JP2018135406A - Phosphor, light-emitting device, and method for producing phosphor - Google Patents

Phosphor, light-emitting device, and method for producing phosphor Download PDF

Info

Publication number
JP2018135406A
JP2018135406A JP2017028849A JP2017028849A JP2018135406A JP 2018135406 A JP2018135406 A JP 2018135406A JP 2017028849 A JP2017028849 A JP 2017028849A JP 2017028849 A JP2017028849 A JP 2017028849A JP 2018135406 A JP2018135406 A JP 2018135406A
Authority
JP
Japan
Prior art keywords
phosphor
light
emitting device
red
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017028849A
Other languages
Japanese (ja)
Inventor
慶太 小林
Keita Kobayashi
慶太 小林
智宏 野見山
Tomohiro Nomiyama
智宏 野見山
美満 川越
Yoshimitsu Kawagoe
美満 川越
秀幸 江本
Hideyuki Emoto
秀幸 江本
小林 学
Manabu Kobayashi
学 小林
亮治 稲葉
Ryoji Inaba
亮治 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2017028849A priority Critical patent/JP2018135406A/en
Publication of JP2018135406A publication Critical patent/JP2018135406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device with high productivity at a low cost and to provide the light-emitting device having high luminance.SOLUTION: There is provided a β-type sialon phosphor represented by a formula (1): SiAlON:Eu, provided that 0<a≤3, 0<b≤3 and 0<x≤0.1, and characterized in that a median diameter D50 as measured by a laser diffraction method is 16 μm or less; a diffuse reflectance to light having a wavelength of 800 nm is 90% or more; and a diffuse reflectance to light having a wavelength of 500 nm is 80% or more.SELECTED DRAWING: None

Description

本発明は、LED(Light Emitting Diode)で使用される蛍光体の製造方法および蛍光体、蛍光体を用いた発光装置に関する。 The present invention relates to a method of manufacturing a phosphor used in an LED (Light Emitting Diode), a phosphor, and a light emitting device using the phosphor.

発光装置として青色LEDと緑色蛍光体、赤色蛍光体などを組み合わせて白色光を得る発光装置は広く知られている(特許文献1参照)。蛍光体の製造方法として原料を混合後に焼成し、その後に焼成温度より低温で不活性雰囲気や還元雰囲気、真空中で再焼成またはアニールを行う製法は一般的に知られている(特許文献2参照)。このアニール工程を行うことにより蛍光体の蛍光特性が改善されることが知られている。また、蛍光体の粒子形態を制御することで発光装置の明るさを改善できることが記載されている(特許文献3参照)。 A light-emitting device that obtains white light by combining a blue LED, a green phosphor, a red phosphor, and the like is widely known as a light-emitting device (see Patent Document 1). As a method for producing a phosphor, a production method is generally known in which raw materials are mixed and fired, and then refired or annealed in an inert atmosphere, a reducing atmosphere, or vacuum at a temperature lower than the firing temperature (see Patent Document 2). ). It is known that the fluorescent property of the phosphor is improved by performing this annealing step. Further, it is described that the brightness of the light emitting device can be improved by controlling the particle form of the phosphor (see Patent Document 3).

特許第4769132号Japanese Patent No. 4769132 特許第5508817号Japanese Patent No. 5508817 特許第5368985号Japanese Patent No. 5368985

液晶ディスプレーのバックライトや照明などの発光装置では色再現性、演色性の改善、輝度の改善が常に求められている。また、LEDの小型化や生産効率の改善も常に求められている。これに対して蛍光体の使用量を低減してLEDのコストダウンを行うために、あるいはLEDの高出力化により課題となる熱対策として検討される蛍光体シートや蛍光体プレートを作製する際に液状の樹脂に分散させて塗布し易いように、小粒径で高い輝度を有する蛍光体が必要とされている。 In light emitting devices such as backlights and illuminations for liquid crystal displays, improvements in color reproducibility, color rendering, and brightness are always required. Further, downsizing of LEDs and improvement of production efficiency are always required. On the other hand, in order to reduce the cost of LEDs by reducing the amount of phosphors used, or when preparing phosphor sheets and phosphor plates that are considered as heat countermeasures that are problematic due to the high output of LEDs There is a need for a phosphor having a small particle size and high brightness so that it can be easily dispersed and applied in a liquid resin.

本発明はLEDに必要とされる蛍光体の添加量が少なくなる小粒径の蛍光体を提供する。また、低温であるいは短時間で焼成を行うことにより輝度が高い小粒径の蛍光体を得ることが可能な製造方法を提供する。これらの蛍光体を使用することで蛍光体使用量が低減し、コストダウンとなり、さらに輝度、発光効率が改善された発光装置を提供する。 The present invention provides a phosphor having a small particle size in which the amount of phosphor added to the LED is reduced. Further, the present invention provides a production method capable of obtaining a phosphor having a small particle size with high brightness by firing at a low temperature or in a short time. By using these phosphors, the amount of phosphor used is reduced, the cost is reduced, and a light emitting device with improved brightness and luminous efficiency is provided.

本発明は、レーザー回折法で測定したメディアン径D50が16μm以下であって、波長800nmの光に対する拡散反射率が90%以上で、波長500nmの光に対する拡散反射率が80%以上であることを特徴とする式(1)で示されるβ型サイアロン蛍光体である。
式(1) Si12−aAl16−b:Eu
0<a≦3
0<b≦3
0<x≦0.1
焼成工程と低温焼成工程と酸処理工程とを含み、前記焼成工程の温度が1950℃より低温であることを特徴とする上記β型サイアロン蛍光体の製造方法である。また、前記焼成工程における最高温度の保持時間が3時間以下であることを特徴とする上記β型サイアロン蛍光体の製造方法である。上記β型サイアロン蛍光体と、Mn4+を発光源とする赤色蛍光体、CASN、SCASNを含む窒化物赤色蛍光体、量子ドット赤色蛍光体の中から選ばれる一種または二種以上の赤色蛍光体と、青色LEDとを組み合わせた発光装置である。上記β型サイアロン蛍光体と、赤色LEDまたは赤色有機ELと、青色LEDとを組み合わせた発光装置である。Mn4+を発光源とする赤色蛍光体が、KSFを含むフッ化物蛍光体からなることを特徴とする上記発光装置である。
In the present invention, the median diameter D50 measured by the laser diffraction method is 16 μm or less, the diffuse reflectance for light with a wavelength of 800 nm is 90% or more, and the diffuse reflectance for light with a wavelength of 500 nm is 80% or more. It is a β-type sialon phosphor represented by the characteristic formula (1).
Equation (1) Si 12-a Al a O b N 16-b: Eu x
0 <a ≦ 3
0 <b ≦ 3
0 <x ≦ 0.1
The method for producing a β-sialon phosphor as described above, comprising a firing step, a low temperature firing step, and an acid treatment step, wherein the temperature of the firing step is lower than 1950 ° C. Further, in the method for producing the β-sialon phosphor, the maximum temperature holding time in the firing step is 3 hours or less. One or more red phosphors selected from the above β-type sialon phosphors, red phosphors using Mn 4+ as a light source, nitride red phosphors containing CASN and SCASN, and quantum dot red phosphors; , A light emitting device combined with a blue LED. The light emitting device is a combination of the β-sialon phosphor, a red LED or a red organic EL, and a blue LED. In the above light emitting device, the red phosphor having Mn 4+ as a light source is made of a fluoride phosphor containing KSF.

LEDで蛍光体を使用する場合はシリコーン系もしくはエポキシ系の樹脂中に、または透明もしくはある特性の可視光を透過するセラミックス中に、蛍光体を分散させて使用する。その場合、蛍光体を励起する光(励起光)を照射した場合、励起光が蛍光体に当る頻度は蛍光体の比表面積、断面積が大きければ大きい程その頻度が高くなり、励起光が蛍光体に吸収される割合が高くなる。よって、蛍光体の重量あるいは体積当たりの比表面積、断面積が高くなると励起光の吸収率が高くなり、蛍光体の添加量を低減することが可能となる。すなわち小粒径の蛍光体を用いることで、その添加量を低減することが出来る。また、蛍光体シートや蛍光体プレートにする際は蛍光体が小粒径であると蛍光体の添加量を低減してコストダウンできるだけではなく、蛍光体シートや蛍光体プレートの厚さを薄くすることができるようになり、放熱性が改善される。また、小粒径であると液状の樹脂に分散させ、スプレー塗布や蛍光体と一緒に樹脂をコーティングすることも容易となるため、作業性が改善される。また、塗布する際に通過するノズルの詰りも小粒径にすることで改善する。 When the phosphor is used in the LED, the phosphor is dispersed in a silicone-based or epoxy-based resin, or in a transparent or transparent ceramic that transmits visible light. In that case, when light that excites the phosphor (excitation light) is irradiated, the frequency with which the excitation light strikes the phosphor increases as the specific surface area and cross-sectional area of the phosphor increases, and the excitation light becomes fluorescent. The proportion absorbed by the body increases. Therefore, when the specific surface area and cross-sectional area per unit weight or volume of the phosphor are increased, the absorption rate of the excitation light is increased, and the amount of phosphor added can be reduced. That is, the addition amount can be reduced by using a phosphor having a small particle diameter. In addition, when using a phosphor sheet or phosphor plate, if the phosphor has a small particle size, not only can the amount of phosphor added be reduced to reduce costs, but also the thickness of the phosphor sheet or phosphor plate is reduced. Heat dissipation is improved. Moreover, since it becomes easy to disperse | distribute to liquid resin as it is a small particle size, and to coat resin with spray application or fluorescent substance, workability | operativity is improved. In addition, the clogging of the nozzle that passes when coating is also improved by making the particle size small.

従来のLEDでは蛍光体の粒径は20〜30μm程度が結晶性も良く、LEDの輝度の向上にも適しているとされてきたが、蛍光体の粒径が大きくなると重量当たり、体積当たりの比表面積、断面積が低下し、LEDに使用する蛍光体の添加量が増加し、コストアップとなっていた。また、LEDの高出力化により熱対策が必要とされているため、蛍光体シートや蛍光体プレートの検討が行われており、蛍光体シート、蛍光体プレートは数十μmの厚さが目標となるため、従来の大きな粒径の蛍光体では蛍光体の分散に偏り、局在化が起こってしまい、特性バラツキの要因となってしまう。また、蛍光体シートや蛍光体プレートの表面粗さが粗くなる傾向がありLEDの発光輝度が低下する。また、樹脂に蛍光体を分散させ、塗布する方式でも蛍光体が大きいと蛍光体が分散しづらく、特性バラツキの原因となり、さらに塗布する際のノズル詰まりも起こりやすい。小粒径にすることでノズル詰まりも少なくなり、蛍光体の分散の偏りも少ないため、LEDの特性バラツキが低減し、LEDの歩留まりを改善することが可能となる。 In conventional LEDs, the phosphor has a particle size of about 20 to 30 μm and good crystallinity, and has been considered suitable for improving the luminance of the LED. However, as the phosphor particle size increases, The specific surface area and cross-sectional area decreased, the amount of phosphor added to the LED increased, and the cost increased. In addition, since countermeasures against heat are required due to higher output of LEDs, phosphor sheets and phosphor plates have been studied, and the target thickness of the phosphor sheets and phosphor plates is several tens of μm. For this reason, the conventional phosphor having a large particle size is biased toward dispersion of the phosphor, causing localization, which causes variation in characteristics. Further, the surface roughness of the phosphor sheet or the phosphor plate tends to be rough, and the light emission luminance of the LED is lowered. Further, even when the phosphor is dispersed in the resin and applied, if the phosphor is large, the phosphor is difficult to disperse, causing variation in characteristics, and nozzle clogging during application tends to occur. By making the particle size small, nozzle clogging is reduced and phosphor dispersion is less biased, so that variations in LED characteristics can be reduced and the yield of LEDs can be improved.

蛍光体を小粒径化する方法として粉砕する方法があるが、蛍光体表面が粗くなり、欠陥が増え、蛍光体の輝度低下が起こる。蛍光体の賦活剤が吸収しない波長の光(例えばβ−SiAlONの場合は波長800nmの光)を蛍光体に照射し、拡散反射率を確認すると蛍光体の欠陥による余分な光の吸収を確認する事が可能である。粉砕を強く行うことで小粒径の蛍光体が得られるが、同時に表面の欠陥が増加し、波長800nmの光が欠陥に吸収され、拡散反射率が低下するといった欠点があった。本発明では焼成時の温度を低下させ、焼成時の最高温度の保持時間を短くすることで粒子成長を抑制し、小粒径の蛍光体を作製した。この製造方法では弱い粉砕で小粒径の蛍光体が得られ、さらに欠陥が低減し、高い輝度を得ることができる。これによって賦活剤の吸収があり、欠陥や異相の存在によって吸収される500nmの波長の光の吸収も抑制でき、これによって、蛍光体の蛍光が蛍光体自身によって再吸収され、さらに500nmの波長の光が吸収されにくいということは長波長の光に変換されたり熱に変換されたりすることが抑制され、目的とする波長の変換効率の低下を抑制することが出来る。 As a method of reducing the particle size of the phosphor, there is a method of pulverizing, but the phosphor surface becomes rough, defects increase, and the luminance of the phosphor decreases. When the phosphor is irradiated with light having a wavelength that is not absorbed by the phosphor activator (for example, light having a wavelength of 800 nm in the case of β-SiAlON) and the diffuse reflectance is confirmed, absorption of excess light due to defects in the phosphor is confirmed. Things are possible. When the pulverization is carried out strongly, a phosphor having a small particle diameter can be obtained, but at the same time, defects on the surface increase, light having a wavelength of 800 nm is absorbed by the defects, and the diffuse reflectance decreases. In the present invention, the temperature during firing was reduced, and the retention time at the maximum temperature during firing was shortened to suppress particle growth, thereby producing a phosphor having a small particle size. In this manufacturing method, a phosphor with a small particle diameter can be obtained by weak pulverization, defects can be further reduced, and high brightness can be obtained. As a result, absorption of the activator can be suppressed, and absorption of light having a wavelength of 500 nm that is absorbed by the presence of defects and foreign phases can also be suppressed. The fact that light is hardly absorbed suppresses conversion into light having a long wavelength or conversion into heat, and can suppress a decrease in conversion efficiency of a target wavelength.

本特許の小粒径で高い輝度の蛍光体を用いることで蛍光体の使用量を低減し、コストダウンとなり、なおかつ輝度が高い発光装置を得ることができる。   By using a phosphor having a small particle size and a high luminance according to this patent, the amount of the phosphor used can be reduced, the cost can be reduced, and a light emitting device having a high luminance can be obtained.

本発明に係る実施例を、表及び比較例を用いて詳細に説明する。   Examples according to the present invention will be described in detail with reference to tables and comparative examples.

本発明に係る実施例及び比較例を、以下のように調製した。   Examples and comparative examples according to the present invention were prepared as follows.

<β型サイアロンの製造方法>
β型サイアロンの製造方法として、下記に述べるように、出発原料を混合した後に原料を焼成する焼成工程、焼成物を粉末化した後に行う低温焼成工程、低温焼成工程後の粉末から不純物を除去する酸処理工程を行った。
<Method for producing β-sialon>
As described below, as a method for producing β-sialon, impurities are removed from the powder after firing the raw material after mixing the starting materials, the low-temperature firing step performed after powdering the fired product, and the powder after the low-temperature firing step An acid treatment step was performed.

<焼成工程>
実施例1の配合組成はモル比としてSi:Al:O:Eu=11.42:0.58:0.58:0.06となるように、α型窒化ケイ素粉末(宇部興産社製SN−E10グレード)、窒化アルミニウム粉末(トクヤマ社製Eグレード)、酸化アルミニウム粉末(大明化学社製TM−DARグレード)、酸化ユウロピウム(信越化学社製RUグレード)を配合した。なお、このときの窒素量は上記モル比でそれぞれの粉末を配合することにより一義的に決まる。分散させるために小型ミルミキサーで混合し、その後、目開き150μmの篩を全通させて凝集物を取り除き、原料粉末を得た。
<Baking process>
The blend composition of Example 1 was such that the molar ratio was Si: Al: O: Eu = 11.42: 0.58: 0.58: 0.06. E10 grade), aluminum nitride powder (E grade made by Tokuyama), aluminum oxide powder (TM-DAR grade made by Daimei Chemical), europium oxide (RU grade made by Shin-Etsu Chemical) were blended. In addition, the amount of nitrogen at this time is uniquely determined by mix | blending each powder by the said molar ratio. In order to make it disperse | distribute, it mixed with the small mill mixer, Then, the sieve with an opening of 150 micrometers was made to pass through, the aggregate was removed, and raw material powder was obtained.

原料粉末を蓋付き円筒型窒化ホウ素製容器(デンカ社製)に充填し、カーボンヒーターの電気炉で0.9MPaの加圧窒素雰囲気中、2010℃で13時間の焼成を行い、β型サイアロンの生成物を得た。この生成物に対してボールミル(アルミナボール)で粉砕を行った後、目開き45μmの篩を通し、β型サイアロンの生成粉末を得た。   The raw material powder is filled into a cylindrical boron nitride container with a lid (made by Denka), and baked at 2010 ° C. in a pressurized nitrogen atmosphere of 0.9 MPa for 13 hours in a carbon heater electric furnace. The product was obtained. This product was pulverized with a ball mill (alumina ball), and then passed through a sieve having an opening of 45 μm to obtain a β-sialon product powder.

<低温焼成工程>
生成粉末を、円筒型窒化ホウ素製容器に充填し、カーボンヒーターの電気炉で大気圧のアルゴンフロー雰囲気下、1500℃で7時間保持を行い、β型サイアロン熱処理粉末を得た。冷却速度は各実施例、各比較例共に同等の条件で行った。
<Low-temperature firing process>
The produced powder was filled into a cylindrical boron nitride container, and held at 1500 ° C. for 7 hours in an atmospheric pressure argon flow atmosphere in an electric furnace of a carbon heater to obtain a β-type sialon heat-treated powder. The cooling rate was performed under the same conditions in each of the examples and comparative examples.

<酸処理工程>
β型サイアロン熱処理粉末を、フッ化水素酸と硝酸との混酸中に浸した。そして加熱を行い、60℃以上で3時間処理し、その後、上澄みと微粉を除去するデカンテーションを溶液が中性になるまで繰り返し、最終的に得られた沈殿物をろ過、乾燥し、更に目開き45μmの篩を通過させ、実施例1のβ型サイアロンを得た。
<Acid treatment process>
The β-sialon heat-treated powder was immersed in a mixed acid of hydrofluoric acid and nitric acid. Then, the mixture is heated and treated at 60 ° C. or more for 3 hours, and then decantation for removing the supernatant and fine powder is repeated until the solution becomes neutral, and the finally obtained precipitate is filtered and dried. A β-sialon of Example 1 was obtained through a sieve having an opening of 45 μm.

実施例2の蛍光体は焼成温度を1920℃で行い、さらに酸処理工程の後にさらにボールミル粉砕を行い、他の工程は実施例1と同様に処理を行った。   The phosphor of Example 2 was fired at 1920 ° C., further subjected to ball milling after the acid treatment step, and the other steps were treated in the same manner as in Example 1.

実施例3の緑色蛍光体は焼成温度を1920℃で行い、焼成時の最高温度の保持時間を3時間で行い、他の工程は実施例2と同様に処理を行った。   The green phosphor of Example 3 was fired at 1920 ° C., the holding time of the highest temperature during firing was 3 hours, and the other processes were performed in the same manner as in Example 2.

比較例1の蛍光体は焼成の後のボールミル粉砕を実施例1の条件より弱い条件(粉砕時間を半分以下)で行い、他の工程は実施例1と同様に処理を行った。   The phosphor of Comparative Example 1 was subjected to ball mill pulverization after firing under conditions weaker than those of Example 1 (the pulverization time was half or less), and the other processes were performed in the same manner as in Example 1.

比較例2の蛍光体は焼成の後のボールミル粉砕を実施例1より強い条件(粉砕時間を2倍以上)で行い、さらに酸処理工程後のボールミル粉砕を実施例2より強い条件(粉砕時間を2倍以上)で行い、その他の工程は実施例2と同様に処理を行った。   The phosphor of Comparative Example 2 was subjected to ball mill pulverization after firing under conditions stronger than Example 1 (grinding time was twice or more), and further ball milling after the acid treatment step was performed under conditions stronger than Example 2 (pulverization time was reduced). The other processes were carried out in the same manner as in Example 2.

比較例3の蛍光体は焼成の後のボールミル粉砕を比較例2より強い条件(粉砕時間を2倍以上)で行い、さらに酸処理工程後のボールミル粉砕を比較例2より強い条件(粉砕時間を2倍以上)で行い、その他の工程は比較例2と同様に処理を行った。   For the phosphor of Comparative Example 3, ball milling after firing was performed under conditions stronger than Comparative Example 2 (grinding time was twice or more), and ball milling after the acid treatment step was performed under conditions stronger than Comparative Example 2 (pulverization time was reduced). The other processes were carried out in the same manner as in Comparative Example 2.

外部量子効率、内部量子効率、色度Xは、分光光度計(大塚電子株式会社製MCPD−7000)により測定し、以下の手順で算出した。
実施例、比較例の蛍光体を凹型セルの表面が平滑になる様に充填し、積分球を取り付けた。この積分球に、発光光源(Xeランプ)から455nmの波長に分光した単色光を、光ファイバーを用いて導入した。この単色光を励起源として、蛍光体の試料に照射し、試料の蛍光スペクトル測定を行った。
試料部に反射率が99%の標準反射板(Labsphere社製スペクトラロン)を取り付けて、波長455nmの励起光のスペクトルを測定した。その際、450〜465nmの波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。
試料部に蛍光体を取り付けて、得られたスペクトルデータから励起反射光フォトン数(Qref)及び蛍光フォトン数(Qem)を算出した。励起反射光フォトン数は、励起光フォトン数と同じ波長範囲で、蛍光フォトン数は、465〜800nmの範囲で算出した。
外部量子効率、内部量子効率は、次の計算式によって、求めた。
外部量子効率=(Qem/Qex)×100
内部量子効率=(Qem/(Qex−Qref))×100
また、色度Xは蛍光スペクトルの465nmから780nmの範囲の波長域データからJIS Z 8724に準じ、JIS Z 8701で規定されるXYZ表色系におけるCIE色度座標x値(色度X)を算出した。
上記の測定方法を用い、株式会社サイアロンより販売している標準試料NSG1301を測定した場合、外部量子効率は55.6%、内部量子効率74.8%、色度Xは0.356となった。この試料を標準として装置を校正した。
External quantum efficiency, internal quantum efficiency, and chromaticity X were measured with a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.) and calculated according to the following procedure.
The phosphors of Examples and Comparative Examples were filled so that the surface of the concave cell was smooth, and an integrating sphere was attached. Monochromatic light separated into a wavelength of 455 nm from a light emitting light source (Xe lamp) was introduced into the integrating sphere using an optical fiber. Using this monochromatic light as an excitation source, the phosphor sample was irradiated and the fluorescence spectrum of the sample was measured.
A standard reflector (Spectralon manufactured by Labsphere) having a reflectance of 99% was attached to the sample portion, and the spectrum of excitation light having a wavelength of 455 nm was measured. At that time, the excitation light photon number (Qex) was calculated from the spectrum in the wavelength range of 450 to 465 nm.
A phosphor was attached to the sample portion, and the number of excited reflected light photons (Qref) and the number of fluorescent photons (Qem) were calculated from the obtained spectrum data. The number of excitation reflected light photons was calculated in the same wavelength range as the number of excitation light photons, and the number of fluorescent photons was calculated in the range of 465 to 800 nm.
The external quantum efficiency and the internal quantum efficiency were obtained by the following calculation formula.
External quantum efficiency = (Qem / Qex) × 100
Internal quantum efficiency = (Qem / (Qex−Qref)) × 100
Chromaticity X is calculated from CIE chromaticity coordinate x value (chromaticity X) in the XYZ color system defined by JIS Z 8701 according to JIS Z 8724 from the wavelength range data in the range of 465 nm to 780 nm of the fluorescence spectrum. did.
When the standard sample NSG1301 sold by Sialon Co., Ltd. was measured using the above measurement method, the external quantum efficiency was 55.6%, the internal quantum efficiency was 74.8%, and the chromaticity X was 0.356. . The apparatus was calibrated using this sample as a standard.

粒度はMicrotrac MT3300EX II(マイクロトラック・ベル株式会社)により測定した。イオン交換水100ccに蛍光体0.5gを投入し、そこにUltrasonic Homogenizer US−150E(株式会社日本精機製作所、チップサイズφ20、Amplitude100%、発振周波数19.5KHz、振幅 約31μm)で3分間、分散処理を行い、その後、MT3300EX IIで粒度測定を行った。得られた粒度分布からメディアン径D50を求めた。 The particle size was measured by Microtrac MT3300EX II (Microtrack Bell Inc.). 100 g of ion-exchanged water is charged with 0.5 g of a phosphor, and dispersed therein for 3 minutes in an Ultrasonic Homogenizer US-150E (Nippon Seiki Seisakusho, chip size φ20, Amplitude 100%, oscillation frequency 19.5 KHz, amplitude about 31 μm). After the treatment, the particle size was measured with MT3300EX II. The median diameter D50 was determined from the obtained particle size distribution.

拡散反射率は、日本分光社製紫外可視分光光度計(V−550)に積分球装置(ISV−469)を取り付けて測定した。標準反射板(スペクトラロン)でベースライン補正を行い、蛍光体粉末を充填した固体試料ホルダーを取り付けて、500〜850nmの波長範囲で拡散反射率の測定を行った。 The diffuse reflectance was measured by attaching an integrating sphere device (ISV-469) to a UV-visible spectrophotometer (V-550) manufactured by JASCO Corporation. Baseline correction was performed with a standard reflector (Spectralon), a solid sample holder filled with phosphor powder was attached, and diffuse reflectance was measured in the wavelength range of 500 to 850 nm.

実施例、比較例の蛍光体を青色LEDと組み合わせ、白色LED化した場合に色度X0.275、色度Y0.279となる割合で実施例、比較例の緑色蛍光体と赤色蛍光体であるKSiF:Mnを混合して、実施例、比較例に係る蛍光体混合物を得た。表1の実施例、比較例で使用した赤色蛍光体KSiF:Mnは以下の条件で作成した。 When the phosphor of the example and the comparative example is combined with the blue LED to form a white LED, the green phosphor and the red phosphor of the example and the comparative example are in a ratio of chromaticity X0.275 and chromaticity Y0.279. K 2 SiF 6 : Mn was mixed to obtain phosphor mixtures according to Examples and Comparative Examples. The red phosphor K 2 SiF 6 : Mn used in the examples and comparative examples in Table 1 was prepared under the following conditions.

赤色蛍光体KSiF:Mnの製造方法は、一般式:AMF:Mnで表される蛍光体の製造方法であって、原料を溶解する溶解工程と、この原料から蛍光体を析出させる再析出工程を有し、元素AはK(カリウム)であり、元素MはSi(ケイ素)であり、Fはフッ素であり、Mnはマンガンである。 The method for producing the red phosphor K 2 SiF 6 : Mn is a method for producing a phosphor represented by the general formula: A 2 MF 6 : Mn, a melting step for dissolving the raw material, and the phosphor from the raw material. The element A is K (potassium), the element M is Si (silicon), F is fluorine, and Mn is manganese.

<添加工程での原料>
赤色蛍光体KSiF:Mnの添加工程における蛍光体の原料は、KSiF粉末(関東化学株式会社、鹿特級)、KMnF(後述する製造方法によって製造)とした。いずれの原料も粉末状のものである。これら原料を溶解するフッ化水素酸は、濃度55質量%のフッ化水素酸溶液を採用した。
<Raw material in addition process>
The raw material of the phosphor in the step of adding the red phosphor K 2 SiF 6 : Mn was K 2 SiF 6 powder (Kanto Chemical Co., Inc., Deer Special) and K 2 MnF 6 (manufactured by a production method described later). All the raw materials are in powder form. A hydrofluoric acid solution having a concentration of 55% by mass was used as hydrofluoric acid for dissolving these raw materials.

<KMnFの製造工程>
MnFの製造は、次の製造工程によって製造された物である。
容量1リットルのテフロン(登録商標)製のビーカーに濃度40質量%フッ化水素酸800mlを入れ、KHF粉末(和光純薬工業株式会社製、特級試薬)260g及び過マンガン酸カリウム粉末(和光純薬工業株式会社製、試薬1級)12gを溶解させた。このフッ化水素酸反応液をマグネティックスターラーで撹拌しながら、30%過酸化水素水(特級試薬)8mlを少しずつ滴下した。過酸化水素水の滴下量が一定量を超えると黄色粒子が析出し始め、反応液の色が紫色から変化し始めた。過酸化水素水を一定量滴下後、しばらく撹拌を続けた後、撹拌を止め、析出粒子を沈殿させた。沈殿後、上澄み液を除去し、メタノールを加え、撹拌・静置し、上澄み液を除去し、更にメタノールを加えるという操作を、液が中性になるまで繰り返した。その後、濾過により、析出粒子を回収し、更に乾燥を行い、メタノールを完全に蒸発除去し、KMnF粉末を19g得た。これらの操作は全て常温で行った。
<Manufacturing process of K 2 MnF 6 >
The production of K 2 MnF 6 is a product produced by the following production process.
A Teflon (registered trademark) beaker with a capacity of 1 liter is charged with 800 ml of 40 mass% hydrofluoric acid, 260 g of KHF 2 powder (made by Wako Pure Chemical Industries, Ltd., special grade reagent) and potassium permanganate powder (Wako Pure). 12 g of Yaku Kogyo Co., Ltd., reagent grade 1) was dissolved. While stirring this hydrofluoric acid reaction liquid with a magnetic stirrer, 8 ml of 30% hydrogen peroxide (special grade reagent) was added dropwise little by little. When the dropping amount of the hydrogen peroxide solution exceeded a certain amount, yellow particles started to precipitate, and the color of the reaction solution began to change from purple. After a certain amount of hydrogen peroxide solution was dropped, the stirring was continued for a while, and then the stirring was stopped to precipitate the precipitated particles. After the precipitation, the supernatant liquid was removed, methanol was added, and the mixture was stirred and allowed to stand, the supernatant liquid was removed, and methanol was further added until the liquid became neutral. Thereafter, the precipitated particles were collected by filtration, further dried, and methanol was completely removed by evaporation to obtain 19 g of K 2 MnF 6 powder. All these operations were performed at room temperature.

<溶解工程>
赤色蛍光体KSiF:Mnの溶解工程を説明する。常温下で、容量500mlのテフロン(登録商標)製のビーカーに濃度55質量%フッ化水素酸100mlを入れ、KSiF粉末(関東化学株式会社、鹿特級)3g及びKMnF0.5gを順次溶解させた。これらの原料の添加量は、一般式AMF:Mnで表される蛍光体の飽和溶解度以下の添加量である。
<Dissolution process>
A dissolution process of the red phosphor K 2 SiF 6 : Mn will be described. Under normal temperature, 100 ml of 55 mass% hydrofluoric acid was placed in a 500 ml Teflon (registered trademark) beaker, 3 g of K 2 SiF 6 powder (Kanto Chemical Co., Ltd., Deer Special Grade) and K 2 MnF 6 0. 5 g was dissolved sequentially. The amount of the raw materials, the general formula A 2 MF 6: is the addition amount of below the saturation solubility of the phosphor represented by Mn.

<再析出工程>
この溶液に、水150mlを2か所から滴下し後、10分マグネティックスターラーで撹拌し、その後静置した。静置したところ、容器の下部に析出した蛍光体が沈殿した。
<Reprecipitation process>
To this solution, 150 ml of water was dropped from two places, stirred for 10 minutes with a magnetic stirrer, and then allowed to stand. When allowed to stand, the phosphor deposited at the bottom of the container was precipitated.

水150mlとしたのは、再析出工程で水を添加した際のフッ化水素酸溶液におけるフッ化水素酸濃度を、22質量%とするためである。 The reason why the amount of water is 150 ml is that the concentration of hydrofluoric acid in the hydrofluoric acid solution when water is added in the reprecipitation step is 22% by mass.

<洗浄工程>
蛍光体の存在を確認後、上澄み液を除去し、20質量%のフッ化水素酸及びメタノールでの洗浄を行い、濾過により固形部を分離回収し、更に乾燥処理により、残存メタノールを蒸発除去した。
<Washing process>
After confirming the presence of the phosphor, the supernatant was removed, washed with 20% by mass of hydrofluoric acid and methanol, the solid part was separated and recovered by filtration, and the remaining methanol was evaporated and removed by drying. .

<分級工程>
乾燥処理後の蛍光体に対し、目開き75μmのナイロン製篩を用い、この篩を通過したものだけを分級し、最終的に黄色のKSiF:Mn蛍光体粉末1.3gを得た。
<Classification process>
For the phosphor after the drying treatment, a nylon sieve having an opening of 75 μm was used, and only those passing through the sieve were classified, and finally 1.3 g of yellow K 2 SiF 6 : Mn phosphor powder was obtained. .

<光学特性>
赤色蛍光体KSiF:Mnの製造方法で得た蛍光体の光学特性について説明する。分光蛍光光度計(株式会社日立ハイテクノロジーズ製F−7000)で測定した蛍光スペクトルの励起波長は455nm、励起スペクトルのモニター蛍光波長は632nmである。この蛍光体は、ピーク波長350nm近傍の紫外光とピーク波長450nm近傍の青色光の二つの励起帯を有し、600〜700nmの赤色域に複数の狭帯発光を有する蛍光体であった。赤色蛍光体は吸収率、内部量子効率、外部量子効率は、それぞれ82%、74%、61%であった。赤色蛍光体の色度座標(x、y)は、(0.694、0.306)であった。
<Optical characteristics>
The optical characteristics of the phosphor obtained by the method for producing the red phosphor K 2 SiF 6 : Mn will be described. The excitation wavelength of the fluorescence spectrum measured with a spectrofluorometer (F-7000, manufactured by Hitachi High-Technologies Corporation) is 455 nm, and the monitor fluorescence wavelength of the excitation spectrum is 632 nm. This phosphor has two excitation bands of ultraviolet light having a peak wavelength of around 350 nm and blue light having a peak wavelength of around 450 nm, and has a plurality of narrow-band emission in the red region of 600 to 700 nm. The red phosphor had an absorptance, internal quantum efficiency, and external quantum efficiency of 82%, 74%, and 61%, respectively. The chromaticity coordinates (x, y) of the red phosphor were (0.694, 0.306).

蛍光体同士の混合にあっては、合計2.5gを計量してポリエチレン製袋内で混合した上、シリコーン樹脂(東レダウコーニング株式会社OE6656)47.5gと一緒に自転公転式の混合機(株式会社シンキー製あわとり練太郎(登録商標)ARE−310)で混合した。 For mixing phosphors, a total of 2.5 g was weighed and mixed in a polyethylene bag, and then a rotating and rotating mixer (47.5 g of silicone resin (Toray Dow Corning Co., Ltd. OE6566)) It was mixed with Shintaro Awatori Nertaro (registered trademark) ARE-310).

LEDチップの搭載は、凹型のパッケージ本体の底部にLEDチップを置いて、基板上の電極とワイヤボンディングした後、シリコーン樹脂と混合した蛍光体をマイクロシリンジから注入して行なった。搭載後、150℃で硬化させた後、110℃×10時間のポストキュアを施して封止した。LEDチップは、発光ピーク波長448nmで、チップ寸法1.0mm×0.5mmのものを用いた。上記により作製したLEDパッケージで色度X、色度Yを確認し、蛍光体の混合比率、添加量を調整した。実施例及び比較例の蛍光体を使用した発光装置において、使用した緑色蛍光体(赤色蛍光体を除く)の添加量を評価した。緑色蛍光体の添加量は、投入した全ての蛍光体と樹脂との総重量で規格化し、更に実施例1の緑色蛍光体添加量を100%として実施例2以降はその相対比を用いて比較した。 The LED chip was mounted by placing the LED chip on the bottom of the concave package body, wire bonding the electrode on the substrate, and injecting a phosphor mixed with silicone resin from a microsyringe. After mounting, it was cured at 150 ° C., and then post-cured at 110 ° C. for 10 hours and sealed. The LED chip having an emission peak wavelength of 448 nm and a chip size of 1.0 mm × 0.5 mm was used. The chromaticity X and chromaticity Y were confirmed with the LED package produced as described above, and the mixing ratio and addition amount of the phosphor were adjusted. In the light emitting devices using the phosphors of Examples and Comparative Examples, the amount of added green phosphor (excluding the red phosphor) was evaluated. The amount of green phosphor added is normalized by the total weight of all the phosphors added and the resin. Further, the amount of green phosphor added in Example 1 is set to 100%, and comparisons are made using the relative ratio in Examples 2 and thereafter. did.

Figure 2018135406
Figure 2018135406

Figure 2018135406
Figure 2018135406

Figure 2018135406
Figure 2018135406

表1の実施例1から実施例3に示されるように、蛍光体のD50を小粒径にすることで発光装置に使用する緑色蛍光体(赤色蛍光体を除く)の添加量が低減した。比較例1は従来一般的に使用されていた粒径であり、コストダウンが必要とされていたが、実施例1から実施例3のように小粒径にすることで緑色蛍光体の添加量が低減し、コストダウンにつながった。 As shown in Example 1 to Example 3 in Table 1, the amount of green phosphor (excluding the red phosphor) used in the light-emitting device was reduced by reducing the D50 of the phosphor to a small particle size. Comparative Example 1 is a particle size that has been generally used in the past, and cost reduction was required, but the amount of green phosphor added was reduced by reducing the particle size as in Example 1 to Example 3. Reduced and led to cost reduction.

次に、粒度、色度がほぼ同等の実施例2、比較例2を表2において比較する。比較例2は粉砕による調整で目的の小粒径を得る一般的な手法である。比較例2では粉砕による衝撃力で800nm拡散反射率が低下し、500nm拡散反射率も低下し、外部量子効率、内部量子効率も低下した。これに対して実施例2は低温の焼成段階で結晶子の粒子成長を調整する手法であり、焼成時に発生する欠陥が抑制され、また最小限の粉砕で目的の小粒径を得ることが出来るので、高い800nm拡散反射率、高い500nm拡散反射率、高い内部量子効率、高い外部量子効率が得られた。実施例2の蛍光体は比較例2の蛍光体より外部量子効率が高いため、発光装置は比較例2の蛍光体を使用するより、実施例2の蛍光体を使用する方が高輝度の発光装置が得られる。 Next, Table 2 compares Example 2 and Comparative Example 2 having substantially the same particle size and chromaticity. Comparative Example 2 is a general technique for obtaining a target small particle size by adjustment by pulverization. In Comparative Example 2, the 800 nm diffuse reflectance decreased due to the impact force by pulverization, the 500 nm diffuse reflectance also decreased, and the external quantum efficiency and the internal quantum efficiency also decreased. On the other hand, Example 2 is a method for adjusting crystallite particle growth in a low-temperature firing stage, in which defects generated during firing are suppressed, and a desired small particle size can be obtained with minimal grinding. Therefore, high 800 nm diffuse reflectance, high 500 nm diffuse reflectance, high internal quantum efficiency, and high external quantum efficiency were obtained. Since the phosphor of Example 2 has higher external quantum efficiency than the phosphor of Comparative Example 2, the light-emitting device uses the phosphor of Example 2 to emit light with higher brightness than the phosphor of Comparative Example 2 A device is obtained.

表3のように粒度、色度がほぼ同等の実施例3と比較例3を比較すると、比較例3は粉砕による調整で目的の小粒径を得る一般的な手法であるため、粉砕によるストレスで800nm拡散反射率が低下し、500nm拡散反射率も低下し、外部量子効率、内部量子効率も低下した。これに対して実施例3は焼成段階での最高温度とその保持時間を調整する手法であり、焼成時に発生する欠陥が抑制され、また最小限の粉砕で目的の小粒径を得ることが出来るので、高い800nm拡散反射率、高い500nm拡散反射率、高い内部量子効率、高い外部量子効率が得られた。実施例3の蛍光体は比較例3の蛍光体より外部量子効率が高いため、発光装置は比較例3の蛍光体を使用するより、実施例3の蛍光体を使用する方が高輝度の発光装置が得られる。 When Example 3 and Comparative Example 3 having substantially the same particle size and chromaticity as shown in Table 3 are compared, Comparative Example 3 is a general technique for obtaining a desired small particle size by adjustment by pulverization. As a result, the 800 nm diffuse reflectance decreased, the 500 nm diffuse reflectance also decreased, and the external quantum efficiency and the internal quantum efficiency also decreased. On the other hand, Example 3 is a method of adjusting the maximum temperature and the holding time in the firing stage, and defects generated during firing are suppressed, and a desired small particle size can be obtained with minimum grinding. Therefore, high 800 nm diffuse reflectance, high 500 nm diffuse reflectance, high internal quantum efficiency, and high external quantum efficiency were obtained. Since the phosphor of Example 3 has higher external quantum efficiency than the phosphor of Comparative Example 3, the light-emitting device uses the phosphor of Example 3 to emit light with higher brightness than the phosphor of Comparative Example 3 A device is obtained.

本発明の蛍光体、および製法で作成された蛍光体と発光装置は、白色発光装置および有色発光装置として用いられる。本発明の白色発光装置としては、液晶ディスプレー、液晶パネルのバックライト、照明装置、信号装置、画像表示装置に用いられる。また、プロジェクター用途にも使用される。 The phosphor of the present invention, and the phosphor and the light emitting device prepared by the manufacturing method are used as a white light emitting device and a colored light emitting device. The white light emitting device of the present invention is used for a liquid crystal display, a backlight of a liquid crystal panel, an illumination device, a signal device, and an image display device. It is also used for projector applications.

Claims (6)

レーザー回折法で測定したメディアン径D50が16μm以下であって、波長800nmの光に対する拡散反射率が90%以上で、波長500nmの光に対する拡散反射率が80%以上であることを特徴とする式(1)で示されるβ型サイアロン蛍光体。
式(1) Si12−aAl16−b:Eu
0<a≦3
0<b≦3
0<x≦0.1
A median diameter D50 measured by a laser diffraction method is 16 μm or less, a diffuse reflectance for light with a wavelength of 800 nm is 90% or more, and a diffuse reflectance for light with a wavelength of 500 nm is 80% or more. A β-type sialon phosphor represented by (1).
Equation (1) Si 12-a Al a O b N 16-b: Eu x
0 <a ≦ 3
0 <b ≦ 3
0 <x ≦ 0.1
焼成工程と低温焼成工程と酸処理工程とを含み、前記焼成工程の温度が1950℃より低温であることを特徴とする、請求項1記載のβ型サイアロン蛍光体の製造方法。 The method for producing a β-type sialon phosphor according to claim 1, comprising a firing step, a low temperature firing step, and an acid treatment step, wherein the temperature of the firing step is lower than 1950 ° C. 前記焼成工程における最高温度の保持時間が3時間以下であることを特徴とする、請求項2記載のβ型サイアロン蛍光体の製造方法。 The method for producing a β-type sialon phosphor according to claim 2, wherein the maximum temperature holding time in the firing step is 3 hours or less. 請求項1記載のβ型サイアロン蛍光体と、Mn4+を発光源とする赤色蛍光体、CASN、SCASNを含む窒化物赤色蛍光体、量子ドット赤色蛍光体の中から選ばれる一種または二種以上の赤色蛍光体と、青色LEDとを組み合わせた発光装置。 The β-sialon phosphor according to claim 1, a red phosphor using Mn 4+ as a light source, a nitride red phosphor containing CASN, SCASN, or a quantum dot red phosphor. A light emitting device that combines a red phosphor and a blue LED. 請求項1記載のβ型サイアロン蛍光体と、赤色LEDまたは赤色有機ELと、青色LEDとを組み合わせた発光装置。 The light-emitting device which combined (beta) sialon fluorescent substance of Claim 1, red LED or red organic EL, and blue LED. Mn4+を発光源とする赤色蛍光体が、KSFを含むフッ化物蛍光体からなることを特徴とする請求項4記載の発光装置。 The light-emitting device according to claim 4, wherein the red phosphor having Mn 4+ as a light-emitting source is a fluoride phosphor containing KSF.
JP2017028849A 2017-02-20 2017-02-20 Phosphor, light-emitting device, and method for producing phosphor Pending JP2018135406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017028849A JP2018135406A (en) 2017-02-20 2017-02-20 Phosphor, light-emitting device, and method for producing phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017028849A JP2018135406A (en) 2017-02-20 2017-02-20 Phosphor, light-emitting device, and method for producing phosphor

Publications (1)

Publication Number Publication Date
JP2018135406A true JP2018135406A (en) 2018-08-30

Family

ID=63365312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017028849A Pending JP2018135406A (en) 2017-02-20 2017-02-20 Phosphor, light-emitting device, and method for producing phosphor

Country Status (1)

Country Link
JP (1) JP2018135406A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150431A (en) * 2017-03-10 2018-09-27 デンカ株式会社 Green phosphor and light-emitting device
WO2020017594A1 (en) 2018-07-18 2020-01-23 株式会社タダノ Crane
WO2022024720A1 (en) * 2020-07-30 2022-02-03 デンカ株式会社 Phosphor particles, composite, wavelength conversion member, and projector
WO2022044860A1 (en) * 2020-08-25 2022-03-03 デンカ株式会社 Fluoride phosphor, complex, and light-emitting device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121083A1 (en) * 2005-05-12 2006-11-16 National Institute For Materials Science β-TYPE SIALON FLUORESCENT SUBSTANCE
JP2009256427A (en) * 2008-04-14 2009-11-05 Nichia Corp Phosphor, light-emitting device using the same and manufacturing method of phosphor
JP2011174015A (en) * 2010-02-25 2011-09-08 Denki Kagaku Kogyo Kk beta-TYPE SIALON PHOSPHOR, APPLICATION THEREOF, AND METHOD FOR PRODUCING beta-TYPE SIALON PHOSPHOR
JP2012001716A (en) * 2010-05-20 2012-01-05 Mitsubishi Chemicals Corp Phosphor, method for manufacturing the same, and light-emitting device using the phosphor
JP2012052127A (en) * 2006-11-20 2012-03-15 Denki Kagaku Kogyo Kk Phosphor, method for producing the same, and light-emitting device
WO2012086505A1 (en) * 2010-12-20 2012-06-28 電気化学工業株式会社 Method for producing β-sialon
JP2013136768A (en) * 2007-10-10 2013-07-11 Ube Industries Ltd β-SIALON PHOSPHOR POWDER AND APLICATION OF THE SAME
JP2016053179A (en) * 2008-09-05 2016-04-14 三菱化学株式会社 Fluophor and manufacturing method therefor, fluophor-containing composition and light-emitting device using fluophor and image display device and luminaire using light-emitting device
JP2016072304A (en) * 2014-09-26 2016-05-09 日亜化学工業株式会社 Light emission device and manufacturing method for the same
JP2017002278A (en) * 2015-06-05 2017-01-05 日亜化学工業株式会社 MANUFACTURING METHOD OF β SIALON PHOSPHOR

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121083A1 (en) * 2005-05-12 2006-11-16 National Institute For Materials Science β-TYPE SIALON FLUORESCENT SUBSTANCE
JP2012052127A (en) * 2006-11-20 2012-03-15 Denki Kagaku Kogyo Kk Phosphor, method for producing the same, and light-emitting device
JP2013136768A (en) * 2007-10-10 2013-07-11 Ube Industries Ltd β-SIALON PHOSPHOR POWDER AND APLICATION OF THE SAME
JP2009256427A (en) * 2008-04-14 2009-11-05 Nichia Corp Phosphor, light-emitting device using the same and manufacturing method of phosphor
JP2016053179A (en) * 2008-09-05 2016-04-14 三菱化学株式会社 Fluophor and manufacturing method therefor, fluophor-containing composition and light-emitting device using fluophor and image display device and luminaire using light-emitting device
JP2011174015A (en) * 2010-02-25 2011-09-08 Denki Kagaku Kogyo Kk beta-TYPE SIALON PHOSPHOR, APPLICATION THEREOF, AND METHOD FOR PRODUCING beta-TYPE SIALON PHOSPHOR
JP2012001716A (en) * 2010-05-20 2012-01-05 Mitsubishi Chemicals Corp Phosphor, method for manufacturing the same, and light-emitting device using the phosphor
WO2012086505A1 (en) * 2010-12-20 2012-06-28 電気化学工業株式会社 Method for producing β-sialon
JP2016072304A (en) * 2014-09-26 2016-05-09 日亜化学工業株式会社 Light emission device and manufacturing method for the same
JP2017002278A (en) * 2015-06-05 2017-01-05 日亜化学工業株式会社 MANUFACTURING METHOD OF β SIALON PHOSPHOR

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150431A (en) * 2017-03-10 2018-09-27 デンカ株式会社 Green phosphor and light-emitting device
WO2020017594A1 (en) 2018-07-18 2020-01-23 株式会社タダノ Crane
WO2022024720A1 (en) * 2020-07-30 2022-02-03 デンカ株式会社 Phosphor particles, composite, wavelength conversion member, and projector
WO2022044860A1 (en) * 2020-08-25 2022-03-03 デンカ株式会社 Fluoride phosphor, complex, and light-emitting device

Similar Documents

Publication Publication Date Title
JP7303822B2 (en) Phosphor and light emitting device
KR101251138B1 (en) Β-sialon phosphor, use thereof and method for producing same
WO2014077240A1 (en) Phosphor, light-emitting element and lighting device
JP7045192B2 (en) Fluorescent material and light emitting device
JPWO2020054351A1 (en) Fluorescent material and light emitting device
JP6658690B2 (en) Nitride phosphor, manufacturing method thereof and light emitting device
JP2018135406A (en) Phosphor, light-emitting device, and method for producing phosphor
WO2018092696A1 (en) Red-emitting phosphor, light-emitting member, and light-emitting device
JPWO2017155111A1 (en) Phosphor, light emitting element and light emitting device
JP2018109080A (en) Green phosphor, light emitting element and light emitting device
JP2022148407A (en) METHOD FOR PRODUCING β-TYPE SIALON PHOSPHOR POWDER
KR102620016B1 (en) Red phosphor and light emitting device
JP2018150432A (en) Red phosphor and light-emitting device
JP7428465B2 (en) Red phosphor and light emitting device
JP7394125B2 (en) Phosphor powder and light emitting device
JP6903455B2 (en) Fluorescent material manufacturing method, phosphor and light emitting element and light emitting device
JP7282757B2 (en) Red phosphor and light-emitting device
WO2024166578A1 (en) Phosphor, light-emitting device, lighting device, image display device, and vehicle indicator lamp
WO2023176564A1 (en) Phosphor powder, method for producing phosphor powder, and light emitting device
JP5697387B2 (en) Method for producing β-sialon
JP2023082287A (en) Method of producing phosphor powder
CN116769475A (en) Method for producing powder containing phosphor particles
WO2024166579A1 (en) Phosphor, light-emitting device, lighting device, image display device, and indicator lamp for vehicles
JP2018150431A (en) Green phosphor and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210803