う。応答するまでの計時情報を評価項目に含めてもよい。また、訓練画像に対する作用の検出は、動き検出部30で行ってもよい。   The training processing unit 80 includes a responsiveness determination unit 84. The responsiveness determination unit 84 determines that the subject in a state straddling the saddle 13 acts on the training image from the training image, the circular motion information from the driving unit 24, and the action point information from the floor reaction force calculation unit 252. The results are also evaluated. Timekeeping information until a response may be included in the evaluation item. Further, the motion detection unit 30 may detect the action on the training image.

図1(b)、(c)は、プロジェクタ82から投影されたベルト23上の訓練画像の一例を示している。図1(b)は、サドル13の真下位置の少し前方側となるベルト23面に所定形状の、例えば複数の円形映像801が配列表示され、その内の一つが識別可能に、例えば他と色違いの円形映像802で表示され、次の踏み位置を指示している。この状態で、床反力演算部252で得られた作用点が訓練画像の表示域と一致する度合いに応じて評価が高低設定され、離散運動(踏み出し)の訓練に用いられる。図1(c)は、サドル13の真下位置の少し前方側となるベルト23面に、例えばバー映像803が左右に交互に表示され、手前側のバー映像803が次の踏み位置を指示している。この状態で、床反力演算部252で得られた作用点がバー映像803の表示域と一致するほど高い評価が生成され、周期運動の訓練に用いられる。評価はスコアが積算され、その積算値が、あるいは時間単位のスコアが算出され、表示に供される。ゲーム感覚を導入することで、訓練意欲の増進が図れる。   FIGS. 1B and 1C show examples of training images on the belt 23 projected from the projector 82. FIG. 1B shows, for example, a plurality of circular images 801 of a predetermined shape arranged on the surface of the belt 23 slightly forward of the position just below the saddle 13, and one of them can be identified, for example, a color different from the others. A difference circular image 802 is displayed to indicate the next step position. In this state, the evaluation is set high or low according to the degree to which the action point obtained by the floor reaction force calculation unit 252 matches the display area of the training image, and is used for training of discrete motion (stepping). In FIG. 1 (c), for example, a bar image 803 is displayed alternately on the left and right sides of the belt 23 surface slightly below the saddle 13 and the front bar image 803 indicates the next step position. Yes. In this state, a higher evaluation is generated such that the action point obtained by the floor reaction force calculation unit 252 matches the display area of the bar image 803, and is used for periodic exercise training. In the evaluation, the score is integrated, and the integrated value or a score in time unit is calculated and displayed. By introducing a game sensation, the willingness to train can be increased.

続いて、図4の機能構成部について説明する。制御部60は、歩行訓練装置1の各部と接続されて、歩行訓練装置1の動作を統括して制御すると共に、筋シナジー情報を含む特徴点の算出、診断処理を行う。制御部60は、CPUを有するマイクロコンピュータで構成されており、本発明に係る訓練動作、運動分析処理のための処理プログラムを記憶するROM61、処理途中のデータを一時的に記憶するRAM62、各種の指示を行うためのテンキーやマウス等で構成される操作部63、及び記憶部64を備えている。記憶部64は、人体筋骨格モデルの情報(図5(a)参照)、運動診断のための各演算式その他のデータを記憶する。なお、人体筋骨格モデルの各部位の長さ等はモーションキャプチャによって算出可能である。また、人体筋骨格モデルの情報、各演算式は、ROM61又はRAM62内に格納される態様でもよい。   Next, the functional configuration unit in FIG. 4 will be described. The control unit 60 is connected to each unit of the gait training apparatus 1 to control and control the operation of the gait training apparatus 1 and calculates feature points including muscle synergy information and performs diagnostic processing. The control unit 60 includes a microcomputer having a CPU. The ROM 61 stores a processing program for training operation and motion analysis processing according to the present invention, a RAM 62 temporarily stores data during processing, An operation unit 63 including a numeric keypad and a mouse for giving instructions and a storage unit 64 are provided. The storage unit 64 stores information on the human musculoskeletal model (see FIG. 5A), each arithmetic expression for motion diagnosis, and other data. The length of each part of the human musculoskeletal model can be calculated by motion capture. The human musculoskeletal model information and each arithmetic expression may be stored in the ROM 61 or the RAM 62.

筋電位検出部40は、片足につき8個の電極401に生じる電気信号を検出する筋電位検出回路41と、検出された電気信号に対して所定の前処理を施す前処理回路42とを備える。体表で得られる筋電位信号は、レベルが数十μV〜数百μV、周波数が5Hz〜500Hz程度の交流信号である。そこで、前処理回路42は、筋電位を処理可能なレベル(数千倍)まで増幅するアンプ、筋電位の主要周波数帯の信号のみを通過させるバンドパスフィルタ、及び全波整流回路を備えている。また、前処理回路42は、筋電位信号をデジタルで処理するべく、出力側にAD変換部を備えている。   The myoelectric potential detection unit 40 includes a myoelectric potential detection circuit 41 that detects electrical signals generated on the eight electrodes 401 per leg, and a preprocessing circuit 42 that performs predetermined preprocessing on the detected electrical signals. The myoelectric signal obtained on the body surface is an AC signal having a level of several tens of μV to several hundreds of μV and a frequency of about 5 Hz to 500 Hz. Therefore, the preprocessing circuit 42 includes an amplifier that amplifies the myoelectric potential to a level that can be processed (several thousand times), a band-pass filter that passes only signals in the main frequency band of the myoelectric potential, and a full-wave rectifier circuit. . The preprocessing circuit 42 includes an AD conversion unit on the output side in order to digitally process the myoelectric potential signal.

動き検出部30は、各マーカ301を検出する各カメラ31と、カメラ31からの撮像信号から輝点を検出する前処理回路32とを備え、検出された輝点の位置座標情報を計測する等の所定の前処理を施す。なお、動き検出部30は、光学的な位置測定の他、磁気発生器と磁気センサとから構成される3次元上の位置と向きが検出可能な公知の測定器を採用してもよい。   The motion detection unit 30 includes each camera 31 that detects each marker 301 and a preprocessing circuit 32 that detects a bright spot from an imaging signal from the camera 31, and measures the position coordinate information of the detected bright spot. The predetermined pretreatment is performed. In addition to the optical position measurement, the motion detection unit 30 may employ a known measuring device that can detect a three-dimensional position and orientation including a magnetic generator and a magnetic sensor.

モニタ711〜731には、表示処理部605で作成された画像が表示される。表示処理部605は、操作部63からの入力情報の確認や処理結果、Kinectセンサ71による撮影映像等及び制御部60で処理された運動診断情報をモニタ711に出力し、また、撮像部72,73で撮像した映像をモニタ721,731に出力する。なお、必要に応じて各情報を個別のモニタに表示する態様としてもよい。   The images created by the display processing unit 605 are displayed on the monitors 711 to 731. The display processing unit 605 outputs the input information from the operation unit 63, the processing result, the captured image by the Kinect sensor 71, and the motion diagnosis information processed by the control unit 60 to the monitor 711. The video imaged at 73 is output to the monitors 721 and 731. In addition, it is good also as an aspect which displays each information on a separate monitor as needed.

制御部60は、対象者の運動診断を行うもので、ROM61からRAM62に読み出した処理プログラムを実行することによって、電極401から測定結果を周期的に取り込む筋電位測定処理部601と、マーカ301からの測定結果を周期的に取り込む位置測定処理部602と、筋シナジー算出部603と、平衡点・剛性算出部604と、前記した表示処理部605として機能する。   The control unit 60 performs exercise diagnosis of the subject. By executing a processing program read from the ROM 61 to the RAM 62, the control unit 60 periodically reads the measurement result from the electrode 401, and the marker 301. The position measurement processing unit 602 that periodically captures the measurement results, the muscle synergy calculation unit 603, the equilibrium point / rigidity calculation unit 604, and the display processing unit 605 described above.

本発明にかかる運動診断は、ヒトの身体運動は複数の筋の協調作用(筋シナジー)により生成されるものであり、また、ヒトの身体運動は関節の平衡点、剛性に関する命令により制御されると考えることに基づいている。   According to the motion diagnosis according to the present invention, human body motion is generated by a cooperative action (muscle synergy) of a plurality of muscles, and the human body motion is controlled by a command related to a joint equilibrium point and stiffness. Is based on thinking.

筋電位測定処理部601は、前処理回路42で得られた各拮抗筋対のEMG(筋電位)を最大随意収縮時のEMGで正規化したEMGである%MVCとして求める。筋電位は、概念として、筋協調の最小単位と考える拮抗する筋同士の活動の比(筋拮抗比r)と、拮抗する筋同士の活動の和(筋拮抗和s)とを導入している。   The myoelectric potential measurement processing unit 601 obtains EMG (myoelectric potential) of each antagonistic muscle pair obtained by the preprocessing circuit 42 as% MVC, which is EMG normalized by EMG at the time of maximum voluntary contraction. Myoelectric potential introduces, as a concept, a ratio of activities of antagonistic muscles (muscle antagonistic ratio r) considered as a minimum unit of muscle coordination and a sum of activities of antagonistic muscles (muscle antagonistic sum s). .

筋拮抗比rは、主導筋の%MVC/(主導筋の%MVC+拮抗筋の%MVC)で表され、筋拮抗和sは、主導筋の%MVC+拮抗筋の%MVCで表される。図5(a)に示すように、筋拮抗は、腰から足関節に向けて、股(h)、膝(k)、足関節(a)周りの拮抗筋対(4対8筋)があり、筋拮抗比(r,rhk,r,r)および筋拮抗和(s,shk,s,s)は、各筋電位から算出される。式(1)は、足関節の並進運動のための説明変数である筋拮抗比、筋拮抗和を示す。 The muscle antagonist ratio r is expressed as% MVC of the main muscle / (% MVC of the main muscle +% MVC of the antagonist muscle), and the muscle antagonistic sum s is expressed as% MVC of the main muscle +% MVC of the antagonist muscle. As shown in FIG. 5 (a), there are antagonistic muscle pairs (4 to 8 muscles) around the hip (h), knee (k), and ankle joint (a) from the waist to the ankle joint. muscle antagonistic ratio (r h, r hk, r k, r a) and muscle antagonizing sum (s h, s hk, s k, s a) is calculated from each myoelectric potential. Equation (1) represents a muscle antagonist ratio and a muscle antagonist sum which are explanatory variables for translational movement of the ankle joint.

また、足関節の回転運動のための説明変数である筋拮抗比、筋拮抗和を式(2)に示す。   Further, the muscle antagonist ratio and the muscle antagonist sum, which are explanatory variables for the rotational motion of the ankle joint, are shown in Equation (2).

これらの説明変数を用いた筋シナジーベクトルの算出方法は、足先平衡点を動径方向に調節するシナジーu、足先平衡点を偏角方向に調整するシナジーuΦ、及び足先剛性を調整するシナジーuR×Φを用いる。各シナジーu、uΦ、uR×Φの算出式を、式(3)に示す。 The calculation method of the muscle synergy vector using these explanatory variables is the synergy u R for adjusting the toe equilibrium point in the radial direction, the synergy u Φ for adjusting the toe equilibrium point in the declination direction, and the toe rigidity. Use synergy u R × Φ to adjust. Equation (3) shows a calculation formula for each synergy u R , u Φ , and u R × Φ .

なお、式(3)中のq(strans)、およびqk(strans)は、式(4)で表される。 Incidentally, q h in Equation (3) (s trans), and q k (s trans) is expressed by Equation (4).

さらに、式(5)で、筋シナジー活動係数Δw(rtrans, strans)、およびΔwΦ(rtrans,strans)が得られる。得られた筋シナジー活動係数Δw(rtrans, strans)、およびΔwΦ(rtrans,strans)に、ゲインkR,trans、kΦ,transを乗算することで、式(6)に示すように、足関節の並進運動に関する平衡点位置の変化量ΔREP(rtrans, strans)、およびΔΦEP(rtrans, strans)を求めた。 Furthermore, the muscle synergy activity coefficient Δw R (r trans , s trans ) and Δw Φ (r trans , s trans ) are obtained from the equation (5). By multiplying the obtained muscle synergy activity coefficient Δw R (r trans , s trans ) and Δw Φ (r trans , s trans ) by the gain k R, trans , k Φ, trans , equation (6) is obtained. As shown, the amount of change ΔR EP (r trans , s trans ) and ΔΦ EP (r trans , s trans ) of the equilibrium point position related to the translational motion of the ankle joint were obtained.

また、足関節の並進運動に対する剛性行列K(strans)を、式(7)に示すように、stransとヤコビ行列J(θ)およびゲインks,transとを用いて算出する。 Further, the stiffness matrix K x (s trans ) for the translational motion of the ankle joint is calculated using s trans , the Jacobian matrix J (θ), and the gains k s and trans as shown in the equation (7).

さらに、足関節の回転運動に関する推定(解析)が実行される。すなわち、足関節周りの拮抗筋対の筋拮抗比rrot(=r)より、足関節の平衡角度の変位が、式(8)のように算出される。また、足関節周りの拮抗筋対の筋拮抗和srot(=s)より、足関節の回転剛性が、式(9)のように算出される。 Further, estimation (analysis) regarding the rotational motion of the ankle joint is executed. That is, from the muscle antagonist ratio r rot (= r a ) of the antagonist muscle pair around the ankle joint, the displacement of the equilibrium angle of the ankle joint is calculated as in Expression (8). Further, the rotational stiffness of the ankle joint is calculated as in equation (9) from the muscle antagonist sum s rot (= s a ) of the antagonistic muscle pair around the ankle joint.

算出された特徴量である筋シナジー、平衡点及び剛性(剛性楕円、回転剛性)の各情報は、モニタ711あるいは他のモニタに表示される。図8は、その表示例を示し、(a)は筋シナジーを、(b)は剛性楕円91と平衡点92を、(c)は足関節の回転剛性93を示している。歩行訓練の解析内容をリアルタイムで視認、確認することができ、回復訓練が効果的に行われる。   Each information of muscle synergy, equilibrium point, and rigidity (rigid ellipse, rotational rigidity), which is the calculated feature amount, is displayed on the monitor 711 or another monitor. FIG. 8 shows an example of the display, in which (a) shows muscle synergy, (b) shows the rigidity ellipse 91 and the equilibrium point 92, and (c) shows the rotational rigidity 93 of the ankle joint. The analysis contents of walking training can be visually confirmed and confirmed in real time, and recovery training is effectively performed.

図7は、運動診断処理の手順を示すフローチャートである。対象者がサドル13に跨った状態でベルト23が周回動作を開始して、本フローが開始される。まず、動き検出部30及び筋電位検出部40からマーカ301の位置信号、電極401の筋電位信号が取り込まれ(ステップS11)、これらの信号から運動位置等の測定処理、筋電位の測定処理が実行される(ステップS13)。   FIG. 7 is a flowchart showing the procedure of the motion diagnosis process. With the subject straddling the saddle 13, the belt 23 starts rotating, and this flow is started. First, the position signal of the marker 301 and the myoelectric potential signal of the electrode 401 are fetched from the motion detection unit 30 and the myoelectric potential detection unit 40 (step S11), and the measurement process of the movement position and the myoelectric potential measurement process are performed from these signals. It is executed (step S13).

このようにして各測定点からの検出信号が取り込まれると、式(3)により筋シナジーベクトルが算出され(ステップS15)、さらに、式(6)、式(7)により足関節の並進運動に関する平衡点、剛性楕円、及び式(8)、式(9)により足関節の回転運動に関する平衡点、剛性が算出される(ステップS17)。これら算出された特徴量は、表示処理部605に出力されて(ステップS19)、モニタ711に表示される。そして、訓練が終了したか否かが判断され(ステップS21)、終了するまでは、ステップS11に戻って、処理が繰り返される。   When the detection signals from the respective measurement points are taken in this way, the muscle synergy vector is calculated by the equation (3) (step S15), and further, the translational motion of the ankle joint is calculated by the equations (6) and (7). The equilibrium point and stiffness related to the rotational motion of the ankle joint are calculated from the equilibrium point, the stiffness ellipse, and the equations (8) and (9) (step S17). These calculated feature values are output to the display processing unit 605 (step S19) and displayed on the monitor 711. Then, it is determined whether or not the training is finished (step S21). Until the training is finished, the process returns to step S11 and the process is repeated.

次に、効果確認のための実験1、実験2、およびそれらの結果について説明する。   Next, Experiment 1 and Experiment 2 for confirming the effect, and the results thereof will be described.

<実験1>
(1−1) 設備(体重免荷トレッドミル)
体重免荷装置として、(A)天井に据え付けた空気圧シリンダーとハーネスにより対象の上体を持ち上げる、比較例としての「吊り上げ型体重免荷装置」(ニューアシスト,インターリハ株式会社,日本)と、(B)図1〜図3に示す、カウンターウェイトとシーソー型機構によって対象の股下部に作用する「サドル支持型体重免荷装置」の2種類を使用した。また、トレッドミルは、床反力計を内蔵したスプリットベルトトレッドミル(ITR5018,Bertec Corp., USA)を用いた。これらの体重免荷装置とスプリットベルトトレッドミルを組み合わせることで、体重による重力の影響を軽減しながら、対象者のエンドエフェクタ(足部)へ介入し、「バランス制御」と「股関節伸展」を安全に支援訓練するようにした。さらに、対象の前方に、Kinectセンサ71(Kinect for Windows v2,Microsoft Corp., USA)と、モニタ711としての大型ディスプレイ(REGZA 65J7,東芝, 日本)を配備し、歩行中の左右バランスに関する運動学情報の提示を行った(図1(a)参照)。
<Experiment 1>
(1-1) Equipment (weight free treadmill)
As a weight-loading device, (A) a lifting type weight-loading device (New Assist, Interliha Corporation, Japan) as a comparative example that lifts the upper body of the subject by a pneumatic cylinder and harness installed on the ceiling, (B) Two types of “saddle-supporting weight-bearing device” acting on the subject's crotch by a counterweight and a seesaw type mechanism shown in FIGS. 1 to 3 were used. As the treadmill, a split belt treadmill (ITR5018, Bertec Corp., USA) incorporating a floor reaction force meter was used. By combining these weight-bearing devices and a split belt treadmill, while interfering with the end effector (foot) of the subject while reducing the influence of gravity due to weight, "balance control" and "hip extension" are safe I started to support training. Furthermore, Kinect Sensor 71 (Kinect for Windows v2, Microsoft Corp., USA) and a large display (REGZA 65J7, Toshiba, Japan) as a monitor 711 are deployed in front of the subject, and kinematics regarding left-right balance during walking. Information was presented (see FIG. 1A).

(1−2)設備(機能的電気刺激)
もう一つの介入として、エンドエフェクタ(足)に隣接する足関節へ作用する機能的電気刺激を採用した。電気刺激部50として、STG4008(Multi Channel Systems, Inc., Germany)を使用した。ここでは、「足関節によるPush-off」を支援/訓練することを目的に、対象の随意的なキュー(スイッチ52の押下)に基づき、足関節底屈筋群を電気刺激した。刺激は、周波数60[Hz]のパルス搬送波を0.35秒間、かつそれぞれ一対の電極で腓腹筋の外側頭へ7[mA]、内側頭へ8[mA]とした。
(1-2) Equipment (functional electrical stimulation)
As another intervention, functional electrical stimulation acting on the ankle joint adjacent to the end effector (foot) was employed. As the electrical stimulation unit 50, STG4008 (Multi Channel Systems, Inc., Germany) was used. Here, for the purpose of supporting / training “Push-off by ankle joint”, the ankle plantar flexor muscles were electrically stimulated based on an optional cue of the subject (pressing the switch 52). Stimulation was performed by applying a pulse carrier with a frequency of 60 [Hz] for 0.35 seconds and 7 [mA] to the lateral head of the gastrocnemius muscle and 8 [mA] to the medial head using a pair of electrodes, respectively.

(1−3)実験手順
被験者(対象者)は、健常成人女性1名(157[cm]、45.9[kg])とした。実験は、大阪大学基礎工学研究科倫理委員会に承認された手続きに則り行われた。(A)吊り上げ型および(B)サドル支持型の体重免荷装置により、対象者の体重を中程度免荷し、対象者が自然と感じる速度(2.5[km/h])でそれぞれ130秒間、体重免荷歩行を行った。各試行において、前半は体重免荷のみ、後半は体重免荷に加えて機能的電気刺激を行った。
(1-3) Experimental procedure The test subject (subject) was one healthy adult female (157 [cm], 45.9 [kg]). The experiment was conducted in accordance with procedures approved by the Ethics Committee of the Graduate School of Engineering Science, Osaka University. (A) Lifting type and (B) Saddle support type weight-loading device unloads the subject's weight moderately, and each of them at a speed (2.5 [km / h]) that the subject feels natural A weight-free walk was performed for 2 seconds. In each trial, the first half was weight-free only, and the second half was weight-free in addition to functional electrical stimulation.

これらの条件の異なる4種類の免荷歩行として、(a)吊り上げ型体重免荷、(b)吊り上げ型体重免荷+機能的電気刺激、(c)サドル支持型体重免荷、(d)サドル支持型体重免荷+機能的電気刺激を行い、それぞれ下肢の運動学をモーションキャプチャシステム(Optitrack,Natural Point, Inc., USA)により、また、床反力をトレッドミルシステム(ITR5018,Bertec Corp., USA)により計測した。なお、実験前に予め練習期間を設け、対象が各環境に十分に慣れてから運動計測を行った。   The four types of load-free walking with different conditions are as follows: (a) lifting-type weight-loading, (b) lifting-type weight-loading + functional electrical stimulation, (c) saddle-supporting weight-loading, (d) saddle Supporting body weight relief + functional electrical stimulation, kinematics of lower limbs by motion capture system (Optitrack, Natural Point, Inc., USA), and floor reaction force by treadmill system (ITR5018, Bertec Corp. , USA). In addition, an exercise period was set in advance before the experiment, and exercise measurement was performed after the subject was sufficiently used to each environment.

(1−4)結果・考察
図9,図10は、(A)吊り上げ型と、(B)サドル支持型の2種類の体重免荷方式の違いがトレッドミル歩行に与える影響と、 それぞれの体重免荷下における機能的電気刺激による足関節Push-offの支援効果を示している。図9(c)のサドル支持型体重免荷歩行では、図9(a)の吊り上げ型体重免荷歩行に比べて大きな歩幅が実現されている。機能的電気刺激を加えた場合も、サドル支持型体重免荷歩行ではその利点を消失することなく効果的な運動支援が確認された(図9(b),(d))。
(1-4) Results / Discussion Figures 9 and 10 show the effects on the treadmill walking due to the difference between the two types of weight-loading methods: (A) Lifting type and (B) Saddle support type. The ankle push-off support effect by functional electrical stimulation under unloading is shown. In the saddle-supported weight-free walking in FIG. 9C, a larger stride is realized as compared with the lifting-type weight-free walking in FIG. 9A. Even when functional electrical stimulation was applied, effective exercise support was confirmed without losing the advantage in the saddle-supported weight-free walking (FIGS. 9B and 9D).

また、2つの免荷方式の違いは、床反力に顕著に観察された(図10(a),(b))。すなわち、図10(b)に示すようにサドル支持型体重免荷歩行の垂直踏力が自然歩行と同様な二峰性の波形を示すのに対し、図10(a)の吊り上げ型体重免荷歩行では立脚終期においても高い垂直踏力を示し、不自然な歩行となっている。機能的電気刺激によってこの違いはさらに著しくなっており、吊り上げ型支援では正しく運動を支援できていないことが分かる。サドル支持型支援では、体重免荷のみでも自然な踏力パターンを実現できるが、機能的電気刺激によってその踏力パターンを維持しながら、Push-offの踏力を増大し、自然に近い形で運動支援できることが分かった。   Further, the difference between the two unloading methods was significantly observed in the floor reaction force (FIGS. 10A and 10B). That is, as shown in FIG. 10 (b), the vertical pedaling force of the saddle-supported weight-free walking has a bimodal waveform similar to that of natural walking, whereas the lifting-type weight-free walking in FIG. 10 (a). So, even at the end of the stance, it shows a high vertical pedaling force, making it an unnatural walk. This difference is further marked by functional electrical stimulation, and it can be seen that lifting support does not support exercise correctly. Saddle-supported support can achieve a natural pedaling pattern even with weight-unloading alone, while maintaining the pedaling force pattern with functional electrical stimulation, the push-off pedaling force can be increased to support exercise in a form close to nature. I understood.

<実験2>
続いて、歩行リハビリテーションへの有効な介入を探索することを目的に、サドル支持型体重免荷装置と機能的電気刺激(functional electrical stimulation: FES)とを組み合わせた、エンドエフェクタ型歩行訓練装置の特徴を検証する。これは神経筋疾患患者の随意運動制御の再建を目的とした、タスク指向のアプローチである。吊り上げ型体重免荷歩行とサドル支持型体重免荷歩行の違いを、快適歩行速度、運動学や床反力、FESの効果で評価する。
<Experiment 2>
Next, in order to search for effective interventions in gait rehabilitation, features of an end effector type gait training device that combines a saddle-supported weight-bearing device and functional electrical stimulation (FES) To verify. This is a task-oriented approach aimed at reconstructing voluntary motor control in patients with neuromuscular disease. The difference between the lift-type weight-free walk and the saddle-supported weight-free walk is evaluated by the effects of comfortable walking speed, kinematics, floor reaction force, and FES.

(2−1)被験者
被験者(対象者)は、3名の健常者(男性1名、女性2名、24歳)とした。実験は大阪大学基礎工学研究科倫理委員会に承認された手続きに則り行われた。また、被験者A,B,Cには、あらかじめ実験の趣旨、内容について十分な説明を行い、本人から実験参加の同意を得た。
(2-1) Subjects Subjects (subjects) were three healthy individuals (one male, two females, 24 years old). The experiment was conducted in accordance with procedures approved by the Ethics Committee of the Graduate School of Engineering Science, Osaka University. In addition, subjects A, B, and C were given sufficient explanations about the purpose and content of the experiment in advance, and consent was obtained from the subject.

(2−2)装置
(2−2−1)体重免荷トレッドミル
被験者の体重を免荷する装置として、<実験1>と同様、据え付けた空気圧シリンダーとハーネスにより対象の上体を持ち上げる「吊り上げ型体重免荷装置」(ニューアシスト,インターリハ株式会社, 日本)と、シーソー型機構によって対象の股下部に作用する「サドル支持型体重免荷装置」(図1〜図3参照)との2種類を使用して、介入を行った。いずれの体重免荷システムも、床反力計を内蔵したスプリットベルトトレッドミル(ITR5018,Bertec Corp., USA)を含む。以下、吊り上げ型体重免荷装置をハーネス支持型体重免荷装置と呼ぶ。
(2-2) Device (2-2-1) As a device to relieve the body weight of the treadmill test subject, as in <Experiment 1>, lift the upper body of the subject with the installed pneumatic cylinder and harness. Type weight-relief device (New Assist, Interliha Co., Ltd., Japan) and “saddle-supported weight-relief device” (see FIGS. 1 to 3) acting on the subject's crotch by a seesaw-type mechanism Interventions were performed using types. Both weight-bearing systems include a split belt treadmill (ITR5018, Bertec Corp., USA) with a built-in floor reaction force meter. Hereinafter, the lifting type weight-bearing device is referred to as a harness-supporting weight-weighting device.

(2−2−2)電気刺激装置(FES)
もう一つの介入として、エンドエフェクタに隣接する足関節へ作用する機能的電気刺激を採用した。刺激システムは、<実験1>の場合と同様の電気刺激装置を使用した。腓腹筋外側頭、内側頭いずれも被験者A,Bは、16[mA]、被験者Cは、12[mA]の強度、周波数200[Hz]のパルス搬送波で、0.15秒間の刺激を行った。
(2-2-2) Electrical stimulation device (FES)
As another intervention, functional electrical stimulation acting on the ankle joint adjacent to the end effector was employed. As the stimulation system, the same electrical stimulation apparatus as in the case of <Experiment 1> was used. In both the gastrocnemius lateral and medial heads, subjects A and B were stimulated for 0.15 seconds with a pulse carrier of 16 [mA] and subject C with an intensity of 12 [mA] and a frequency of 200 [Hz].

(2−2−3)実験手順
被験者は、図11に示す実験条件下で、110秒間の歩行を行った。この中でFESは、50秒経過してから適用した。各試行で最初の50秒間(免荷の有無による歩行)と、最後の50秒間(FES介入下における免荷の有無による歩行)を解析対象とした。下肢の運動学(左右の股、膝、脚、爪先)は全て、11台のカメラを含むモーションキャプチャシステム(OptiTrack, NaturalPoint,Inc., USA)を用いて、100[Hz]で計測した。床反力は、スプリットベルトトレッドミルに搭載されている床反力計で、1000[Hz]で計測し、100[Hz]までダウンサンプリングした。運動学および床反力は、それぞれ訓練システムの評価の指標として採用した。運動学は、介入を受けた被験者が自然な姿勢で歩けるか否か、床反力は、3つの歩行機能(バランス制御、股関節伸展、足関節Push-off)に必要な床面との相互作用を、体重免荷装置やトレッドミル、FESがどのように支援しているかを示す。被験者の随意歩行実験の間、運動学、床反力およびFESの刺激タイミングは同期して記録され、記録データは平滑化されてから、歩行の一周期で正規化された。FES制御側の足の最初の接地を0%、その次の接地を100%(1歩行)としている。実験の前には予め歩行の練習期間を設け、被験者が各環境に十分に慣れてから運動計測を行った。
(2-2-3) Experimental procedure The subject walked for 110 seconds under the experimental conditions shown in FIG. FES was applied after 50 seconds. In each trial, the first 50 seconds (walking with or without exemption) and the last 50 seconds (walking with or without exemption under FES intervention) were analyzed. Lower limb kinematics (left and right hips, knees, legs, toes) were all measured at 100 [Hz] using a motion capture system (OptiTrack, NaturalPoint, Inc., USA) including 11 cameras. The floor reaction force was measured at 1000 [Hz] with a floor reaction force meter mounted on the split belt treadmill, and down-sampled to 100 [Hz]. Kinematics and floor reaction force were each adopted as an index for evaluation of the training system. The kinematics is whether or not the intervention subject can walk in a natural posture, and the floor reaction force is the interaction with the floor surface required for the three gait functions (balance control, hip extension, ankle push-off) Shows how the weight-bearing device, treadmill and FES support. During the subject's voluntary gait experiment, kinematics, floor reaction force and FES stimulation timing were recorded synchronously and the recorded data was smoothed and then normalized for one cycle of gait. The first grounding of the foot on the FES control side is 0%, and the next grounding is 100% (1 walk). Before the experiment, a walking practice period was provided in advance, and exercise measurements were made after the subjects were fully accustomed to each environment.

(2−3)実験結果
(2−3−1)快適歩行速度
図12に、ハーネス支持型体重免荷装置とサドル支持型体重免荷装置の免荷量に応じた、快適と感じる歩行速度の変化を示す。これらの主観的な好みのデータは、被験者に対するアンケート調査への回答から得られた。
(2-3) Experimental results (2-3-1) Comfortable walking speed In FIG. 12, the walking speed of the comfortable walking according to the unloading amount of the harness-supporting weight-loading device and the saddle-supporting weight-loading device. Showing change. These subjective preference data were obtained from responses to questionnaire surveys on subjects.

(2−3−2)免荷方式による体重免荷歩行の変化
図13は、被験者Aがハーネス支持型およびサドル支持型体重免荷システムを中程度の体重免荷(33% BWS)で歩行した際の股、膝、足関節の関節角度を示し、図14は、同条件での、床反力の垂直成分、前後剪断成分および左右剪断成分を示す。これらの運動データは、非体重免荷(non-BWS)歩行においても同速度で測定した。
(2-3-2) Change in weight-free walking by load-carrying method FIG. 13 shows that subject A walked with a moderate weight-free weight (33% BWS) in a harness-supported and saddle-supported weight-loaded system. FIG. 14 shows a vertical component, a longitudinal shear component, and a lateral shear component of the floor reaction force under the same conditions. These exercise data were also measured at the same speed in non-BWS gait.

(2−3−3)歩行速度による非体重免荷歩行の変化
図15は、被験者Aが免荷装置を用いない非体重免荷歩行を、様々な速度(1.5、2.5、3.0、3.5、4.0、および4.5[km/h])で行った際の床反力の3成分を示す。ここで、非体重免荷歩行は、その快適歩行速度(4.0[km/h])において、立脚中期(歩行相10〜30%)と立脚終期(歩行相30〜50%)とで2つの顕著なピークが見られる。最初のピークは主に股関節の伸展に、2つ目のピークは股関節伸展と足関節のPush-offによるものである。
(2-3-3) Change in Non-Weight-Free Walking with Walking Speed FIG. 15 shows non-weight-free walking with a different speed (1.5, 2.5, 3). 0.0, 3.5, 4.0, and 4.5 [km / h]), the three components of the floor reaction force are shown. Here, non-weight-free walking is 2 in the middle stance phase (10-30% gait phase) and the final stance phase (30-50% gait phase) at the comfortable walking speed (4.0 [km / h]). Two prominent peaks are seen. The first peak is mainly due to hip extension and the second peak is due to hip extension and ankle push-off.

図16、図17は、被験者Aが中程度の体重免荷(33% BWS)において、様々な速度(1.5、2.5、3.0、3.5、および4.5[km/h])でサドル支持型体重免荷歩行を行った際の、各関節の角度変化と床反力の3成分を示す。なお、33% BWSの下で快適な歩行速度3.5[km/h]における非体重免荷歩行のデータを含む。   16 and 17 show that subject A at moderate weight relief (33% BWS) at various speeds (1.5, 2.5, 3.0, 3.5, and 4.5 [km / h]) shows three components of angle change and floor reaction force of each joint when saddle-supported weight-free walking is performed. In addition, the data of non-weight-free walking at a walking speed of 3.5 [km / h] comfortable under 33% BWS are included.

(2−3−4)免荷量による体重免荷歩行の変化
図18、図19は,被験者Aがサドル支持型体重免荷歩行を行った際の各関節の角度変化と床反力の3成分を示す。パラメータは、歩行速度3.5[km/h](33% BWSの下で快適な歩行速度)における免荷量とした。
(2-3-4) Change in weight-free walking depending on the amount of load FIGS. 18 and 19 show the change in the angle of each joint and the floor reaction force when subject A performs a saddle-supported weight-free walking. Ingredients are shown. The parameter was the amount of unloading at a walking speed of 3.5 [km / h] (a comfortable walking speed under 33% BWS).

(2−3−5)FESの有無による体重免荷歩行の変化
図20は、被験者A(3.5[km/h], 33% BWS)、被験者B(2.5[km/h],40% BWS)、被験者C(4.5[km/h], 40% BWS)がそれぞれ各条件での快適歩行速度において、ハーネス支持型体重免荷歩行およびサドル支持型体重免荷歩行を行った際の床反力の3成分、およびそのFESの有無による違いを示す。
(2-3-5) Change in weight-free walking with and without FES FIG. 20 shows subject A (3.5 [km / h], 33% BWS), subject B (2.5 [km / h], 40% BWS) and subject C (4.5 [km / h], 40% BWS) performed a harness-supported weight-bearing walk and a saddle-supported weight-free walk at comfortable walking speeds under each condition. 3 shows the difference between the three components of the floor reaction force and the presence or absence of the FES.

(2−4)考察
(2−4−1)部分体重免荷とトレッドミルの介入
被験者3名のアンケートの回答より、図12に示すように、体重免荷量が増加するにつれ快適歩行速度が減少するという一貫した傾向が存在することが分かった。この傾向はハーネス支持型、およびサドル支持型の両者の体重免荷方式で確認された。このデータを踏まえ、歩行速度や免荷量による運動学と床反力の変化について考察する。
(2-4) Consideration (2-4-1) Partial weight relief and treadmill intervention From the answers to the questionnaire of three subjects, as shown in FIG. 12, the comfortable walking speed increases as the weight relief amount increases. It turns out that there is a consistent trend of decline. This tendency was confirmed with both the harness support type and the saddle support type. Based on this data, we will consider changes in kinematics and floor reaction force depending on walking speed and unloading amount.

(2−4―2)運動学の特徴
図13は、異なる免荷方式による歩行(ハーネス支持型体重免荷歩行、サドル支持型体重免荷歩行、および非体重免荷歩行)の各関節角度を示す。免荷量は33%BWS(中程度の体重免荷)、歩行速度は3.5[km/h](この免荷量での快適歩行速度)にそれぞれ固定した。ハーネス支持型およびサドル支持型の2種類の体重免荷方式間で各関節角度に顕著な違いは見られなかった(r>0.93, p<0.05)。ただし、これらの体重免荷歩行では非体重免荷歩行に比べ股関節角度の可動域が減少する傾向にあった。
(2-4-2) Characteristic of kinematics FIG. 13 shows the joint angles of walking (harness-supporting weight-free walking, saddle-supporting weight-free walking, and non-weight-free walking) using different load-carrying methods. Show. The unloading amount was fixed at 33% BWS (medium weight unloading), and the walking speed was fixed at 3.5 [km / h] (the comfortable walking speed at this unloading amount). There was no significant difference in each joint angle between the two types of weight support systems, the harness support type and the saddle support type (r> 0.93, p <0.05). However, in these weight-free walking, the range of motion of the hip joint angle tended to decrease compared to non-weight-free walking.

図16は、異なる歩行速度でのサドル支持型体重免荷歩行における各関節角度を示す。免荷量は33% BWS(中程度の体重免荷)に固定した。快適歩行速度(3.5[km/h])や、それより少し遅い速度(2.5、3.0[km/h])での体重免荷歩行における関節角度は、同歩行速度3.5[km/h]の非体重免荷歩行における関節角度に概ね一致している(r>0.93, p<0.05)。しかしながら、最も遅い速度や速い速度での体重免荷歩行における関節角度は、非体重免荷歩行のものと異なる傾向にある(r>0.52, p<0.05)。   FIG. 16 shows each joint angle in saddle-supported weight-free walking at different walking speeds. The amount of unloading was fixed at 33% BWS (medium weight unloading). The joint angle in weight-free walking at a comfortable walking speed (3.5 [km / h]) or slightly slower (2.5, 3.0 [km / h]) It almost coincides with the joint angle in non-weight-free walking at 5 [km / h] (r> 0.93, p <0.05). However, the joint angle in the weight-free walking at the slowest speed or the fast speed tends to be different from that in the non-weight-free walking (r> 0.52, p <0.05).

図18は、4段階の免荷量におけるサドル支持型体重免荷歩行を示す。歩行速度は、中程度の体重免荷(33% BWS)における快適歩行速度(3.5[km/h])に固定した。非体重免荷歩行における足関節角度(破線)は、初期角度から徐々に約10[deg]まで底屈し、その後、約20[deg]まで背屈している。しかしながら、50%BWSの体重免荷歩行における関節角度については、足関節角度の変化が小さく(歩行周期の23〜53%で、±1.7[deg])、非体重免荷歩行との相関は小さい(r=0.83, p<0.05)。すなわち、体重免荷量が大きすぎると、足関節のpush-offがほとんど機能しない歩行となり、リハビリテーションにとっては不都合となる。これらより、被験者Aにおいては、サドル支持型体重免荷によって、およそ快適歩行速度より、1.0[km/h]遅い速度から快適歩行速度までの範囲の速度で、また約33% BWSまでの体重免荷量で、自然な姿勢を保ったまま歩行の支援が行えることが分かった。   FIG. 18 shows saddle-supported weight-free walking with four levels of unloading. The walking speed was fixed at a comfortable walking speed (3.5 [km / h]) at a medium weight-free (33% BWS). The ankle joint angle (dashed line) in the non-weight-free walking is gradually bent to about 10 [deg] from the initial angle and then bent back to about 20 [deg]. However, regarding the joint angle in 50% BWS weight-free walking, the change in the ankle joint angle is small (23 to 53% of the walking cycle, ± 1.7 [deg]), and correlation with non-weight-free walking. Is small (r = 0.83, p <0.05). That is, if the weight-unloading amount is too large, the ankle joint push-off becomes a gait that hardly functions, which is inconvenient for rehabilitation. From these, in subject A, the saddle-supported weight-free weight is approximately 1.0% [km / h] slower than the comfortable walking speed to a comfortable walking speed, and up to about 33% BWS. It was found that walking support can be performed while maintaining a natural posture with the weight-unloading amount.

(2−4―3)床反力の特徴
臨床の歩行訓練においては、多くの患者は自分の脚で身体を支えることが困難なため、体重免荷装置は必要である。このため効果的な体重免荷歩行を考えなければならない。前述の通り、体重免荷量が増えると、快適歩行速度は減少する。このため、低速の歩行への免荷の有無に着目した。図15(a)より、低速(2.5[km/h])での非体重免荷歩行時における床反力の垂直成分には、二峰性が見られない。一方、図17(a)より、低速(2.5[km/h])、中程度の体重免荷(33% BWS)におけるサドル支持型体重免荷歩行における床反力の垂直成分には顕著な二峰性が観察される。つまりサドル支持型体重免荷歩行では、快適歩行速度だけでなく、より低速であっても床反力の垂直成分に2つのピークを示すことが認められた。ただし、この特徴(低速、中程度の体重免荷(2.5[km/h]、33%BWS)におけるサドル支持型体重免荷歩行時の床反力の垂直成分に二峰性が観察される)が支援に効果的なのか否かは、現在のところ必ずしも明らかではないものの、脳卒中患者はゆっくりと歩くことを想定すると、これは歩行訓練に適していると考えられる。
(2-4-3) Characteristics of floor reaction force In clinical walking training, many patients have difficulty in supporting their bodies with their legs, so a weight-free device is necessary. For this reason, effective weight-free walking must be considered. As described above, the comfortable walking speed decreases as the weight-unloading amount increases. For this reason, attention was paid to whether or not there was no load for low-speed walking. As shown in FIG. 15A, the vertical component of the floor reaction force during non-weight-free walking at low speed (2.5 [km / h]) does not show bimodality. On the other hand, from FIG. 17 (a), the vertical component of the floor reaction force in saddle-supported weight-free walking at low speed (2.5 [km / h]) and moderate weight-free (33% BWS) is prominent. Naive bimodality is observed. That is, in the saddle-supported weight-free walking, it was recognized that the vertical component of the floor reaction force showed two peaks not only at the comfortable walking speed but also at a lower speed. However, bimodality is observed in the vertical component of floor reaction force during saddle-supported weight-free walking under this characteristic (low speed, moderate weight-free (2.5 [km / h], 33% BWS). Although it is not always clear whether it is effective for support at present, it is considered suitable for walking training, assuming that stroke patients walk slowly.

図14(c)より、ハーネス支持型体重免荷歩行と比べ、サドル支持型体重免荷歩行における床反力の左右剪断成分も、非体重免荷歩行におけるそれに似た2つのピークを示している。図14(b)より、床反力の前後剪断成分はハーネス支持型体重免荷歩行、サドル支持型体重免荷歩行、非体重免荷歩行、それぞれの違いが顕著に示された。床反力の前後剪断成分によって、一周期(1歩行)の間に、(体重及び歩行周期で正規化された)力積は、ハーネス支持型体重免荷歩行で +46.7[-]、サドル支持型体重免荷歩行で−207.3[-]であるのに対し、非体重免荷歩行では −26.2[-]であった。この違いの要因は、被験者と接触する部分であるハーネスやサドルが、それぞれ正・負の方向に運動量を与えることによると考えられる。よって、ハーネス支持型体重免荷歩行とサドル支持型体重免荷歩行とは、明らかに異なる作用であると考えられる。かかる結果は、被験者B、被験者Cにも似た傾向が見られた。   From FIG. 14 (c), the left and right shear components of the floor reaction force in the saddle-supported weight-free walking also show two peaks similar to those in the non-weight-free walking as compared with the harness-supported weight-free walking. . From FIG. 14 (b), the front-rear shear component of the floor reaction force showed a significant difference between the harness-supported weight-free walk, the saddle-supported weight-free walk, and the non-weight-free walk. Due to the shear component of floor reaction force, the impulse (normalized by weight and walking cycle) during one cycle (1 walk) is +46.7 [-], saddle for harness-supported weight-free walking It was -207.3 [-] in the support-type body weight-free walking, whereas it was -26.2 [-] in the non-body weight-free walking. The reason for this difference is thought to be that the harness and saddle that are in contact with the subject give momentum in the positive and negative directions, respectively. Therefore, it is considered that the harness-supporting weight-free walking and the saddle-supporting weight-free walking are obviously different actions. Such a result showed a similar tendency for the subjects B and C.

(2−4―4)FESによる介入
図20より、非体重免荷歩行においては被験者A,B,CいずれもFESの有無による顕著な床反力の変化は見られない(r>0.97, p<0.05)。これは足関節周りの筋が電気刺激されて発揮する踏力が、被験者の(免荷のない)全体重を支えるには不十分であるからである。被験者Cは、サドル支持型体重免荷歩行時(図20(a)、Subject Cの特性線(6))、FESによって床反力の垂直成分が3.0[%BW]増加し、ハーネス支持型体重免荷歩行時(同図の特性線(5))にはFESによって前遊脚期に、床反力の垂直成分が2.8[%BW]増加した。この踏力の増加量が患者の歩行を援助するのに十分か否かは、症状の重度によるものの、刺激電流の振幅、周波数、刺激時間を適切に調整すれば、生成される踏力はより大きくなりうると考えられる(C. L. Lynch, and M. R. Popovic,“Functional electrical stimulation: closed-loop control of induced musclecontractions,” IEEE Control System Magazine, vol. 28, no. 2, pp. 40-50, 2008.)。
(2-4-4) Intervention by FES FIG. 20 shows that in non-weight-free walking, subjects A, B, and C do not show any significant change in floor reaction force due to the presence or absence of FES (r> 0.97). , p <0.05). This is because the treading force exerted by electrical stimulation of the muscles around the ankle joint is insufficient to support the total weight (without load relief) of the subject. Subject C is saddle-supported weight-free walking (Fig. 20 (a), subject C characteristic line (6)), FES increases the vertical component of floor reaction force by 3.0 [% BW], and supports harness During the body weight-free walking (characteristic line (5) in the figure), the vertical component of the floor reaction force increased by 2.8 [% BW] due to FES during the front swing phase. Whether or not this increase in pedaling force is sufficient to assist the patient's walking depends on the severity of the symptoms, but if the amplitude, frequency, and stimulation time of the stimulation current are adjusted appropriately, the generated pedaling force will be greater. (CL Lynch, and MR Popovic, “Functional electrical stimulation: closed-loop control of induced muscle contractions,” IEEE Control System Magazine, vol. 28, no. 2, pp. 40-50, 2008.).

被験者AがFESを用いてサドル支持型体重免荷歩行を行うと、床反力の垂直成分(図20(a)、Subject Aの特性線(6))は前遊脚期に、FESによって5.0[%BW]増加したことが認められる。被験者BがFESを用いてサドル支持型体重免荷歩行を行うと、床反力の前後剪断成分(図20(b)、Subject Bの特性線(6))は遊脚初期に、FESによって5.0[%BW]増加したことが認められる。   When subject A performs saddle-supported weight-free walking using FES, the vertical component of the floor reaction force (FIG. 20 (a), the characteristic line (6) of Subject A) is 5 by FES during the front swing leg period. It can be seen that there was an increase of 0 [% BW]. When subject B performs saddle-supported body weight-free walking using FES, the front / rear shear component of the floor reaction force (FIG. 20 (b), characteristic line (6) of Subject B) is 5 by FES at the initial stage of the free leg. It can be seen that there was an increase of 0 [% BW].

なお、本実施形態では、ベルト23の周回によって歩行面が移動する構成としたが、体重免荷部10が床面に対して相対的に移動する態様でもよく、また往復移動し、その前方移動の間、歩行訓練する構成としてもよい。   In the present embodiment, the walking surface is moved by the rotation of the belt 23. However, the weight-loading unit 10 may be moved relative to the floor surface, and may reciprocate and move forward. It is good also as a structure which carries out walking training during.

また、本実施形態に係る技術の特徴は、随意運動中の下肢の筋電位信号から筋協調性を抽出し、運動実現に向けて中枢神経系が選択する運動戦略(符号化された高次変数の操作)をリアルタイムに可視化できる点にある。中枢神経系の運動指令を反映する筋電位信号から身体下肢の筋シナジー、インピーダンス(剛性)及び平衡点に関する特徴量情報を抽出し、身体下肢の筋協調を可視化する技術に、さらに、脳卒中患者などの下肢運動回復における中枢神経系の可塑性を解析しながら、理想となる身体協調の再獲得へ向けてロボット訓練を実施する。こうした研究は国内外に類がなく、中枢神経系の機能回復機序の本質に迫る高い学術性と臨床エビデンスに基づく実用性の両側面を兼ね備えている。本技術は、下肢のロボット療法の現状を大きく変える可能性がある。   The feature of the technology according to the present embodiment is that the muscle coordination is extracted from the myoelectric potential signal of the lower limbs during voluntary exercise, and the exercise strategy (encoded high-order variable) selected by the central nervous system for realizing the exercise. The operation can be visualized in real time. Extracting feature information on muscle synergies, impedance (rigidity) and equilibrium points of body lower limbs from myoelectric signals that reflect motor commands of the central nervous system to visualize muscle coordination of body lower limbs, and stroke patients, etc. Robotic training will be conducted to regain the ideal body coordination while analyzing the plasticity of the central nervous system in the recovery of lower limb movements. Such research is unparalleled in Japan and overseas, and has both academic aspects approaching the essence of the functional recovery mechanism of the central nervous system and practical aspects based on clinical evidence. This technology has the potential to significantly change the current state of lower limb robotic therapy.

1 歩行訓練装置
10 体重免荷部
12 アーム
13 サドル
14 錘係合部
16 錘
20 トレッドミル(床部)
23 ベルト(無端ベルト)
25 荷重検出部
30 動き検出部(運動検出部)
40 筋電位検出部(筋電位検出部)
50 電気刺激部
501,502 電極
51 刺激信号生成部
52 スイッチ(指示部)
60 制御部(演算部)
603 筋シナジー算出部(演算手段)
604 平衡点・剛性算出部
70 運動観察部(位置検出部)
80 訓練処理部
82 プロジェクタ(映像投影部)
84 応答性判定部(訓練評価部)
DESCRIPTION OF SYMBOLS 1 Walking training apparatus 10 Weight-bearing part 12 Arm 13 Saddle 14 Weight engaging part 16 Weight 20 Treadmill (floor part)
23 belt (endless belt)
25 Load detector 30 Motion detector (motion detector)
40 EMG detection unit (EMG detection unit)
DESCRIPTION OF SYMBOLS 50 Electrical stimulation part 501 and 502 Electrode 51 Stimulation signal generation part 52 Switch (instruction | indication part)
60 Control unit (calculation unit)
603 Muscle synergy calculation part (calculation means)
604 Equilibrium point / rigidity calculation unit 70 Motion observation unit (position detection unit)
80 Training processing unit 82 Projector (video projection unit)
84 Response determination unit (training evaluation unit)

Claims (12)

対象者を股下部で支持するサドルを備え、前記対象者の体重の一部を免荷する体重免荷部と、
前記サドルの下方に位置し、対象者が歩行する床面を有する床部と、
対象者の足関節底屈筋への電気刺激を行う電気刺激部とを備えたことを特徴とする歩行訓練装置。
A saddle for supporting the subject at the crotch, and a weight-bearing portion for unloading part of the subject's weight;
A floor portion located below the saddle and having a floor surface on which the subject walks;
An gait training apparatus comprising: an electrical stimulation unit that performs electrical stimulation to an ankle plantar flexor muscle of a subject.
前記電気刺激部は、対象者の足関節底屈筋の表面に貼着される電極と、
前記電極に刺激信号を印加する刺激信号生成部と、
前記刺激信号の印加を指示する指示部とを備えた請求項1に記載の歩行訓練装置。
The electrical stimulation unit is an electrode attached to the surface of the subject's ankle plantar flexor muscles;
A stimulation signal generator for applying a stimulation signal to the electrodes;
The walking training apparatus according to claim 1, further comprising: an instruction unit that instructs application of the stimulation signal.
対象者の下肢における各筋の筋電位及び前記対象者の下肢の各関節の動きを検出する検出部と、
前記検出部による検出結果から下肢先端の運動制御に関わる特徴量を算出する演算部とを備えた請求項1又は2に記載の歩行訓練装置。
A detection unit for detecting the myoelectric potential of each muscle in the lower limb of the subject and the movement of each joint of the lower limb of the subject;
The gait training device according to claim 1, further comprising: a calculation unit that calculates a feature amount related to motion control of the lower limb tip from a detection result by the detection unit.
前記検出部は、前記筋活動として筋電位を測定する筋電位検出部と、前記下肢運動として関節の動きを検出する運動検出部とを備え、
前記演算部は、前記筋電位検出部の検出結果及び前記運動検出部の検出結果から、筋シナジー、剛性及び平衡点の少なくとも1つを前記特徴量として算出する請求項3に記載の歩行訓練装置。
The detection unit includes a myoelectric potential detection unit that measures myoelectric potential as the muscle activity, and a motion detection unit that detects joint motion as the lower limb motion,
The gait training apparatus according to claim 3, wherein the calculation unit calculates at least one of muscle synergy, stiffness, and equilibrium point as the feature amount from the detection result of the myoelectric potential detection unit and the detection result of the motion detection unit. .
前記床部は、互いに平行に配置された、水平に軸支された回転体の間に周回可能に掛け渡され、上面側が前記床面を構成する無端ベルトと、
前記床面への前記対象者の足裏の踏み出し位置及び床反力を検出する荷重検出部とを備えた請求項1〜4のいずれかに記載の歩行訓練装置。
The floor portion is arranged in parallel with each other, is looped around a horizontally supported rotating body, and an endless belt whose upper surface constitutes the floor surface,
The walking training apparatus according to any one of claims 1 to 4, further comprising a load detection unit that detects a stepping position of the sole of the subject to the floor and a floor reaction force.
前記床部の床面に訓練映像を投影する映像投影部と、
前記床面への前記対象者の足裏の踏み出し位置及び床反力を検出する荷重検出部と、
前記訓練映像の床面上の表示位置と、前記運動検出部及び前記荷重検出部の一方で検出された前記踏み出し位置とから訓練の評価を行う訓練評価部とを備えた請求項4に記載の歩行訓練装置。
A video projection unit for projecting a training video on the floor of the floor,
A load detection unit for detecting a stepping position and a floor reaction force of the sole of the subject to the floor; and
The training evaluation part of Claim 4 provided with the training evaluation part which evaluates training from the display position on the floor surface of the said training image | video and the said stepping position detected by one of the said motion detection part and the said load detection part. Walking training device.
前記体重免荷部は、基台と、基台に軸支され、垂直面内で支軸周りに揺動するアームと、錘とを備え、
前記サドルは、前記アームの先端に取り付けられ、前記錘は、前記アームの基端側に垂設されることを特徴とする請求項1〜6のいずれかに記載の歩行訓練装置。
The weight-carrying portion includes a base, an arm that is pivotally supported by the base, and swings around the spindle within a vertical plane, and a weight.
The walking training apparatus according to claim 1, wherein the saddle is attached to a distal end of the arm, and the weight is suspended from a proximal end side of the arm.
前記錘を前記アームに垂設させる錘係合部を備え、
前記錘は、前記基台に複数個積層配置されてなり、
前記錘係合部は、上方側から任意の複数個の錘を前記アームの基端に係合させる請求項7に記載の歩行訓練装置。
A weight engaging portion for vertically hanging the weight on the arm;
A plurality of weights are stacked on the base,
The gait training device according to claim 7, wherein the weight engaging portion engages an arbitrary plurality of weights with a base end of the arm from above.
対象者を股下部で支持するサドルを備え、前記対象者の体重の一部を免荷する体重免荷部と、
前記サドルの下方に位置し、対象者が歩行する床面を有する床部と、
対象者の下肢における各筋の筋電位及び前記対象者の下肢の各関節の動きを検出する検出部と、
前記検出部による検出結果から運動診断情報を演算する演算部とを備え、
前記検出部は、前記筋活動として筋電位を測定する筋電位検出部と、前記下肢運動として関節の動きを検出する運動検出部とを備え、
前記演算部は、前記筋電位検出部の検出結果及び前記運動検出部の検出結果から、下肢先端の運動制御に関わる特徴量である筋シナジー、剛性及び平衡点の少なくとも1つを特徴量として算出する歩行診断装置。
A saddle for supporting the subject at the crotch, and a weight-bearing portion for unloading part of the subject's weight;
A floor portion located below the saddle and having a floor surface on which the subject walks;
A detection unit for detecting the myoelectric potential of each muscle in the lower limb of the subject and the movement of each joint of the lower limb of the subject;
A calculation unit that calculates motion diagnosis information from the detection result of the detection unit,
The detection unit includes a myoelectric potential detection unit that measures myoelectric potential as the muscle activity, and a motion detection unit that detects joint motion as the lower limb motion,
The calculation unit calculates, as a feature amount, at least one of muscle synergy, stiffness, and equilibrium point, which are feature amounts related to motion control of the lower limb tip, from the detection result of the myoelectric potential detection unit and the detection result of the motion detection unit. Gait diagnostic device.
対象者を股下部で支持するサドルを備え、前記対象者の体重の一部を免荷する、歩行訓練装置の体重免荷装置において、
基台と、基台に軸支され、垂直面内で揺動するアームと、錘と、前記錘を前記アームに垂設させる錘係合部とを備え、
前記サドルは、前記アームの先端に取り付けられ、
前記錘は、前記基台に複数個積層配置されてなり、
前記錘係合部は、上方側から任意の複数個の錘を前記アームの基端に係合させる体重免荷装置。
In a weight-bearing device for a gait training device, comprising a saddle that supports the subject at the crotch, and unloading part of the subject's weight,
A base, an arm that is pivotally supported by the base and swings in a vertical plane, a weight, and a weight engaging portion that hangs the weight on the arm;
The saddle is attached to the tip of the arm;
A plurality of weights are stacked on the base,
The weight engaging portion is a weight-bearing device that engages an arbitrary plurality of weights with the base end of the arm from above.
床部の床面上で体重免荷部のサドルによって対象者を股下部で支持して体重の一部を免荷した状態で、前記床部の床面を前記サドルで指示された対象者の前方から後方方向に向けて移動させつつ、前記対象者の足関節底屈筋へ電気刺激を行うことを特徴とする歩行訓練方法。 On the floor surface of the floor portion, the subject is supported by the saddle of the weight-carrying portion and the part of the body weight is released by supporting the subject at the crotch portion, and the floor surface of the floor portion of the subject indicated by the saddle A walking training method characterized by performing electrical stimulation to the ankle plantar flexor muscle of the subject while moving from the front toward the rear. 対象者を股下部で支持するサドルを備え、前記対象者の体重の一部を免荷する体重免荷部と、
前記サドルの下方に位置し、対象者が歩行する床面を有する床部と、
対象者の下肢における各筋の筋電位及び前記対象者の下肢の各関節の動きを検出する検出部と、
前記検出部による検出結果から運動診断情報を演算する演算部とを備え、
前記検出部は、前記筋活動として筋電位を測定すると共に、前記下肢運動として関節の動きを検出し、
前記演算部は、前記筋電位の検出結果、及び前記下肢運動として関節の動きの検出結果から、下肢先端の運動制御に関わる特徴量である筋シナジー、平衡点及び剛性の少なくとも1つを特徴量として算出する歩行診断方法。
A saddle for supporting the subject at the crotch, and a weight-bearing portion for unloading part of the subject's weight;
A floor portion located below the saddle and having a floor surface on which the subject walks;
A detection unit for detecting the myoelectric potential of each muscle in the lower limb of the subject and the movement of each joint of the lower limb of the subject;
A calculation unit that calculates motion diagnosis information from the detection result of the detection unit,
The detection unit measures myoelectric potential as the muscle activity and detects joint movement as the lower limb movement,
The calculation unit calculates at least one of muscle synergy, equilibrium point, and stiffness, which is a feature amount related to motion control of the lower limb tip, from the detection result of the myoelectric potential and the detection result of joint motion as the lower limb motion. Gait diagnosis method to calculate as
JP2017036437A 2017-02-28 2017-02-28 Walking training device, walking diagnostic device, weight unloading device, and walking diagnostic method Active JP6858400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017036437A JP6858400B2 (en) 2017-02-28 2017-02-28 Walking training device, walking diagnostic device, weight unloading device, and walking diagnostic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017036437A JP6858400B2 (en) 2017-02-28 2017-02-28 Walking training device, walking diagnostic device, weight unloading device, and walking diagnostic method

Publications (2)

Publication Number Publication Date
JP2018139975A true JP2018139975A (en) 2018-09-13
JP6858400B2 JP6858400B2 (en) 2021-04-14

Family

ID=63527259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017036437A Active JP6858400B2 (en) 2017-02-28 2017-02-28 Walking training device, walking diagnostic device, weight unloading device, and walking diagnostic method

Country Status (1)

Country Link
JP (1) JP6858400B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109998551A (en) * 2019-04-11 2019-07-12 北京航空航天大学 A kind of gait phase analysis method of segmented local peak detection
JP2020182644A (en) * 2019-05-07 2020-11-12 株式会社テック技販 Treadmill and load sensing method of the same
WO2021049417A1 (en) 2019-09-12 2021-03-18 株式会社大武ルート工業 Treadmill
JP2022535563A (en) * 2019-06-04 2022-08-09 グリフィス・ユニバーシティ Digital twin neurorehabilitation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102588891B1 (en) * 2021-06-29 2023-10-13 (재)예수병원유지재단 Apparatus for therapeutic exercise based on treadmill

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10179559A (en) * 1996-10-29 1998-07-07 Woodway Ag Tread mill
JP2003310577A (en) * 2002-04-23 2003-11-05 Hitachi Kiden Kogyo Ltd Floor reaction force gauge
JP2004181195A (en) * 2002-12-05 2004-07-02 Akitoshi Ogoshi Sporting apparatus for indoor training such as running/walking
US20100298102A1 (en) * 2009-04-16 2010-11-25 Caitlyn Joyce Bosecker Dynamic lower limb rehabilitation robotic apparatus and method of rehabilitating human gait
JP2014509919A (en) * 2011-04-08 2014-04-24 ヨンセイ ユニヴァーシティ ウォンジュ インダストリー−アカデミック コオぺレイション ファウンデイション Active robotic walking training system and method
JP2015024160A (en) * 2014-09-30 2015-02-05 国立大学法人九州工業大学 Self-supporting type walking support device
JP2015112453A (en) * 2013-12-16 2015-06-22 国立大学法人大阪大学 Motion analysis device, motion analysis method, and motion analysis program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10179559A (en) * 1996-10-29 1998-07-07 Woodway Ag Tread mill
JP2003310577A (en) * 2002-04-23 2003-11-05 Hitachi Kiden Kogyo Ltd Floor reaction force gauge
JP2004181195A (en) * 2002-12-05 2004-07-02 Akitoshi Ogoshi Sporting apparatus for indoor training such as running/walking
US20100298102A1 (en) * 2009-04-16 2010-11-25 Caitlyn Joyce Bosecker Dynamic lower limb rehabilitation robotic apparatus and method of rehabilitating human gait
JP2014509919A (en) * 2011-04-08 2014-04-24 ヨンセイ ユニヴァーシティ ウォンジュ インダストリー−アカデミック コオぺレイション ファウンデイション Active robotic walking training system and method
JP2015112453A (en) * 2013-12-16 2015-06-22 国立大学法人大阪大学 Motion analysis device, motion analysis method, and motion analysis program
JP2015024160A (en) * 2014-09-30 2015-02-05 国立大学法人九州工業大学 Self-supporting type walking support device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109998551A (en) * 2019-04-11 2019-07-12 北京航空航天大学 A kind of gait phase analysis method of segmented local peak detection
JP2020182644A (en) * 2019-05-07 2020-11-12 株式会社テック技販 Treadmill and load sensing method of the same
JP7264373B2 (en) 2019-05-07 2023-04-25 株式会社テック技販 Treadmills and load detection methods for treadmills
JP2022535563A (en) * 2019-06-04 2022-08-09 グリフィス・ユニバーシティ Digital twin neurorehabilitation system
WO2021049417A1 (en) 2019-09-12 2021-03-18 株式会社大武ルート工業 Treadmill

Also Published As

Publication number Publication date
JP6858400B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
US10238318B2 (en) Treadmill training device adapted to provide targeted resistance to leg movement
US10391015B2 (en) Apparatus and method for restoring voluntary control of locomotion in neuromotor impairments
JP6858400B2 (en) Walking training device, walking diagnostic device, weight unloading device, and walking diagnostic method
Hidler et al. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis
Van Asseldonk et al. The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control
US10406059B2 (en) Human movement research, therapeutic, and diagnostic devices, methods, and systems
Hesse et al. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients
Emken et al. Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury
JP6175050B2 (en) Active robotic walking training system and method
Khomami et al. A survey on soft lower limb cable-driven wearable robots without rigid links and joints
Grazi et al. Gastrocnemius myoelectric control of a robotic hip exoskeleton can reduce the user's lower-limb muscle activities at push off
TW202007382A (en) Gait learning assisting system and method of application thereof that includes a main body, at least one motion detection module, a control module, at least one driver module, and at least one power measurement module
Cherni et al. Effects of body weight support and guidance force settings on muscle synergy during Lokomat walking
Tomelleri et al. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions
Kang et al. A novel assist-as-needed control method to guide pelvic trajectory for gait rehabilitation
Drolet et al. On the effects of visual anticipation of floor compliance changes on human gait: Towards model-based robot-assisted rehabilitation
Kagawa et al. State-dependent corrective reactions for backward balance losses during human walking
Yavuzer Three-dimensional quantitative gait analysis
Lopes et al. Biomechanical assessment of adapting trajectory and human-robot interaction stiffness in impedance-controlled ankle orthosis
Hussein et al. Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training
Kurz et al. Influence of lower body pressure support on the walking patterns of healthy children and adults
Bulea et al. Interleaved assistance and resistance for exoskeleton mediated gait training: Validation, feasibility and effects
Hidler et al. Inverse-dynamics based assessment of gait using a robotic orthosis
JP7124796B2 (en) Rehabilitation support system, method of operating rehabilitation support device, and rehabilitation support program
Artemiadis et al. On the control of the MIT-Skywalker

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170321

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170321

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210317

R150 Certificate of patent or registration of utility model

Ref document number: 6858400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250