JP2018134611A - Method for producing hollow fiber carbon membrane - Google Patents

Method for producing hollow fiber carbon membrane Download PDF

Info

Publication number
JP2018134611A
JP2018134611A JP2017032333A JP2017032333A JP2018134611A JP 2018134611 A JP2018134611 A JP 2018134611A JP 2017032333 A JP2017032333 A JP 2017032333A JP 2017032333 A JP2017032333 A JP 2017032333A JP 2018134611 A JP2018134611 A JP 2018134611A
Authority
JP
Japan
Prior art keywords
membrane
hollow fiber
hollow
stock solution
polyphenylene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017032333A
Other languages
Japanese (ja)
Inventor
伊藤 大貴
Daiki Ito
大貴 伊藤
山本 浩和
Hirokazu Yamamoto
浩和 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2017032333A priority Critical patent/JP2018134611A/en
Publication of JP2018134611A publication Critical patent/JP2018134611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a hollow fiber carbon membrane.SOLUTION: A method for producing a hollow fiber carbon membrane includes: preparing a membrane forming stock solution for carbon membrane in which polyphenylene oxide in an amount of 15-40 wt.% in the membrane forming stock solution and lithium chloride in an amount of 0.1-5.0 wt.% with respect to the polyphenylene oxide is dissolved in a solvent capable of dissolving them; molding the membrane forming stock solution for carbon membrane into a hollow shape with the use of a double annular nozzle by a spinning method by a nonsolvent induction separation method; heating the obtained hollow membrane at 150-350°C and subjecting the hollow membrane to infusibilizing treatment; and heating the hollow membrane at 600-800°C in the inert atmosphere or in the vacuum and subjecting the hollow film to carbonization treatment. A method for producing a hollow fiber carbon membrane includes subjecting the surface of the hollow membrane to chemical vapor deposition treatment using hydrocarbon gas after the carbonization.SELECTED DRAWING: Figure 2

Description

本発明は、中空糸炭素膜の製造方法に関する。さらに詳しくは、ポリフェニレンオキサイドを製膜成分とする炭素膜用製膜原液を用いた中空糸炭素膜の製造方法に関する。   The present invention relates to a method for producing a hollow fiber carbon membrane. More specifically, the present invention relates to a method for producing a hollow fiber carbon membrane using a carbon membrane stock solution containing polyphenylene oxide as a membrane-forming component.

従来より、分離膜として各種の有機膜や無機膜が提案されている。しかしながら、有機膜は安価であり成形性に優れているものの耐溶剤性や耐熱性が低く、一方セラミックス膜等の無機膜は、有機膜とは反対に耐溶剤性や耐熱性には優れているものの、高価でかつ成形が難しいという問題がみられる。   Conventionally, various organic membranes and inorganic membranes have been proposed as separation membranes. However, although organic films are inexpensive and have excellent moldability, they have low solvent resistance and heat resistance, while ceramic films and other inorganic films have excellent solvent resistance and heat resistance, as opposed to organic films. However, it is expensive and difficult to mold.

そこで近年、無機膜でありながら成形性にもすぐれ、かつ安価である炭素膜が注目されている。中空糸炭素膜は、ガス分離可能なサイズの孔を有しており、種々の無機膜の中でもすぐれた気体分離性能を示し、かつ有機膜が適用できない70〜150℃といった高い温度に対する耐熱性や耐薬品性が要求される環境でも使用可能なことから、その実用性が大いに期待されている。また、中空糸膜は耐圧性にすぐれ、かつ単位容積当りに占める膜面積が大きく、コンパクトな分離膜モジュールの作製が可能となる。   Therefore, in recent years, a carbon film that is an inorganic film and has excellent moldability and is inexpensive has attracted attention. The hollow fiber carbon membrane has pores of a size that allows gas separation, exhibits excellent gas separation performance among various inorganic membranes, and is resistant to high temperatures such as 70 to 150 ° C. where organic membranes cannot be applied. Since it can be used in an environment where chemical resistance is required, its practicality is greatly expected. In addition, the hollow fiber membrane is excellent in pressure resistance and has a large membrane area per unit volume, making it possible to produce a compact separation membrane module.

これまで炭素膜原料としては、例えばポリフェニレンオキサイド樹脂を用いたもの(特許文献1〜2)、ポリフェニレンオキサイドをスルホン化した樹脂を用いたもの(特許文献3〜4)が提案されている。   So far, as carbon film materials, for example, those using polyphenylene oxide resin (Patent Documents 1 and 2) and those using a resin sulfonated polyphenylene oxide (Patent Documents 3 and 4) have been proposed.

一般に、炭素膜はいずれの有機質原料を用いた場合にも、空気中で150〜350℃にて加熱する“不融化処理”を施した後に、不活性雰囲気または真空中で600〜800℃で加熱を行う“炭化処理”を施すといった、2段階の加熱を施すことが必要となる。   In general, the carbon film is heated at 600-800 ° C in an inert atmosphere or in vacuum after being subjected to "infusibilization" heating at 150-350 ° C in air, regardless of which organic material is used. It is necessary to perform two-stage heating, such as performing “carbonization treatment”.

しかるに、かかる製造方法により得られる中空糸炭素膜は、例えば特許文献5に開示されているような支持体上に炭素膜を形成する被覆型の炭素膜と比較して、支持体よりも強度が小さい中空糸そのものの強度のみで膜自体の強度を保つ必要があるため、被覆型の炭素膜よりも強度が小さくなってしまう傾向がみられる。   However, the hollow fiber carbon membrane obtained by such a production method has a strength higher than that of the support, for example, as compared with a coated carbon membrane in which the carbon membrane is formed on the support as disclosed in Patent Document 5. Since it is necessary to maintain the strength of the membrane itself only by the strength of the small hollow fiber itself, the strength tends to be smaller than that of the coated carbon membrane.

また、上記製造方法により得られる中空糸炭素膜は、その断面において数μmサイズのボイドの発生が確認され、かかるボイドの存在は中空糸の強度低下および破断起点になり得るものである。   Further, in the hollow fiber carbon membrane obtained by the above production method, generation of voids having a size of several μm is confirmed in the cross section, and the presence of such voids can be a decrease in strength of the hollow fiber and a starting point of breakage.

したがって、得られる中空糸炭素膜の強度を改善せしめ、中空糸炭素膜を用いて中空糸膜モジュールを製造した場合に、ハンドリングによる中空糸破断を起こしにくく、さらにはモジュールの耐久性をさらに向上させることが求められている。   Therefore, the strength of the obtained hollow fiber carbon membrane is improved, and when a hollow fiber membrane module is produced using the hollow fiber carbon membrane, it is difficult to cause hollow fiber breakage due to handling, and the durability of the module is further improved. It is demanded.

WO 2016/067900WO 2016/0667900 WO 2016/093357WO 2016/093357 特開2009−34614号公報JP 2009-34614 A 特開2013−94744号公報JP 2013-94744 A WO2013/042262WO2013 / 042262 特開平7−51551号公報Japanese Patent Laid-Open No. 7-51551

本発明の目的は、ポリフェニレンオキサイドを主成分とする炭素膜用製膜原液を用い、空気中で150〜350℃にて加熱する“不融化処理”を施した後に、不活性雰囲気または真空中で600〜800℃で加熱を行う“炭化処理”を施すといった、2段階の加熱を施すことにより製造される中空糸炭素膜の製造方法において、得られる中空糸炭素膜の強度を改善せしめることを可能とする中空糸炭素膜の製造方法を提供することにある。   The object of the present invention is to use a stock solution for carbon film containing polyphenylene oxide as a main component, and after applying “infusibilization treatment” in air at 150 to 350 ° C., in an inert atmosphere or in vacuum. It is possible to improve the strength of the hollow fiber carbon membrane obtained in the production method of the hollow fiber carbon membrane produced by applying two stages of heating such as “carbonization treatment” of heating at 600 to 800 ° C. An object of the present invention is to provide a method for producing a hollow fiber carbon membrane.

かかる本発明の目的は、製膜原液中15〜40重量%の濃度となる量のポリフェニレンオキサイドおよび該ポリフェニレンオキサイドに対して0.1〜5.0重量%の割合となる量の塩化リチウムを、これらを溶解可能な溶媒に溶解させた炭素膜用製膜原液を調製し、該炭素膜用製膜原液を二重環状ノズルを用いて、非溶媒誘起分離法による紡糸法により中空状に成形し、得られた中空状膜を150〜350℃で加熱して不融化処理し、さらに不活性雰囲気または真空中で600〜800℃で加熱して炭化処理を行うことにより達成される。   The object of the present invention is to dissolve polyphenylene oxide in an amount of 15 to 40% by weight in the film-forming stock solution and lithium chloride in an amount of 0.1 to 5.0% by weight with respect to the polyphenylene oxide. A carbon membrane forming stock solution dissolved in a suitable solvent was prepared, and the carbon membrane forming stock solution was formed into a hollow shape by a spinning method by a non-solvent induced separation method using a double annular nozzle. This is achieved by heating the hollow membrane at 150 to 350 ° C. for infusibilization, and further heating at 600 to 800 ° C. in an inert atmosphere or vacuum for carbonization.

本発明に係る中空糸炭素膜の製造方法によれば、ポリフェニレンオキサイドおよび該ポリフェニレンオキサイドに対して0.1〜5.0重量%の割合となる量の塩化リチウムを添加せしめた製膜原液を用いることにより、中空糸断面におけるボイドの発生を抑え、ボイドが破断起点になることを防止し、ひいてはハンドリングで破断し難く、取り扱いが容易な中空糸膜の製造を可能にするといったすぐれた効果を奏する。   According to the method for producing a hollow fiber carbon membrane according to the present invention, by using a film-forming stock solution in which polyphenylene oxide and lithium chloride in an amount of 0.1 to 5.0% by weight with respect to the polyphenylene oxide are added, There are excellent effects of suppressing the generation of voids in the yarn cross section, preventing the voids from becoming the starting point of breakage, and making it possible to produce a hollow fiber membrane that is difficult to break by handling and easy to handle.

実施例および比較例で得られた中空糸膜について行った引張試験の結果をグラフに表わしたワイブル分布を示す図であるIt is a figure which shows the Weibull distribution which represented the result of the tension test done about the hollow fiber membrane obtained by the Example and the comparative example in the graph. 実施例で得られた中空糸膜のSEM観察による断面構造を示す図であるIt is a figure showing a cross-sectional structure by SEM observation of the hollow fiber membrane obtained in the example 比較例で得られた中空糸膜のSEM観察による断面構造を示す図であるIt is a figure showing a cross-sectional structure by SEM observation of a hollow fiber membrane obtained in a comparative example

ポリフェニレンオキサイドとしては、市販品、例えばSABIC社製品PPO646、三菱エンジニアリングプラスチックス製品PX100F、PX100L等をそのまま用いることができ、これは製膜原液中約15〜40重量%、好ましくは約20〜35重量%の割合で用いられる。ポリフェニレンオキサイドの濃度がこれより高い場合には、製膜原液が分離してしまい紡糸できなくなり、一方これより低い場合には、焼成時に脆くなり良好な炭素膜を得ることができない場合がある。   As the polyphenylene oxide, commercially available products, for example, SABIC product PPO646, Mitsubishi Engineering Plastics products PX100F, PX100L, etc. can be used as they are. % Is used. When the concentration of polyphenylene oxide is higher than this, the raw film forming solution is separated and cannot be spun. On the other hand, when it is lower than this, it may become brittle during firing and a good carbon film may not be obtained.

製膜原液には、さらにポリフェニレンオキサイドに対して約0.1〜5.0重量%、好ましくは約0.2〜3.0重量%の割合となる量の塩化リチウムが添加される。かかる添加割合は、得られる中空糸断面のボイドの発生をほぼ完全に抑制し、強度を著しく改善せしめた中空糸炭素膜の製造が可能となるような観点から決定されている。塩化リチウムの割合がこれより少ない場合には、塩化リチウム添加により得られる中空糸膜断面のボイド抑制効果が十分にみられなくなり、一方これより多い場合には、主成分であるポリフェニレンオキサイドのポリマー濃度の低下により、十分なガス分離性能が得られないようになる。   Further, lithium chloride in an amount of about 0.1 to 5.0% by weight, preferably about 0.2 to 3.0% by weight, based on polyphenylene oxide is added to the film forming stock solution. Such an addition ratio is determined from the viewpoint that it is possible to produce a hollow fiber carbon membrane in which the occurrence of voids in the cross section of the obtained hollow fiber is almost completely suppressed and the strength is remarkably improved. If the proportion of lithium chloride is less than this, the void suppression effect on the cross section of the hollow fiber membrane obtained by adding lithium chloride will not be sufficiently observed, while if more than this, the polymer concentration of the main component polyphenylene oxide will be As a result, the sufficient gas separation performance cannot be obtained.

製膜原液中に所定量の塩化リチウムを含有せしめることで、中空糸炭素膜の強度の向上が可能となる。図1のワイブル分布に明確に示されるように、塩化リチウムを添加した紡糸原液を用いて得られる中空糸膜は破断確率が低下するようになる。   Inclusion of a predetermined amount of lithium chloride in the membrane-forming stock solution can improve the strength of the hollow fiber carbon membrane. As clearly shown in the Weibull distribution of FIG. 1, the hollow fiber membrane obtained using the spinning stock solution to which lithium chloride is added has a reduced probability of breakage.

すなわち、本発明に係る製造方法により得られた中空糸膜は、図2に示されるように断面にボイド確認されず、一方塩化リチウムを添加しない紡糸原液を用いて製造された中空糸膜は、図3に示されるように断面にボイドが確認され、これらを比較すると紡糸原液に塩化リチウムを添加することにより強度の改善が図られていることが明白である。   That is, the hollow fiber membrane obtained by the production method according to the present invention has no voids in the cross section as shown in FIG. 2, while the hollow fiber membrane produced using a spinning stock solution without adding lithium chloride is As shown in FIG. 3, voids are confirmed in the cross section, and comparing these, it is clear that the strength is improved by adding lithium chloride to the spinning dope.

その結果、ボイドが中空糸内の破断起点になることがなく、モジュール化の際のハンドリングで破断し難く、取り扱いが容易になる。   As a result, the void does not become the starting point of breakage in the hollow fiber, and it is difficult to break by handling during modularization, and handling becomes easy.

炭素膜用製膜原液の調製は、ポリフェニレンオキサイド、塩化リチウム(および添加剤)を、これらが溶解可能な溶媒に溶解させることにより行われる。かかる溶媒としては、メタノール、エタノール、テトラヒドロフラン、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等が挙げられ、好ましくはN,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等の非プロトン性極性溶媒が用いられる。   Preparation of a carbon film-forming stock solution is performed by dissolving polyphenylene oxide and lithium chloride (and additives) in a solvent in which they can be dissolved. Examples of such a solvent include methanol, ethanol, tetrahydrofuran, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like, preferably a non-proton such as N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like. Polar solvents are used.

ここで、紡糸時に紡糸原液が相分離してしまうと安定した紡糸ができないため、紡糸、製膜時における製膜溶液は、相安定な温度、好ましくは〔製膜時の温度−相分離する温度〕の絶対値が10℃以上の相安定性となるものが用いられる。   Here, since stable spinning cannot be performed if the spinning dope is phase-separated at the time of spinning, the film-forming solution at the time of spinning and film-forming is preferably a phase-stable temperature, preferably [temperature during film-forming temperature for phase separation. ] Whose phase stability is 10 ° C. or more is used.

調製された製膜原液は、湿式紡糸法、乾湿式紡糸法等の非溶媒誘起相分離法による紡糸法によって、二重環状構造の中空糸紡糸ノズルの外管から直接または空走を経て凝固浴中に押し出し、必要に応じて紡糸ノズルの内管からは、製膜原液の溶媒とポリマーに対して非相溶性の芯液を同時に押し出すことにより、ポリフェニレンオキサイド中空糸膜が成形される。ここで芯液および凝固浴は、製膜原液の溶媒と混合するが、ポリフェニレンオキサイドとは非相溶性の溶媒、例えば水、エチレングリコール等が用いられる。また、このときの芯液および凝固浴の温度は、一般に約-20〜60℃、好ましくは約0〜30℃である。   The prepared film forming solution is directly or directly idled from the outer tube of a hollow fiber spinning nozzle having a double ring structure by a spinning method using a non-solvent induced phase separation method such as a wet spinning method or a dry wet spinning method. A polyphenylene oxide hollow fiber membrane is formed by extruding inward and, if necessary, simultaneously extruding a core solution that is incompatible with the solvent of the membrane forming solution and the polymer from the inner tube of the spinning nozzle. Here, the core solution and the coagulation bath are mixed with the solvent of the film-forming stock solution, but a solvent incompatible with polyphenylene oxide, for example, water, ethylene glycol, or the like is used. The temperature of the core liquid and the coagulation bath at this time is generally about -20 to 60 ° C, preferably about 0 to 30 ° C.

得られたポリマー中空糸膜は、必要に応じて水洗され、次いで乾燥、すなわち中空糸状物のポリマー部分からの水分の除去が行われる。乾燥は、ポリマー中空糸膜が完全に乾燥する条件であれば特に限定されないが、一般には約20〜80℃、好ましくは約25〜60℃で約0.5〜4時間程度行われる。   The obtained polymer hollow fiber membrane is washed with water as necessary, and then dried, that is, moisture is removed from the polymer portion of the hollow fiber-like product. The drying is not particularly limited as long as the polymer hollow fiber membrane is completely dried, but is generally performed at about 20 to 80 ° C, preferably about 25 to 60 ° C for about 0.5 to 4 hours.

乾燥処理されたポリマー中空糸膜は、炭化処理の前に不融化処理が行われる。不融化処理では、約150〜350℃程度で約0.5〜4時間といった炭化温度よりも低い温度で加熱処理を施すことにより行われる。かかる不融化処理により、炭素中空糸膜としての性能が特に改善されることとなる。   The dried polymer hollow fiber membrane is subjected to an infusibilization treatment before the carbonization treatment. The infusibilization treatment is performed by performing a heat treatment at a temperature lower than the carbonization temperature such as about 150 to 350 ° C. for about 0.5 to 4 hours. Such infusibilization treatment will particularly improve the performance as a carbon hollow fiber membrane.

炭化処理は、得られた前駆体ポリマー中空糸膜を公知の方法、例えば前駆体ポリマー中空糸膜を容器内に収容し、10-4気圧以下(約10Pa以下)の減圧下もしくはヘリウム、アルゴンガス、窒素ガスなどで置換した不活性ガス雰囲気下で加熱処理することにより行われる。加熱条件は、前駆体ポリマーを構成する材料の種類、その量などにより異なるが、一般には上記10-4気圧以下(約10Pa以下)の減圧下もしくは不活性ガス雰囲気下では、約450〜850℃、好ましくは約600〜800℃で、約0.5〜4時間といった条件が適用される。 Carbonization treatment is carried out by using the obtained precursor polymer hollow fiber membrane in a known manner, for example, containing the precursor polymer hollow fiber membrane in a container, and under reduced pressure of 10 −4 atm or less (about 10 Pa or less) or helium or argon gas. The heat treatment is performed in an inert gas atmosphere substituted with nitrogen gas or the like. The heating conditions vary depending on the type of material constituting the precursor polymer, the amount thereof, and the like, but generally it is about 450 to 850 ° C. under a reduced pressure of 10 −4 atm or less (about 10 Pa or less) or in an inert gas atmosphere. Preferably, conditions such as about 600 to 800 ° C. and about 0.5 to 4 hours are applied.

得られた中空糸炭素膜は、さらにその分離性能を向上させるべく、その表面に公知技術(特許文献6等参照)である化学的気相蒸着(CVD)、好ましくはプロピレン、ブタン、シクロヘキサン等の炭化水素ガスを用いたCVD処理を施すこともできる。かかるCVD処理を施すことで、さらに高い分離性を達成するといった効果がみられる。   In order to further improve the separation performance of the obtained hollow fiber carbon membrane, chemical vapor deposition (CVD), which is a known technique (see Patent Document 6, etc.), preferably propylene, butane, cyclohexane, etc. CVD treatment using hydrocarbon gas can also be performed. By performing such a CVD process, an effect of achieving higher separation performance is observed.

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

実施例
ポリフェニレンオキサイド(SABIC社製品PPO616) 34重量部、塩化リチウム 1重量部およびジメチルアセトアミド 65重量部からなる製膜原液を調製した。調製された紡糸原液を150℃に加熱した後、二重環状構造の紡糸ノズルを用い、エチレングリコールを芯液として水凝固浴中に押し出し、紡糸速度15m/分で湿式紡糸を行った。その後60℃のオーブン中で乾燥し、外径1060μm、内径930μmの多孔質ポリフェニレンオキサイド中空糸膜を得た。
Example A film-forming stock solution comprising 34 parts by weight of polyphenylene oxide (SABIC PPO616), 1 part by weight of lithium chloride and 65 parts by weight of dimethylacetamide was prepared. The prepared spinning solution was heated to 150 ° C., and then, using a spinning nozzle having a double ring structure, ethylene glycol was extruded as a core solution into a water coagulation bath, and wet spinning was performed at a spinning speed of 15 m / min. Thereafter, it was dried in an oven at 60 ° C. to obtain a porous polyphenylene oxide hollow fiber membrane having an outer diameter of 1060 μm and an inner diameter of 930 μm.

次いで、得られた中空糸膜をパーフルオロアルコキシアルカン樹脂(テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合樹脂)製管に挿入し、空気中にて温度300℃、1時間の加熱を行い、不融化処理を施した。さらに、不融化処理した中空糸膜を石英管に挿入し、窒素雰囲気下で温度650℃、1時間の加熱を行い、炭化処理を施して、外径430μm、内径370μmの中空糸炭素膜を得た。得られた炭素膜を用いて、引張強度試験(JIS R7606:2000準拠)を行い、ワイブル分布より破断確率を求めた。さらに、SEM観察により断面構造の確認を行った。   Next, the obtained hollow fiber membrane was inserted into a tube made of perfluoroalkoxyalkane resin (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin) and heated in air at 300 ° C. for 1 hour to make it infusible. Treated. Further, the infusibilized hollow fiber membrane is inserted into a quartz tube, heated in a nitrogen atmosphere at a temperature of 650 ° C. for 1 hour, and carbonized to obtain a hollow fiber carbon membrane having an outer diameter of 430 μm and an inner diameter of 370 μm. It was. Using the obtained carbon film, a tensile strength test (based on JIS R7606: 2000) was performed, and the fracture probability was determined from the Weibull distribution. Furthermore, the cross-sectional structure was confirmed by SEM observation.

比較例
実施例において、塩化リチウムが用いられず、ジメチルアセトアミド量が66重量部の変更された製膜原液が用いられ、同サイズの中空糸炭素膜を得た。
Comparative Example In the examples, lithium chloride was not used, and a membrane-forming stock solution having a dimethylacetamide content of 66 parts by weight was used, and a hollow fiber carbon membrane of the same size was obtained.

実施例および比較例で得られたワイブル分布の比較結果は図1(▲:実施例、◆:比較例)に、またSEM観察による断面構造は図2(実施例)および図3(比較例)に示される。   The comparison results of the Weibull distribution obtained in Examples and Comparative Examples are shown in FIG. 1 (▲: Examples, ◆: Comparative Examples), and the cross-sectional structures by SEM observation are shown in FIG. 2 (Examples) and FIG. Shown in

Claims (3)

製膜原液中15〜40重量%の濃度となる量のポリフェニレンオキサイドおよび該ポリフェニレンオキサイドに対して0.1〜5.0重量%の割合となる量の塩化リチウムを、これらを溶解可能な溶媒に溶解させた炭素膜用製膜原液を調製し、該炭素膜用製膜原液を二重環状ノズルを用いて、非溶媒誘起分離法による紡糸法により中空状に成形し、成形された中空状膜を150〜350℃で加熱して不融化処理し、さらに不活性雰囲気または真空中で600〜800℃で加熱して炭化処理を行うことを特徴とする中空糸炭素膜の製造方法。   Carbon obtained by dissolving polyphenylene oxide in an amount of 15 to 40% by weight in the film-forming stock solution and lithium chloride in an amount of 0.1 to 5.0% by weight with respect to the polyphenylene oxide in a solvent capable of dissolving them. A membrane-forming stock solution for a membrane is prepared, and the membrane-forming solution for carbon membrane is formed into a hollow shape by a spinning method using a non-solvent induced separation method using a double annular nozzle, and the formed hollow membrane is 150 to 350 A method for producing a hollow fiber carbon membrane, comprising heating at 600C to infusibilize, and further heating at 600 to 800C in an inert atmosphere or vacuum to perform carbonization. 炭化処理後、さらに表面に炭化水素ガスを用いた化学的気相蒸着処理が施される請求項1記載の中空糸炭素膜の製造方法。   The method for producing a hollow fiber carbon membrane according to claim 1, wherein after the carbonization treatment, a chemical vapor deposition treatment using a hydrocarbon gas is further performed on the surface. 製膜原液中15〜40重量%の濃度となる量のポリフェニレンオキサイドおよび該ポリフェニレンオキサイドに対して0.1〜5.0重量%の割合となる量の塩化リチウムを、これらを溶解可能な溶媒に溶解させた炭素膜用製膜原液。   Carbon obtained by dissolving polyphenylene oxide in an amount of 15 to 40% by weight in the film-forming stock solution and lithium chloride in an amount of 0.1 to 5.0% by weight with respect to the polyphenylene oxide in a solvent capable of dissolving them. Membrane stock solution.
JP2017032333A 2017-02-23 2017-02-23 Method for producing hollow fiber carbon membrane Pending JP2018134611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017032333A JP2018134611A (en) 2017-02-23 2017-02-23 Method for producing hollow fiber carbon membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017032333A JP2018134611A (en) 2017-02-23 2017-02-23 Method for producing hollow fiber carbon membrane

Publications (1)

Publication Number Publication Date
JP2018134611A true JP2018134611A (en) 2018-08-30

Family

ID=63366357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017032333A Pending JP2018134611A (en) 2017-02-23 2017-02-23 Method for producing hollow fiber carbon membrane

Country Status (1)

Country Link
JP (1) JP2018134611A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114682101A (en) * 2020-12-30 2022-07-01 中国石油化工股份有限公司 Carbon hollow fiber membrane and preparation method thereof
CN115362288A (en) * 2020-03-31 2022-11-18 东洋纺株式会社 Infusible polyphenylene ether fiber, infusible polyphenylene ether molded body, carbon fiber, activated carbon fiber, carbon fiber molded body, activated carbon fiber molded body, and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115362288A (en) * 2020-03-31 2022-11-18 东洋纺株式会社 Infusible polyphenylene ether fiber, infusible polyphenylene ether molded body, carbon fiber, activated carbon fiber, carbon fiber molded body, activated carbon fiber molded body, and method for producing same
CN115362288B (en) * 2020-03-31 2023-11-03 东洋纺Mc株式会社 Non-melting polyphenylene ether fiber, non-melting polyphenylene ether molded body, carbon fiber, activated carbon fiber, carbon fiber molded body, activated carbon fiber molded body, and method for producing same
CN114682101A (en) * 2020-12-30 2022-07-01 中国石油化工股份有限公司 Carbon hollow fiber membrane and preparation method thereof
CN114682101B (en) * 2020-12-30 2023-05-30 中国石油化工股份有限公司 Carbon hollow fiber membrane and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6465120B2 (en) Method for producing hollow fiber carbon membrane
Duan et al. Microstructures and mechanical properties of aligned electrospun carbon nanofibers from binary composites of polyacrylonitrile and polyamic acid
JP6911757B2 (en) Fluid Separation Membrane, Fluid Separation Membrane Module and Porous Carbon Fiber
JP6733177B2 (en) Fluid separation carbon membrane, fluid separation membrane module, and method for producing carbon membrane for fluid separation
JP5966298B2 (en) Method for producing hollow fiber carbon membrane
JP6358337B2 (en) Membrane stock solution for carbon membrane and method for producing carbon hollow fiber membrane using the same
Rownaghi et al. Effects of coating solvent and thermal treatment on transport and morphological characteristics of PDMS/T orlon composite hollow fiber membrane
JP2018134611A (en) Method for producing hollow fiber carbon membrane
TW201908003A (en) Carbon film for fluid separation and method of producing the same
Doan et al. Scalable fabrication of cross-linked porous centrifugally spun polyimide fibers for thermal insulation application
JP2021500488A (en) Carbon fiber formed from chlorinated polyvinyl chloride and its manufacturing method
JP6379995B2 (en) Membrane stock solution for carbon membrane and method for producing hollow fiber carbon membrane using the same
JP2017137596A (en) Manufacturing method of hollow yarn carbon fiber
JP2016140836A (en) Method for production of hollow fiber carbon membrane module
JP7159563B2 (en) METHOD FOR MANUFACTURING CARBON MEMBRANE FOR GAS SEPARATION
US20130313739A1 (en) Membrane-forming dope solution for carbon membranes and method for producing carbon hollow fiber membranes using the same
JP2017136561A (en) Manufacturing method of hollow fiber carbon membrane
JP2021169065A (en) Porous hollow fiber membrane and method for producing the same, and hollow fiber membrane element
JP2018083135A (en) Hollow fiber carbon membrane manufacturing method, hollow fiber carbon membrane, and module thereof
JP2017217600A (en) Manufacturing method of hollow fiber carbon membrane, hollow fiber carbon membrane and its module
KR20090105669A (en) Gas separation membrane and production method thereof