JP2018134641A - Gas treatment facility and operation method of the same - Google Patents

Gas treatment facility and operation method of the same Download PDF

Info

Publication number
JP2018134641A
JP2018134641A JP2018099269A JP2018099269A JP2018134641A JP 2018134641 A JP2018134641 A JP 2018134641A JP 2018099269 A JP2018099269 A JP 2018099269A JP 2018099269 A JP2018099269 A JP 2018099269A JP 2018134641 A JP2018134641 A JP 2018134641A
Authority
JP
Japan
Prior art keywords
filter member
cleaning
oil
gas
cleaning liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018099269A
Other languages
Japanese (ja)
Other versions
JP6576509B2 (en
Inventor
上林 史朗
Shiro Kamibayashi
史朗 上林
吉岡 洋仁
Hirohito Yoshioka
洋仁 吉岡
史樹 寳正
Fumiki Hojo
史樹 寳正
野邑 尚史
Hisafumi Nomura
尚史 野邑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2018099269A priority Critical patent/JP6576509B2/en
Publication of JP2018134641A publication Critical patent/JP2018134641A/en
Application granted granted Critical
Publication of JP6576509B2 publication Critical patent/JP6576509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a gas treatment facility which enables easy maintenance and continuous operation over a long time period while using a filter member for removing oil contents from an oil content including gas.SOLUTION: A gas treatment facility includes: a filter member 10 which recovers oil contents from an oil content including gas; and a cleaning mechanism 12 which cleans the filter member 10. The gas treatment facility includes a position change mechanism 11 which changes a position of the filter member 10 between an oil content recovery position where the entire filter member 10 is disposed at a gas flow part 2 to recover oil contents accompanying a gas with the filter member 10 and a cleaning position where the entire filter member 10 is disposed at the cleaning mechanism 12 to separate the recovered oil contents from the filter member 10. The gas treatment facility includes a vibration mechanism 11b which vibrates the filter member while placing the filter member 10 in contact with a cleaning fluid in the cleaning position.SELECTED DRAWING: Figure 2

Description

本発明は、油分含有ガスから油分を回収するフィルタ部材と、前記フィルタ部材を洗浄する洗浄機構とを備えているガス処理設備、ガス処理設備の制御装置、及びガス処理設備の運転方法に関する。   The present invention relates to a gas processing facility including a filter member that recovers oil from an oil-containing gas, and a cleaning mechanism that cleans the filter member, a control device for the gas processing facility, and a method for operating the gas processing facility.

従来、下水処理場、し尿処理場、各種産業排水処理場等で発生した汚泥は濃縮及び脱水工程を経て焼却処分または溶融処分されていた。このような汚泥に含まれる有機成分を熱源として利用することにより、焼却処分や溶融処分に要する化石燃料の消費量を抑制することができ、そのために焼却処分や溶融処分の前に脱水工程を経た汚泥を乾燥させる汚泥乾燥設備が構築されている。   Conventionally, sludge generated in sewage treatment plants, human waste treatment plants, various industrial wastewater treatment plants, etc. has been incinerated or melted through a concentration and dehydration process. By using the organic components contained in such sludge as a heat source, the consumption of fossil fuel required for incineration and melting disposal can be suppressed, and therefore a dehydration process has been performed before incineration and melting disposal. A sludge drying facility for drying sludge has been established.

図13には、このような汚泥乾燥設備100が例示されている。汚泥乾燥設備100は、熱源となる熱風炉110を備えた汚泥乾燥機120と、汚泥乾燥機120の排ガスを熱風炉110に導く熱風循環ファン170等を備え、排ガスが熱風炉110に循環供給されるように構成されている。熱風炉110には熱源として高温排ガスもしくは補助燃料が導入され、汚泥乾燥機120の排ガスが300〜800℃に昇温される。   FIG. 13 illustrates such a sludge drying facility 100. The sludge drying facility 100 includes a sludge dryer 120 including a hot air furnace 110 as a heat source, a hot air circulation fan 170 that guides the exhaust gas of the sludge dryer 120 to the hot air furnace 110, and the exhaust gas is circulated and supplied to the hot air furnace 110. It is comprised so that. High-temperature exhaust gas or auxiliary fuel is introduced into the hot stove 110 as a heat source, and the exhaust gas of the sludge dryer 120 is heated to 300 to 800 ° C.

汚泥乾燥機120では300〜800℃の温度で汚泥が乾燥され、120〜200℃の排ガスが排ガス流路に備えたサイクロン130やスクラバ140に導かれる。サイクロンでは排ガスに同伴した固形異物が除去され、スクラバ140では急冷によって排ガスから水分が凝縮除去される。   In the sludge dryer 120, the sludge is dried at a temperature of 300 to 800 ° C., and the exhaust gas of 120 to 200 ° C. is guided to the cyclone 130 and the scrubber 140 provided in the exhaust gas flow path. In the cyclone, solid foreign substances accompanying the exhaust gas are removed, and in the scrubber 140, moisture is condensed and removed from the exhaust gas by rapid cooling.

スクラバ140の下流側にはデミスタ150やミストセパレータ160が配置され、スクラバ140を通過した排ガスに含まれる水分やタール等の油分が除去される。タール等の油分は、汚泥乾燥機120で乾燥処理される際に汚泥に含まれる有機成分の一部が熱分解されることにより排ガスに混入したものである。   On the downstream side of the scrubber 140, a demister 150 and a mist separator 160 are disposed, and oil and other oils such as moisture and tar contained in the exhaust gas that has passed through the scrubber 140 are removed. The oil such as tar is mixed in the exhaust gas when part of the organic components contained in the sludge is thermally decomposed when being dried by the sludge dryer 120.

デミスタ150やミストセパレータ160で十分に除去されなかったタール等の油分や灰分は熱風循環ファン170のインペラに付着して、次第に熱風循環ファン170の負荷が増すとともに熱風循環ファン170自体に振動が発生する等の異常な事態を招く虞がある。さらに後段の熱風炉110の伝熱面にタール等の油分や灰分が付着堆積してコーキングが発生すると伝熱損失が発生するばかりでなく熱風炉110の圧力損失の上昇につながるという問題があった。   Oil or ash such as tar that has not been sufficiently removed by the demister 150 or the mist separator 160 adheres to the impeller of the hot air circulation fan 170, and the load of the hot air circulation fan 170 gradually increases and vibrations occur in the hot air circulation fan 170 itself. There is a risk of causing an abnormal situation such as. Furthermore, when oil or ash such as tar adheres and accumulates on the heat transfer surface of the subsequent hot stove 110 and coking occurs, there is a problem that not only heat transfer loss occurs but also the pressure loss of the hot stove 110 increases. .

そのため、インペラを連続的に水洗浄処理するための専用の装置を設置したり、デミスタ150やミストセパレータ160を頻繁にメンテナンスしたりすると設備コストやメンテナンスコストが嵩むという問題もあった。特に、厚さ100mm程度のデミスタ150が水平設置され、下方から上方への排ガスの流れに沿って専らデミスタの下面に付着するタール等をデミスタの上面から供給する洗浄水で除去するような構成を採用する場合には、タールの付着部位まで十分な洗浄力を持つ洗浄水が到達することができず、圧損が増して熱風循環ファン170の負荷が一層増大するため、デミスタ150を頻繁に取り換える必要があるという問題もあった。   For this reason, if a dedicated device for continuously washing the impeller with water is installed or if the demister 150 and the mist separator 160 are frequently maintained, there is a problem that the equipment cost and the maintenance cost increase. In particular, the demister 150 having a thickness of about 100 mm is installed horizontally, and the configuration is such that tar or the like adhering to the lower surface of the demister exclusively along the flow of the exhaust gas from the lower side to the upper side is removed with the washing water supplied from the upper surface of the demister. In the case of using the demister 150, it is necessary to frequently replace the demister 150 because washing water having sufficient detergency cannot reach the tar adhesion site and pressure loss increases and the load of the hot air circulation fan 170 further increases. There was also a problem that there was.

特許文献1には、そのような問題に対して、アルカリ溶液からなる鹸化液と排ガスとを直接接触させ、排ガス中のタールを鹸化して取り除くタール鹸化除去装置と、排ガスが衝突する衝突壁と、この衝突壁表面にタール付着防止液を供給する衝突壁付着防止液供給手段とを有する慣性集塵機とを設け、タールを含有する排ガスをタール鹸化除去装置に供給してタールを鹸化して取り除いた後、慣性集塵機に供給してタールを除去するとともにミストを分離除去するタール含有排ガスの処理設備が提案されている。   Patent Document 1 discloses a tar saponification removing device that directly contacts a saponification solution made of an alkaline solution and exhaust gas to saponify and remove tar in the exhaust gas, and a collision wall on which the exhaust gas collides. In addition, an inertia dust collector having a collision wall adhesion prevention liquid supply means for supplying a tar adhesion prevention liquid to the collision wall surface is provided, and the exhaust gas containing tar is supplied to the tar saponification removal device to saponify and remove the tar. Later, a tar-containing exhaust gas treatment facility for removing tar and supplying it to an inertia dust collector has been proposed.

特開2005−279420号公報JP 2005-279420 A

しかし、特許文献1に記載されたようなタール含有排ガスの処理設備では、大量の鹸化液が必要になるばかりか、水平姿勢に設置されたメッシュ状の衝突壁の上部から鹸化液を供給してタールに接触させて鹸化させる構成であるため、メッシュ状の衝突壁に鹸化物が留まり、次第に堆積して排ガス路の圧損が高くなる虞があり、頻繁に衝突壁を清掃する必要があるという点に変わりはなく、またメンテナンス時には手動で衝突壁を交換する必要があり、安全性を確保するための対策を講じる必要があるばかりでなく、煩雑な作業が要求されるという問題もあった。   However, in the tar-containing exhaust gas treatment facility described in Patent Document 1, not only a large amount of saponification solution is required, but the saponification solution is supplied from the upper part of the mesh-shaped collision wall installed in a horizontal position. Since it is configured to saponify by contacting with tar, the saponified product may remain on the mesh-like collision wall and gradually accumulate, which may increase the pressure loss of the exhaust gas passage, and it is necessary to frequently clean the collision wall In addition, there is a problem that it is necessary to manually replace the collision wall at the time of maintenance, and it is not only necessary to take measures for ensuring safety, but also complicated work is required.

そこで、衝突壁の下部から鹸化液を供給すると、鹸化液は衝突壁やガスの流れによる抵抗を受けてタール分の多い衝突壁の上層側まで達せず十分に鹸化処理できないという問題があった。   Therefore, when the saponification liquid is supplied from the lower part of the collision wall, the saponification liquid is subjected to resistance due to the collision wall and gas flow, and does not reach the upper layer side of the collision wall having a large amount of tar, so that there is a problem that the saponification treatment cannot be performed sufficiently.

さらに、洗浄液ミストに油分が同伴して後段に流出して油分の回収率が低下するという問題もあった。   In addition, there is a problem that the oil content is accompanied by the cleaning liquid mist and flows out to the subsequent stage to reduce the oil recovery rate.

同様の問題は、例えばバイオマスのガス化プロセスや炭化プロセスで発生するガス、バイオマスの乾燥化プロセスで発生するガス、石炭の乾留プロセスで発生するガス等の油分含有ガスから油分を回収する必要があるガス処理設備に広く共通の問題であった。   A similar problem is the need to recover oil from oil-containing gases such as gas generated in biomass gasification and carbonization processes, gas generated in biomass drying processes, and gas generated in coal carbonization processes. It was a problem common to gas processing facilities.

本発明の目的は、上述した問題点に鑑み、油分含有ガスから油分を除去するフィルタ部材を用いながらも、メンテナンスが容易で且つ長期に亘り連続稼働可能なガス処理設備及びガス処理設備の運転方法を提供する点にある。 SUMMARY OF THE INVENTION In view of the problems described above, while using a filter member for removing oil from oil-containing gas, maintenance of continuous operation possible gas processing set 備及 beauty gas processing facility over a easy and prolonged The point is to provide a driving method.

上述の目的を達成するため、本発明によるガス処理設備の第一特徴構成は、特許請求の範囲の請求項1に記載した通り、油分含有ガスから油分を回収するフィルタ部材と、前記フィルタ部材を洗浄する洗浄機構とを備えているガス処理設備であって、前記フィルタ部材全体をガス通流部に配置してガスに同伴する油分を前記フィルタ部材で回収する油分回収位置と、前記フィルタ部材全体を前記洗浄機構に配置して回収した油分を前記フィルタ部材から分離する洗浄位置との間で、前記フィルタ部材の位置を変更する位置変更機構を備え、前記洗浄位置で前記フィルタ部材を洗浄液と接触させつつ前記フィルタ部材を加振する加振機構を備えている点にある。 In order to achieve the above-described object, the first characteristic configuration of the gas treatment facility according to the present invention includes a filter member for recovering oil from an oil-containing gas, and the filter member as described in claim 1 of the claims. A gas processing facility including a cleaning mechanism for cleaning , wherein the entire filter member is disposed in a gas flow part, and an oil component recovery position for recovering oil components accompanying the gas by the filter member; and the entire filter member A position changing mechanism for changing the position of the filter member between a cleaning position for separating the recovered oil from the filter member by contacting the filter member with the cleaning liquid at the cleaning position. The vibration member is provided with a vibration mechanism that vibrates the filter member .

上述の構成によれば、位置変更機構で油分回収位置に位置変更されたフィルタ部材によって油分含有ガスに含まれる油分が捕捉され、油分を捕捉して汚れたフィルタ部材は位置変更機構によって洗浄位置に位置変更された後に洗浄されるので、人手でフィルタ部材を装置から取り外すような手間が不要になる。また、洗浄位置に位置変更されたフィルタ部材は洗浄液と接触した状態で加振機構によって加振され、例えば往復動、搖動、正逆回転等されることによって、フィルタ部材に捕捉された油分等の汚れが離脱し易くなり洗浄効率が向上する。 According to the above-described configuration, the oil contained in the oil-containing gas is captured by the filter member whose position is changed to the oil recovery position by the position changing mechanism, and the filter member that is contaminated by capturing the oil is moved to the cleaning position by the position changing mechanism. Since the cleaning is performed after the position is changed, it is not necessary to manually remove the filter member from the apparatus. In addition, the filter member whose position has been changed to the cleaning position is vibrated by a vibration mechanism in contact with the cleaning liquid, such as reciprocating motion, peristalsis, forward / reverse rotation, etc. Dirt is easily removed and cleaning efficiency is improved.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一の特徴構成に加えて、前記位置変更機構は前記油分回収位置と前記洗浄位置との間で前記フィルタ部材を進出駆動または引退駆動するシリンダ機構で構成され、前記洗浄位置で短距離での進出駆動と引退駆動を繰り返す前記シリンダ機構により前記加振機構が構成されている点にある。 In the second characteristic configuration, in addition to the first characteristic configuration described above, the position changing mechanism advances the filter member between the oil recovery position and the cleaning position. The vibration mechanism is composed of a cylinder mechanism that drives or retracts, and the cylinder mechanism that repeats advancing driving and retracting driving at a short distance at the cleaning position.

シリンダ機構の進出駆動と引退駆動を短い距離で繰り返すことによってフィルタ部材を洗浄液と接触した状態で上下に振動させると、洗浄液により汚れが押されることでフィルタ部材に捕捉された油分等の汚れが離脱し易くなり洗浄効率が向上する。When the filter member is vibrated up and down in contact with the cleaning liquid by repeating the advance and retreat drive of the cylinder mechanism at a short distance, the dirt such as oil captured by the filter member is released by the dirt being pushed by the cleaning liquid. Cleaning efficiency is improved.

同第三の特徴構成は、同請求項3に記載した通り、上述の第一または第二の特徴構成に加えて、前記洗浄機構は、前記洗浄位置で前記フィルタ部材全体を洗浄液に浸漬する洗浄槽を備えている点にある。In the third feature configuration, as described in claim 3, in addition to the first or second feature configuration described above, the cleaning mechanism is configured to immerse the entire filter member in a cleaning liquid at the cleaning position. The tank is equipped with a tank.

フィルタ部材全体が洗浄槽の内部で洗浄液に浸漬されることによって湿潤状態となり、その状態でフィルタ部材が加振されるので、効率的に洗浄される。The entire filter member is dipped in the cleaning liquid inside the cleaning tank and becomes wet, and the filter member is vibrated in that state, so that the filter member is efficiently cleaned.

同第四の特徴構成は、同請求項4に記載した通り、上述の第一または第二の特徴構成に加えて、前記洗浄機構は、前記洗浄位置にある前記フィルタ部材に対して洗浄液に浸漬させることなく背面側から油分回収面側に向けて洗浄液を噴射供給する給液部を備えている点にある。In the fourth feature configuration, in addition to the first or second feature configuration described above, the cleaning mechanism is immersed in a cleaning liquid with respect to the filter member at the cleaning position. In this respect, a liquid supply unit that injects and supplies the cleaning liquid from the back side toward the oil recovery surface side is provided.

給液部から洗浄液がフィルタ部材に向けて供給されるので、油分を含む異物がフィルタ部材から効率的に離脱する。Since the cleaning liquid is supplied from the liquid supply unit toward the filter member, the foreign matter containing oil efficiently separates from the filter member.

本発明によるガス処理設備の運転方法の特徴構成は、同請求項5に記載した通り、油分含有ガスから油分を回収するフィルタ部材と、前記フィルタ部材を洗浄する洗浄機構とを備えているガス処理設備の運転方法であって、前記フィルタ部材全体をガス通流部に配置してガスに同伴する油分を前記フィルタ部材で回収する油分回収位置と、前記フィルタ部材全体を前記洗浄機構に配置して回収した油分を前記フィルタ部材から分離する洗浄位置との間で、前記フィルタ部材の位置を変更する位置変更ステップを備え、前記洗浄位置で前記フィルタ部材を洗浄液と接触させつつ前記フィルタ部材を加振する加振ステップを備えている点にある。The characteristic configuration of the operation method of the gas processing facility according to the present invention includes a filter member that recovers oil from an oil-containing gas and a cleaning mechanism that cleans the filter member as described in claim 5. An operation method of the equipment, wherein the entire filter member is disposed in the gas flow part, and an oil component recovery position for recovering the oil component accompanying the gas by the filter member, and the entire filter member is disposed in the cleaning mechanism. A position changing step for changing the position of the filter member between a cleaning position for separating the recovered oil from the filter member is provided, and the filter member is vibrated while the filter member is in contact with the cleaning liquid at the cleaning position. It is in the point provided with the vibration step to perform.

以上説明した通り、本発明によれば、油分含有ガスから油分を除去するフィルタ部材を用いながらも、メンテナンスが容易で且つ長期に亘り連続稼働可能なガス処理設備及びガス処理設備の運転方法を提供することができるようになった。 As described above, according to the present invention, while using a filter member for removing oil from oil-containing gas, a method of operating maintenance easy and continuous operation possible gas processing set 備及 beauty gas treatment equipment for a long period of time Can now be provided.

本発明によるガス処理設備が組み込まれた汚泥乾燥設備の説明図Explanatory drawing of the sludge drying equipment in which the gas treatment equipment according to the present invention is incorporated (a)はガス処理設備の側面から視た説明図、(b)は同正面から視た説明図(A) is explanatory drawing seen from the side of gas processing equipment, (b) is explanatory drawing seen from the same front フィルタ部材が油分回収位置に位置するガス処理設備の概略図Schematic of gas processing equipment with filter member located at oil recovery position フィルタ部材が洗浄位置に位置するガス処理設備の概略図Schematic of gas processing equipment with filter member located at cleaning position ガス処理設備の別実施形態の概略図Schematic of another embodiment of gas processing equipment ガス処理設備の別実施形態の概略図Schematic of another embodiment of gas processing equipment ガス処理設備の別実施形態の概略図Schematic of another embodiment of gas processing equipment ガス処理設備の別実施形態の概略図であって、(a)は油分回収位置、(b)は洗浄位置を示す概略図It is the schematic of another embodiment of gas processing equipment, (a) is an oil recovery position, (b) is a schematic diagram showing a washing position. ガス処理設備の別実施形態の概略図であって、(a)は正面図、(b)は平面図It is the schematic of another embodiment of gas processing equipment, (a) is a front view, (b) is a top view ガス処理設備の別実施形態の概略図Schematic of another embodiment of gas processing equipment ガス処理設備が並列配置された汚泥乾燥設備の説明図Illustration of sludge drying equipment with gas treatment equipment arranged in parallel フィルタ部材模擬材からの油分除去実験の結果を示す表Table showing the results of oil removal experiments from simulated filter material 従来の汚泥乾燥設備の説明図Illustration of conventional sludge drying equipment

以下、本発明によるガス処理設備の第一の実施形態を説明する。
図1には、下水処理場に設置された汚泥乾燥設備100が示されている。汚泥乾燥設備100は、熱源となる熱風炉110を備えた汚泥乾燥機120と、汚泥乾燥機120の排ガスを熱風炉110に導く熱風循環ファン170等を備え、排ガスが熱風炉110に循環供給されるように構成されている。熱風炉110には熱源として高温排ガスもしくは補助燃料が導入され、40〜50℃に下がった汚泥乾燥機120の排ガスが300〜800℃に昇温される。
Hereinafter, a first embodiment of a gas processing facility according to the present invention will be described.
FIG. 1 shows a sludge drying facility 100 installed in a sewage treatment plant. The sludge drying facility 100 includes a sludge dryer 120 including a hot air furnace 110 as a heat source, a hot air circulation fan 170 that guides the exhaust gas of the sludge dryer 120 to the hot air furnace 110, and the exhaust gas is circulated and supplied to the hot air furnace 110. It is comprised so that. High-temperature exhaust gas or auxiliary fuel is introduced into the hot stove 110 as a heat source, and the exhaust gas of the sludge dryer 120 lowered to 40 to 50 ° C. is heated to 300 to 800 ° C.

汚泥は汚泥乾燥機120で300〜800℃の熱風を用いて乾燥されて乾燥汚泥として排出され、汚泥乾燥機120から排出された120〜200℃の排ガスは排ガス流路に備えたサイクロン130とスクラバ140に導かれる。サイクロン130では排ガスに同伴した固形異物が除去され、スクラバ140では急冷によって排ガスから水分が凝縮除去され、さらにデミスタ150によってガスに同伴する水分が除去される。40〜50℃に下がった排ガスは熱風炉110で300℃〜800℃に昇温される。   The sludge is dried by the sludge dryer 120 using hot air of 300 to 800 ° C. and discharged as dry sludge. The 120 to 200 ° C. exhaust gas discharged from the sludge dryer 120 is a cyclone 130 and a scrubber provided in the exhaust gas flow path. 140. The cyclone 130 removes solid foreign substances accompanying the exhaust gas, the scrubber 140 condenses and removes moisture from the exhaust gas by rapid cooling, and the demister 150 removes moisture accompanying the gas. The exhaust gas that has fallen to 40 to 50 ° C. is heated to 300 to 800 ° C. in the hot stove 110.

本発明によるガス処理設備1はデミスタ150の下流側にガス通流方向に沿って直列に2段連設され、デミスタ150を通過した排ガスに含まれるタール等の油分を含む異物が除去される。これによりタール等の油分や灰分が熱風循環ファン170のインペラに付着したり、さらに後段の熱風炉110の伝熱面に付着堆積したりする事態が回避されるように構成されている。   The gas treatment facility 1 according to the present invention is provided in two stages in series along the gas flow direction on the downstream side of the demister 150 to remove foreign matters including oil such as tar contained in the exhaust gas that has passed through the demister 150. As a result, a situation in which oil or ash such as tar adheres to the impeller of the hot air circulation fan 170 or further adheres to and accumulates on the heat transfer surface of the hot air furnace 110 in the subsequent stage is avoided.

図2(a),(b)に示すように、ガス処理設備1は、ガス通流部2と、フィルタ部材10と、位置変更機構11と、洗浄機構12と、制御装置C等を備えている。   As shown in FIGS. 2A and 2B, the gas processing facility 1 includes a gas flow section 2, a filter member 10, a position changing mechanism 11, a cleaning mechanism 12, a control device C, and the like. Yes.

ガス通流部2は汚泥乾燥機120から排出された油分含有ガス(排ガス)を導く略水平姿勢の流路で、排ガス流入管及び流出管が接続される入口及び出口のフランジ径が約150mm、入口と出口のフランジ面間が約500mmに設定されている。ガス通流部2の中央部にフィルタ部材10が配置されるろ過用の拡径空間が形成され、当該拡径空間に配置されるフィルタ部材10によって排ガスに混入した油分を含む異物が除去される。尚、フランジ径やフランジ面間は例示であり、ガス量やフィルタの面積等により決定される。   The gas flow part 2 is a substantially horizontal flow path for guiding the oil-containing gas (exhaust gas) discharged from the sludge dryer 120, and the flange diameters of the inlet and outlet to which the exhaust gas inflow pipe and the outflow pipe are connected are about 150 mm, The distance between the inlet and outlet flange surfaces is set to about 500 mm. An enlarged diameter space for filtration in which the filter member 10 is arranged is formed in the central portion of the gas flow portion 2, and foreign matters including oil mixed in the exhaust gas are removed by the filter member 10 arranged in the enlarged diameter space. . Note that the flange diameter and the space between the flange surfaces are examples, and are determined by the gas amount, the area of the filter, and the like.

フィルタ部材10は排ガスに同伴されるタール等の油分や粉塵を慣性衝突させて分離するための部材で、SUS316等を用いた金属ワイヤー等の線材を用いてメッシュ状に形成され、一辺が220mmの方形の金属網を重ね合わせて厚さ100mmに構成されている。フィルタ部材10は周囲が支持フレーム10aに固定されている。排ガスがガス通流部2の上流側(以下、「油分回収面」と記す。)からフィルタ部材10の上流側面に流入して下流側面(以下、「背面」と記す。)に通流する際に、排ガスに同伴する油分等がフィルタ部材10、主に油分回収面で捕捉される。   The filter member 10 is a member for separating the oil and dust such as tar accompanying the exhaust gas by inertial collision, and is formed in a mesh shape using a wire such as a metal wire using SUS316 or the like, and one side is 220 mm. A rectangular metal net is overlapped to form a thickness of 100 mm. The periphery of the filter member 10 is fixed to the support frame 10a. When the exhaust gas flows into the upstream side surface of the filter member 10 from the upstream side of the gas flow part 2 (hereinafter referred to as “oil content recovery surface”) and flows to the downstream side surface (hereinafter referred to as “back surface”). In addition, oil and the like accompanying the exhaust gas are captured by the filter member 10, mainly the oil recovery surface.

尚、フィルタ部材10を構成する素材やサイズは例示であり、当該素材やサイズに制限されるものではない。線材の材質や太さ、断面形状、メッシュの数はフィルタの圧力損失と捕集効率、洗浄効率を考慮して選定され、金属網に替えて金属製のパンチングメタルでもよい。さらに、PP,PE,PVC,PTFE等の樹脂材を用いた樹脂網や不織布を採用してもよいし、ビーズ状の樹脂部材をメッシュ容器に充填した充填層をフィルタ部材10に採用してもよい。   In addition, the raw material and size which comprise the filter member 10 are illustrations, and are not restrict | limited to the said raw material and size. The material, thickness, cross-sectional shape, and number of meshes of the wire are selected in consideration of the pressure loss, collection efficiency, and cleaning efficiency of the filter, and metal punching metal may be used instead of the metal net. Furthermore, a resin net or a nonwoven fabric using a resin material such as PP, PE, PVC, or PTFE may be employed, or a packed layer in which a mesh container is filled with a bead-shaped resin member may be employed for the filter member 10. Good.

洗浄機構12はフィルタ部材10が捕捉した油分を含む異物を洗浄する機構であり、ガス通流部2の拡径空間直下に配置されている。位置変更機構11はフィルタ部材10をガス通流部2に配置してガスに同伴する油分を回収する油分回収位置と、フィルタ部材10を洗浄機構12に配置して回収した油分を分離する洗浄位置との間で、フィルタ部材10の位置を変更する機構である。   The cleaning mechanism 12 is a mechanism for cleaning foreign matter including oil captured by the filter member 10, and is disposed immediately below the diameter expansion space of the gas flow part 2. The position changing mechanism 11 has the filter member 10 disposed in the gas flow section 2 to recover the oil component that collects the oil accompanying the gas, and the filter member 10 is disposed in the cleaning mechanism 12 to separate the recovered oil component. It is a mechanism which changes the position of the filter member 10 between.

位置変更機構11はガス通流部2の拡径空間直上に上部遮蔽部材11eを介して立設された支持部11aと支持部11aの上端に配置されたエアシリンダ11bと、エアシリンダ11bを圧縮空気で駆動する流体回路FC(図3,4参照。)を備えたシリンダ機構で構成されている。   The position changing mechanism 11 compresses the air cylinder 11b, a support portion 11a erected directly above the diameter expansion space of the gas flow portion 2 via an upper shielding member 11e, an air cylinder 11b disposed at the upper end of the support portion 11a, and the air cylinder 11b. The cylinder mechanism includes a fluid circuit FC (see FIGS. 3 and 4) driven by air.

エアシリンダ11bのピストン11c先端部に中空のリンク部材11dが接続され、リンク部材11dの先端部にフィルタ部材10の支持フレーム10aが固定されている。上部遮蔽部材11eにはシール部材を介してリンク部材11dが上下移動する貫通孔が形成され、ピストン11cが引退作動することによりフィルタ部材10が油分回収位置に位置移動され(図2(b)に、二点鎖線で示されている。)、ピストンが進出作動することによりフィルタ部材10が洗浄位置に位置移動される(図2(b)に、実線で示されている。)。   A hollow link member 11d is connected to the tip of the piston 11c of the air cylinder 11b, and the support frame 10a of the filter member 10 is fixed to the tip of the link member 11d. A through-hole through which the link member 11d moves up and down via a seal member is formed in the upper shielding member 11e, and the filter member 10 is moved to the oil recovery position by retreating the piston 11c (see FIG. 2B). The filter member 10 is moved to the cleaning position by moving the piston forward (shown by a solid line in FIG. 2B).

フィルタ部材10を挟んでガス通流部2の上流側及び下流側に圧力センサGSが配置され、両センサの差圧によってフィルタ部材10の汚れの程度をモニタ可能に構成されている。即ち、二つの圧力センサによって差圧センサPSが構成されている。   Pressure sensors GS are arranged on the upstream side and downstream side of the gas flow part 2 with the filter member 10 interposed therebetween, and the degree of contamination of the filter member 10 can be monitored by the differential pressure between the two sensors. That is, the differential pressure sensor PS is constituted by two pressure sensors.

洗浄機構12は、洗浄槽13と、異物除去機構14と、洗浄液供給機構15と、加熱機構16を備えている。   The cleaning mechanism 12 includes a cleaning tank 13, a foreign matter removing mechanism 14, a cleaning liquid supply mechanism 15, and a heating mechanism 16.

洗浄槽13はフィルタ部材10を洗浄するための液槽で、洗浄位置でフィルタ部材10のほぼ全体が洗浄液に浸漬されるように液位が調整されている。本実施形態では、アルカリ洗浄液(濃度約5重量%、温度約40℃の水酸化ナトリウム水溶液)が用いられている。   The cleaning tank 13 is a liquid tank for cleaning the filter member 10, and the liquid level is adjusted so that almost the entire filter member 10 is immersed in the cleaning liquid at the cleaning position. In this embodiment, an alkaline cleaning liquid (an aqueous sodium hydroxide solution having a concentration of about 5% by weight and a temperature of about 40 ° C.) is used.

洗浄液供給機構15は給液部15aと、排液部15bと、洗浄液循環機構15cと、洗浄液補給部15dを備えている。   The cleaning liquid supply mechanism 15 includes a liquid supply part 15a, a drainage part 15b, a cleaning liquid circulation mechanism 15c, and a cleaning liquid replenishment part 15d.

給液部15aは排液部15bから洗浄液循環機構15cを経由して供給される洗浄液をフィルタ部材10の背面側から略均等に供給する部位で、水平方向に形成されたスリット状のノズルがフィルタ部材10の上下方向に沿って複数段配列された洗浄液ヘッダー部で構成されている。各ノズルから供給された所定圧力の洗浄液がフィルタ部材10の背面側から油分回収面側に流れることによって、フィルタ部材10に捕捉された油分を含む異物が鹸化されるとともにフィルタ部材10から離脱して除去される。   The liquid supply part 15a is a part that supplies the cleaning liquid supplied from the drainage part 15b via the cleaning liquid circulation mechanism 15c substantially evenly from the back side of the filter member 10, and a slit-like nozzle formed in the horizontal direction is a filter. The cleaning liquid header portion is arranged in a plurality of stages along the vertical direction of the member 10. As the cleaning liquid of a predetermined pressure supplied from each nozzle flows from the back side of the filter member 10 to the oil recovery surface side, the foreign matter containing the oil captured by the filter member 10 is saponified and detached from the filter member 10. Removed.

このとき、エアシリンダ11bの進出駆動と引退駆動を短い距離で繰り返すことによってフィルタ部材10を洗浄液中で上下に振動させると、洗浄液により汚れが押されることでフィルタ部材10に捕捉された油分等の汚れが離脱し易くなり洗浄効率が向上する。即ち、シリンダ機構によって洗浄位置でフィルタ部材10を加振する加振機構を構成することができる。尚、エアシリンダ11b以外の加振機構を設けてもよい。例えば、リンク部材11dを軸心周りに正逆回転駆動したり、搖動駆動したりする駆動機構を設けてもよい。このような駆動機構はリンク部材11dに嵌入したギアとギアを駆動するモータ等で構成することができる。   At this time, if the filter member 10 is caused to vibrate up and down in the cleaning liquid by repeating the advance drive and the retraction drive of the air cylinder 11b at a short distance, the oil content or the like captured by the filter member 10 is pressed by the cleaning liquid. Dirt is easily removed and cleaning efficiency is improved. That is, the vibration mechanism that vibrates the filter member 10 at the cleaning position by the cylinder mechanism can be configured. A vibration mechanism other than the air cylinder 11b may be provided. For example, a drive mechanism may be provided that drives the link member 11d to rotate forward and backward around the axis or peristally drive. Such a drive mechanism can be composed of a gear fitted in the link member 11d and a motor for driving the gear.

排液部15bは洗浄槽13に供給された洗浄水を循環供給するために回収する部位で、洗浄液に浮遊する油分や鹸化物等の異物が同伴しないように、液面より下方、本実施形態では洗浄槽13に形成された給液部15aより下方に設けられている。   The drainage part 15b is a part where the cleaning water supplied to the cleaning tank 13 is collected in order to circulate, and is below the liquid level so as not to be accompanied by foreign matters such as oil and saponified substances floating in the cleaning liquid. Then, it is provided below the liquid supply part 15 a formed in the cleaning tank 13.

洗浄液循環機構15cは排液部15bから回収された洗浄液を給液部15a及び後述の異物導出機構14bに循環供給する管路とバルブ機構とポンプとで構成されている(図3、図4参照。)。   The cleaning liquid circulation mechanism 15c includes a conduit, a valve mechanism, and a pump that circulates and supplies the cleaning liquid recovered from the drainage section 15b to the liquid supply section 15a and a foreign substance derivation mechanism 14b described later (see FIGS. 3 and 4). .)

洗浄液補給部15dは、洗浄槽13の液位を略一定に維持するために洗浄液循環機構15cとは別経路で洗浄液を補給する部位で、洗浄槽13に備えた液位計の値が一定になるように必要に応じて図外の洗浄液タンクから補充供給されるように構成されている。   The cleaning liquid replenishing unit 15d is a part that replenishes the cleaning liquid through a different path from the cleaning liquid circulation mechanism 15c in order to maintain the liquid level in the cleaning tank 13 substantially constant, and the value of the liquid level meter provided in the cleaning tank 13 is constant. It is configured to be replenished and supplied from a cleaning liquid tank (not shown) as necessary.

異物除去機構14は洗浄液とともに鹸化物や油分等の浮遊物を洗浄槽13から溢流させる溢流機構14aと洗浄液の液面に溢流機構14aへ向かう流れを発生させて液面に浮遊する異物を溢流機構14aへ導く異物導出機構14bとを備えて構成されている。   The foreign matter removing mechanism 14 includes an overflow mechanism 14a for overflowing a floating substance such as a saponified product and oil together with the cleaning liquid from the cleaning tank 13, and generates a flow toward the overflow mechanism 14a on the liquid surface of the cleaning liquid to float on the liquid surface. And a foreign matter derivation mechanism 14b for guiding the water to the overflow mechanism 14a.

溢流機構14aから洗浄液が溢流することによって低下した液位を回復させるべく、洗浄液補給部15dによって洗浄液が補充され、溢流機構14aの機能が維持される。尚、洗浄液補給部15dは、洗浄液の液面より下方で、溢流機構14aよりも下方に位置するので、補充した新しい洗浄液がそのまま溢流機構14aに直接流れていかないので洗浄槽13内の水の汚れを抑制することもできる。   The cleaning liquid is replenished by the cleaning liquid replenishing section 15d to restore the liquid level lowered by the overflow of the cleaning liquid from the overflow mechanism 14a, and the function of the overflow mechanism 14a is maintained. Since the cleaning liquid replenishing portion 15d is located below the cleaning liquid level and below the overflow mechanism 14a, the replenished new cleaning liquid does not flow directly into the overflow mechanism 14a, so It is also possible to suppress soiling.

溢流機構14aから溢流した洗浄液は、U字管を通って固液分離装置(図示せず)に排水され、鹸化物等の固形分が除去された後に下水処理設備の原水として供給され、下水として処理される。U字管とU字管に貯留される所定量の洗浄液とによって水封機構が構成され、フィルタ部材10が配置されるガス通流部2と洗浄槽13の空間が気密に封止されるように構成されている。尚、固液分離後の洗浄液を上述の洗浄液循環機構15cを介して循環供給するように構成することも可能である。   The washing liquid overflowed from the overflow mechanism 14a is drained to a solid-liquid separator (not shown) through a U-shaped tube, and is supplied as raw water of a sewage treatment facility after solid content such as saponification is removed. Treated as sewage. A water-sealing mechanism is configured by the U-shaped tube and a predetermined amount of cleaning liquid stored in the U-shaped tube, so that the space of the gas flow part 2 where the filter member 10 is disposed and the cleaning tank 13 is hermetically sealed. It is configured. Note that the cleaning liquid after the solid-liquid separation can be circulated and supplied via the above-described cleaning liquid circulation mechanism 15c.

異物導出機構14bによって供給される洗浄液の流れ方向と給液部15aによって供給される洗浄液の流れ方向は平面視で直交するように設定されるとともに、異物導出機構14bによって供給される洗浄液の供給位置が給液部15aによって供給される洗浄液の供給位置よりも液面側に設定されているので、洗浄槽内で洗浄液の流れの相互干渉が小さくなり、流れの乱れに起因する洗浄能力の低下及び異物導出能力の低下が回避されている。尚、異物導出機構14bによって供給される洗浄液の流れ方向と給液部15aによって供給される洗浄液の流れ方向を平面視で平行になるように設定することで、異物の導出をより効率良くすることもできる。   The flow direction of the cleaning liquid supplied by the foreign matter derivation mechanism 14b and the flow direction of the cleaning liquid supplied by the liquid supply unit 15a are set to be orthogonal to each other in plan view, and the supply position of the cleaning liquid supplied by the foreign matter derivation mechanism 14b Is set on the liquid surface side with respect to the supply position of the cleaning liquid supplied by the liquid supply unit 15a, the mutual interference of the flow of the cleaning liquid is reduced in the cleaning tank, and the cleaning ability is reduced due to the disturbance of the flow. A decrease in the ability to lead out foreign matter is avoided. In addition, by setting the flow direction of the cleaning liquid supplied by the foreign matter derivation mechanism 14b and the flow direction of the cleaning liquid supplied by the liquid supply unit 15a to be parallel in a plan view, the foreign matter can be more efficiently derived. You can also.

また、異物導出機構14bとして洗浄液の流れで説明したが、空気など気体による押し流しやスクレーパによる押し出しなど、他の手段であってもよい。   Further, although the flow of the cleaning liquid has been described as the foreign matter derivation mechanism 14b, other means such as a push-down with a gas such as air or a push-out with a scraper may be used.

加熱機構16は洗浄槽13の底面に配置された3本のヒータで構成され、洗浄槽13内の洗浄液の温度が約40℃に維持されるように洗浄液を加熱する熱交換部位である。ヒータの熱源として電気が用いられているが、汚泥焼却炉で発生した高温の排ガス、排ガスと熱交換した温水や蒸気等を用いることも可能である。尚、加熱機構16は洗浄槽13の底部に備えることによって洗浄槽13に浸漬され洗浄されるフィルタ部材10と干渉することなく設置でき、加熱機構16の上方に位置するフィルタ部材10の周囲の洗浄液に効率的に熱伝達し、洗浄液を昇温することができる。   The heating mechanism 16 is composed of three heaters disposed on the bottom surface of the cleaning tank 13 and is a heat exchange part for heating the cleaning liquid so that the temperature of the cleaning liquid in the cleaning tank 13 is maintained at about 40 ° C. Electricity is used as a heat source for the heater, but it is also possible to use hot exhaust gas generated in a sludge incinerator, hot water or steam exchanged with the exhaust gas, or the like. The heating mechanism 16 can be installed without interfering with the filter member 10 immersed and cleaned in the cleaning tank 13 by being provided at the bottom of the cleaning tank 13, and the cleaning liquid around the filter member 10 positioned above the heating mechanism 16. Heat can be efficiently transferred, and the temperature of the cleaning liquid can be raised.

一方のガス処理設備1のフィルタ部材10が洗浄位置に位置するときに、他方のガス処理設備1のフィルタ部材10が油分回収位置に位置するように相補的にフィルタ部材10の位置を制御することにより、長期連続して汚泥乾燥設備100を稼働させることができるようになる。   Complementarily controlling the position of the filter member 10 so that when the filter member 10 of one gas processing facility 1 is positioned at the cleaning position, the filter member 10 of the other gas processing facility 1 is positioned at the oil recovery position As a result, the sludge drying facility 100 can be operated continuously for a long time.

図3及び図4に示すように、ガス処理設備1の制御装置Cは、差圧センサPSの出力が第1所定圧力になると、位置変更機構11を制御してフィルタ部材10の位置を油分回収位置から洗浄位置に位置変更する位置変更制御部C1と、位置変更制御部C1により洗浄位置に位置変更された後にフィルタ部材10の背面側から油分回収面側に洗浄液を供給するように給液制御する給液制御部C2と、差圧センサPSの出力が第1所定圧力より低い第2所定圧力になると、給液部15aから供給される洗浄液を加熱機構16で所定温度に加熱する加熱制御部C3と、を備えている。   As shown in FIG. 3 and FIG. 4, when the output of the differential pressure sensor PS reaches the first predetermined pressure, the control device C of the gas processing facility 1 controls the position changing mechanism 11 to recover the position of the filter member 10 to the oil content. The position change control unit C1 that changes the position from the position to the cleaning position, and the liquid supply control so that the cleaning liquid is supplied from the back side of the filter member 10 to the oil collecting surface side after being changed to the cleaning position by the position change control unit C1. And a heating control unit that heats the cleaning liquid supplied from the liquid supply unit 15a to a predetermined temperature by the heating mechanism 16 when the output of the differential pressure sensor PS becomes a second predetermined pressure lower than the first predetermined pressure. C3.

フィルタ部材10への油分の付着量が増加するとフィルタ部材10に目詰まりが生じて通過ガス流量が低下し、フィルタ部材10を挟んでガス通流部2の上流側と下流側で圧力差が生じる。位置変更制御部C1はその圧力差を検知した差圧センサPSの出力に基づいてフィルタ部材10の汚れの程度を推定し、圧力差が第1所定圧力になるとフィルタ部材10の洗浄時期になったと判断して、フィルタ部材10の位置を油分回収位置から洗浄位置に自動的に位置変更する。その後、給液制御部C2はフィルタ部材10の背面側から油分回収面側に自動的に洗浄液を供給して洗浄する。   When the amount of oil adhering to the filter member 10 increases, the filter member 10 becomes clogged and the passing gas flow rate decreases, and a pressure difference occurs between the upstream side and the downstream side of the gas flow part 2 across the filter member 10. . The position change control unit C1 estimates the degree of contamination of the filter member 10 based on the output of the differential pressure sensor PS that has detected the pressure difference. When the pressure difference reaches the first predetermined pressure, it is time to clean the filter member 10. The position of the filter member 10 is automatically changed from the oil recovery position to the cleaning position. Thereafter, the liquid supply control unit C2 automatically supplies the cleaning liquid from the back side of the filter member 10 to the oil collecting surface side for cleaning.

また、差圧センサPSの出力が第1所定圧力に達した時点で洗浄液が所定温度に達していると低い温度つまり洗浄力が弱い洗浄液で洗浄されるようなことがないので洗浄時間を短縮できるとともに、昇温を待つ必要がなく効率的な洗浄処理ができる。そのために洗浄液を所定温度に加熱するのに要する凡その時間が第2所定圧力から第1所定圧力に達するまでの時間になるように第2所定圧力が設定されている。加熱制御部C3は第2所定圧力を検知すると温度センサTSが約40℃になるように加熱機構16を制御する。   Further, if the cleaning liquid reaches a predetermined temperature when the output of the differential pressure sensor PS reaches the first predetermined pressure, the cleaning time can be shortened because the cleaning liquid is not cleaned with a low temperature, that is, a cleaning liquid with a weak cleaning power. At the same time, there is no need to wait for the temperature to rise and an efficient cleaning process can be performed. Therefore, the second predetermined pressure is set so that the approximate time required to heat the cleaning liquid to the predetermined temperature is the time required to reach the first predetermined pressure from the second predetermined pressure. When the heating control unit C3 detects the second predetermined pressure, the heating control unit C3 controls the heating mechanism 16 so that the temperature sensor TS becomes about 40 ° C.

二台のガス処理設備1の各制御装置Cは互いに通信線で接続され、一方の制御装置Cがマスタ制御部として機能し、他方の制御装置Cがスレーブ制御部として機能するように設定されている。初期状態でマスタ制御部側のフィルタ部材10が油分回収位置に位置し、スレーブ制御部側のフィルタ部材10が洗浄位置に位置するように制御される。   The control devices C of the two gas processing facilities 1 are connected to each other via a communication line, and one control device C is set to function as a master control unit, and the other control device C is set to function as a slave control unit. Yes. Control is performed so that the filter member 10 on the master control unit side is positioned at the oil recovery position and the filter member 10 on the slave control unit side is positioned at the cleaning position in the initial state.

その後、マスタ制御部側の差圧センサPSの出力が第2所定圧力に達するとマスタ制御部側の加熱機構16によって洗浄槽13内の洗浄液を加熱制御し、第1所定圧力に達するとスレーブ制御部側のフィルタ部材10を油分回収位置に位置移動させた後にマスタ制御部側のフィルタ部材10を洗浄位置に位置移動させる。   After that, when the output of the differential pressure sensor PS on the master control unit side reaches the second predetermined pressure, the heating liquid in the cleaning tank 13 is heated and controlled by the heating mechanism 16 on the master control unit side, and when the first predetermined pressure is reached, slave control is performed. After the part-side filter member 10 is moved to the oil recovery position, the master control part-side filter member 10 is moved to the cleaning position.

さらにその後、スレーブ制御部側の差圧センサPSの出力が第2所定圧力に達するとスレーブ制御部側の加熱機構16によって洗浄槽13内の洗浄液を加熱制御し、第1所定圧力に達するとマスタ制御部側のフィルタ部材10を油分回収位置に位置移動させた後にスレーブ制御部側のフィルタ部材10を洗浄位置に位置移動させる。   Thereafter, when the output of the differential pressure sensor PS on the slave control unit side reaches the second predetermined pressure, the heating liquid in the cleaning tank 13 is heated and controlled by the heating mechanism 16 on the slave control unit side. After the filter member 10 on the control unit side is moved to the oil recovery position, the filter member 10 on the slave control unit side is moved to the cleaning position.

このような制御を繰り返すことにより、油分を含む排ガスを後流側へ流すことなく連続的に排ガスから油分を除去できるようになり、長期連続して汚泥乾燥設備100を稼働させることができるようになる。   By repeating such control, the oil content can be continuously removed from the exhaust gas without flowing the exhaust gas containing the oil to the downstream side, and the sludge drying facility 100 can be operated continuously for a long time. Become.

即ち、上述の制御装置Cによって、各ガス通流部の上流側と下流側の圧力差を監視する差圧監視ステップと、差圧監視ステップで圧力差が第1所定圧力になると、位置変更機構を操作してフィルタ部材の位置を油分回収位置から洗浄位置に位置変更する位置変更ステップと、位置変更ステップで洗浄位置に位置変更した後にフィルタ部材に洗浄液を供給するように給液する給液ステップと、が実行される。   That is, when the pressure difference becomes the first predetermined pressure in the differential pressure monitoring step for monitoring the pressure difference between the upstream side and the downstream side of each gas flow section by the control device C described above, the position changing mechanism To change the position of the filter member from the oil recovery position to the cleaning position, and the liquid supply step to supply the cleaning liquid to the filter member after changing the position to the cleaning position in the position changing step And is executed.

また、制御装置C同士が通信線で接続されることによって、ガス通流部の上流側と下流側の圧力差を監視する差圧監視ステップと、差圧監視ステップで圧力差が第1所定圧力になると、位置変更機構を操作して洗浄位置に位置するフィルタ部材を油分回収位置に移動させるとともに、油分回収位置に位置するフィルタ部材を洗浄位置に相補的に位置変更する位置変更ステップと、位置変更ステップにより洗浄位置に位置変更されたフィルタ部材に対して背面側から油分回収面側に洗浄液を供給するように給液する給液ステップと、が実行される。   Further, when the control devices C are connected to each other via a communication line, the pressure difference between the upstream side and the downstream side of the gas flow section is monitored, and the pressure difference is detected at the first predetermined pressure in the differential pressure monitoring step. A position changing step of operating the position changing mechanism to move the filter member located at the cleaning position to the oil recovery position and repositioning the filter member located at the oil recovery position complementarily to the cleaning position; A liquid supply step is performed in which the filter member that has been changed to the cleaning position by the change step is supplied to supply the cleaning liquid from the back side to the oil recovery surface side.

アルカリ洗浄液の原料として苛性ソーダが好適に用いられるが、苛性ソーダ以外の原料も利用可能である。尚、汚泥が排出される排水処理場では水処理に苛性ソーダが使われているので苛性ソーダを利用するのが好適である。アルカリ洗浄液の濃度は1重量%以上15重量%以下の範囲が好ましく、より好ましくは3重量%以上7重量%以下、さらに好ましくは5重量%±1重量%に調製されていることが好ましい。また、アルカリ洗浄液は10℃以上60℃以下の範囲に設定されていることが好ましく、より好ましくは30℃以上50℃以下、さらに好ましくは40℃±5℃の範囲に調温されていることが好ましい。   Caustic soda is preferably used as the raw material for the alkaline cleaning liquid, but raw materials other than caustic soda can also be used. In addition, since the caustic soda is used for the water treatment in the wastewater treatment plant where the sludge is discharged, it is preferable to use the caustic soda. The concentration of the alkaline cleaning liquid is preferably in the range of 1% by weight to 15% by weight, more preferably 3% by weight to 7% by weight, and further preferably 5% by weight ± 1% by weight. The alkaline cleaning liquid is preferably set in a range of 10 ° C. or more and 60 ° C. or less, more preferably 30 ° C. or more and 50 ° C. or less, and further preferably 40 ° C. ± 5 ° C. preferable.

洗浄位置でのフィルタ部材10の洗浄時間は、油分回収位置で他方のフィルタ部材10の油分回収時の圧力差が第1所定圧力に達するまでの間であれば、常時洗浄していなくてもよく、一定時間で洗浄を終了してもよい。更に、洗浄の代わりに洗浄位置でフィルタ部材10を加振させて洗浄しても良い。   The cleaning time of the filter member 10 at the cleaning position may not be constantly cleaned as long as the pressure difference during oil recovery of the other filter member 10 reaches the first predetermined pressure at the oil recovery position. The cleaning may be completed in a certain time. Further, instead of cleaning, the filter member 10 may be vibrated and cleaned at the cleaning position.

時間当たりの油分の付着量に大きな変動が無ければ、経過時間によってフィルタ部材の汚れの程度が推定できる。そこで、制御装置Cにフィルタ部材が前記油分回収位置に位置変更された後の経過時間を計時するタイマを備え、タイマにより第1設定時間が計時されると位置変更制御部が位置変更機構を制御してフィルタ部材の位置を油分回収位置から洗浄位置に位置変更するように構成し、位置変更制御部により洗浄位置に位置変更された後に給液制御部がフィルタ部材の背面側から油分回収面側に洗浄液を供給するように給液制御するように構成してもよい。このような経過時間の計時はタイマによると全て自動で行えるので好適であるが、人による計時などタイマによらない計時で行うこともできる。   If there is no large variation in the amount of oil per hour, the degree of contamination of the filter member can be estimated from the elapsed time. Therefore, the control device C is provided with a timer for measuring the elapsed time after the filter member is repositioned to the oil content collection position, and the position change control unit controls the position change mechanism when the first set time is counted by the timer. The position of the filter member is changed from the oil recovery position to the cleaning position, and after the position change control unit changes the position to the cleaning position, the liquid supply control unit moves from the back side of the filter member to the oil recovery surface side. The liquid supply may be controlled so as to supply the cleaning liquid. Such elapsed time is preferably measured automatically by a timer, but it can also be performed by a timer that does not rely on a timer, such as a human time.

設定時間を決定するために、初期には圧力差に基づいて位置制御し、位置変更される経過時間を所定数サンプリングして凡その傾向が把握された後に設定時間を決定し、時間によって位置制御するように切替えてもよい。   In order to determine the set time, the position is initially controlled based on the pressure difference, the set time is determined after the approximate trend has been grasped by sampling a predetermined number of elapsed times of position change, and the position is controlled by the time. It may be switched so as to.

また、洗浄液を所定温度に加熱するのに要する凡その時間が第2設定時間から第1設定時間に達するまでの時間になるように第2設定時間を設定し、第1設定時間より短い第2設定時間が計時されると、加熱制御部が加熱機構を制御して洗浄液を所定温度に加熱するように構成することも可能である。この場合、タイマの出力が第1設定時間に達した時点で洗浄液が所定温度に達しているため、直ちに洗浄処理ができ、無駄なエネルギーや時間を無くしてランニングコストを低減できるようになる。   Further, the second set time is set so that the approximate time required to heat the cleaning liquid to the predetermined temperature is the time from the second set time to the first set time, and the second set time is shorter than the first set time. When the set time is counted, the heating control unit may control the heating mechanism to heat the cleaning liquid to a predetermined temperature. In this case, since the cleaning liquid has reached the predetermined temperature when the output of the timer reaches the first set time, the cleaning process can be performed immediately, and the running cost can be reduced without wasting energy and time.

上述と同様に、制御装置C同士が通信線で接続されることによって、差圧センサの出力が第1所定圧力になると、位置変更機構を制御して洗浄位置に位置するフィルタ部材を油分回収位置に位置変更するとともに、油分回収位置に位置するフィルタ部材を洗浄位置に相補的に位置変更する位置変更制御部と、位置変更制御部により洗浄位置に位置変更されたフィルタ部材に洗浄液を供給するように給液制御する給液制御部とを備えた制御装置を構成することができる。   Similarly to the above, when the output of the differential pressure sensor reaches the first predetermined pressure by connecting the control devices C with a communication line, the position change mechanism is controlled so that the filter member positioned at the cleaning position is moved to the oil recovery position. The position change control unit that changes the position of the filter member positioned at the oil content recovery position in a complementary manner to the cleaning position, and the cleaning liquid is supplied to the filter member that has been changed to the cleaning position by the position change control unit. In addition, it is possible to configure a control device including a liquid supply control unit that controls liquid supply.

即ち、上述の制御装置Cによって、油分回収位置へのフィルタ部材の設置時間をタイマで計時する時間監視ステップと、時間監視ステップで時間が第1設定時間を経過すると、位置変更機構を操作してフィルタ部材の位置を油分回収位置から洗浄位置に位置変更する位置変更ステップと、位置変更ステップで洗浄位置に位置変更した後にフィルタ部材に洗浄液を供給するように給液する給液ステップとが実行される。   That is, by the above-described control device C, a time monitoring step for measuring the installation time of the filter member at the oil recovery position by a timer, and when the first set time has elapsed in the time monitoring step, the position changing mechanism is operated. A position changing step for changing the position of the filter member from the oil recovery position to the cleaning position, and a liquid supply step for supplying the cleaning liquid to the filter member after changing the position to the cleaning position in the position changing step are executed. The

また、制御装置C同士が通信線で接続されることによって、油分回収位置に位置変更された後のフィルタ部材の経過時間をタイマで計時する時間監視ステップと、時間監視ステップで経過時間が第1設定時間になると、位置変更機構を操作して洗浄位置に位置するフィルタ部材を油分回収位置に移動させるとともに、油分回収位置に位置するフィルタ部材を洗浄位置に相補的に位置変更する位置変更ステップと、位置変更ステップにより洗浄位置に位置変更されたフィルタ部材に対して背面側から油分回収面側に洗浄液を供給するように給液する給液ステップとが実行される。   In addition, when the control devices C are connected to each other by a communication line, a time monitoring step of measuring the elapsed time of the filter member after the position change to the oil content collection position by a timer, and the elapsed time in the time monitoring step are first. A position changing step of operating the position changing mechanism to move the filter member positioned at the cleaning position to the oil recovery position and changing the position of the filter member positioned at the oil recovery position complementarily to the cleaning position when the set time is reached; Then, a liquid supply step of supplying the cleaning liquid to the oil collecting surface side from the back side to the filter member whose position has been changed to the cleaning position by the position changing step is executed.

次に、ガス処理設備の第二の実施形態を説明する。
上述した実施形態では、洗浄槽13に貯留された洗浄液にフィルタ部材10が浸漬される態様を説明したが、洗浄機構12はフィルタ部材10を湿潤状態に維持しつつフィルタ部材10に洗浄液を供給する洗浄液供給機構を備えていればよく、必ずしも浸漬させる必要はない。
Next, a second embodiment of the gas processing facility will be described.
In the above-described embodiment, the aspect in which the filter member 10 is immersed in the cleaning liquid stored in the cleaning tank 13 has been described. However, the cleaning mechanism 12 supplies the cleaning liquid to the filter member 10 while maintaining the filter member 10 in a wet state. It is only necessary to have a cleaning liquid supply mechanism, and it is not always necessary to immerse it.

図5に示すように、洗浄槽13を洗浄液で満たすことなく、洗浄液を噴射供給するノズルを備えた給液部15aを備え、洗浄槽13内のフィルタ部材10の背面側から油分回収面側に向けて洗浄液を噴射供給するように構成してもよい。   As shown in FIG. 5, the cleaning tank 13 is provided with a liquid supply part 15 a provided with a nozzle for spraying and supplying the cleaning liquid without filling the cleaning liquid with the cleaning liquid, and from the back side of the filter member 10 in the cleaning tank 13 to the oil recovery surface side. The cleaning liquid may be jetted and supplied.

洗浄液によってフィルタ部材10から除去された鹸化された油分等の異物は洗浄槽13の底部または底部近傍に設けられた排液部15bを経由して分離機構18へ導かれ、分離機構18で汚物が除去された後に洗浄液として循環供給されるように洗浄液循環機構15cを設けてもよい。   Foreign matter such as saponified oil removed from the filter member 10 by the cleaning liquid is guided to the separation mechanism 18 via the drainage part 15b provided near or near the bottom of the cleaning tank 13, and filth is removed by the separation mechanism 18. A cleaning liquid circulation mechanism 15c may be provided so as to be circulated and supplied as a cleaning liquid after the removal.

分離機構18として、比重分離法や固液分離法を用いることができる。図5に示す分離機構18は比重分離法が採用され、洗浄槽13から引き抜かれた洗浄液を受け入れる受入槽18aと、洗浄液を受入槽18aの下方から上方へ導く案内板18bとを備えて構成されている。洗浄液よりも比重の小さな異物は案内板18bの下端を通過することなく受入槽18aに浮遊し、案内板18bの下端を通過した洗浄液のみが洗浄液循環機構15cによって洗浄液として循環供給されるようになる。固液分離法を採用した分離機構18として、ろ布やメッシュ等のフィルタ機構を用いたろ過方式を採用することができる。   As the separation mechanism 18, a specific gravity separation method or a solid-liquid separation method can be used. The separation mechanism 18 shown in FIG. 5 employs a specific gravity separation method, and includes a receiving tank 18a that receives the cleaning liquid drawn from the cleaning tank 13, and a guide plate 18b that guides the cleaning liquid upward from below the receiving tank 18a. ing. Foreign matter having a specific gravity smaller than that of the cleaning liquid floats in the receiving tank 18a without passing through the lower end of the guide plate 18b, and only the cleaning liquid that has passed through the lower end of the guide plate 18b is circulated and supplied as the cleaning liquid by the cleaning liquid circulation mechanism 15c. . As the separation mechanism 18 employing the solid-liquid separation method, a filtration method using a filter mechanism such as a filter cloth or a mesh can be employed.

尚、加熱機構16は洗浄槽に必ず設ける必要はなく、給液部15aから噴射供給する洗浄液を予め加熱する加熱機構を給液部15aの前段に設ければよい。例えば、受入槽18aに加熱機構を設けて、加熱された洗浄液を給液部15aに循環供給してもよい。   The heating mechanism 16 is not necessarily provided in the cleaning tank, and a heating mechanism for heating the cleaning liquid sprayed and supplied from the liquid supply unit 15a may be provided in front of the liquid supply unit 15a. For example, a heating mechanism may be provided in the receiving tank 18a, and the heated cleaning liquid may be circulated and supplied to the liquid supply unit 15a.

以下、ガス処理設備のその他の実施形態を述べる。
第一、第二の実施形態は何れも油分含有ガスを横方向に通流させ、洗浄位置が油分回収位置の下方に設けられた例を説明したが、油分含有ガスを縦方向に通流させ、洗浄位置を油分回収位置の側方に設けてもよい。
Hereinafter, other embodiments of the gas processing facility will be described.
In both the first and second embodiments, the oil-containing gas is allowed to flow in the horizontal direction and the cleaning position is provided below the oil-recovery position. However, the oil-containing gas is allowed to flow in the vertical direction. The cleaning position may be provided on the side of the oil recovery position.

図6に示すように、例えば油分含有ガスがガス通流部2を上方から下方へ通流するように構成することができる。この場合、フィルタ部材10の上側が油分回収面となるため、洗浄液に浸漬して液面に油分を浮遊させることが容易である。   As shown in FIG. 6, for example, the oil-containing gas can be configured to flow through the gas flow part 2 from above to below. In this case, since the upper side of the filter member 10 serves as an oil recovery surface, it is easy to immerse the oil in the cleaning liquid and allow the oil to float on the liquid surface.

但し、水平方向に直線運動する位置変更機構11では予め洗浄槽13に満たされた洗浄液にフィルタ部材10を浸漬させることは困難であるため、位置変更ステップでフィルタ部材10を油分回収位置から洗浄位置へ位置変更し、洗浄槽13とガス通流部2の間をシール部材17によりシールした後に洗浄槽13に洗浄液を供給するように構成すればよい。   However, since it is difficult for the position changing mechanism 11 that moves linearly in the horizontal direction to immerse the filter member 10 in the cleaning liquid previously filled in the cleaning tank 13, the filter member 10 is moved from the oil recovery position to the cleaning position in the position changing step. The position may be changed to the position and the cleaning tank 13 may be configured to be supplied to the cleaning tank 13 after sealing between the cleaning tank 13 and the gas flow passage 2 with the seal member 17.

また、位置変更機構11にフィルタ部材10の油分回収面と背面とを反転させる回転機構を備え、油分回収位置で油分が付着した油分回収面が洗浄位置で下側に向くように反転させ、上方の背面側から下方に向けて洗浄液を噴射供給して油分を落下させてもよい。   Further, the position changing mechanism 11 is provided with a rotating mechanism for reversing the oil collecting surface and the back surface of the filter member 10, and the oil collecting surface to which the oil has adhered at the oil collecting position is reversed so as to face downward at the cleaning position. The oil may be dropped by spraying and supplying the cleaning liquid from the back side of the nozzle.

図7に示すように、油分含有ガスがガス通流部2を下方から上方へ通流するように構成することもできる。この場合、フィルタ部材10の下側が油分回収面となるため、洗浄液を背面側からフィルタ部材10に噴射供給して汚れを直接落下させることが容易である。   As shown in FIG. 7, the oil-containing gas may be configured to flow through the gas flow part 2 from below to above. In this case, since the lower side of the filter member 10 is the oil recovery surface, it is easy to spray and supply the cleaning liquid to the filter member 10 from the rear side to directly drop the dirt.

同様に、位置変更機構11にフィルタ部材10の油分回収面と背面とを反転させる回転機構を備え、油分回収位置で油分が付着した油分回収面が洗浄位置で上側に向くように反転させ、洗浄液に浸漬させて油分を液面に浮遊させるように構成してもよい。   Similarly, the position changing mechanism 11 is provided with a rotating mechanism for reversing the oil recovery surface and the back surface of the filter member 10, and the oil recovery surface to which oil has adhered at the oil recovery position is reversed so that the oil recovery surface faces upward at the cleaning position. It is also possible to configure so that the oil component is floated on the liquid surface by being immersed in the liquid.

図8(a),(b)に示すように、上述したようなシリンダ機構を備えた位置変更機構11に替えて、電動機Mと電動機Mにより回転駆動される支軸で位置変更機構11を構成してもよい。電動機Mによって回転駆動される支軸にフィルタ部材10が取り付けられ、例えば支軸が180度回転すると、図8(a)に示す油分回収位置と図8(b)に示す洗浄位置との間で位置が切り替わるように構成してもよい。この場合にも、ガスの通流方向は任意に設計変更可能である。   As shown in FIGS. 8A and 8B, instead of the position changing mechanism 11 having the cylinder mechanism as described above, the position changing mechanism 11 is configured by an electric motor M and a spindle that is rotationally driven by the electric motor M. May be. When the filter member 10 is attached to a support shaft that is rotationally driven by the electric motor M, for example, when the support shaft rotates 180 degrees, between the oil recovery position shown in FIG. 8A and the cleaning position shown in FIG. 8B. You may comprise so that a position may switch. Also in this case, the design of the gas flow direction can be arbitrarily changed.

図9(a),(b)に示すように、電動機Mと電動機Mにより回転駆動される支軸で位置変更機構11を構成し、円盤状に形成されたフィルタ部材10の中心に支軸を取り付けて、円盤状のフィルタ部材の回転軸心を挟んでそれぞれ異なる領域、例えば180度異なる領域にガス通流部2及び洗浄槽13が配置されるように構成してもよい。   As shown in FIGS. 9A and 9B, the position changing mechanism 11 is configured by the motor M and the shaft that is rotationally driven by the motor M, and the shaft is centered on the filter member 10 formed in a disk shape. The gas flow part 2 and the cleaning tank 13 may be arranged in different regions, for example, 180 ° different regions with the rotation axis of the disk-shaped filter member interposed therebetween.

電動機Mを連続的に駆動することでフィルタ部材10が油分回収位置から洗浄位置に連続的に位置変更され、或いは電動機Mをステップ的に駆動することでフィルタ部材10が油分回収位置から洗浄位置にステップ的に位置変更されるようになる。   By continuously driving the motor M, the position of the filter member 10 is continuously changed from the oil recovery position to the cleaning position, or by driving the motor M stepwise, the filter member 10 is changed from the oil recovery position to the cleaning position. The position is changed stepwise.

上述した実施形態ではアルカリ洗浄液を用いてフィルタ部材10を洗浄する例を説明したが、アルカリ洗浄液に替えて所定温度範囲の温水を用いることも可能である。この場合、油分が洗浄液に浮かぶため、上述した比重分離法を用いて洗浄液と油分を容易に分離することができる。   In the embodiment described above, an example in which the filter member 10 is cleaned using an alkaline cleaning liquid has been described. However, hot water in a predetermined temperature range can be used instead of the alkaline cleaning liquid. In this case, since the oil component floats in the cleaning solution, the cleaning solution and the oil component can be easily separated using the specific gravity separation method described above.

上述した実施形態では、2台のガス処理設備1が排ガス流路に沿って直列に連設された態様を説明したが、2台以上の複数台を排ガス流路に沿って直列に連設してもよい。   In the above-described embodiment, the mode in which the two gas processing facilities 1 are connected in series along the exhaust gas flow path has been described. However, two or more units are connected in series along the exhaust gas flow path. May be.

また、図10に示すように、1台のガス処理設備1のガス通流部に2つのフィルタ部材10を直列に配設し、双方のフィルタ部材10を油分回収位置と洗浄位置との間で相補的に移動させるように構成してもよい。同様に、1台のガス処理設備1のガス通流部に3つ以上のフィルタ部材10を直列に配設して、少なくとも1つのフィルタ部材が油分回収位置に位置するように構成してもよい。   Further, as shown in FIG. 10, two filter members 10 are arranged in series in the gas flow section of one gas processing facility 1, and both filter members 10 are disposed between the oil recovery position and the cleaning position. You may comprise so that it may move complementarily. Similarly, three or more filter members 10 may be arranged in series in the gas flow section of one gas processing facility 1 so that at least one filter member is located at the oil recovery position. .

図11に示すように、汚泥乾燥設備100の排ガス流路に沿って2台のガス処理設備1を並列に設置し、それぞれのフィルタ部材10を油分回収位置と洗浄位置との間で相補的に位置切替えしてもよい。この場合、ガス処理設備1の上流側で排ガス流路を分岐し、下流側で合流するように構成するとともに、上流側の分離路にダンパ機構190を備え、何れか一方の分岐路に排ガスが流下するように切替えるとともに、排ガスが流下する分岐路に備えたガス処理設備1のフィルタ部材が油分回収位置に位置し、他方の分岐路に備えたガス処理設備1のフィルタ部材が洗浄位置に位置するように位置切替え機構を制御する制御装置を構成すればよい。   As shown in FIG. 11, two gas treatment facilities 1 are installed in parallel along the exhaust gas flow path of the sludge drying facility 100, and each filter member 10 is complementarily between the oil recovery position and the cleaning position. The position may be switched. In this case, the exhaust gas flow path is branched on the upstream side of the gas processing facility 1 and merged on the downstream side, and the damper mechanism 190 is provided in the upstream separation path, and the exhaust gas is in any one of the branch paths. The filter member of the gas processing facility 1 provided in the branch passage where the exhaust gas flows down is located at the oil recovery position, and the filter member of the gas treatment facility 1 provided in the other branch passage is located in the cleaning position. A control device that controls the position switching mechanism may be configured.

例えば、当該制御装置は、油分回収位置に位置する一方のフィルタ部材に対する差圧センサの出力が第1所定圧力になると、洗浄位置に位置する他方のフィルタ部材を油分回収位置に位置移動させた後にダンパ機構190を切替え、その後当該一方のフィルタ部材を油分回収位置から洗浄位置に位置移動させるように構成すればよい。   For example, when the output of the differential pressure sensor with respect to one filter member positioned at the oil recovery position reaches the first predetermined pressure, the control device moves the other filter member positioned at the cleaning position to the oil recovery position. The damper mechanism 190 may be switched, and then the one filter member may be moved from the oil recovery position to the cleaning position.

さらに、1台のガス処理設備1のガス通流部に2つのフィルタ部材10を並列に配設し、それぞれのフィルタ部材が汚泥乾燥設備100の排ガス流路の分岐路に位置するように設置し、双方のフィルタ部材を油分回収位置と洗浄位置との間で相補的に移動させるように構成してもよい。   Further, two filter members 10 are arranged in parallel in the gas flow section of one gas treatment facility 1, and each filter member is installed so as to be located at the branch of the exhaust gas flow path of the sludge drying facility 100. Both filter members may be configured to move complementarily between the oil recovery position and the cleaning position.

上述した各種の実施形態を適宜組み合わせたガス処理設備を構成することも可能である。   It is also possible to configure a gas processing facility that appropriately combines the various embodiments described above.

尚、単一のフィルタ部材を備えた1台のガス処理設備を用いることも可能である。但し、その場合には、フィルタの洗浄時には油分回収ができないので、それを許容するか汚泥乾燥設備100を停止させるか二者択一になる。   In addition, it is also possible to use one gas processing equipment provided with a single filter member. However, in that case, oil cannot be recovered when the filter is washed, so it is possible to either allow it or stop the sludge drying equipment 100.

上述の実施形態ではガス処理設備1が汚泥乾燥設備100に設置される場合を説明したが、本発明によるガス処理設備1は汚泥乾燥設備100以外の設備にも適用できることは言うまでもない。例えば、バイオマスのガス化プロセスや炭化プロセスで発生するガス、バイオマスの乾燥化プロセスで発生するガス、石炭の乾留プロセスで発生するガス等の油分含有ガスから油分を回収する必要があるガス処理設備として広く活用できる。   Although the case where the gas treatment facility 1 is installed in the sludge drying facility 100 has been described in the above-described embodiment, it is needless to say that the gas treatment facility 1 according to the present invention can be applied to facilities other than the sludge drying facility 100. For example, as a gas processing facility that needs to recover oil from oil-containing gas such as gas generated in biomass gasification process and carbonization process, gas generated in biomass drying process, gas generated in coal carbonization process, etc. Can be widely used.

上述した実施形態では、ガス処理設備の上流側にデミスタを設置した態様を説明したが、デミスタは必ずしも設置する必要はない。また、ガス処理設備の下流側に排ガスに同伴する水分を除去するミストセパレータを設けてもよい。   In the embodiment described above, the aspect in which the demister is installed on the upstream side of the gas processing facility has been described, but the demister is not necessarily installed. Moreover, you may provide the mist separator which removes the water | moisture content accompanying exhaust gas in the downstream of a gas treatment facility.

上述した様々な実施形態は、本発明によるガス処理設備の一具体例を説明したに過ぎず、当該記載により本発明の範囲が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   The various embodiments described above merely describe one specific example of the gas treatment facility according to the present invention, and the scope of the present invention is not limited by the description, and the specific configuration of each part is the function of the present invention. Needless to say, the design can be changed as appropriate within a range in which the effect is achieved.

寸法100mm×100mmのSUS316を素材とする金網(144メッシュ)を2枚重ねにして構成されたフィルタ部材模擬材にタールを約10g塗布したものを苛性ソーダ及び温水に浸漬し、油分としてのタールを分離する実験を行った。   About 10 g of tar is applied to a filter member simulation material composed of two metal meshes (144 mesh) made of SUS316 with dimensions of 100 mm x 100 mm, and then immersed in caustic soda and warm water to separate the tar as oil. An experiment was conducted.

図12に示した実験結果から、温度が40℃から60℃の範囲で、濃度5重量%の苛性ソーダ水溶液を洗浄液として用いて30分間洗浄すると、90%以上の分離率でタール除去効果が発現することが確認された。また、洗浄液に60℃の温水を用いて30分間洗浄すると、86%の分離率でタール除去効果が発現することも確認された。   From the experimental results shown in FIG. 12, when the temperature is in the range of 40 ° C. to 60 ° C. and a caustic soda aqueous solution having a concentration of 5% by weight is used as a cleaning solution for 30 minutes, a tar removal effect is exhibited with a separation rate of 90% or more. It was confirmed. It was also confirmed that the tar removal effect was exhibited at a separation rate of 86% when washing was performed for 30 minutes using warm water of 60 ° C. as the washing liquid.

種々の濃度範囲、温度範囲、時間範囲で洗浄実験を繰り返した結果、アルカリ洗浄液の濃度は1重量%以上15重量%以下の範囲が好ましく、3重量%以上7重量%以下がより好ましく、5重量%±1重量%に調製されていることがさらに好ましいこと、アルカリ洗浄液は10℃以上60℃以下の範囲に設定されていることが好ましく、30℃以上50℃以下がより好ましく、40℃±5℃の範囲がさらに好ましいことが明らかになった。   As a result of repeating the washing experiment in various concentration ranges, temperature ranges, and time ranges, the concentration of the alkaline cleaning solution is preferably in the range of 1 wt% to 15 wt%, more preferably 3 wt% to 7 wt%, and more preferably 5 wt%. % ± 1% by weight is more preferable, the alkaline cleaning liquid is preferably set in the range of 10 ° C. to 60 ° C., more preferably 30 ° C. to 50 ° C., and 40 ° C. ± 5 It has been found that the range of ° C is more preferred.

1:ガス処理設備
2:ガス通流部
10:フィルタ部材
11:位置変更機構
12:洗浄機構
13:洗浄槽
14:異物除去機構
14a:溢流機構
14b:異物導出機構
15:洗浄液供給機構
15a:給液部
15b:排液部
15c:洗浄液循環機構
15d:洗浄液補給部
16:加熱機構
18:分離機構
1: Gas treatment equipment 2: Gas flow section 10: Filter member 11: Position change mechanism 12: Cleaning mechanism 13: Cleaning tank 14: Foreign matter removal mechanism 14a: Overflow mechanism 14b: Foreign matter derivation mechanism 15: Cleaning liquid supply mechanism 15a: Liquid supply part 15b: Drainage part 15c: Cleaning liquid circulation mechanism 15d: Cleaning liquid replenishment part 16: Heating mechanism 18: Separation mechanism

Claims (5)

油分含有ガスから油分を回収するフィルタ部材と、前記フィルタ部材を洗浄する洗浄機構とを備えているガス処理設備であって、
前記フィルタ部材全体をガス通流部に配置してガスに同伴する油分を前記フィルタ部材で回収する油分回収位置と、前記フィルタ部材全体を前記洗浄機構に配置して回収した油分を前記フィルタ部材から分離する洗浄位置との間で、前記フィルタ部材の位置を変更する位置変更機構を備え、
前記洗浄位置で前記フィルタ部材を洗浄液と接触させつつ前記フィルタ部材を加振する加振機構を備えているガス処理設備。
A gas processing facility comprising a filter member that recovers oil from an oil-containing gas, and a cleaning mechanism that cleans the filter member ,
The entire filter member is disposed in the gas flow portion, and an oil component recovery position for recovering the oil component accompanying the gas by the filter member, and the oil component recovered by disposing the entire filter member in the cleaning mechanism is extracted from the filter member. A position changing mechanism for changing the position of the filter member between the cleaning position and the separation position ;
A gas processing facility comprising a vibration mechanism that vibrates the filter member while bringing the filter member into contact with a cleaning liquid at the cleaning position.
前記位置変更機構は前記油分回収位置と前記洗浄位置との間で前記フィルタ部材を進出駆動または引退駆動するシリンダ機構で構成され、The position changing mechanism is composed of a cylinder mechanism that drives the filter member to advance or retract between the oil recovery position and the cleaning position,
前記洗浄位置で短距離での進出駆動と引退駆動を繰り返す前記シリンダ機構により前記加振機構が構成されている請求項1記載のガス処理設備。The gas processing facility according to claim 1, wherein the vibration mechanism is configured by the cylinder mechanism that repeats advance drive and retract drive at a short distance at the cleaning position.
前記洗浄機構は、前記洗浄位置で前記フィルタ部材全体を洗浄液に浸漬する洗浄槽を備えている請求項1または2記載のガス処理設備。The gas processing facility according to claim 1, wherein the cleaning mechanism includes a cleaning tank that immerses the entire filter member in a cleaning liquid at the cleaning position. 前記洗浄機構は、前記洗浄位置にある前記フィルタ部材に対して洗浄液に浸漬させることなく背面側から油分回収面側に向けて洗浄液を噴射供給する給液部を備えている請求項1または2記載のガス処理設備。The said washing | cleaning mechanism is provided with the liquid supply part which injects and supplies a washing | cleaning liquid from the back side toward an oil-component collection | recovery surface side, without making it immerse in the washing | cleaning liquid with respect to the said filter member in the said washing | cleaning position. Gas processing equipment. 油分含有ガスから油分を回収するフィルタ部材と、前記フィルタ部材を洗浄する洗浄機構とを備えているガス処理設備の運転方法であって、An operation method of a gas processing facility comprising a filter member for recovering oil from an oil-containing gas, and a cleaning mechanism for cleaning the filter member,
前記フィルタ部材全体をガス通流部に配置してガスに同伴する油分を前記フィルタ部材で回収する油分回収位置と、前記フィルタ部材全体を前記洗浄機構に配置して回収した油分を前記フィルタ部材から分離する洗浄位置との間で、前記フィルタ部材の位置を変更する位置変更ステップを備え、The entire filter member is disposed in the gas flow portion, and an oil component recovery position for recovering the oil component accompanying the gas by the filter member, and the oil component recovered by disposing the entire filter member in the cleaning mechanism is extracted from the filter member. A position changing step for changing the position of the filter member between the cleaning position and the separation position;
前記洗浄位置で前記フィルタ部材を洗浄液と接触させつつ前記フィルタ部材を加振する加振ステップを備えているガス処理設備の運転方法。A method for operating a gas processing facility, comprising: an oscillating step of oscillating the filter member while bringing the filter member into contact with a cleaning liquid at the cleaning position.
JP2018099269A 2018-05-24 2018-05-24 Gas treatment equipment and operation method of gas treatment equipment Active JP6576509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018099269A JP6576509B2 (en) 2018-05-24 2018-05-24 Gas treatment equipment and operation method of gas treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018099269A JP6576509B2 (en) 2018-05-24 2018-05-24 Gas treatment equipment and operation method of gas treatment equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013271828A Division JP6345932B2 (en) 2013-12-27 2013-12-27 Gas treatment equipment, gas treatment equipment control device, and gas treatment equipment operation method

Publications (2)

Publication Number Publication Date
JP2018134641A true JP2018134641A (en) 2018-08-30
JP6576509B2 JP6576509B2 (en) 2019-09-18

Family

ID=63365943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018099269A Active JP6576509B2 (en) 2018-05-24 2018-05-24 Gas treatment equipment and operation method of gas treatment equipment

Country Status (1)

Country Link
JP (1) JP6576509B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115841A (en) * 1976-03-25 1977-09-28 Dainippon Toryo Co Ltd Equipment for recovering over-sprayed paint
JPH0599468A (en) * 1991-10-04 1993-04-20 Toto Ltd Range hood
JPH067822U (en) * 1992-07-01 1994-02-01 高砂熱学工業株式会社 Oil mist removal device
JP2000334233A (en) * 1999-05-25 2000-12-05 Miyoshi:Kk Device for washing filter element
JP2004195631A (en) * 2002-12-13 2004-07-15 Kinji Matsumoto Oil mist recovering device
JP2005279420A (en) * 2004-03-29 2005-10-13 Tsukishima Kikai Co Ltd Treatment equipment of tar-containing exhaust gas and tar removing method in treatment of exhaust gas
JP2007307448A (en) * 2006-05-16 2007-11-29 Pauretsuku:Kk Fluidized bed device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115841A (en) * 1976-03-25 1977-09-28 Dainippon Toryo Co Ltd Equipment for recovering over-sprayed paint
JPH0599468A (en) * 1991-10-04 1993-04-20 Toto Ltd Range hood
JPH067822U (en) * 1992-07-01 1994-02-01 高砂熱学工業株式会社 Oil mist removal device
JP2000334233A (en) * 1999-05-25 2000-12-05 Miyoshi:Kk Device for washing filter element
JP2004195631A (en) * 2002-12-13 2004-07-15 Kinji Matsumoto Oil mist recovering device
JP2005279420A (en) * 2004-03-29 2005-10-13 Tsukishima Kikai Co Ltd Treatment equipment of tar-containing exhaust gas and tar removing method in treatment of exhaust gas
JP2007307448A (en) * 2006-05-16 2007-11-29 Pauretsuku:Kk Fluidized bed device

Also Published As

Publication number Publication date
JP6576509B2 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
JP6345932B2 (en) Gas treatment equipment, gas treatment equipment control device, and gas treatment equipment operation method
CN106111618A (en) Fully-automatic supersonic Ni-based conductor material clean machine
CN102089053A (en) Method and device for cleaning filter cloths of filter press dewaterer
CN215692417U (en) Exhaust treatment device of transfer printing cloth ironing machine
CN104353639A (en) Metal strip cleaning system
JP4872729B2 (en) Electric dust collector
CN104353663A (en) Soil thermal desorption treatment system with discharge dust removal function
CN203494840U (en) Online circulation cleaning device for anti-corrosion flue gas waste heat exchanger
CN104587722A (en) Residue removing filter of self-cleaning scraping plate
JP6576509B2 (en) Gas treatment equipment and operation method of gas treatment equipment
CN113819475A (en) Waste heat recovery utilizes system of thermal power plant's boiler exhaust fume
KR102153748B1 (en) Recycled pellet manufacturing system using waste vinyls
CN112361407A (en) Novel automatic cleaning smoke exhaust ventilator
JP4127656B2 (en) Wet bag filter device
CN1994579A (en) Oil stain automatic cleaner for electrostatic oil smoke purifier of setting machine
CN109612138A (en) A kind of solar water heater water tank with cleaning function
CN204034488U (en) Full-automatic oil removing anti-blocking VOCs purification and washing tower
CN208613256U (en) Ultrasonic cleaning device
CN204534533U (en) For pressing the scaler system with steam generator in cleaning equipment
JP3856394B2 (en) Tar-containing exhaust gas treatment facility and tar removal method in exhaust gas treatment
JP2004028506A (en) Exhaust equipment
CN215798986U (en) Coking wastewater coal tar treatment facility
CN205324252U (en) Automatic wash glass device
CN219156561U (en) High-salt wastewater zero-emission structure
CN115468240B (en) Steam sterilization and decontamination device for self-cleaning dust removal system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190820

R150 Certificate of patent or registration of utility model

Ref document number: 6576509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150