JP2018135420A - Resin composition containing wavelength conversion material - Google Patents

Resin composition containing wavelength conversion material Download PDF

Info

Publication number
JP2018135420A
JP2018135420A JP2017029523A JP2017029523A JP2018135420A JP 2018135420 A JP2018135420 A JP 2018135420A JP 2017029523 A JP2017029523 A JP 2017029523A JP 2017029523 A JP2017029523 A JP 2017029523A JP 2018135420 A JP2018135420 A JP 2018135420A
Authority
JP
Japan
Prior art keywords
group
wavelength conversion
carbon atoms
resin composition
benzotriazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017029523A
Other languages
Japanese (ja)
Other versions
JP6868896B2 (en
Inventor
敏之 上坂
Toshiyuki Uesaka
敏之 上坂
朋之 石谷
Tomoyuki Ishitani
朋之 石谷
貴文 藤原
Takafumi Fujiwara
貴文 藤原
彰次郎 吉田
Shojiro Yoshida
彰次郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shipro Kasei Kaisha Ltd
Original Assignee
Shipro Kasei Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shipro Kasei Kaisha Ltd filed Critical Shipro Kasei Kaisha Ltd
Priority to JP2017029523A priority Critical patent/JP6868896B2/en
Publication of JP2018135420A publication Critical patent/JP2018135420A/en
Application granted granted Critical
Publication of JP6868896B2 publication Critical patent/JP6868896B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition that is suitable for agricultural wavelength conversion films and solar battery wavelength conversion films, has excellent wavelength conversion performance of efficiently converting ultraviolet rays into blue light around 400-410 nm, and shows excellent light resistance to resist deterioration even under irradiation with ultraviolet rays.SOLUTION: A resin composition contains the following benzotriazol derivative compound in a resin [where, preferably, Rand Rare both a C1-8 alkyl group].SELECTED DRAWING: None

Description

本発明は、ベンゾトリアゾール誘導体化合物である波長変換材料を含有する樹脂組成物に関し、さらに、この樹脂組成物を成形又は成膜してなる農業用波長変換フィルム、及びこの樹脂組成物を成形又は成膜してなる太陽電池用波長変換フィルムに関する。さらに詳しくは、340nm付近の紫外線を強く吸収して400〜410nm付近で強い青色発光を示す優れた波長変換性を示し、同時に優れた耐光性を示す樹脂組成物、農業用波長変換フィルム、及び太陽電池用波長変換フィルムに関する。   The present invention relates to a resin composition containing a wavelength conversion material that is a benzotriazole derivative compound, and further to an agricultural wavelength conversion film formed by molding or film-forming this resin composition, and molding or forming this resin composition. It is related with the wavelength conversion film for solar cells formed. More specifically, the resin composition, the agricultural wavelength conversion film, and the sun exhibiting excellent wavelength conversion properties that strongly absorb ultraviolet rays around 340 nm and exhibit strong blue light emission around 400 to 410 nm, and at the same time exhibit excellent light resistance. The present invention relates to a wavelength conversion film for batteries.

波長変換材料は照射された特定の波長の光を吸収して別の波長の光を放出する材料であり、単体、有機溶媒中、樹脂中などで用いられ、幅広い分野で使用されている。   A wavelength converting material is a material that absorbs light having a specific wavelength and emits light having a different wavelength. The wavelength converting material is used alone, in an organic solvent, in a resin, or the like, and is used in a wide range of fields.

波長変換材料を含有したフィルムを農作物の周辺に設置することで、特定の波長の光をより多く農作物に当て、農作物の生育を促進させることが実施されている。また、太陽電池は一般的に紫外域の感度が低く、太陽光に含まれる紫外線を十分活用できていないため、紫外線を可視光に変換することができる波長変換材料を含有したフィルムを太陽電池表面に取り付けることで、感度が高い可視光域の光をより多く取り入れて、太陽電池の効率を向上させることが実施されている。   By installing a film containing a wavelength conversion material in the vicinity of a crop, more light of a specific wavelength is applied to the crop to promote the growth of the crop. In addition, since solar cells generally have low sensitivity in the ultraviolet region and cannot fully utilize the ultraviolet rays contained in sunlight, a film containing a wavelength conversion material capable of converting ultraviolet rays into visible light is used for the surface of the solar cell. By attaching to the solar cell, it is practiced to increase the efficiency of the solar cell by taking in more light in the visible light region with high sensitivity.

上記の各用途で使用される波長変換材料には、紫外線を十分吸収して強い可視光を発する優れた波長変換性があることが求められている。すなわち、物質が光を吸収する程度を示す指標であるモル吸光係数が高く、吸収された光子数に対する放出された光子数の比で表される蛍光量子効率が高い波長変換材料が求められており、モル吸光係数及び蛍光量子効率が高いほど優れた波長変換材料となる。   The wavelength conversion material used in each of the above applications is required to have excellent wavelength conversion properties that sufficiently absorb ultraviolet rays and emit strong visible light. That is, there is a need for a wavelength conversion material that has a high molar extinction coefficient, which is an indicator of how much a substance absorbs light, and a high fluorescence quantum efficiency expressed by the ratio of the number of emitted photons to the number of absorbed photons. The higher the molar extinction coefficient and the fluorescence quantum efficiency, the better the wavelength conversion material.

波長変換フィルムの波長変換性は、物体に特定の波長の光を当てたときに吸収される光の程度を示す吸光度と、蛍光量子効率で評価することができ、波長変換フィルムには高い吸光度及び高い蛍光量子効率が要求される。さらに太陽光が直接照射されることから、太陽光に含まれる紫外線により変質しない高い耐光性が要求される。すなわち、吸光度、蛍光量子効率、及び耐光性が高いほど優れた波長変換フィルムとなる。   The wavelength conversion property of the wavelength conversion film can be evaluated by the absorbance indicating the degree of light absorbed when light of a specific wavelength is applied to the object, and the fluorescence quantum efficiency. High fluorescence quantum efficiency is required. Furthermore, since sunlight is directly irradiated, high light resistance that is not altered by ultraviolet rays contained in sunlight is required. That is, the higher the absorbance, fluorescence quantum efficiency, and light resistance, the better the wavelength conversion film.

これまで波長変換性に優れた波長変換フィルムが各種提案されており、それを取り付けることで、植物の生育促進や太陽電池の効率向上が示されている。しかしながら、耐光性に優れた波長変換フィルムは少なく、特に紫外線を青色光に効率よく変換する波長変換性と耐光性を両立する波長変換フィルムはほとんどない。   Various wavelength conversion films excellent in wavelength conversion properties have been proposed so far, and by attaching them, plant growth promotion and solar cell efficiency improvement have been shown. However, there are few wavelength conversion films excellent in light resistance, and in particular, there are few wavelength conversion films that achieve both wavelength conversion and light resistance that efficiently convert ultraviolet light into blue light.

農業用及び太陽電池用の波長変換フィルムとして、例えば特許文献1〜4に記載されているように、フェナジン誘導体、オキサゾール誘導体、ベンゾ複素環誘導体、キノリノール誘導体の金属錯体、ベンゾチアジアゾール誘導体等を波長変換材料として使用することが提案されており、それらを添加した波長変換フィルムを用いることで、植物の生育促進及び太陽電池の効率向上が示されている。しかしながら、これら波長変換材料の耐光性は十分ではないか、又は耐光性への言及がない。   As wavelength conversion films for agriculture and solar cells, for example, as described in Patent Documents 1 to 4, wavelength conversion of phenazine derivatives, oxazole derivatives, benzoheterocyclic derivatives, metal complexes of quinolinol derivatives, benzothiadiazole derivatives, etc. It has been proposed to be used as a material, and by using a wavelength conversion film to which these are added, it has been shown that the growth of plants and the efficiency of solar cells are improved. However, the light resistance of these wavelength conversion materials is not sufficient or there is no mention of light resistance.

特許文献5〜6では、本発明でも用いられているベンゾトリアゾール誘導体を波長変換材料として用いた波長変換フィルムが提案されており、最大発光波長440nm程度の波長変換フィルムが示されている。これらを農業用及び太陽電池用波長変換フィルムとして使用することは可能であるが、農作物の生育促進や太陽電池の効率向上に最適な波長は、農作物や太陽電池の種類によって異なっており、400〜410nm付近で発光する波長変換フィルムも必要である。   Patent Documents 5 to 6 propose a wavelength conversion film using a benzotriazole derivative that is also used in the present invention as a wavelength conversion material, and shows a wavelength conversion film having a maximum emission wavelength of about 440 nm. Although it is possible to use these as wavelength conversion films for agriculture and solar cells, the optimum wavelength for promoting the growth of crops and improving the efficiency of solar cells varies depending on the types of crops and solar cells. A wavelength conversion film that emits light at around 410 nm is also required.

特開2010−88420号公報JP 2010-88420 A 特開2014−98156号公報JP 2014-98156 A 特開2012−188473号公報JP 2012-188473 A 特開2014−237792号公報JP 2014-237792 A 特開2014−144931号公報JP 2014-144931 A 特開2014−144932号公報JP 2014-144932 A

このような状況下、本発明における課題は、紫外線を400〜410nm付近の青色光に効率よく変換する優れた波長変換性を示し、紫外線が照射しても劣化しない優れた耐光性を示す樹脂組成物を提供し、さらにはこれを用いた農業用波長変換フィルム及び太陽電池用波長変換フィルムを提供することにある。   Under such circumstances, the problem in the present invention is that the resin composition exhibits excellent wavelength conversion property that efficiently converts ultraviolet light into blue light of around 400 to 410 nm and does not deteriorate even when irradiated with ultraviolet light. An object is to provide an agricultural wavelength conversion film and a solar cell wavelength conversion film using the same.

本発明では、下記一般式(1)で示されるベンゾトリアゾール誘導体化合物を、樹脂組成物、農業用波長変換フィルム、及び太陽電池用波長変換フィルムに用いることを上記課題の主要な解決手段とする。

Figure 2018135420
一般式(1)
[式中Rは、炭素数1〜18のアルキル基、アルキル炭素数1〜7のカルボキシアルキル基、各アルキル炭素数の合計が2〜15のアルキルオキシカルボニルアルキル基、炭素数1〜8のヒドロキシアルキル基、各アルキル炭素数の合計が2〜15のアルキルカルボニルオキシアルキル基、ホルミル基、アルキル炭素数1〜7のアルキルカルボニル基、ベンゾイル基またはトルオイル基を表し、Rは、水素原子、炭素数1〜18のアルキル基、フェニル基またはトリル基を表す。] In the present invention, use of a benzotriazole derivative compound represented by the following general formula (1) for a resin composition, an agricultural wavelength conversion film, and a solar cell wavelength conversion film is a main means for solving the above problems.
Figure 2018135420
General formula (1)
[Wherein R 1 is an alkyl group having 1 to 18 carbon atoms, a carboxyalkyl group having 1 to 7 alkyl carbon atoms, an alkyloxycarbonylalkyl group having 2 to 15 total carbon atoms, or an alkyl group having 1 to 8 carbon atoms. A hydroxyalkyl group, an alkylcarbonyloxyalkyl group having a total of 2 to 15 alkyl carbon atoms, a formyl group, an alkylcarbonyl group having 1 to 7 alkyl carbon atoms, a benzoyl group or a toluoyl group, wherein R 2 is a hydrogen atom, An alkyl group having 1 to 18 carbon atoms, a phenyl group or a tolyl group is represented. ]

上記一般式(1)で示されるベンゾトリアゾール誘導体化合物は、好ましくは、Rが炭素数1〜8のアルキル基であり、Rが炭素数1〜8のアルキル基である化合物である。 The benzotriazole derivative compound represented by the general formula (1) is preferably a compound in which R 1 is an alkyl group having 1 to 8 carbon atoms and R 2 is an alkyl group having 1 to 8 carbon atoms.

本発明の一般式(1)で示されるベンゾトリアゾール誘導体化合物を用いた樹脂組成物、農業用波長変換フィルム、及び太陽電池用波長変換フィルムは、340nm付近の紫外線を強く吸収して400〜410nm付近で強い青色発光を示し、従来品より高い吸光度及び蛍光量子効率を示し、さらに耐光性が従来品より高いため、従来技術の課題を解決し得る樹脂組成物、農業用波長変換フィルム、及び太陽電池用波長変換フィルムとして有用である。   The resin composition using the benzotriazole derivative compound represented by the general formula (1) of the present invention, the wavelength conversion film for agriculture, and the wavelength conversion film for solar cells strongly absorb ultraviolet rays around 340 nm and are around 400 to 410 nm. Resin composition, agricultural wavelength conversion film, and solar cell that exhibit strong blue light emission, show higher absorbance and fluorescence quantum efficiency than conventional products, and have higher light resistance than conventional products, and can solve the problems of the prior art It is useful as a wavelength conversion film.

以下に本発明につき詳細に説明する。本発明は樹脂組成物、農業用波長変換フィルム、及び太陽電池用波長変換フィルムとして、下記一般式(1)で示されるベンゾトリアゾール誘導体化合物を用いたものである。以下に下記一般式(1)において表される化合物について説明する。

Figure 2018135420
一般式(1) The present invention will be described in detail below. The present invention uses a benzotriazole derivative compound represented by the following general formula (1) as a resin composition, an agricultural wavelength conversion film, and a solar cell wavelength conversion film. The compounds represented by the following general formula (1) will be described below.
Figure 2018135420
General formula (1)

一般式(1)中、Rはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ヘキシル基、オクチル基、2−エチルヘキシル基、ドデシル基、オクタデシル基等の炭素数1〜18の直鎖または分岐のアルキル基;カルボキシエチル基、カルボキシヘプチル基等のアルキル炭素数1〜7のカルボキシアルキル基;メトキシカルボニルエチル基、オクチルオキシカルボニルヘプチル基等のアルキル炭素数の合計が2〜15のアルキルオキシカルボニルアルキル基;ヒドロキシエチル基、ヒドロキシオクチル基等の炭素数1〜8のヒドロキシアルキル基;メチルカルボニルオキシエチル基、ヘプチルカルボニルオキシオクチル基等のアルキル炭素数の合計が2〜15のアルキルカルボニルオキシアルキル基;ホルミル基;アセチル基、プロピオニル基、ブチリル基、イソブチリル基、オクタノイル基、2−エチルヘキサノイル基等のアルキル炭素数1〜7の直鎖又は分岐のアルキルカルボニル基;ベンゾイル基;トルオイル基が挙げられ、Rは水素原子;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ヘキシル基、オクチル基、2−エチルヘキシル基、ドデシル基、オクタデシル基等の炭素数1〜18の直鎖または分岐のアルキル基;フェニル基;トリル基が挙げられる。 In general formula (1), R 1 is methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, hexyl group, octyl group, 2-ethylhexyl group, dodecyl. Group, a linear or branched alkyl group having 1 to 18 carbon atoms such as octadecyl group; a carboxyalkyl group having 1 to 7 alkyl carbon atoms such as carboxyethyl group and carboxyheptyl group; methoxycarbonylethyl group, octyloxycarbonylheptyl group An alkyloxycarbonylalkyl group having a total of 2 to 15 alkyl carbon atoms, such as a hydroxyethyl group, a hydroxyalkyl group having 1-8 carbon atoms such as a hydroxyoctyl group, a methylcarbonyloxyethyl group, a heptylcarbonyloxyoctyl group, etc. Alkyl alkyl having 2 to 15 total alkyl carbon atoms Formyl group; acetyl group, propionyl group, butyryl group, isobutyryl group, octanoyl group, 2-ethylhexanoyl group, etc., linear or branched alkylcarbonyl group having 1 to 7 alkyl carbon atoms; benzoyl group; A toluoyl group, and R 2 is a hydrogen atom; methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, hexyl group, octyl group, 2-ethylhexyl group A linear or branched alkyl group having 1 to 18 carbon atoms such as a dodecyl group and an octadecyl group; a phenyl group; and a tolyl group.

上記一般式(1)で示されるベンゾトリアゾール誘導体化合物は、好ましくは、Rが炭素数1〜8のアルキル基であり、Rが炭素数1〜8のアルキル基である化合物である。 The benzotriazole derivative compound represented by the general formula (1) is preferably a compound in which R 1 is an alkyl group having 1 to 8 carbon atoms and R 2 is an alkyl group having 1 to 8 carbon atoms.

本発明で用いられるベンゾトリアゾール誘導体化合物一般式(1)としては、例えば、次に示すものを挙げることができる。メチル 2−(4−メトキシフェニル)−2H−ベンゾトリアゾール−5−カルボキシレート、メチル 2−(4−オクチルオキシフェニル)−2H−ベンゾトリアゾール−5−カルボキシレート、オクチル 2−(4−オクチルオキシフェニル)−2H−ベンゾトリアゾール−5−カルボキシレート、メチル 2−(4−アセトキシフェニル)−2H−ベンゾトリアゾール−5−カルボキシレート、メチル 2−(4−ベンゾイルオキシフェニル)−2H−ベンゾトリアゾール−5−カルボキシレート、フェニル 2−(4−メトキシフェニル)−2H−ベンゾトリアゾール−5−カルボキシレート。   Examples of the general formula (1) of the benzotriazole derivative compound used in the present invention include the following. Methyl 2- (4-methoxyphenyl) -2H-benzotriazole-5-carboxylate, methyl 2- (4-octyloxyphenyl) -2H-benzotriazole-5-carboxylate, octyl 2- (4-octyloxyphenyl) ) -2H-benzotriazole-5-carboxylate, methyl 2- (4-acetoxyphenyl) -2H-benzotriazole-5-carboxylate, methyl 2- (4-benzoyloxyphenyl) -2H-benzotriazole-5 Carboxylate, phenyl 2- (4-methoxyphenyl) -2H-benzotriazole-5-carboxylate.

本発明で用いられるベンゾトリアゾール誘導体化合物一般式(1)を合成する方法に特に限定はなく、従来公知の反応原理を広く用いることができ、たとえば、下記(化2〜化9)に示した反応式を経て合成することができる。ただし、Xはハロゲン原子を表す。

Figure 2018135420
Figure 2018135420
Figure 2018135420
Figure 2018135420
Figure 2018135420
Figure 2018135420
Figure 2018135420
Figure 2018135420
The method for synthesizing the benzotriazole derivative compound general formula (1) used in the present invention is not particularly limited, and a conventionally known reaction principle can be widely used. For example, the reactions shown in the following (Chemical Formula 2 to Chemical Formula 9) It can be synthesized via the formula. However, X represents a halogen atom.
Figure 2018135420
Figure 2018135420
Figure 2018135420
Figure 2018135420
Figure 2018135420
Figure 2018135420
Figure 2018135420
Figure 2018135420

本ベンゾトリアゾール誘導体化合物が用いられる樹脂組成物、農業用波長変換フィルム、及び太陽電池用波長変換フィルムの素材は特に限定されないが、具体例としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリペンテン、ポリ-3−メチルブチレン、ポリメチルペンテンなどのα−オレフィン重合体またはエチレン−酢酸ビニル共重合体、エチレン−プロピレン共重合体などのポリオレフィン、ポリ塩化ビニル、ポリ臭化ビニル、ポリフッ化ビニル、塩素化ポリエチレン、塩素化ポリプロピレン、臭素化ポリエチレン、塩化ゴム、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−エチレン共重合体、塩化ビニル−プロピレン共重合体、塩化ビニル−スチレン共重合体、塩化ビニル−イソブチレン共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−スチレン−無水マレイン酸三元共重合体、塩化ビニル−スチレン−アクリロニトリル三元共重合体、塩化ビニル−ブタジエン共重合体、塩化ビニル−イソブチレン共重合体、塩化ビニル−塩素化プロピレン共重合体、塩化ビニル−塩化ビニリデン−酢酸ビニル三元共重合体、塩化ビニル−アクリル酸エステル共重合体、塩化ビニル−マレイン酸エステル共重合体、塩化ビニル−メタクリル酸エステル共重合体、塩化ビニル−アクリロニトリル共重合体、内部可塑性ポリ塩化ビニルなどの含ハロゲン合成樹脂、石油樹脂、クマロン樹脂、ポリスチレン、スチレンと他の単量体(無水マレイン酸、ブタジエン、アクリロニトリルなど)との共重合体、アクリロニトリル−ブタジエン−スチレン樹脂、アクリル酸エステル−ブタジエン−スチレン樹脂、メタクリル酸エステル−ブタジエン−スチレン樹脂などのスチレン系樹脂、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール、アクリル樹脂、メタクリレート樹脂、ポリアクリロニトリル、ポリフェニレンオキシド、ポリカーボネート、変性ポリフェニレンオキシド、ポリアセタール、フェノール樹脂、尿素樹脂、メラミン樹脂、エポキシ樹脂、シリコン樹脂、ポリエチレンテレフタレート、強化ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリスルホン系樹脂、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルケトン、ポリエーテルイミド、ポリオキシベンゾイル、ポリイミド、ポリマレイミド、ポリアミドイミド、アルキド樹脂、アミノ樹脂、ビニル樹脂、水溶性樹脂、粉体塗料用樹脂、ポリアミド樹脂、ポリウレタン樹脂、不飽和ポリエステル樹脂等を挙げることができる。   The material of the resin composition, the agricultural wavelength conversion film, and the solar cell wavelength conversion film in which the present benzotriazole derivative compound is used is not particularly limited. Specific examples include polyethylene, polypropylene, polybutene, polypentene, and poly-3- Α-olefin polymers such as methylbutylene and polymethylpentene or polyolefins such as ethylene-vinyl acetate copolymer and ethylene-propylene copolymer, polyvinyl chloride, polyvinyl bromide, polyvinyl fluoride, chlorinated polyethylene, chlorine Polypropylene, brominated polyethylene, chlorinated rubber, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-propylene copolymer, vinyl chloride-styrene copolymer, vinyl chloride-isobutylene copolymer , Vinyl chloride-vinyl chloride Copolymer, vinyl chloride-styrene-maleic anhydride terpolymer, vinyl chloride-styrene-acrylonitrile terpolymer, vinyl chloride-butadiene copolymer, vinyl chloride-isobutylene copolymer, vinyl chloride- Chlorinated propylene copolymer, vinyl chloride-vinylidene chloride-vinyl acetate terpolymer, vinyl chloride-acrylic acid ester copolymer, vinyl chloride-maleic acid ester copolymer, vinyl chloride-methacrylic acid ester copolymer , Vinyl chloride-acrylonitrile copolymer, halogen-containing synthetic resins such as internal plastic polyvinyl chloride, petroleum resin, coumarone resin, polystyrene, styrene and other monomers (maleic anhydride, butadiene, acrylonitrile, etc.) Coalescence, acrylonitrile-butadiene-styrene resin, acrylic acid ester -Styrene resins such as butadiene-styrene resin, methacrylate ester-butadiene-styrene resin, polyvinyl acetate, polyvinyl alcohol, polyvinyl formal, polyvinyl butyral, acrylic resin, methacrylate resin, polyacrylonitrile, polyphenylene oxide, polycarbonate, modified polyphenylene oxide , Polyacetal, phenol resin, urea resin, melamine resin, epoxy resin, silicone resin, polyethylene terephthalate, reinforced polyethylene terephthalate, polybutylene terephthalate, polysulfone resin, polyethersulfone, polyphenylene sulfide, polyetherketone, polyetherimide, polyoxy Benzoyl, polyimide, polymaleimide, polyamideimide, alkyd resin, Examples thereof include amino resins, vinyl resins, water-soluble resins, powder coating resins, polyamide resins, polyurethane resins, and unsaturated polyester resins.

その中でも、ポリメタクリル酸メチル、ポリスチレン、ポリカーボネートに本ベンゾトリアゾール誘導体化合物を添加して成形したフィルムでは、高い吸収特性、発光特性、及び耐光性を示すことが本発明の実施例により証明されている。   Among them, it is proved by the examples of the present invention that the film formed by adding the present benzotriazole derivative compound to polymethyl methacrylate, polystyrene, and polycarbonate exhibits high absorption characteristics, light emission characteristics, and light resistance. .

本発明の樹脂組成物、農業用波長変換フィルム、及び太陽電池用波長変換フィルムは、前記ベンゾトリアゾール誘導体化合物が含まれたものであればよく、波長変換材料として、前記ベンゾトリアゾール誘導体化合物のみ、あるいは他の波長変換材料と組合せて使用できる。前記ベンゾトリアゾール誘導体化合物以外の波長変換機能を有する化合物としては、一般的に入手可能なもので紫外線領域に励起帯を有し、可視光領域に発光ピークを有するものあれば特に限定されない。例えば、ペリレン誘導体、クマリン誘導体、有機金属錯体、ピラン誘導体、スチルベン誘導体、アクリドン誘導体、オキサゾン誘導体、キナクリドン誘導体、ベンゾオキサゾール誘導体、ポリフルオレン誘導体、ポリフェニレンビニレン誘導体、ナフタルイミド誘導体等、一般的な低分子蛍光材料、低分子リン光材料、ポリマー発光材料等が用いられる。これらの波長変換材料は、一種類のみを用いてもよく、また、二種類以上を適宜混合して用いてもよい。   The resin composition of the present invention, the wavelength conversion film for agriculture, and the wavelength conversion film for solar cells may be those containing the benzotriazole derivative compound, and as the wavelength conversion material, only the benzotriazole derivative compound, or It can be used in combination with other wavelength conversion materials. The compound having a wavelength conversion function other than the benzotriazole derivative compound is not particularly limited as long as it is generally available and has an excitation band in the ultraviolet region and a light emission peak in the visible light region. For example, general low-molecular fluorescence such as perylene derivatives, coumarin derivatives, organometallic complexes, pyran derivatives, stilbene derivatives, acridone derivatives, oxazone derivatives, quinacridone derivatives, benzoxazole derivatives, polyfluorene derivatives, polyphenylene vinylene derivatives, naphthalimide derivatives, etc. Materials, low-molecular phosphorescent materials, polymer light-emitting materials, and the like are used. Only one kind of these wavelength conversion materials may be used, or two or more kinds may be appropriately mixed and used.

前記ベンゾトリアゾール誘導体化合物を樹脂組成物、農業用波長変換フィルム、及び太陽電池用波長変換フィルムに配合する場合、少なすぎると十分な発光が得られず、また、多すぎると濃度消光が起こるため、0.001〜20重量%、好ましくは0.005〜10重量%の範囲で使用されることが好ましい。   When blending the benzotriazole derivative compound in a resin composition, an agricultural wavelength conversion film, and a solar cell wavelength conversion film, if it is too small, sufficient light emission cannot be obtained, and if it is too large, concentration quenching occurs. It is preferably used in the range of 0.001 to 20% by weight, preferably 0.005 to 10% by weight.

前記ベンゾトリアゾール誘導体化合物を用いた波長変換フィルムの作製方法としては、フィルム成形時に配合したり、成形したフィルムの表面又は中間層に成膜して、波長変換フィルムを作製できる。   As a method for producing a wavelength conversion film using the benzotriazole derivative compound, a wavelength conversion film can be produced by blending at the time of film formation or by forming a film on the surface or intermediate layer of the formed film.

前記ベンゾトリアゾール誘導体化合物を配合したフィルムを成形する方法として、押出成型法、溶液流延法、キャスト法などが挙げられる。溶液流延法やキャスト法を行うには、波長変換材料を有機溶媒に溶解させる必要があり、有機溶媒に溶解しやすい波長変換材料を用いることが望ましい。前記ベンゾトリアゾール誘導体化合物は、有機溶媒に溶解しやすく、溶液流延法やキャスト法でも容易に波長変換フィルムを成形することができる。   Examples of a method for forming a film containing the benzotriazole derivative compound include an extrusion molding method, a solution casting method, and a casting method. In order to perform the solution casting method or the casting method, it is necessary to dissolve the wavelength conversion material in an organic solvent, and it is desirable to use a wavelength conversion material that is easily dissolved in the organic solvent. The benzotriazole derivative compound is easily dissolved in an organic solvent, and a wavelength conversion film can be easily formed by a solution casting method or a casting method.

前記ベンゾトリアゾール誘導体化合物をフィルムに成膜する方法として、例えば、インクジェット法、スピンコート法、キャスト法やディップコート法などの湿式塗布法が挙げられる。   Examples of a method for forming the benzotriazole derivative compound on a film include wet coating methods such as an inkjet method, a spin coating method, a casting method, and a dip coating method.

前記ベンゾトリアゾール誘導体化合物を用いた波長変換フィルムを成形又は成膜する際に、前記ベンゾトリアゾール誘導体化合物を有機溶媒に溶解させる必要がある場合、使用できる有機溶媒として、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素;石油エーテル、石油ベンジン等の石油系溶媒;四塩化炭素、クロロホルム、1,2−ジクロロエタン、ジクロロメタン等のハロゲン化炭化水素;エチルエーテル、イソプロピルエーテル、アニソール、ジオキサン、テトラヒドロフラン等のエーテル;アセトン、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン、イソフォロン等のケトン;酢酸エチル、酢酸ブチル等のエステル;ジメチルホルムアミド、ジメチルアセトアミド等のアミド;アセトニトリル;ジメチルスルフォキシド;クロロベンゼン、ジクロロベンゼン等のハロゲン化ベンゼン等が挙げられる。これらは一種類のみを用いてもよく、また、二種類以上を適宜混合して用いてもよい。   When a wavelength conversion film using the benzotriazole derivative compound is formed or formed, when the benzotriazole derivative compound needs to be dissolved in an organic solvent, usable organic solvents include fats such as pentane, hexane, and heptane. Aromatic hydrocarbons such as benzene, toluene and xylene; Cycloaliphatic hydrocarbons such as cyclohexane and methylcyclohexane; Petroleum solvents such as petroleum ether and petroleum benzine; Carbon tetrachloride, chloroform and 1,2-dichloroethane Halogenated hydrocarbons such as dichloromethane, ethers such as ethyl ether, isopropyl ether, anisole, dioxane, and tetrahydrofuran; ketones such as acetone, methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone, acetophenone, and isophorone; Examples include esters such as ethyl acetate and butyl acetate; amides such as dimethylformamide and dimethylacetamide; acetonitrile; dimethyl sulfoxide; halogenated benzenes such as chlorobenzene and dichlorobenzene. Only one kind of these may be used, or two or more kinds may be appropriately mixed and used.

以下、本発明を合成例、比較合成例、及び実施例により詳述するが、本発明はこれらの様態のみに限定されるものではない。   EXAMPLES Hereinafter, although a synthesis example, a comparative synthesis example, and an Example demonstrate this invention in detail, this invention is not limited only to these aspects.

(合成例)
[中間体;5−カルボキシ −2−(4−ヒドロキシフェニル)−2H−ベンゾトリアゾールの合成]

Figure 2018135420
1000mlの4つ口フラスコに玉付きコンデンサー、温度計、撹拌装置を取り付け、水400ml、炭酸ナトリウム25.6g(0.242モル)、4−アミノ−3−ニトロ安息香酸78.6g(0.432モル)を入れて溶解させ、36%亜硝酸ナトリウム水溶液89.2g(0.465モル)を加えた。この溶液を2000mlの4つ口フラスコに玉付きコンデンサー、温度計、撹拌装置を取り付け、水400ml、62.5%硫酸168.8g(1.076モル)を入れて混合し、3〜7℃に冷却したものに滴下し、同温度で2時間撹拌してジアゾニウム塩水溶液を得た。3000mlの4つ口フラスコに玉付きコンデンサー、温度計、撹拌装置を取り付け、水880ml、水酸化ナトリウム19.5g(0.488モル)、炭酸ナトリウム42.6g(0.402モル)、4−ヒドロキシ安息香酸61.4g(0.445モル)を入れて混合し、ジアゾニウム塩水溶液を3〜7℃で滴下し、同温度で4時間撹拌した。生成した沈殿物をろ過、水洗、乾燥し、4−(4−カルボキシ−2−ニトロフェニルアゾ)フェノールを111.6g得た。 (Synthesis example)
[Intermediate; Synthesis of 5-carboxy-2- (4-hydroxyphenyl) -2H-benzotriazole]
Figure 2018135420
A 1000-ml four-necked flask was equipped with a condenser with a ball, a thermometer, and a stirring device, 400 ml of water, 25.6 g (0.242 mol) of sodium carbonate, 78.6 g (0.432) of 4-amino-3-nitrobenzoic acid. Mol) was added and dissolved, and 89.2 g (0.465 mol) of 36% aqueous sodium nitrite solution was added. Attach this solution to a 2000 ml four-necked flask with a ball condenser, thermometer, and stirrer, add 400 ml of water and 168.8 g (1.076 mol) of 62.5% sulfuric acid, and mix to 3-7 ° C. The solution was added dropwise to the cooled product and stirred at the same temperature for 2 hours to obtain a diazonium salt aqueous solution. A 3000 ml four-necked flask is equipped with a condenser with a ball, a thermometer and a stirrer, 880 ml of water, 19.5 g (0.488 mol) of sodium hydroxide, 42.6 g (0.402 mol) of sodium carbonate, 4-hydroxy 61.4 g (0.445 mol) of benzoic acid was added and mixed, and an aqueous diazonium salt solution was added dropwise at 3 to 7 ° C., followed by stirring at the same temperature for 4 hours. The generated precipitate was filtered, washed with water, and dried to obtain 111.6 g of 4- (4-carboxy-2-nitrophenylazo) phenol.

1000mlの4つ口フラスコに玉付きコンデンサー、温度計、撹拌装置を取り付け、4−(4−カルボキシ−2−ニトロフェニルアゾ)フェノールを111.6g(0.389モル)、イソプロピルアルコール250ml、水200ml、水酸化ナトリウム24.7g(0.618モル)、ハイドロキノン0.6gを入れて溶解させ、60%ヒドラジン一水和物19.8g(0.237モル)を60〜65℃で1時間で滴下し、同温度で2時間撹拌させ、62.5%硫酸でpH4に調整し、生成した沈殿物をろ過、水洗、乾燥し、5−カルボキシ −2−(4−ヒドロキシフェニル)−2H−ベンゾトリアゾール N−オキシドを87.0g得た。   A condenser with a ball, a thermometer and a stirrer are attached to a 1000 ml four-necked flask, 111.6 g (0.389 mol) of 4- (4-carboxy-2-nitrophenylazo) phenol, 250 ml of isopropyl alcohol, and 200 ml of water. 24.7 g (0.618 mol) of sodium hydroxide and 0.6 g of hydroquinone were dissolved, and 19.8 g (0.237 mol) of 60% hydrazine monohydrate was added dropwise at 60 to 65 ° C. over 1 hour. The mixture is stirred at the same temperature for 2 hours, adjusted to pH 4 with 62.5% sulfuric acid, and the resulting precipitate is filtered, washed with water and dried to give 5-carboxy-2- (4-hydroxyphenyl) -2H-benzotriazole. 87.0 g of N-oxide was obtained.

1000mlの4つ口フラスコに玉付きコンデンサー、温度計、撹拌装置を取り付け、5−カルボキシ −2−(4−ヒドロキシフェニル)−2H−ベンゾトリアゾール N−オキシドを87.0g(0.321モル)、イソプロピルアルコール350ml、水350ml、水酸化ナトリウム57.6g(1.440モル)を入れて溶解させ、亜鉛末31.4g(0.480モル)を60〜65℃で30分で添加し、同温度で1時間撹拌させ、同温度でろ過して固形分を取り除き、ろ液を62.5%硫酸でpH4に調整し、生成した沈殿物をろ過、水洗、乾燥して粗結晶を得た。この粗結晶をイソプロピルアルコールで再結晶して、5−カルボキシ −2−(4−ヒドロキシフェニル)−2H−ベンゾトリアゾールを37.5g得た。収率34%(4−アミノ−3−ニトロ−安息香酸から)であった。   A 1000 ml four-necked flask was equipped with a condenser with a ball, a thermometer and a stirrer, and 57.0 g (0.321 mol) of 5-carboxy-2- (4-hydroxyphenyl) -2H-benzotriazole N-oxide, Add 350 ml of isopropyl alcohol, 350 ml of water and 57.6 g (1.440 mol) of sodium hydroxide to dissolve, add 31.4 g (0.480 mol) of zinc powder at 60 to 65 ° C. over 30 minutes, The solid was removed by filtration at the same temperature, the filtrate was adjusted to pH 4 with 62.5% sulfuric acid, and the resulting precipitate was filtered, washed with water and dried to obtain crude crystals. This crude crystal was recrystallized from isopropyl alcohol to obtain 37.5 g of 5-carboxy-2- (4-hydroxyphenyl) -2H-benzotriazole. The yield was 34% (from 4-amino-3-nitro-benzoic acid).

[化合物(a);オクチル 2−(4−オクチルオキシフェニル)−2H−ベンゾトリアゾール−5−カルボキシレートの合成]

Figure 2018135420
化合物(a) [Compound (a); Synthesis of Octyl 2- (4-octyloxyphenyl) -2H-benzotriazole-5-carboxylate]
Figure 2018135420
Compound (a)

500mlの4つ口フラスコに玉付きコンデンサー、温度計、撹拌装置を取り付け、5−カルボキシ −2−(4−ヒドロキシフェニル)−2H−ベンゾトリアゾールを22.3g(0.087モル)、N,N−ジメチルホルムアミド45ml、炭酸ナトリウム9.5g(0.090モル)、ヨウ化カリ1.3g、オクチルクロライド24.2g(0.163モル)を仕込み、120〜130℃で2時間還流撹拌した。メチルイソブチルケトン150ml、酢酸20ml、水200mlを仕込み、70℃で下層の水層を分液して取り除いた。減圧で溶媒を回収し、イソプロピルアルコール100mlを加えて、生成した沈殿物をろ過、洗浄、乾燥して粗結晶を得た。この粗結晶をイソプロピルアルコールで再結晶して、化合物(a)を23.2g得た。収率55%(5−カルボキシ −2−(4−ヒドロキシフェニル)−2H−ベンゾトリアゾールから)であった。融点98℃。   A 500 ml four-necked flask was equipped with a condenser with a ball, a thermometer, and a stirring device, and 22.3 g (0.087 mol) of 5-carboxy-2- (4-hydroxyphenyl) -2H-benzotriazole, N, N -45 ml of dimethylformamide, 9.5 g (0.090 mol) of sodium carbonate, 1.3 g of potassium iodide and 24.2 g (0.163 mol) of octyl chloride were charged and stirred at 120 to 130 ° C for 2 hours under reflux. 150 ml of methyl isobutyl ketone, 20 ml of acetic acid and 200 ml of water were charged, and the lower aqueous layer was separated and removed at 70 ° C. The solvent was recovered under reduced pressure, 100 ml of isopropyl alcohol was added, and the resulting precipitate was filtered, washed and dried to obtain crude crystals. The crude crystals were recrystallized from isopropyl alcohol to obtain 23.2 g of compound (a). The yield was 55% (from 5-carboxy-2- (4-hydroxyphenyl) -2H-benzotriazole). Melting point 98 ° C.

また、HPLC分析により、化合物(a)の純度を測定した。
<測定条件>
装置:L−2130((株)日立ハイテクノロジーズ製)
使用カラム:SUMIPAX ODS A−212 6.0×150mm 5μm
カラム温度:40℃
移動相: メタノール/水=99/1
流速:1.0ml/min
検出:UV250nm
<測定結果>
HPLC面百純度:100.0%
なお、以下の化合物(c)も本化合物と同様の測定条件でHPLC測定を行った。
Moreover, the purity of the compound (a) was measured by HPLC analysis.
<Measurement conditions>
Device: L-2130 (manufactured by Hitachi High-Technologies Corporation)
Column used: SUMPAX ODS A-212 6.0 × 150 mm 5 μm
Column temperature: 40 ° C
Mobile phase: Methanol / water = 99/1
Flow rate: 1.0 ml / min
Detection: UV250nm
<Measurement results>
HPLC area purity: 100.0%
The following compound (c) was also subjected to HPLC measurement under the same measurement conditions as this compound.

また、化合物(a)のNMR測定を行った結果、上記構造を支持する結果が得られた。測定条件は次のとおりである。
<測定条件>
装置:JEOL−ECX400
共振周波数:400MHz(1H−NMR)
溶媒:クロロホルム−d
1H−NMRの内部標準物質として、テトラメチルシランを用い、ケミカルシフト値はδ値(ppm)、カップリング定数はHertzで示した。またsはsinglet、dはdoublet、tはtriplet、mはmultipletの略とする。以下の化合物(b)、(c)においても同様である。なお、以下の化合物(b)、(c)も本化合物と同様の測定条件でNMR測定を行った。
δ=8.71(s,1H,benzotriazole−H),8.28(m,2H,benzotriazole−H),8.06(d,1H,J=8.0Hz,benzene−H),7.94(d,1H,J=8.0Hz,benzene−H),7.05(m,2H,benzene−H),4.38(t,2H,benzene−O−CH2−H),4.05(t,2H,CO−O−CH2−H),1.82(m,4H,O−CH2−CH2−H),1.39(m,20H,(CH2)5−H),0.90(t,6H,CH3−H)
Moreover, as a result of conducting NMR measurement of the compound (a), a result supporting the above structure was obtained. The measurement conditions are as follows.
<Measurement conditions>
Device: JEOL-ECX400
Resonant frequency: 400 MHz (1H-NMR)
Solvent: chloroform-d
Tetramethylsilane was used as an internal standard of 1H-NMR, the chemical shift value was represented by δ value (ppm), and the coupling constant was represented by Hertz. S is a singlet, d is a doublet, t is a triplet, and m is a multiplet. The same applies to the following compounds (b) and (c). The following compounds (b) and (c) were also subjected to NMR measurement under the same measurement conditions as the present compound.
δ = 8.71 (s, 1H, benzotriazole-H), 8.28 (m, 2H, benzotriazole-H), 8.06 (d, 1H, J = 8.0 Hz, benzene-H), 7.94 (D, 1H, J = 8.0 Hz, benzene-H), 7.05 (m, 2H, benzene-H), 4.38 (t, 2H, benzene-O-CH2-H), 4.05 ( t, 2H, CO-O-CH2-H), 1.82 (m, 4H, O-CH2-CH2-H), 1.39 (m, 20H, (CH2) 5-H), 0.90 ( t, 6H, CH3-H)

[中間体;5−カルボキシ −2−(4−オクチルオキシフェニル)−2H−ベンゾトリアゾール]の合成

Figure 2018135420
500mlの4つ口フラスコに玉付きコンデンサー、温度計、撹拌装置を取り付け、化合物(a)を13.8g(0.029モル)、イソプロピルアルコール140ml、水140ml、水酸化ナトリウム4.5g(0.113モル)を仕込んで75℃で2時間撹拌させ、62.5%硫酸でpH4に調整し、生成した沈殿物をろ過、水洗、乾燥して粗結晶を得た。この粗結晶をメチルイソブチルケトンで再結晶して、5−カルボキシ −2−(4−オクチルオキシフェニル)−2H−ベンゾトリアゾールを9.2g得た。収率87%(化合物(a)から)であった。 Synthesis of [intermediate; 5-carboxy-2- (4-octyloxyphenyl) -2H-benzotriazole]
Figure 2018135420
A 500 ml four-necked flask was equipped with a condenser with a ball, a thermometer, and a stirrer, and 13.8 g (0.029 mol) of compound (a), 140 ml of isopropyl alcohol, 140 ml of water, 4.5 g of sodium hydroxide (0. 113 mol) and stirred at 75 ° C. for 2 hours, adjusted to pH 4 with 62.5% sulfuric acid, and the resulting precipitate was filtered, washed with water, and dried to obtain crude crystals. This crude crystal was recrystallized from methyl isobutyl ketone to obtain 9.2 g of 5-carboxy-2- (4-octyloxyphenyl) -2H-benzotriazole. The yield was 87% (from compound (a)).

[化合物(b);メチル 2−(4−オクチルオキシフェニル)−2H−ベンゾトリアゾール−5−カルボキシレートの合成]

Figure 2018135420
化合物(b) [Compound (b); Synthesis of methyl 2- (4-octyloxyphenyl) -2H-benzotriazole-5-carboxylate]
Figure 2018135420
Compound (b)

200mlの4つ口フラスコに玉付きコンデンサー、温度計、撹拌装置を取り付け、5−カルボキシ −2−(4−オクチルオキシフェニル)−2H−ベンゾトリアゾールを4.5g(0.012モル)、トルエン45ml、塩化チオニル3.0g(0.025モル)、N,N−ジメチルホルムアミド0.5mlを仕込み、65℃で4時間撹拌した。減圧で溶媒を回収し、トルエン45ml、メチルアルコール2.3g(0.072モル)、ピリジン2.0g(0.025モル)を仕込み、65℃で1時間撹拌した。水45ml、62.5%硫酸1.5mlを仕込んで、70℃で下層の水層を分液して取り除き、さらに水45mlを仕込んで、70℃で下層の水層を分液して取り除いた。還流脱水後に100℃でろ過して固形分を除去し、減圧で溶媒を回収し、イソプロピルアルコール45mlを加えて、生成した沈殿物をろ過、洗浄、乾燥して、化合物(b)を4.1g得た。収率88%(5−カルボキシ −2−(4−オクチルオキシフェニル)−2H−ベンゾトリアゾールから)であった。融点89℃。   A 200 ml four-necked flask was equipped with a condenser with a ball, a thermometer, and a stirring device, 4.5 g (0.012 mol) of 5-carboxy-2- (4-octyloxyphenyl) -2H-benzotriazole, 45 ml of toluene. , Thionyl chloride (3.0 g, 0.025 mol) and N, N-dimethylformamide (0.5 ml) were charged, and the mixture was stirred at 65 ° C for 4 hours. The solvent was recovered under reduced pressure, 45 ml of toluene, 2.3 g (0.072 mol) of methyl alcohol and 2.0 g (0.025 mol) of pyridine were added, and the mixture was stirred at 65 ° C. for 1 hour. 45 ml of water and 1.5 ml of 62.5% sulfuric acid were added, and the lower aqueous layer was separated and removed at 70 ° C., and further 45 ml of water was added and the lower aqueous layer was separated and removed at 70 ° C. . After reflux dehydration, the solid content was removed by filtration at 100 ° C., the solvent was recovered under reduced pressure, 45 ml of isopropyl alcohol was added, and the resulting precipitate was filtered, washed and dried to obtain 4.1 g of compound (b). Obtained. The yield was 88% (from 5-carboxy-2- (4-octyloxyphenyl) -2H-benzotriazole). Melting point 89 ° C.

また、HPLC分析により、化合物(b)の純度を測定した。
<測定条件>
装置:L−2130((株)日立ハイテクノロジーズ製)
使用カラム:Inertsil ODS−3 4.6×150mm 5μm
カラム温度:25℃
移動相:アセトニトリル /水=9/1(リン酸3ml/L)
流速:1.0ml/min
検出:UV250nm
<測定結果>
HPLC面百純度:100.0%
Moreover, the purity of the compound (b) was measured by HPLC analysis.
<Measurement conditions>
Device: L-2130 (manufactured by Hitachi High-Technologies Corporation)
Column used: Inertsil ODS-3 4.6 × 150 mm 5 μm
Column temperature: 25 ° C
Mobile phase: acetonitrile / water = 9/1 (phosphoric acid 3 ml / L)
Flow rate: 1.0 ml / min
Detection: UV250nm
<Measurement results>
HPLC area purity: 100.0%

また、化合物(b)のNMR測定を行った結果、上記構造を支持する結果が得られた。得られたNMRスペクトルの内容は以下のとおりである。
δ=8.70(s,1H,benzotriazole−H),8.28(m,2H,benzotriazole−H),8.05(d,1H,J=8.0Hz,benzene−H),7.94(d,1H,J=8.0Hz, benzene−H),7.05(m,2H,benzene−H),4.04(t,2H,benzene−O−CH2−H),3.99(s,3H,CO−O−CH3−H),1.82(dd,2H,J=8.0Hz,J=8.0Hz,J=8.0Hz,CH2−H),1.48(dd,2H,J=8.0Hz,J=8.0Hz,J=8.0Hz,CH2−H),1.32(m,8H,(CH2)4−H),0.90(t,3H,CH3−H)
Further, as a result of NMR measurement of the compound (b), a result supporting the above structure was obtained. The contents of the obtained NMR spectrum are as follows.
δ = 8.70 (s, 1H, benzotriazole-H), 8.28 (m, 2H, benzotriazole-H), 8.05 (d, 1H, J = 8.0 Hz, benzene-H), 7.94 (D, 1H, J = 8.0 Hz, benzene-H), 7.05 (m, 2H, benzene-H), 4.04 (t, 2H, benzene-O-CH2-H), 3.99 ( s, 3H, CO-O-CH3-H), 1.82 (dd, 2H, J = 8.0 Hz, J = 8.0 Hz, J = 8.0 Hz, CH2-H), 1.48 (dd, 2H, J = 8.0 Hz, J = 8.0 Hz, J = 8.0 Hz, CH2-H), 1.32 (m, 8H, (CH2) 4-H), 0.90 (t, 3H, CH3 -H)

[化合物(c);メチル 2−(4−メトキシフェニル)−2H−ベンゾトリアゾール−5−カルボキシレートの合成]

Figure 2018135420
化合物(c) [Compound (c); Synthesis of methyl 2- (4-methoxyphenyl) -2H-benzotriazole-5-carboxylate]
Figure 2018135420
Compound (c)

1000mlの4つ口フラスコに玉付きコンデンサー、温度計、撹拌装置を取り付け、5−カルボキシ −2−(4−ヒドロキシフェニル)−2H−ベンゾトリアゾールを10g(0.039モル)、N,N−ジメチルホルムアミド300ml、炭酸カリウム27.1g(0.196モル)、ヨウ化メチル22.3g(0.157モル)を仕込み、25℃で24時間撹拌した。減圧でN,N−ジメチルホルムアミドを回収し、トルエン500ml、水200ml、酢酸50mlを仕込んで、70℃で下層の水層を分液して取り除いた。減圧でトルエンを400ml回収し、析出した結晶をろ過、洗浄、乾燥して、粗結晶を得た。この粗結晶をトルエンで再結晶して、化合物(c)を6.5g得た。収率59%(5−カルボキシ −2−(4−ヒドロキシフェニル)−2H−ベンゾトリアゾールから)であった。融点146℃、HPLC面百純度99.7%であった。   A 1000 ml four-necked flask was equipped with a ball condenser, a thermometer, and a stirrer, and 10 g (0.039 mol) of 5-carboxy-2- (4-hydroxyphenyl) -2H-benzotriazole, N, N-dimethyl 300 ml of formamide, 27.1 g (0.196 mol) of potassium carbonate and 22.3 g (0.157 mol) of methyl iodide were charged and stirred at 25 ° C. for 24 hours. N, N-dimethylformamide was recovered under reduced pressure, 500 ml of toluene, 200 ml of water and 50 ml of acetic acid were charged, and the lower aqueous layer was separated and removed at 70 ° C. 400 ml of toluene was collected under reduced pressure, and the precipitated crystals were filtered, washed and dried to obtain crude crystals. The crude crystals were recrystallized from toluene to obtain 6.5 g of compound (c). The yield was 59% (from 5-carboxy-2- (4-hydroxyphenyl) -2H-benzotriazole). The melting point was 146 ° C., and the HPLC surface percentage purity was 99.7%.

また、化合物(c)のNMR測定を行った結果、上記構造を支持する結果が得られた。得られたNMRスペクトルの内容は以下のとおりである。
δ=8.70(s,1H,benzotriazole−H),8.30(m,2H,benzotriazole−H),8.05(d,1H,J=12.0Hz,benzene−H),7.95(d,1H,J=12.0Hz,benzen−H),7.07(m,2H,benzene−H),3.99(s,3H,benzene−O−CH3−H),3.91(s,3H,CO−O−CH3−H)
Further, as a result of conducting NMR measurement of the compound (c), a result supporting the above structure was obtained. The contents of the obtained NMR spectrum are as follows.
δ = 8.70 (s, 1H, benzotriazole-H), 8.30 (m, 2H, benzotriazole-H), 8.05 (d, 1H, J = 12.0 Hz, benzene-H), 7.95. (D, 1H, J = 12.0 Hz, benzene-H), 7.07 (m, 2H, benzene-H), 3.99 (s, 3H, benzene-O-CH3-H), 3.91 ( s, 3H, CO-O-CH3-H)

(比較合成例)
従来に提案されているベンゾトリアゾール誘導体化合物であり、一般式(1)と異なる構造である、化合物(d);メチル 2−(3,5−ジメトキシ−4−オクチルオキシフェニル)−2H−ベンゾトリアゾール−5−カルボキシレートを比較として合成した。また、従来の一般的な青色発光材料であり、ナフタルイミド誘導体である化合物(e);N−[2−(4−tert−ブチルフェニル)−1,3−ジオキソ−2,3−ジヒドロ−1H−ベンゾ[de]イソキノリン−6−イル]アセトアミドを比較として合成した。
(Comparative synthesis example)
Compound (d); methyl 2- (3,5-dimethoxy-4-octyloxyphenyl) -2H-benzotriazole, which is a conventionally proposed benzotriazole derivative compound and having a structure different from the general formula (1) -5-carboxylate was synthesized as a comparison. Further, compound (e), which is a conventional general blue light emitting material and is a naphthalimide derivative; N- [2- (4-tert-butylphenyl) -1,3-dioxo-2,3-dihydro-1H -Benzo [de] isoquinolin-6-yl] acetamide was synthesized as a comparison.

(実施例1)
[溶液の吸収及び発光特性]
上記の合成例及び比較合成例で得られた化合物(a)〜(e)のクロロホルム中での吸収及び発光特性を表1に示す。
Example 1
[Solution absorption and emission characteristics]
Table 1 shows the absorption and emission characteristics of the compounds (a) to (e) obtained in the above synthesis examples and comparative synthesis examples in chloroform.

Figure 2018135420
Figure 2018135420

(実施例2)
[ポリメタクリル酸メチルを用いた波長変換フィルムの作製]
上記の合成例及び比較合成例で得られた化合物(b)、(e)と、ポリメタクリル酸メチル及び溶媒を、表2で示す比率で混合し、波長変換材料を有した樹脂組成物の溶液を得た。得られた波長変換材料を有した樹脂組成物の溶液を、バーコーターNo.20を用いてガラス板(セントラル社製「フロートガラス板」、厚み=2mm)に塗布し、加熱乾燥90℃を2分、120℃を3分の順で行った後、減圧乾燥40℃を24時間実施して溶媒を除去。膜厚4μmの波長変換フィルムを得た。
(Example 2)
[Production of wavelength conversion film using poly (methyl methacrylate)]
A solution of a resin composition having a wavelength conversion material by mixing the compounds (b) and (e) obtained in the above synthesis examples and comparative synthesis examples with polymethyl methacrylate and a solvent in the ratio shown in Table 2. Got. A solution of the resin composition having the obtained wavelength conversion material was used as a bar coater No. 20 is applied to a glass plate (“float glass plate” manufactured by Central Co., Ltd., thickness = 2 mm), heat-dried 90 ° C. for 2 minutes, and 120 ° C. for 3 minutes in that order, and then vacuum-dried at 40 ° C. for 24 minutes. Run for hours to remove solvent. A wavelength conversion film having a thickness of 4 μm was obtained.

Figure 2018135420
Figure 2018135420

[ポリスチレン及びポリカーボネートを用いた波長変換フィルムの作製]
上記の合成例及び比較合成例で得られた化合物(a)〜(e)と、ポリスチレン又はポリカーボネートと、ジクロロメタンを表3で示す比率で混合し、波長変換材料を有した樹脂組成物の溶液を得た。得られた波長変換材料を有した樹脂組成物の溶液20mlを、直径12cmのシャーレに移し、25℃での常圧乾燥を48時間、25℃での減圧乾燥を3時間実施して溶媒を除去し、膜厚20μmの波長変換フィルムを得た。
[Production of wavelength conversion film using polystyrene and polycarbonate]
A compound solution (a) to (e) obtained in the above synthesis examples and comparative synthesis examples, polystyrene or polycarbonate, and dichloromethane are mixed at a ratio shown in Table 3, and a resin composition solution having a wavelength conversion material is mixed. Obtained. Transfer 20 ml of the resin composition solution having the obtained wavelength conversion material to a petri dish with a diameter of 12 cm, and carry out normal pressure drying at 25 ° C. for 48 hours and vacuum drying at 25 ° C. for 3 hours to remove the solvent. And the wavelength conversion film with a film thickness of 20 micrometers was obtained.

Figure 2018135420
Figure 2018135420

[波長変換フィルムの吸収及び発光特性]
上記で得られた波長変換フィルムの吸収及び発光特性を表4に示す。

Figure 2018135420
[Absorption and emission characteristics of wavelength conversion film]
Table 4 shows the absorption and emission characteristics of the wavelength conversion film obtained above.
Figure 2018135420

[波長変換フィルムの耐光性]
上記で得られた化合物(b)、(e)のポリメタクリル酸メチルを用いた波長変換フィルムの、紫外線照射による耐光性を表5に示す。
[Light resistance of wavelength conversion film]
Table 5 shows the light resistance of the wavelength conversion films using the polymethyl methacrylates of the compounds (b) and (e) obtained above by ultraviolet irradiation.

Figure 2018135420
Figure 2018135420

表1より、従来の一般的な波長変換材料である化合物(e)を用いた溶液は、約15000のモル吸光係数を示し、約50%の蛍光量子効率を示すことから、優れた波長変換性をもつと言え、表4より、フィルム状態でも高い波長変換性を示している。しかし、表5より、化合物(e)を用いたフィルムに紫外線を照射すると、波長変換性が大きく低下し、耐光性が不十分で長期使用が困難な問題があることがわかる。本発明品で用いたベンゾトリアゾール誘導体化合物を用いた溶液は、約30000のモル吸光係数を示し、約70%の蛍光量子効率を示す優れた波長変換性をもつが、フィルム状態でも高い波長変換性を示して、さらに紫外線照射による劣化が少なく、高い耐光性を示して長期使用が可能であることから、有用な樹脂組成物であることが分かる。また、表4より、従来に提案されているベンゾトリアゾール誘導体化合物である化合物(d)を用いたフィルムは、430〜440nm程度に最大発光波長を示すが、本発明品は400〜410nm程度に最大発光波長を示すことから、本発明品は、400〜410nm付近の光で生育が促進される農作物や、400〜410nm付近の光の感度が高い太陽電池に最適に使用できることがわかる。なお、合成例及び比較合成例により得られた化合物(a)〜(e)の溶液及びそれらを用いたフィルムの吸収スペクトル、発光スペクトル、励起スペクトル、蛍光量子効率、耐光性の測定条件は次の通りである。   From Table 1, the solution using the compound (e), which is a conventional general wavelength conversion material, exhibits a molar extinction coefficient of about 15000 and a fluorescence quantum efficiency of about 50%. According to Table 4, it shows a high wavelength conversion property even in a film state. However, it can be seen from Table 5 that when the film using the compound (e) is irradiated with ultraviolet rays, the wavelength conversion property is greatly lowered, the light resistance is insufficient, and the long-term use is difficult. The solution using the benzotriazole derivative compound used in the product of the present invention has an excellent wavelength conversion property showing a molar extinction coefficient of about 30000 and a fluorescence quantum efficiency of about 70%, but high wavelength conversion property even in a film state. Further, it is found that the resin composition is useful because it is less deteriorated by ultraviolet irradiation, exhibits high light resistance, and can be used for a long time. Further, from Table 4, the film using the compound (d) which is a conventionally proposed benzotriazole derivative compound shows a maximum emission wavelength at about 430 to 440 nm, but the product of the present invention has a maximum at about 400 to 410 nm. Since the emission wavelength is shown, it can be seen that the product of the present invention can be optimally used for crops whose growth is promoted by light in the vicinity of 400 to 410 nm and solar cells having high light sensitivity in the vicinity of 400 to 410 nm. In addition, the measurement conditions of the absorption spectrum of the compound (a)-(e) obtained by the synthesis example and the comparative synthesis example, and the film using them, an emission spectrum, an excitation spectrum, fluorescence quantum efficiency, and light resistance are as follows. Street.

<溶液の吸収スペクトル測定条件>
装置:UV−2450((株)島津製作所製)
測定波長:250〜 500nm
溶媒:クロロホルム
濃度:10ppm
セル:1cm石英
<Measurement conditions of absorption spectrum of solution>
Apparatus: UV-2450 (manufactured by Shimadzu Corporation)
Measurement wavelength: 250-500 nm
Solvent: Chloroform Concentration: 10 ppm
Cell: 1cm quartz

<フィルムの吸収スペクトル測定条件>
装置: U−3900H((株)日立ハイテクサイエンス製)
測定波長:310〜510nm
<Conditions for measuring absorption spectrum of film>
Apparatus: U-3900H (manufactured by Hitachi High-Tech Science Co., Ltd.)
Measurement wavelength: 310-510 nm

<溶液の発光スペクトル、励起スペクトル及び蛍光量子効率測定条件>
装置:FP−8500(日本分光(株)製)
測定波長:200〜 850nm
溶媒:クロロホルム
濃度:10ppm
セル:1cm石英
<Measurement conditions of emission spectrum, excitation spectrum and fluorescence quantum efficiency of solution>
Apparatus: FP-8500 (manufactured by JASCO Corporation)
Measurement wavelength: 200 to 850 nm
Solvent: Chloroform Concentration: 10 ppm
Cell: 1cm quartz

<フィルムの発光スペクトル、励起スペクトル及び蛍光量子効率測定条件>
装置:FP−8500(日本分光(株)製)
測定波長:200〜 850nm
<Film emission spectrum, excitation spectrum and fluorescence quantum efficiency measurement conditions>
Apparatus: FP-8500 (manufactured by JASCO Corporation)
Measurement wavelength: 200 to 850 nm

<耐光性測定条件>
装置:スーパーキセノンウェザーメーター SX−75(スガ試験機(株))
照射照度:60W/m2
照射時間:24時間
ブラックパネル温度:63℃
槽内湿度:50%
<Light resistance measurement conditions>
Equipment: Super Xenon Weather Meter SX-75 (Suga Test Instruments Co., Ltd.)
Irradiance: 60W / m2
Irradiation time: 24 hours Black panel temperature: 63 ° C
Humidity in the tank: 50%

本ベンゾトリアゾール誘導体化合物を用いた波長変換フィルムは、優れた波長変換性と耐光性を示すことから、樹脂組成物、農業用波長変換フィルム、及び太陽電池用波長変換フィルムとして、好適に利用できる。さらに、従来品にない400〜410nm程度で最大発光波長を示すことから、400〜410nm付近の光で生育が促進される農作物や、400〜410nm付近の光の感度が高い太陽電池に最適に利用できる。   Since the wavelength conversion film using the present benzotriazole derivative compound exhibits excellent wavelength conversion properties and light resistance, it can be suitably used as a resin composition, an agricultural wavelength conversion film, and a solar cell wavelength conversion film. Furthermore, since it has a maximum emission wavelength of about 400 to 410 nm, which is not found in conventional products, it is optimally used for crops whose growth is promoted by light near 400 to 410 nm and solar cells with high light sensitivity near 400 to 410 nm. it can.

Claims (4)

下記の一般式(1)で表されるベンゾトリアゾール誘導体化合物を樹脂に含有することを特徴とする、樹脂組成物。
Figure 2018135420
一般式(1)
[式中Rは、炭素数1〜18のアルキル基、アルキル炭素数1〜7のカルボキシアルキル基、各アルキル炭素数の合計が2〜15のアルキルオキシカルボニルアルキル基、炭素数1〜8のヒドロキシアルキル基、各アルキル炭素数の合計が2〜15のアルキルカルボニルオキシアルキル基、ホルミル基、アルキル炭素数1〜7のアルキルカルボニル基、ベンゾイル基またはトルオイル基を表し、Rは、水素原子、炭素数1〜18のアルキル基、フェニル基またはトリル基を表す。]
A resin composition containing a benzotriazole derivative compound represented by the following general formula (1) in a resin.
Figure 2018135420
General formula (1)
[Wherein R 1 is an alkyl group having 1 to 18 carbon atoms, a carboxyalkyl group having 1 to 7 alkyl carbon atoms, an alkyloxycarbonylalkyl group having 2 to 15 total carbon atoms, or an alkyl group having 1 to 8 carbon atoms. A hydroxyalkyl group, an alkylcarbonyloxyalkyl group having a total of 2 to 15 alkyl carbon atoms, a formyl group, an alkylcarbonyl group having 1 to 7 alkyl carbon atoms, a benzoyl group or a toluoyl group, wherein R 2 is a hydrogen atom, An alkyl group having 1 to 18 carbon atoms, a phenyl group or a tolyl group is represented. ]
上記一般式(1)におけるRが炭素数1〜8のアルキル基であり、Rが炭素数1〜8のアルキル基である請求項1記載のベンゾトリアゾール誘導体化合物を含有する、樹脂組成物。 The resin composition containing the benzotriazole derivative compound according to claim 1, wherein R 1 in the general formula (1) is an alkyl group having 1 to 8 carbon atoms, and R 2 is an alkyl group having 1 to 8 carbon atoms. . 請求項1または2に記載の樹脂組成物を成形又は成膜してなる農業用波長変換フィルム。   The agricultural wavelength conversion film formed by shape | molding or forming into a film the resin composition of Claim 1 or 2. 請求項1または2に記載の樹脂組成物を成形又は成膜してなる太陽電池用波長変換フィルム。   The wavelength conversion film for solar cells formed by shape | molding or forming into a film the resin composition of Claim 1 or 2.
JP2017029523A 2017-02-20 2017-02-20 Resin composition containing wavelength conversion material Active JP6868896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017029523A JP6868896B2 (en) 2017-02-20 2017-02-20 Resin composition containing wavelength conversion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017029523A JP6868896B2 (en) 2017-02-20 2017-02-20 Resin composition containing wavelength conversion material

Publications (2)

Publication Number Publication Date
JP2018135420A true JP2018135420A (en) 2018-08-30
JP6868896B2 JP6868896B2 (en) 2021-05-12

Family

ID=63365308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017029523A Active JP6868896B2 (en) 2017-02-20 2017-02-20 Resin composition containing wavelength conversion material

Country Status (1)

Country Link
JP (1) JP6868896B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018161090A (en) * 2017-03-27 2018-10-18 公立大学法人大阪府立大学 Cultivation method of tomato using wavelength conversion resin composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005529172A (en) * 2002-06-06 2005-09-29 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Electroluminescence element
CN101885924A (en) * 2010-06-21 2010-11-17 重庆大学 Benzotriazole dye as well as synthesis and application thereof
JP2014144931A (en) * 2013-01-29 2014-08-14 Shipro Kasei Kaisha Ltd Benzotriazole derivative compound
JP2014185286A (en) * 2013-03-25 2014-10-02 Nitto Denko Corp Chromophore having benzotriazole structure and wavelength conversion light-emitting medium using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005529172A (en) * 2002-06-06 2005-09-29 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Electroluminescence element
CN101885924A (en) * 2010-06-21 2010-11-17 重庆大学 Benzotriazole dye as well as synthesis and application thereof
JP2014144931A (en) * 2013-01-29 2014-08-14 Shipro Kasei Kaisha Ltd Benzotriazole derivative compound
JP2014185286A (en) * 2013-03-25 2014-10-02 Nitto Denko Corp Chromophore having benzotriazole structure and wavelength conversion light-emitting medium using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018161090A (en) * 2017-03-27 2018-10-18 公立大学法人大阪府立大学 Cultivation method of tomato using wavelength conversion resin composition
JP7061748B2 (en) 2017-03-27 2022-05-02 公立大学法人大阪 Cultivation method of tomato using wavelength conversion resin composition

Also Published As

Publication number Publication date
JP6868896B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP5416171B2 (en) Benzotriazole derivative compounds
JP5416049B2 (en) Benzotriazole derivative compounds
Qi et al. Exploring highly efficient light conversion agents for agricultural film based on aggregation induced emission effects
JP5518613B2 (en) Benzotriazole derivative compounds
Singh et al. Monomeric and aggregation emissions of tetraphenylethene in a photo-switchable polymer controlled by cyclization of diarylethene and solvent conditions
JP6301526B1 (en) Benzotriazole derivative compounds and uses thereof
JP6131400B2 (en) Benzotriazole derivative compounds
JP6497676B2 (en) Benzotriazole derivative compounds and polymers thereof
Ahipa et al. New columnar liquid crystal materials based on luminescent 2-methoxy-3-cyanopyridines
JP6093949B2 (en) Benzotriazole derivative compounds and polymers thereof
US7446166B2 (en) Pyrrole derivative and photosensitive film using the same
Zhang et al. Preparation, characterization, and properties of PMMA-doped polymer film materials: a study on the effect of terbium ions on luminescence and lifetime enhancement
JP5515069B2 (en) Perylenetetracarboxylic acid bisimide derivative, n-type semiconductor, method for producing n-type semiconductor, and electronic device
JP5895297B2 (en) Phosphor and use thereof
JP6868896B2 (en) Resin composition containing wavelength conversion material
JP6991499B2 (en) Benzotriazole derivative compound
JP2012214595A (en) Organic fluorescence dye and resin composition using the same
Kundu et al. Synthesis of Strongly Fluorescent Imidazole Derivatives: Structure Property Studies, Halochromism and Fluorescent Photoswitching
JP6991497B2 (en) Benzotriazole derivative compounds and their polymers
JP7061748B2 (en) Cultivation method of tomato using wavelength conversion resin composition
CN106967215B (en) A kind of light degradable triazenes polymer
Gao et al. Smectic liquid crystals based on hexaazatriphenylene: potential organic n-type semiconductor
CN112796007B (en) Hydrogen bond/bromine bond synergistically assembled bromine bond azopyridine/quantum dot optical fiber and preparation method thereof
JP2011162605A (en) New linear polymer
JP2010140760A (en) Thin film containing cyclic compound, and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210406

R150 Certificate of patent or registration of utility model

Ref document number: 6868896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250