JP2018134578A - Elastic vibration compression apparatus, elastic vibration amplifier, and method - Google Patents

Elastic vibration compression apparatus, elastic vibration amplifier, and method Download PDF

Info

Publication number
JP2018134578A
JP2018134578A JP2017029796A JP2017029796A JP2018134578A JP 2018134578 A JP2018134578 A JP 2018134578A JP 2017029796 A JP2017029796 A JP 2017029796A JP 2017029796 A JP2017029796 A JP 2017029796A JP 2018134578 A JP2018134578 A JP 2018134578A
Authority
JP
Japan
Prior art keywords
elastic
vibration
medium
group velocity
elastic vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017029796A
Other languages
Japanese (ja)
Inventor
大樹 畑中
Daiki Hatanaka
大樹 畑中
山口 浩司
Koji Yamaguchi
浩司 山口
めぐみ 黒子
Megumi Kuroko
めぐみ 黒子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017029796A priority Critical patent/JP2018134578A/en
Publication of JP2018134578A publication Critical patent/JP2018134578A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve miniaturization of an elastic medium; and to heighten selection flexibility of the kind or the shape of the elastic medium.SOLUTION: An elastic vibration compression-amplification apparatus includes a thin film waveguide (108) which is an elastic medium having a characteristic of desired group velocity dispersion, and vibration application parts (105a, 110) for applying elastic vibration having a modulated frequency to the thin film waveguide (108). The elastic vibration compression-amplification apparatus compresses-amplifies the elastic vibration including vibration having a frequency differentiated by frequency modulation, by an effect of the group velocity dispersion of the thin film waveguide (108).SELECTED DRAWING: Figure 8

Description

本発明は、弾性振動の圧縮を可能にする弾性振動圧縮装置、弾性振動の増幅を可能にする弾性振動増幅装置に関するものである。   The present invention relates to an elastic vibration compression device that enables compression of elastic vibration and an elastic vibration amplification device that enables amplification of elastic vibration.

弾性振動の中でも特に周波数が数十kHzから数十MHzのものを超音波と呼ぶ。超音波は、超音波エコーに代表される生体画像の取得、水中や地中、固体物質内の非破壊による探知・検査、そして、非侵襲型メスのような物質内の異物の非侵襲的破壊に利用されている。より高感度かつ高解像度な物質の可視化、また、より効果的な異物除去を実現するためには、超音波の時間的もしくは空間的な振動の圧縮、増幅が必要である。超音波パルスを圧縮することで波束幅の収縮と振動強度の増強が可能となるため、例えば超音波を圧縮する場合には空間分解能の向上を期待でき、超音波を増幅する場合には超音波の破壊エネルギーの増強が期待できる。   Among elastic vibrations, particularly those having a frequency of several tens of kHz to several tens of MHz are called ultrasonic waves. Ultrasound is the acquisition of biological images represented by ultrasonic echoes, detection and inspection by nondestructive methods in water, in the ground, and in solid materials, and noninvasive destruction of foreign substances in materials such as noninvasive scalpels. Has been used. In order to realize visualization of substances with higher sensitivity and higher resolution and more effective removal of foreign substances, it is necessary to compress and amplify ultrasonic temporal and spatial vibrations. By compressing the ultrasonic pulse, it is possible to shrink the wave packet width and increase the vibration intensity. For example, when compressing the ultrasonic wave, it can be expected to improve the spatial resolution, and when amplifying the ultrasonic wave, the ultrasonic wave Can be expected to increase the destruction energy.

超音波の圧縮・増幅では、これまで複数の手法や構造が提案・実証されてきた。例えば、非特許文献1には、圧電トランスデューサを凹レンズ形状に加工して音波の集音(圧縮、増幅)を実現する幾何学的な手法が開示されている。非特許文献2には、複数の音波に適当な位相遅延を付与することにより集音を実現する時間反転手法が開示されている。非特許文献3には、フェーズドアレイ手法が開示されている。非特許文献4,5には、負の屈折率をもつ人工物質内における音波の特異な屈折現象を利用したメタマテリアル的手法が開示されている。非特許文献6には、非線形弾性効果に起因する位相遅延効果を用いた非線形音響レンズ手法が開示されている。   Several methods and structures have been proposed and demonstrated for ultrasonic compression and amplification. For example, Non-Patent Document 1 discloses a geometric technique for realizing sound wave collection (compression, amplification) by processing a piezoelectric transducer into a concave lens shape. Non-Patent Document 2 discloses a time reversal technique that realizes sound collection by applying an appropriate phase delay to a plurality of sound waves. Non-Patent Document 3 discloses a phased array technique. Non-Patent Documents 4 and 5 disclose a metamaterial-like method using a specific refraction phenomenon of sound waves in an artificial material having a negative refractive index. Non-Patent Document 6 discloses a nonlinear acoustic lens technique using a phase delay effect resulting from a nonlinear elastic effect.

このように、従来の方法では、特別に設計した構造を利用することで、超音波の空間的もしくは時間的な圧縮・増幅が可能であった。しかしながら、これら従来の方法は、二次元的もしくは三次元的な構造が必要なため、装置が大型になり、また装置の精密な設計が要求されるという課題があった。それ故、小規模な構造で、且つ、媒質の汎用性やその設計自由度がある弾性振動の圧縮技術はこれまで提案されていなかった。   As described above, in the conventional method, it is possible to compress or amplify ultrasonic waves spatially or temporally by using a specially designed structure. However, since these conventional methods require a two-dimensional or three-dimensional structure, there is a problem that the apparatus becomes large and a precise design of the apparatus is required. Therefore, a compression technique for elastic vibration having a small-scale structure and versatility of the medium and its design freedom has not been proposed so far.

Jun-ichi Kushibiki and Noriyoshi Chubachi,“Material Characterization by Line-Focus-Beam Acoustic Microscope”,IEEE Transactions on Sonics and Ultrasonics,Vol.SU-32,No.2,1985Jun-ichi Kushibiki and Noriyoshi Chubachi, “Material Characterization by Line-Focus-Beam Acoustic Microscope”, IEEE Transactions on Sonics and Ultrasonics, Vol.SU-32, No.2, 1985 Mathias Fink,“Time Reversal of Ultrasonic Fields-Part I:Basic Principles”,IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,Vol.39,No.5,1992Mathias Fink, “Time Reversal of Ultrasonic Fields-Part I: Basic Principles”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol.39, No.5, 1992 Emad S.Ebbini and Charles A.Cain,“Multiple-Focus Ultrasound Phased-Array Pattern Synthesis: Optimal Driving-Signal Distributions for Hyperthermia”,IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,Vol.36,No.5,1989Emad S. Ebbini and Charles A. Cain, “Multiple-Focus Ultrasound Phased-Array Pattern Synthesis: Optimal Driving-Signal Distributions for Hyperthermia”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 36, No. 5, 1989 Xinhua Hu et al.,“Superlensing effect in liquid surface waves”,Physical Review E 69,030201,2004Xinhua Hu et al., “Superlensing effect in liquid surface waves”, Physical Review E 69, 030201, 2004 Suxia Yang et al.,“Focusing of Sound in a 3D Phononic Crystal”,Physical Review Letters,Vol.93,024301,2004Suxia Yang et al., “Focusing of Sound in a 3D Phononic Crystal”, Physical Review Letters, Vol. 93, 024301, 2004 Alessandro Spadoni and Chiara Daraio,“Generation and control of sound bullets with a nonlinear acoustic lens”,Proceedings of the National Academy of Sciences,Vol.107,No.16,p.7230-7234,2010Alessandro Spadoni and Chiara Daraio, “Generation and control of sound bullets with a nonlinear acoustic lens”, Proceedings of the National Academy of Sciences, Vol.107, No.16, p.7230-7234, 2010

本発明は、上記課題を解決するためになされたもので、弾性媒質の小型化を実現し、弾性媒質の種類や形状の選択自由度を高めることができる弾性振動圧縮装置、弾性振動増幅装置および方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. An elastic vibration compression device, an elastic vibration amplification device, and an elastic vibration compression device that can reduce the size of the elastic medium and increase the degree of freedom in selecting the type and shape of the elastic medium. It aims to provide a method.

本発明の弾性振動圧縮装置は、所望の群速度分散の特性を有する弾性媒質と、周波数変調した弾性振動を前記弾性媒質に印加する振動印加部とを備え、前記周波数変調により異なる周波数の振動を含む前記弾性振動を、前記弾性媒質の群速度分散の効果によって圧縮することを特徴とするものである。
また、本発明の弾性振動圧縮装置の1構成例において、前記振動印加部は、前記弾性媒質が異常分散の特性を有する場合に、周波数が時間の経過と共に増加するアップチャープ弾性振動を前記弾性媒質に印加し、前記弾性媒質が正常分散の特性を有する場合に、周波数が時間の経過と共に減少するダウンチャープ弾性振動を前記弾性媒質に印加することを特徴とするものである。
また、本発明の弾性振動圧縮装置の1構成例において、前記弾性媒質は、前記振動印加部によって前記弾性振動が印加される第1の弾性媒質と、前記弾性振動の伝搬距離が前記圧縮の効果が得られる距離となる位置において前記第1の弾性媒質と直列に結合された、群速度分散が略0の特性を有する第2の弾性媒質とからなることを特徴とするものである。
An elastic vibration compression device of the present invention includes an elastic medium having desired group velocity dispersion characteristics, and a vibration application unit that applies frequency-modulated elastic vibration to the elastic medium, and generates vibrations having different frequencies by the frequency modulation. The elastic vibration is compressed by the effect of group velocity dispersion of the elastic medium.
Further, in one configuration example of the elastic vibration compressing apparatus according to the present invention, the vibration applying unit generates up-chirp elastic vibration whose frequency increases with time when the elastic medium has anomalous dispersion characteristics. When the elastic medium has a normal dispersion characteristic, down-chirp elastic vibration whose frequency decreases with the passage of time is applied to the elastic medium.
Further, in one configuration example of the elastic vibration compression device of the present invention, the elastic medium includes a first elastic medium to which the elastic vibration is applied by the vibration applying unit, and a propagation distance of the elastic vibration is an effect of the compression. It is characterized by comprising a second elastic medium coupled in series with the first elastic medium at a position where the distance is obtained and having a characteristic that the group velocity dispersion is substantially zero.

また、本発明の弾性振動増幅装置は、所望の群速度分散の特性を有する弾性媒質と、周波数変調した弾性振動を前記弾性媒質に印加する振動印加部とを備え、前記周波数変調により異なる周波数の振動を含む前記弾性振動を、前記弾性媒質の群速度分散の効果によって増幅することを特徴とするものである。
また、本発明の弾性振動増幅装置の1構成例において、前記振動印加部は、前記弾性媒質が異常分散の特性を有する場合に、周波数が時間の経過と共に増加するアップチャープ弾性振動を前記弾性媒質に印加し、前記弾性媒質が正常分散の特性を有する場合に、周波数が時間の経過と共に減少するダウンチャープ弾性振動を前記弾性媒質に印加することを特徴とするものである。
また、本発明の弾性振動増幅装置の1構成例において、前記弾性媒質は、前記振動印加部によって前記弾性振動が印加される第1の弾性媒質と、前記弾性振動の伝搬距離が前記増幅の効果が得られる距離となる位置において前記第1の弾性媒質と直列に結合された、群速度分散が略0の特性を有する第2の弾性媒質とからなることを特徴とするものである。
The elastic vibration amplifying device of the present invention includes an elastic medium having a desired group velocity dispersion characteristic, and a vibration applying unit that applies frequency-modulated elastic vibration to the elastic medium, and has different frequencies by the frequency modulation. The elastic vibration including vibration is amplified by an effect of group velocity dispersion of the elastic medium.
Further, in one configuration example of the elastic vibration amplifying device of the present invention, the vibration applying unit generates up-chirp elastic vibration whose frequency increases with time when the elastic medium has anomalous dispersion characteristics. When the elastic medium has a normal dispersion characteristic, down-chirp elastic vibration whose frequency decreases with the passage of time is applied to the elastic medium.
Also, in one configuration example of the elastic vibration amplifying device of the present invention, the elastic medium includes a first elastic medium to which the elastic vibration is applied by the vibration applying unit, and a propagation distance of the elastic vibration is an effect of the amplification. It is characterized by comprising a second elastic medium coupled in series with the first elastic medium at a position where the distance is obtained and having a characteristic that the group velocity dispersion is substantially zero.

また、本発明の弾性振動圧縮方法は、所望の群速度分散の特性を有する弾性媒質に、周波数変調した弾性振動を印加するステップを含み、前記周波数変調により異なる周波数の振動を含む前記弾性振動を、前記弾性媒質の群速度分散の効果によって圧縮することを特徴とするものである。
また、本発明の弾性振動増幅方法は、所望の群速度分散の特性を有する弾性媒質に、周波数変調した弾性振動を印加するステップを含み、前記周波数変調により異なる周波数の振動を含む前記弾性振動を、前記弾性媒質の群速度分散の効果によって増幅することを特徴とするものである。
The elastic vibration compression method of the present invention includes a step of applying an elastic vibration frequency-modulated to an elastic medium having a desired group velocity dispersion characteristic, and the elastic vibration including vibrations of different frequencies by the frequency modulation. The elastic medium is compressed by the effect of group velocity dispersion of the elastic medium.
The elastic vibration amplifying method of the present invention includes a step of applying an elastic vibration frequency-modulated to an elastic medium having a desired group velocity dispersion characteristic, and the elastic vibration including vibrations of different frequencies by the frequency modulation. Amplifying by the effect of group velocity dispersion of the elastic medium.

本発明によれば、従来の方法のように弾性媒質の構造を二次元的または三次元的に拡張する必要が無いため、弾性媒質を小型にすることができ、弾性媒質の設計自由度の向上が期待できる。また、本発明では、弾性振動の周波数変調条件や弾性振動の波束幅を調整することによって、任意の群速度分散の弾性媒質において弾性振動の圧縮・増幅が可能であり、圧縮比や増幅ゲインを制御可能なので、従来の方法と比較して弾性媒質の種類や形状の選択自由度を飛躍的に高めることができる。また、本発明では、半導体基板上で弾性媒質を実現可能なため、本発明を用いて生成した弾性振動の超短・高強度パルス波を介して、半導体電気デバイスや光デバイスを制御することができる。その結果、本発明では、弾性振動の有用性の飛躍的向上が期待できる。   According to the present invention, it is not necessary to expand the structure of the elastic medium two-dimensionally or three-dimensionally as in the conventional method, so that the elastic medium can be reduced in size, and the design flexibility of the elastic medium is improved. Can be expected. Further, in the present invention, by adjusting the frequency modulation condition of elastic vibration and the wave bundle width of elastic vibration, it is possible to compress and amplify elastic vibration in an elastic medium with arbitrary group velocity dispersion, and to set the compression ratio and amplification gain. Since it is controllable, the degree of freedom in selecting the type and shape of the elastic medium can be dramatically increased as compared with the conventional method. In the present invention, since an elastic medium can be realized on a semiconductor substrate, it is possible to control a semiconductor electric device or an optical device via an ultrashort / high intensity pulse wave of elastic vibration generated using the present invention. it can. As a result, in the present invention, a dramatic improvement in the usefulness of elastic vibration can be expected.

また、本発明では、弾性媒質を、振動印加部によって弾性振動が印加される第1の弾性媒質と、第1の弾性媒質と直列に結合された、群速度分散が略0の特性を有する第2の弾性媒質とから構成することにより、圧縮・増幅した振動波の形状を極力維持したまま弾性振動の伝送が可能となる。   Further, according to the present invention, the elastic medium includes a first elastic medium to which elastic vibration is applied by the vibration applying unit, and a first elastic medium coupled in series with the first elastic medium and having a characteristic of substantially zero group velocity dispersion. By constituting with two elastic media, it is possible to transmit elastic vibration while maintaining the shape of the compressed / amplified vibration wave as much as possible.

非チャープ振動の波束拡大の伝搬距離依存性の1例、および非チャープ振動の波束形状の1例を示す図である。It is a figure which shows one example of the propagation distance dependence of the wave packet expansion of non-chirp vibration, and one example of the wave packet shape of non-chirp vibration. |k2|/T0 2の各値における波束幅の伝搬距離依存性の1例を示す図である。| K 2 | is a diagram showing an example of the propagation distance dependency of the wave packet width at each value of / T 0 2. 本発明におけるアップチャープ振動とダウンチャープ振動の波形の1例を示す図である。It is a figure which shows one example of the waveform of the up chirp vibration in this invention, and a down chirp vibration. チャープパラメータと群速度分散との積が正の場合におけるチャープ振動の伝搬距離依存性の1例、およびチャープ振動の波束形状の1例を示す図である。It is a figure which shows an example of the propagation distance dependence of a chirp vibration in case the product of a chirp parameter and group velocity dispersion | distribution is positive, and an example of the wave packet shape of a chirp vibration. チャープパラメータと群速度分散との積が負の場合におけるチャープ振動の伝搬距離依存性の1例、およびチャープ振動の波束形状の1例を示す図である。It is a figure which shows one example of the propagation distance dependence of a chirp vibration in case the product of a chirp parameter and group velocity dispersion | distribution is negative, and one example of the wave packet shape of a chirp vibration. チャープ振動の波束幅の変化のチャープパラメータ依存性の1例を示す図である。It is a figure which shows an example of the chirp parameter dependence of the change of the wave packet width of a chirp vibration. 本発明の第1の実施例に係る弾性媒質である薄膜導波路の平面図および断面図である。It is the top view and sectional drawing of a thin film waveguide which are elastic media concerning the 1st example of the present invention. 本発明の第1の実施例に係る弾性振動圧縮・増幅装置の構成を示す図である。It is a figure which shows the structure of the elastic vibration compression and amplification apparatus which concerns on 1st Example of this invention. アップチャープ振動を本発明の第1の実施例に係る薄膜導波路に加えたときのアップチャープ振動の伝搬距離依存性の1例、およびアップチャープ振動の波束形状の1例を示す図である。It is a figure which shows one example of the propagation distance dependence of up-chirp vibration when applying up-chirp vibration to the thin film waveguide which concerns on the 1st Example of this invention, and one example of the wave packet shape of up-chirp vibration. アップチャープ振動を本発明の第1の実施例に係る薄膜導波路に加えたときのアップチャープ振動の波束形状の他の例を示す図である。It is a figure which shows the other example of the wave packet shape of an up chirp vibration when applying an up chirp vibration to the thin film waveguide which concerns on the 1st Example of this invention. 本発明の第2の実施例に係る弾性振動圧縮・増幅装置の薄膜導波路の構成を示す平面図である。It is a top view which shows the structure of the thin film waveguide of the elastic vibration compression and amplification apparatus which concerns on 2nd Example of this invention. 本発明の第3の実施例に係る弾性振動圧縮・増幅装置の薄膜導波路の構成を示す平面図、および薄膜導波路上の弾性振動の波形の1例を示す図である。It is a top view which shows the structure of the thin film waveguide of the elastic vibration compression and amplification apparatus which concerns on 3rd Example of this invention, and a figure which shows an example of the waveform of the elastic vibration on a thin film waveguide.

[発明の原理]
上記の課題を解決する新しい方法として、本発明では、周波数変調(チャープ)した超音波を含む弾性振動とこの弾性振動が伝搬する弾性媒質が有する群速度分散とを用いた弾性振動の圧縮、増幅を可能にする手法を提案する。弾性振動を伝送する弾性媒質(導波路)は、有限の群速度分散をもち、弾性振動の伝搬速度はその振動の周波数に応じて異なる。
[Principle of the Invention]
As a new method for solving the above problems, in the present invention, compression and amplification of elastic vibration using elastic vibration including frequency-modulated (chirped) ultrasonic waves and group velocity dispersion of an elastic medium in which the elastic vibration propagates are used. We propose a method that enables this. An elastic medium (waveguide) that transmits elastic vibration has a finite group velocity dispersion, and the propagation speed of elastic vibration varies depending on the frequency of the vibration.

このような導波路に、非チャープの弾性振動パルスを印加した場合、例えば、その導波路が異常分散の特性を有していた場合、入力に含まれる高い周波数の波は低い周波数の波と比較して速く進むため、伝搬距離が増加するにつれ振動の波束は群速度分散効果によって徐々に拡大していく。反対に、導波路が正常分散の特性を有していた場合、入力に含まれる高い周波数の波は低い周波数の波と比較して遅く進む。   When a non-chirp elastic vibration pulse is applied to such a waveguide, for example, if the waveguide has anomalous dispersion characteristics, the high frequency wave included in the input is compared with the low frequency wave. Therefore, as the propagation distance increases, the wave packet of vibration gradually expands due to the group velocity dispersion effect. On the other hand, when the waveguide has a normal dispersion characteristic, the high-frequency wave included in the input travels slower than the low-frequency wave.

しかしながら、本発明では、周波数変調した弾性振動に、群速度分散効果を適用することによって、弾性振動の急激な圧縮を実現する。例えば、導波路が異常分散の特性を有する場合、周波数が時間と共に増加するアップチャープ振動パルスを導波路に入力すると、入力の段階で時間的・空間的に分布していた異周波数の振動が、群速度分散による振動の速度差によりその周波数分布が徐々に解消され、ある特定の伝搬距離においてパルスの圧縮(波束の収縮)とパルス強度の増幅が得られる。導波路が正常分散の特性を有する場合に、周波数が時間と伴に低下するダウンチャープ振動パルスを導波路に入力した場合も同様の現象が生じる。   However, in the present invention, rapid compression of the elastic vibration is realized by applying the group velocity dispersion effect to the frequency-modulated elastic vibration. For example, when the waveguide has anomalous dispersion characteristics, when an up-chirp vibration pulse whose frequency increases with time is input to the waveguide, vibrations of different frequencies distributed temporally and spatially at the input stage, The frequency distribution is gradually eliminated by the difference in vibration velocity due to the group velocity dispersion, and the compression of the pulse (contraction of the wave packet) and the amplification of the pulse intensity are obtained at a specific propagation distance. If the waveguide has normal dispersion characteristics, the same phenomenon occurs when a down-chirp vibration pulse whose frequency decreases with time is input to the waveguide.

このように本発明では、従来の方法のような構造の二次元化・三次元化が不要であり、また、入力チャープパルスの波束幅や符号、周波数掃引範囲を外部信号発生器において調整することにより、任意の群速度分散媒質でパルスの圧縮と増幅とが可能となる。さらに、従来の方法で弾性振動の圧縮比や増幅ゲインを増加するためには、入力信号強度の増加に加えて、二次元構造もしくは三次元構造の拡張が必要であった。これに対して、本発明では、入力チャープ振動の波束幅や周波数掃引範囲(チャープパラメータ)を調整することで解決可能であり、弾性媒質となる導波路構造の変更は不要である。   Thus, in the present invention, it is not necessary to make the structure two-dimensional or three-dimensional as in the conventional method, and the wave width, sign, and frequency sweep range of the input chirp pulse are adjusted in the external signal generator. Thus, it is possible to compress and amplify pulses with an arbitrary group velocity dispersion medium. Further, in order to increase the compression ratio and amplification gain of elastic vibration by the conventional method, it is necessary to expand the two-dimensional structure or the three-dimensional structure in addition to the increase of the input signal intensity. On the other hand, in the present invention, this can be solved by adjusting the wavelet width and frequency sweep range (chirp parameter) of the input chirp vibration, and there is no need to change the waveguide structure serving as an elastic medium.

本発明によれば、従来の方法のように構造を二次元的または三次元的に拡張する必要が無いため、弾性媒質構造の小型化等の設計自由度の向上が期待できる。加えて、本発明では、入力に用いる周波数変調波のチャープパラメータを調整することによって、任意の群速度分散の弾性媒質において振動の圧縮と増幅が実現でき、弾性振動の圧縮比や増幅ゲインも制御可能である。これらの点も従来の方法と比較して弾性媒質の種類や形状の選択自由度を飛躍的に高める要因となる。   According to the present invention, since it is not necessary to expand the structure two-dimensionally or three-dimensionally as in the conventional method, an improvement in design flexibility such as downsizing of the elastic medium structure can be expected. In addition, in the present invention, by adjusting the chirp parameter of the frequency modulation wave used for input, vibration compression and amplification can be realized in an elastic medium with arbitrary group velocity dispersion, and the compression ratio and amplification gain of elastic vibration can be controlled. Is possible. These points are also factors that dramatically increase the degree of freedom in selecting the type and shape of the elastic medium as compared with the conventional method.

さらに、本発明は、半導体基板上で導波路構造の実現が可能なため、本発明を用いて生成した弾性振動の超短・高強度パルス波を介して、半導体電気デバイスや光デバイスを制御するといった利用可能性が考えられる。その結果、超音波を含む弾性振動の有用性の飛躍的向上が期待できる。   Furthermore, since the present invention can realize a waveguide structure on a semiconductor substrate, semiconductor electrical devices and optical devices are controlled through ultrashort and high intensity pulse waves of elastic vibration generated using the present invention. It can be used. As a result, a dramatic improvement in the usefulness of elastic vibration including ultrasonic waves can be expected.

以下、本発明の原理について更に詳細に説明する。ここでは曲げ振動を伝送する一次元薄膜導波路を弾性媒質として考える。この導波路を伝わる曲げ振動の波動方程式は、次式のように記述できる。   Hereinafter, the principle of the present invention will be described in more detail. Here, a one-dimensional thin film waveguide that transmits bending vibration is considered as an elastic medium. The wave equation of the bending vibration transmitted through this waveguide can be described as:

ここでは、Aを振動振幅、xを伝搬距離、ηを伝搬損失とした。そして、kを波数、ωを角振動数とし、kn=∂nk/∂ωnと定義したため、k1は群速度の逆数、k2は群速度分散となる。なお、式(1)では振動の非線形項は考慮しない。この式(1)は、文献「Daiki Hatanaka,Amaury Dodel,Imran Mahboob,Koji Onomitsu and Hiroshi Yamaguchi,“Phonon propagation dynamics in band-engineered onedimensional phononic crystal waveguides”,New Journal of Physics,17,113032,2015」
に開示されている。
Here, A is the vibration amplitude, x is the propagation distance, and η is the propagation loss. Since k is the wave number, ω is the angular frequency, and k n = ∂ n k / ∂ω n , k 1 is the reciprocal of the group velocity, and k 2 is the group velocity dispersion. In Equation (1), the nonlinear term of vibration is not considered. This equation (1) is derived from the literature “Daiki Hatanaka, Amaury Dodel, Imran Mahboob, Koji Onomitsu and Hiroshi Yamaguchi,“ Phonon propagation dynamics in band-engineered one-dimensional phononic crystal waveguides ”, New Journal of Physics, 17, 113032, 2015”.
Is disclosed.

基本となる式(1)の波動方程式から、群速度分散が非チャープ、チャープ振動形状に与える影響を以下に説明する。まず、群速度vg(=1/k1)の振動と同じ速度で進む新しい座標系を導入する。T=t−x/vg=t−k1xとおくと、式(1)を次式のように変形できる。 The influence of group velocity dispersion on non-chirped and chirped vibration shapes will be described below from the basic wave equation of equation (1). First, a new coordinate system is introduced that travels at the same speed as the vibration of the group velocity v g (= 1 / k 1 ). When T = t−x / v g = t−k 1 x, the equation (1) can be transformed as the following equation.

また、規格化した振動振幅強度U(x,T)を用いて、A(x,T)=A0-ηxU(x,T)とおき、式(2)に導入すると、次の式(3)のようになり、群速度分散k2を有する一次元薄膜導波路を進む弾性振動を記述する波動方程式となる。 Also, using the normalized vibration amplitude intensity U (x, T), A (x, T) = A 0 e −ηx U (x, T), and when introduced into equation (2), the following equation As shown in (3), the wave equation describes the elastic vibration traveling through the one-dimensional thin film waveguide having the group velocity dispersion k 2 .

次に、フーリエ変換を用いることによって式(3)を解く。振動の波束関数U(x,T)はフーリエ変換した関数チルダU(x,ω)を用いると、次式のようになる。以下、同様に文字上に付した「〜」をチルダと呼ぶ。   Next, Equation (3) is solved by using Fourier transform. The vibration wave packet function U (x, T) is expressed by the following equation using a Fourier-transformed function tilde U (x, ω). In the following, “˜” similarly attached on the character is called a tilde.

式(4)を式(3)に代入すると、次式のように変形できる。   By substituting equation (4) into equation (3), it can be transformed into the following equation.

この式(5)を解くと、次の式(6)が得られる。   When this equation (5) is solved, the following equation (6) is obtained.

そして、式(4)は、次の式(7)のようになる。   Then, the equation (4) becomes the following equation (7).

ここで、入力振動の波束としてガウス関数を適用すると、式(7)の入力関数チルダU(0,ω)は、次式のように記述できる。   Here, when a Gaussian function is applied as the wave packet of the input vibration, the input function tilde U (0, ω) in Expression (7) can be described as the following expression.

式(8)を式(7)に代入すると、次の式(9)が得られ、群速度分散k2を有する振動の波束が求まる。 By substituting equation (8) into equation (7), the following equation (9) is obtained, and a wave packet of vibration having group velocity dispersion k 2 is obtained.

式(9)より、薄膜導波路を距離xだけ進んだ振動の波束幅T1(振幅が1/eになる点)は、次式のように求まる。 From the equation (9), the wavelet width T 1 (the point at which the amplitude becomes 1 / e) of the vibration that has traveled through the thin film waveguide by the distance x is obtained as follows.

図1(A)は群速度分散k2による振動の波束拡大の伝搬距離(|k2|x/T0 2)依存性の計算結果を示す図、図1(B)は|k2|x/T0 2=0,2,4における波束形状の計算結果を示す図である。図1(A)、図1(B)に示すように、薄膜導波路に印加された非チャープ振動は、薄膜導波路の群速度分散k2のため、伝搬距離xが増加するにつれてその波束が拡大する、つまり波束幅T1が増加していく様子が理解できる。 FIG. 1A shows a calculation result of the propagation distance (| k 2 | x / T 0 2 ) dependency of the wave packet expansion of the group velocity dispersion k 2 , and FIG. 1B shows | k 2 | x. It is a figure which shows the calculation result of the wave packet shape in / T 0 2 = 0,2,4. As shown in FIGS. 1 (A) and 1 (B), the non-chirp vibration applied to the thin film waveguide has a wave packet as the propagation distance x increases because of the group velocity dispersion k 2 of the thin film waveguide. It can be seen that the wave packet width T 1 increases, that is, the wave packet width T 1 increases.

図2は|k2|/T0 2=1,1.25,1.67,2.5,5における波束幅T/T0の伝搬距離依存性の計算結果を示す図である。図2に示すように、振動パルスの波束幅T1は、群速度分散k2の絶対値が増加するにつれて、伝搬距離xへの依存性が大きくなる。このように、入力として非チャープ振動を使用した場合、群速度分散の符号に関わらず波束の拡大が観られる一方で、波束の圧縮・増幅は実現できない。それ故、一般的な波束の伝送には極力分散が小さい弾性媒質もしくは構造が好まれる。 FIG. 2 is a diagram showing a calculation result of the propagation distance dependence of the wave packet width T / T 0 at | k 2 | / T 0 2 = 1, 1.25, 1.67, 2.5, 5. As shown in FIG. 2, the wavelet width T 1 of the vibration pulse becomes more dependent on the propagation distance x as the absolute value of the group velocity dispersion k 2 increases. Thus, when non-chirp vibration is used as an input, wave packet expansion is observed regardless of the sign of group velocity dispersion, but wave packet compression / amplification cannot be realized. Therefore, an elastic medium or structure having as little dispersion as possible is preferred for general wave packet transmission.

しかしながら、本発明では、この波束に対する群速度分散効果を積極的に利用することによって、弾性振動の圧縮を試みる。上述したように、周波数変調(チャープ)した振動を薄膜導波路に印加すると、群速度分散効果によって、時空間的に分布した様々な周波数の振動を含む振動パルスを圧縮することができる。入力に用いる周波数変調された振動パルスは、次式のように記述することができる。   However, in the present invention, compression of elastic vibration is attempted by actively utilizing the group velocity dispersion effect on the wave packet. As described above, when frequency-modulated (chirped) vibration is applied to the thin film waveguide, vibration pulses including vibrations of various frequencies distributed in space and time can be compressed by the group velocity dispersion effect. The frequency-modulated vibration pulse used for input can be described as:

ここで、Cは周波数掃引範囲を表すチャープパラメータである。C>0であれば、図3(A)に示すように、振動パルスの先頭から後方に移るにつれて搬送周波数が線形に増加するアップチャープ振動となる。反対に、C<0であれば、図3(B)に示すように、振動パルスの先頭から後方に移るにつれて搬送周波数が線形に減少するダウンチャープ振動となる。   Here, C is a chirp parameter representing the frequency sweep range. If C> 0, as shown in FIG. 3A, up-chirp vibration in which the carrier frequency increases linearly as the vibration pulse moves from the beginning to the rear is obtained. On the other hand, if C <0, as shown in FIG. 3B, down-chirp vibration in which the carrier frequency decreases linearly as it moves from the beginning to the rear of the vibration pulse.

式(11)を式(8)に代入すると、次の式(12)が得られる。   Substituting equation (11) into equation (8) yields the following equation (12).

そして、式(12)を式(7)に代入すると、導波路を伝搬するチャープ振動は、次式のように記述できる。   Then, by substituting equation (12) into equation (7), the chirp vibration propagating in the waveguide can be described as the following equation.

また、導波路を伝搬するチャープ振動の波束幅T1は、次の式(14)のように記述できる。 Further, the wave packet width T 1 of the chirp vibration propagating through the waveguide can be described as the following equation (14).

図4(A)はC=3、T0 2/k2=3の場合におけるチャープ振動パルスの伝搬距離依存性の計算結果を示す図、図4(B)はC=3、T0 2/k2=3で、x=0,3,10の各場合におけるチャープ振動パルスの波束形状の計算結果を示す図である。図5(A)はC=−3、T0 2/k2=3の場合におけるチャープ振動パルスの伝搬距離依存性の計算結果を示す図、図5(B)はC=−3、T0 2/k2=3で、x=0,3,10の各場合におけるチャープ振動パルスの波束形状の計算結果を示す図である。図6はT0 2/k2=3の場合におけるチャープ振動パルスの波束幅T1/T0の変化のチャープパラメータ依存性の計算結果を示す図である。 4A shows a calculation result of the propagation distance dependence of the chirp vibration pulse in the case of C = 3 and T 0 2 / k 2 = 3, and FIG. 4B shows the calculation result of C = 3, T 0 2 / in k 2 = 3, is a graph showing the calculation results of the wave packet shape chirp vibration pulse in each case of x = 0,3,10. FIG. 5A is a diagram showing a calculation result of the propagation distance dependence of the chirp vibration pulse when C = −3 and T 0 2 / k 2 = 3, and FIG. 5B is a diagram showing C = −3 and T 0. It is a figure which shows the calculation result of the wave packet shape of the chirp vibration pulse in each case of x = 0, 3, and 10 when 2 / k 2 = 3. FIG. 6 is a diagram showing the calculation result of the chirp parameter dependence of the change in the wavelet width T 1 / T 0 of the chirped vibration pulse when T 0 2 / k 2 = 3.

式(13)と式(14)からも明らかなように、チャープパラメータCと群速度分散k2との積が正の場合は(Ck2>0)、伝搬振動の波束は伝搬距離xの増加に伴って単調増加していく(図4(A)、図4(B))。一方で、チャープパラメータCと群速度分散k2との積が負の場合は(Ck2<0)、チャープ振動の波束の圧縮が次式の伝搬距離xminで発生する。 As is clear from the equations (13) and (14), when the product of the chirp parameter C and the group velocity dispersion k 2 is positive (Ck 2 > 0), the wave packet of the propagation vibration is increased by the propagation distance x. Along with this, it increases monotonously (FIGS. 4A and 4B). On the other hand, when the product of the chirp parameter C and the group velocity dispersion k 2 is negative (Ck 2 <0), the compression of the wave packet of the chirp vibration occurs at the propagation distance x min of the following equation.

また、伝搬距離がxminのときの最小波束幅T1 minは、次式のように表すことができる(図5(A)、図5(B))。 Further, the minimum wave packet width T 1 min when the propagation distance is x min can be expressed by the following equations (FIGS. 5A and 5B).

式(16)からも明らかなように、チャープパラメータCの絶対値|C|の大きさによって、チャープ振動の圧縮比が調整可能で、それに伴って、チャープ振動の増幅も可能であることが分かる。しかしながら、式(15)の伝搬距離xminを過ぎて、更にパルスが進むと図6に示すように、波束幅が一転拡大していく。 As is clear from the equation (16), it can be seen that the compression ratio of the chirp vibration can be adjusted by the magnitude of the absolute value | C | of the chirp parameter C, and the chirp vibration can be amplified accordingly. . However, when the pulse further advances after the propagation distance x min in the equation (15), the wave packet width is expanded by one turn as shown in FIG.

以上のように、有限の群速度分散k2を有する薄膜導波路に、周波数掃引したチャープ振動を印加することによって、振動圧縮と増幅が得られることが分かる。そして、その効果はチャープパラメータCの値を調整することによって、自在に制御可能である。仮に、導波路の群速度分散k2が負(異常分散)であれば、アップチャープ振動を導波路に印加し、導波路の群速度分散k2が正(正常分散)であれば、ダウンチャープ振動を導波路に印加すればよい。また、以上の原理では、薄膜導波路の曲げ振動伝搬波を用いて説明したが、それに限らず、あらゆる弾性振動、例えば、固体物質を伝わる縦波や横波、そして、固体物質の表面(異種物質間の界面)を伝わる表面弾性波においても、本発明を適用可能である。 As described above, it is understood that vibration compression and amplification can be obtained by applying frequency swept chirp vibration to a thin film waveguide having a finite group velocity dispersion k 2 . The effect can be freely controlled by adjusting the value of the chirp parameter C. If the waveguide group velocity dispersion k 2 is negative (abnormal dispersion), an up-chirp vibration is applied to the waveguide, and if the waveguide group velocity dispersion k 2 is positive (normal dispersion), down-chirp is applied. What is necessary is just to apply a vibration to a waveguide. In the above principle, the bending vibration propagation wave of the thin film waveguide has been described. However, the present invention is not limited to this, and any elastic vibration, for example, a longitudinal wave or a transverse wave propagating in a solid substance, and the surface of a solid substance (a different substance) The present invention can also be applied to a surface acoustic wave transmitted through an interface between the two.

[第1の実施例]
以下、本発明の実施例について説明する。図7(A)は本発明の第1の実施例に係る弾性媒質である薄膜導波路の平面図、図7(B)は図7(A)のA−A線断面図、図7(C)は図7(A)のB−B線断面図である。本実施例では、薄膜導波路108として全長1mmの一次元弾性導波路を用いる。薄膜導波路108は、基板との間に空間をあけて配置された多層膜からなる導波路部と、弾性振動の伝搬方向と垂直な方向から導波路部を支える支持部とを備えている。
[First embodiment]
Examples of the present invention will be described below. FIG. 7A is a plan view of a thin film waveguide which is an elastic medium according to the first embodiment of the present invention, FIG. 7B is a cross-sectional view taken along line AA in FIG. 7A, and FIG. ) Is a sectional view taken along line BB in FIG. In this embodiment, a one-dimensional elastic waveguide having a total length of 1 mm is used as the thin film waveguide 108. The thin film waveguide 108 includes a waveguide portion made of a multilayer film disposed with a space between the substrate and a support portion that supports the waveguide portion from a direction perpendicular to the propagation direction of elastic vibration.

本実施例では、GaAs基板(不図示)上のGaAs/AlXGa1-XAs多層膜を、フォトリソグラフィ法もしくはEBリソグラフィ法によるレジストパターンニングと、リン酸によるウェットエッチング法もしくは反応性イオンエッチングによるドライエッチング法により加工して、薄膜導波路108の土台となるメサ構造を形成した。ここでは、GaAs基板上に形成するGaAs/AlXGa1-XAs多層膜として、厚さ3μmのAl0.65Ga0.35As層101と、Al0.65Ga0.35As層101上に形成された厚さ100nmのn−GaAs層102と、n−GaAs層102上に形成された厚さ100nmのAl0.27Ga0.73As層103とからなる構造を用いた。 In this embodiment, the GaAs / Al X Ga 1-X As multilayer film on a GaAs substrate (not shown), a resist patterning by photolithography or EB lithography, wet etching or reactive ion etching with phosphoric acid The mesa structure which becomes the foundation of the thin film waveguide 108 was formed by the dry etching method using the above. Here, as GaAs / Al X Ga 1-X As multilayer film formed on a GaAs substrate, an Al 0.65 Ga 0.35 As layer 101 having a thickness of 3 [mu] m, a thickness of 100nm formed on Al 0.65 Ga 0.35 As layer 101 The n-GaAs layer 102 and a 100 nm thick Al 0.27 Ga 0.73 As layer 103 formed on the n-GaAs layer 102 were used.

次に、チャープ振動の誘起・検出で用いる厚さ80nmのAuからなる電極105a,105bを、フォトリソグラフィ法もしくはEBリソグラフィ法と、真空蒸着法と、リフトオフ法によってメサ構造のGaAs/AlXGa1-XAs多層膜上(Al0.27Ga0.73As層103上)に形成する。 Next, the electrodes 105a and 105b made of Au having a thickness of 80 nm used for induction and detection of chirp vibration are formed on a GaAs / Al x Ga 1 having a mesa structure by photolithography or EB lithography, vacuum deposition, and lift-off. -X As formed on the As multilayer film (on the Al 0.27 Ga 0.73 As layer 103).

そして、フォトリソグラフィ法もしくはEBリソグラフィ法と、リン酸によるウェットエッチング法もしくは反応性イオンエッチングによるドライエッチング法によって、メサ構造のGaAs/AlXGa1-XAs多層膜の表面(Al0.27Ga0.73As層103)からAl0.65Ga0.35As層101(犠牲層)まで届く孔106を複数個形成する。 Then, a photolithography method or EB lithography, dry etching method using a wet etching method or reactive ion etching with phosphoric acid, the mesa structure GaAs / Al X Ga 1-X As the multilayer film surface of (Al 0.27 Ga 0.73 As A plurality of holes 106 reaching from the layer 103) to the Al 0.65 Ga 0.35 As layer 101 (sacrificial layer) are formed.

その後、希フッ化水素酸によって犠牲層であるAl0.65Ga0.35As層101のみを、孔106を中心にして等方的にエッチングすることで、n−GaAs層102とAl0.27Ga0.73As層103とからなる多層膜は、残ったAl0.65Ga0.35As層101によって支持される状態となる。すなわち、エッチング後に残ったAl0.65Ga0.35As層101は、多層膜を支える支持部となる。Al0.65Ga0.35As層101をエッチングによって削る距離を、孔106の間隔aよりも長くすると、孔106の位置のAl0.65Ga0.35As層101に平面視略矩形の空間107が形成され、この空間107上の多層膜が平面視略矩形の薄膜導波路108となる。 Thereafter, only the Al 0.65 Ga 0.35 As layer 101, which is a sacrificial layer, is isotropically etched with the hole 106 as the center by dilute hydrofluoric acid, whereby the n-GaAs layer 102 and the Al 0.27 Ga 0.73 As layer 103 are formed. The multi-layered film consisting of is in a state of being supported by the remaining Al 0.65 Ga 0.35 As layer 101. That is, the Al 0.65 Ga 0.35 As layer 101 remaining after etching serves as a support portion that supports the multilayer film. When the distance by which the Al 0.65 Ga 0.35 As layer 101 is etched by etching is longer than the distance a between the holes 106, a space 107 having a substantially rectangular shape in plan view is formed in the Al 0.65 Ga 0.35 As layer 101 at the positions of the holes 106. The multilayer film on 107 becomes a thin film waveguide 108 having a substantially rectangular shape in plan view.

図8は、本実施例の弾性振動圧縮・増幅装置の構成を示す図であり、チャープ振動の発生方法を説明する図である。図8の信号発生器110と薄膜導波路108上の電極105aとは、周波数変調した弾性振動を薄膜導波路108に印加する振動印加部を構成している。   FIG. 8 is a diagram illustrating the configuration of the elastic vibration compression / amplification device according to the present embodiment, and is a diagram illustrating a method for generating chirp vibration. The signal generator 110 and the electrode 105a on the thin film waveguide 108 shown in FIG. 8 constitute a vibration application unit that applies elastically frequency-modulated elastic vibration to the thin film waveguide 108.

上記のとおり、本実施例の薄膜導波路108は、ガリウムヒ素(GaAs)とアルミニウムガリウムヒ素(AlGaAs)のヘテロ構造から構成されているため、圧電特性を有している。それ故、図8に示すように、薄膜導波路108に設置した電極105aとn−GaAs層102との間に信号発生器110から交流電圧を印加すると、電極105aとn−GaAs層102との間に強力な電界が発生し、圧電効果を介して歪が発生し、その結果、曲げ振動が薄膜導波路108上に誘起される。この振動の周波数は、電極105aに印加する交流電圧の周波数で決まるため、任意の周波数を有する振動を自由に誘起することができる。すなわち、弾性振動の周波数変調条件(チャープパラメータCや変調周波数)、および振動パルスの波束幅を、信号発生器110から印加する交流電圧で調整することが可能である。   As described above, the thin film waveguide 108 of the present embodiment is composed of a heterostructure of gallium arsenide (GaAs) and aluminum gallium arsenide (AlGaAs), and thus has piezoelectric characteristics. Therefore, as shown in FIG. 8, when an AC voltage is applied from the signal generator 110 between the electrode 105a installed in the thin film waveguide 108 and the n-GaAs layer 102, the electrode 105a and the n-GaAs layer 102 are A strong electric field is generated between them, and distortion is generated via the piezoelectric effect. As a result, bending vibration is induced on the thin film waveguide 108. Since the frequency of this vibration is determined by the frequency of the AC voltage applied to the electrode 105a, vibration having an arbitrary frequency can be induced freely. That is, it is possible to adjust the frequency modulation condition (chirp parameter C and modulation frequency) of the elastic vibration and the wave packet width of the vibration pulse with the AC voltage applied from the signal generator 110.

発生した振動は、薄膜導波路108の長さ方向(図8左右方向)に沿ってその周波数に応じた速度(群速度)で伝搬する。薄膜導波路108は、振動の伝搬方向の両端が固定端となっている。このため、振動が薄膜導波路108の端に到達すると反射され、反射前とは反対方向に振動が進む。すなわち、薄膜導波路108内を振動が往復伝搬する。   The generated vibration propagates at a speed (group speed) according to the frequency along the length direction (left-right direction in FIG. 8) of the thin film waveguide 108. The thin film waveguide 108 is fixed at both ends in the vibration propagation direction. For this reason, when the vibration reaches the end of the thin film waveguide 108, it is reflected, and the vibration proceeds in the direction opposite to that before the reflection. That is, the vibration propagates back and forth in the thin film waveguide 108.

また、本実施例の薄膜導波路108は、振動の伝搬方向に沿って周期的に形成された孔106を備えている。薄膜導波路108の幅wに加えて、この孔106の間隔aや孔106の直径を変えることによって、薄膜導波路108の群速度分散を自在に設定することができる。例えば幅w=29μm、孔106の間隔a=12μmの薄膜導波路108において、周波数5.7MHzで群速度分散k2≒−2×10-92/mが得られる。この薄膜導波路108は、当該周波数において群速度分散k2が負となる異常分散領域にある。このため、振動の圧縮を引き起こすには、アップチャープ振動パルスを薄膜導波路108に印加すればよい。 Further, the thin film waveguide 108 of this embodiment includes holes 106 that are periodically formed along the propagation direction of vibration. In addition to the width w of the thin film waveguide 108, the group velocity dispersion of the thin film waveguide 108 can be freely set by changing the interval a of the holes 106 and the diameter of the holes 106. For example, a group velocity dispersion k 2 ≈−2 × 10 −9 s 2 / m is obtained at a frequency of 5.7 MHz in the thin film waveguide 108 having a width w = 29 μm and a gap a = 12 μm. The thin film waveguide 108 is in an anomalous dispersion region where the group velocity dispersion k 2 is negative at the frequency. Therefore, in order to cause vibration compression, an up-chirp vibration pulse may be applied to the thin film waveguide 108.

なお、アップチャープ振動パルスを薄膜導波路108に印加するには、時間の経過に伴って周波数が線形に増加する交流電圧を電極105aに印加すればよい。反対に、ダウンチャープ振動パルスを薄膜導波路108に印加するには、時間の経過に伴って周波数が線形に減少する交流電圧を電極105aに印加すればよい。   In order to apply the up-chirp vibration pulse to the thin film waveguide 108, an AC voltage whose frequency increases linearly with the passage of time may be applied to the electrode 105a. On the other hand, in order to apply the down-chirp vibration pulse to the thin film waveguide 108, an AC voltage whose frequency decreases linearly with the passage of time may be applied to the electrode 105a.

図9(A)はチャープパラメータC=3、T0=3μmの波束幅でガウシアン包絡線形状を有するアップチャープ振動パルスを薄膜導波路108に加えたときのアップチャープ振動パルスのパルス幅T1の伝搬距離依存性の計算結果を示す図、図9(B)はC=3、T0=3μmで、x=0mm,1.2mm,4mmの各場合におけるアップチャープ振動パルスの波束形状の計算結果を示す図である。 FIG. 9A shows the pulse width T 1 of the up-chirp vibration pulse when an up-chirp vibration pulse having a Gaussian envelope shape with a chirp parameter C = 3, T 0 = 3 μm and a Gaussian envelope shape is applied to the thin film waveguide 108. FIG. 9B shows a calculation result of propagation distance dependency. FIG. 9B shows a calculation result of the wave packet shape of the up-chirp vibration pulse when C = 3, T 0 = 3 μm, and x = 0 mm, 1.2 mm, and 4 mm. FIG.

図9(A)、図9(B)の例では、アップチャープ振動パルスが薄膜導波路108を距離x=1.2mmだけ伝搬すると、アップチャープ振動パルスの波束幅がT1=0.9μsまで圧縮され、その結果、アップチャープ振動パルスのピーク強度も1.7倍増幅されることが分かる。 In the example of FIGS. 9A and 9B, when the up-chirp vibration pulse propagates through the thin film waveguide 108 by a distance x = 1.2 mm, the wave width of the up-chirp vibration pulse reaches T 1 = 0.9 μs. As a result, the peak intensity of the up-chirp vibration pulse is amplified 1.7 times.

本実施例の薄膜導波路108の長さが1mmで、その伝搬損失が約0.4dB/mmであることから、図9(A)、図9(B)に示した条件でも振動の圧縮と増幅が十分実現可能であることが確認できる。振動の圧縮比や増幅ゲインは、式(16)からも明らかなように、入力パルス幅T0を大きく、そして、チャープパラメータCの絶対値を大きくすることによって増強可能である。 Since the length of the thin film waveguide 108 of this embodiment is 1 mm and its propagation loss is about 0.4 dB / mm, the compression of vibration can be achieved even under the conditions shown in FIGS. 9A and 9B. It can be confirmed that amplification is sufficiently realizable. The compression ratio and amplification gain of vibration can be increased by increasing the input pulse width T 0 and increasing the absolute value of the chirp parameter C, as is clear from equation (16).

図10はC=9、T0=10μsで、x=0mm,5.5mm,15mmの各場合におけるアップチャープ振動パルスの波束形状の計算結果を示す図である。図10の例では、伝搬距離x=5.5mmで最小波束幅T1=1μsに至る強い振動圧縮と、ピーク強度が3倍になる大きい振動増幅とが得られることが分かる。 FIG. 10 is a diagram showing a calculation result of a wave packet shape of an up-chirp vibration pulse in each case of C = 9, T 0 = 10 μs, and x = 0 mm, 5.5 mm, and 15 mm. In the example of FIG. 10, it can be seen that strong vibration compression up to the minimum wave packet width T 1 = 1 μs at a propagation distance x = 5.5 mm and large vibration amplification in which the peak intensity is tripled are obtained.

当然、同様の圧縮・増幅効果は薄膜導波路108の群速度分散値が変わっても実現可能である。例えば薄膜導波路108の群速度分散がk2≒−3×10-92/mの場合では、伝搬距離x=3.6mmにおいて図10の例と同様の圧縮・増幅効果が得られる。 Of course, the same compression / amplification effect can be realized even if the group velocity dispersion value of the thin film waveguide 108 changes. For example, when the group velocity dispersion of the thin film waveguide 108 is k 2 ≈−3 × 10 −9 s 2 / m, the same compression / amplification effect as in the example of FIG. 10 can be obtained at the propagation distance x = 3.6 mm.

以上から、弾性媒質が有する群速度分散を利用した、超音波を始めとした弾性振動の圧縮・増幅方法の、現実の素子における実現妥当性が示された。従来の圧縮・増幅方法と比べて、本実施例は、振動の圧縮比を向上させる場合に導波路構造の拡張が不要で、入力信号の条件(入力波束幅、チャープパラメータ)を調整するだけで済む。また、本実施例は、様々な構成物質からなる弾性媒質、あるいは様々な群速度分散を有する弾性媒質に適用可能である。   From the above, it has been shown that the method for compressing and amplifying elastic vibrations including ultrasonic waves using the group velocity dispersion of an elastic medium is feasible in an actual device. Compared with the conventional compression / amplification method, this embodiment does not require the expansion of the waveguide structure when improving the compression ratio of vibration, and it is only necessary to adjust the input signal conditions (input wave packet width, chirp parameter). That's it. Further, the present embodiment can be applied to an elastic medium made of various constituent materials or an elastic medium having various group velocity dispersions.

[第2の実施例]
次に、本発明の第2の実施例について説明する。第1の実施例では、パルスの最大圧縮と増幅とが得られる距離xminの後では、伝搬が進むにつれて振動の波束の拡大が発生してしまうという問題がある。この問題に対しては、当該伝搬距離xminの直後に群速度分散k2が限りなく小さい弾性媒質(ゼロ分散媒質)を組み込むことによって解決することができる。これにより、最大に圧縮・増幅した弾性振動をその波束形状を維持したままゼロ分散媒質を介して空間的に取り出し、そして、その振動を任意方向へ伝送することも可能である。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In the first embodiment, after the distance x min where the maximum compression and amplification of the pulse are obtained, there is a problem that the propagation of the wave packet of vibration occurs as propagation proceeds. This problem can be solved by incorporating an elastic medium (zero dispersion medium) having an extremely small group velocity dispersion k 2 immediately after the propagation distance x min . As a result, it is possible to spatially extract the elastic vibration compressed and amplified to the maximum via the zero dispersion medium while maintaining the wave packet shape, and transmit the vibration in an arbitrary direction.

上述した第1の実施例の場合、薄膜導波路108の幅wや孔106の間隔aを変えることで、群速度分散k2の変調が可能である。例えば、図11に示すように、w=29μm、a=8μmの薄膜導波路108aでは、6MHzにおいて群速度分散がk2=−4×10-102/mとなる。このため、薄膜導波路108aに搬送周波数が6MHz近傍のアップチャープ振動パルス(C>0)を印加することによって、伝搬距離xminで振動の波束の圧縮と増幅が起こる。 In the case of the first embodiment described above, the group velocity dispersion k 2 can be modulated by changing the width w of the thin film waveguide 108 and the interval a of the holes 106. For example, as shown in FIG. 11, in the thin film waveguide 108a with w = 29 μm and a = 8 μm, the group velocity dispersion becomes k 2 = −4 × 10 −10 s 2 / m at 6 MHz. For this reason, by applying an up-chirp vibration pulse (C> 0) having a carrier frequency in the vicinity of 6 MHz to the thin film waveguide 108a, the vibration wave packet is compressed and amplified at the propagation distance x min .

そして、本実施例では、図11に示すように、振動の伝搬距離xがxminと等しくなる位置において(x=xmin)、振動の伝搬方向に沿って薄膜導波路108aと直列に結合された薄膜導波路108bを設けている。この薄膜導波路108bの幅wは29μm、孔106の間隔aは12μmである。これにより、薄膜導波路108bでは、6MHzにおいて群速度分散がk2≒0(略ゼロ)となる。第1の実施例で説明した薄膜導波路108の製造工程で、薄膜導波路108aの領域と薄膜導波路108bの領域で孔106の間隔aを変えるようにすれば、薄膜導波路108aと108bとが連結した図11のような構造を実現可能である。 In this embodiment, as shown in FIG. 11, at a position where the propagation distance x of vibration is equal to x min (x = x min ), the thin film waveguide 108a is coupled in series along the propagation direction of vibration. A thin film waveguide 108b is provided. The width w of the thin film waveguide 108b is 29 μm, and the distance a between the holes 106 is 12 μm. Thereby, in the thin film waveguide 108b, the group velocity dispersion becomes k 2 ≈0 (substantially zero) at 6 MHz. In the manufacturing process of the thin film waveguide 108 described in the first embodiment, if the gap a between the holes 106 is changed in the region of the thin film waveguide 108a and the region of the thin film waveguide 108b, the thin film waveguides 108a and 108b It is possible to realize a structure as shown in FIG.

弾性振動圧縮・増幅装置の振動印加部の構成は、第1の実施例と同様である。本実施例では、薄膜導波路108bの群速度分散k2が6MHzでほぼゼロとなるゼロ分散の状態となるため、分散による弾性振動の波束の拡大を極力抑制して弾性振動の伝送が可能となる。 The configuration of the vibration application unit of the elastic vibration compression / amplification apparatus is the same as that of the first embodiment. In this embodiment, since the group velocity dispersion k 2 of the thin film waveguide 108b is in a zero dispersion state where the group velocity dispersion k 2 becomes almost zero at 6 MHz, the expansion of the elastic vibration wave packet due to dispersion can be suppressed as much as possible to transmit the elastic vibration. Become.

[第3の実施例]
第1、第2の実施例では、信号発生器110と電極105aとによって振動印加部を実現したが、これに限るものではなく、薄膜導波路の構造によって振動印加部を実現してもよい。図12(A)は本実施例に係る弾性振動圧縮・増幅装置の薄膜導波路の構成を示す平面図である。
[Third embodiment]
In the first and second embodiments, the vibration applying unit is realized by the signal generator 110 and the electrode 105a. However, the present invention is not limited to this, and the vibration applying unit may be realized by the structure of the thin film waveguide. FIG. 12A is a plan view showing the configuration of the thin film waveguide of the elastic vibration compression / amplification device according to this embodiment.

本実施例では、第1、第2の実施例で説明した薄膜導波路108(第2の実施例の薄膜導波路108a)の前に、群速度分散k2が正(正常分散)の特性を有する導波路108cを結合している。図12(A)の右端から導波路108cに、図12(B)に示すような周波数変調されていない弾性振動を入力すると、導波路108cが有する正常分散の特性のために、周波数変調されていない弾性振動が、図12(C)に示すような周波数変調された弾性振動(アップチャープ振動)へと変換される。このように、一般的に薄膜導波路を進む弾性振動は、その過程で、弾性振動の波束幅の拡大と振動強度の低下が起きてしまう。 In this example, the group velocity dispersion k 2 has a positive (normal dispersion) characteristic before the thin film waveguide 108 (the thin film waveguide 108a of the second example) described in the first and second examples. A waveguide 108c having the same is coupled. When elastic vibration that is not frequency-modulated as shown in FIG. 12B is input to the waveguide 108c from the right end of FIG. 12A, frequency modulation is performed due to the normal dispersion characteristic of the waveguide 108c. Non-elastic vibration is converted into frequency-modulated elastic vibration (up-chirp vibration) as shown in FIG. As described above, in general, the elastic vibration traveling through the thin film waveguide causes expansion of the wave width of the elastic vibration and reduction of the vibration intensity in the process.

しかしながら、薄膜導波路108(第2の実施例の薄膜導波路108a)に入力される弾性振動は、第1、第2の実施例で説明した効果により圧縮・増幅される。このようにして、薄膜導波路108cでの波束の拡大と低下を導波路108,108aで補償することができる(図12(D))。こうして、薄膜導波路108cの構造によって振動印加部を実現することも可能である。   However, the elastic vibration input to the thin film waveguide 108 (thin film waveguide 108a of the second embodiment) is compressed and amplified by the effects described in the first and second embodiments. In this way, the expansion and reduction of the wave packet in the thin film waveguide 108c can be compensated for by the waveguides 108 and 108a (FIG. 12D). In this way, it is also possible to realize a vibration applying unit by the structure of the thin film waveguide 108c.

第1〜第3の実施例において、弾性媒質の群速度分散k2を規定している周波数fと、ある周波数範囲で周波数変調された弾性振動の周波数の中央値f0とは、等しいことが望ましい(f=f0)。中央値f0は、例えば1.49MHzから1.51MHzまでの周波数成分を含む弾性振動であれば、f0=1.5MHzである。 In the first to third embodiments, it is desirable that the frequency f defining the group velocity dispersion k 2 of the elastic medium is equal to the median value f0 of the frequency of elastic vibration frequency-modulated in a certain frequency range. (F = f0). The median value f0 is, for example, f0 = 1.5 MHz in the case of elastic vibration including frequency components from 1.49 MHz to 1.51 MHz.

ここで、周波数掃引の幅を広く取り過ぎてしまうと、群速度分散k2の値もそれぞれの周波数で異なってくるため、弾性振動の圧縮や増幅が得られる位置や時間を決め難くなる。そこで、弾性振動の周波数掃引範囲Δfは、弾性振動の周波数の中央値f0よりも十分に小さいことが望ましい(Δf<<f0)。 Here, if the frequency sweep width is too wide, the value of the group velocity dispersion k 2 also varies with the respective frequencies, so that it is difficult to determine the position and time at which the elastic vibration is compressed or amplified. Accordingly, it is desirable that the frequency sweep range Δf of the elastic vibration is sufficiently smaller than the median value f0 of the elastic vibration (Δf << f0).

第1〜第3の実施例では、弾性振動圧縮・増幅装置としての構成を説明しているが、本発明の弾性振動圧縮・増幅装置(弾性振動圧縮・増幅方法)は、その用途に応じて弾性振動圧縮装置(弾性振動圧縮方法)として利用することもできるし、弾性振動増幅装置(弾性振動増幅方法)として利用することも可能である。   In the first to third embodiments, the configuration as an elastic vibration compression / amplification device has been described. However, the elastic vibration compression / amplification device (elastic vibration compression / amplification method) of the present invention depends on its application. It can also be used as an elastic vibration compression device (elastic vibration compression method), or as an elastic vibration amplification device (elastic vibration amplification method).

また、第1〜第3の実施例では、弾性媒質への入力弾性振動として、周波数変調した振動パルスの包絡線形状がガウシアン形状であるガウシアンパルスを例に説明してきたが、これに限るものではなく、矩形波や連続波など弾性振動波に対しても本発明を適用可能である。   In the first to third embodiments, the input elastic vibration to the elastic medium has been described by taking a Gaussian pulse whose frequency-modulated vibration pulse has a Gaussian shape as an example, but the present invention is not limited to this. The present invention can also be applied to elastic vibration waves such as rectangular waves and continuous waves.

また、第1〜第3の実施例において、弾性振動は、ピエゾ電気効果によって電圧に変換されるので、電極105bを介して電気的に検出することができる。また、電極105bに例えばヘリウムネオンレーザからレーザ光を照射し、電極105bからの反射光をフォトダイオードで受光して、フォトダイオードの出力をベクトル・シグナル・アナライザ(VSA:Vector Signal Analyzer)で受けることで、弾性振動を電気信号に変換して検出することも可能である。   In the first to third embodiments, the elastic vibration is converted into a voltage by the piezoelectric effect, and can be electrically detected through the electrode 105b. Further, the electrode 105b is irradiated with laser light from, for example, a helium neon laser, reflected light from the electrode 105b is received by a photodiode, and the output of the photodiode is received by a vector signal analyzer (VSA). Thus, it is also possible to detect elastic vibration by converting it into an electrical signal.

また、第1〜第3の実施例では、GaAs/AlXGa1-XAs多層膜が有する圧電効果を用いて振動を励起したが、信号発生器で生成したチャープ信号をそのまま弾性振動へと変換できるのであれば、励振手法や振動を伝送する弾性媒質の種類は問わない。 Further, in the first to third embodiments have been excited vibration by using a piezoelectric effect with the GaAs / Al X Ga 1-X As multilayer film, and a chirp signal generated by the signal generator to the intact elastic vibration As long as it can be converted, the excitation method and the type of elastic medium that transmits vibration are not limited.

例えばPZTやZnO等の圧電材料の積層構造からなるものは勿論のこと、SiやSiO2を含む非圧電材料を用いても弾性媒質の作製が可能である。PZTやZnO等の圧電性酸化物を弾性媒質の材料として用いると、それら圧電性酸化物の大きなピエゾ定数のため、電圧による機械振動の効率的な励振・検出が可能となり、弾性媒質の駆動エネルギーの省電力化が期待される。 For example, an elastic medium can be produced using a non-piezoelectric material containing Si or SiO 2 as well as a laminated structure of piezoelectric materials such as PZT and ZnO. When piezoelectric oxides such as PZT and ZnO are used as the material of the elastic medium, the large piezo constant of these piezoelectric oxides enables efficient excitation and detection of mechanical vibration due to voltage, and driving energy of the elastic medium. Power saving is expected.

一方、SiやSiO2等の非圧電材料を弾性媒質の材料として用いる場合、上記で説明したような電極のみによる弾性振動の誘起は不可能である。この場合、SiやSiO2等の非圧電材料の上に形成される第1の金属膜と、第1の金属膜の上に形成される圧電材料と、圧電材料の上に形成される第2の金属膜とからなる積層構造を電極105a,105bの代わりに形成し、電極105aの位置に形成した積層構造の下側の第1の金属膜と上側の第2の金属膜との間に交流電圧を印加すれば、弾性振動の局所励振が実現できる。また、電極105bの位置に形成した積層構造の下側の第1の金属膜と上側の第2の金属膜との間から弾性媒質の出力を電気的に取り出すことができる。 On the other hand, when a non-piezoelectric material such as Si or SiO 2 is used as the material of the elastic medium, it is impossible to induce elastic vibration using only the electrodes as described above. In this case, the first metal film formed on the non-piezoelectric material such as Si or SiO 2, the piezoelectric material formed on the first metal film, and the second metal film formed on the piezoelectric material. Is formed in place of the electrodes 105a and 105b, and an alternating current is formed between the lower first metal film and the upper second metal film formed at the position of the electrode 105a. If a voltage is applied, local excitation of elastic vibration can be realized. Further, the output of the elastic medium can be electrically extracted from between the lower first metal film and the upper second metal film of the laminated structure formed at the position of the electrode 105b.

本発明は、弾性振動を圧縮・増幅する技術に適用することができる。   The present invention can be applied to a technique for compressing and amplifying elastic vibration.

101…Al0.65Ga0.35As層、102…n−GaAs層、103…Al0.27Ga0.73As層、105a,105b…電極、106…孔、107…空間、108,108a,108b,108c…薄膜導波路、110…信号発生器。 101 ... Al 0.65 Ga 0.35 As layer, 102 ... n-GaAs layer, 103 ... Al 0.27 Ga 0.73 As layer, 105a, 105b ... electrode, 106 ... hole, 107 ... space, 108, 108a, 108b, 108c ... thin film waveguide 110 ... Signal generator.

Claims (8)

所望の群速度分散の特性を有する弾性媒質と、
周波数変調した弾性振動を前記弾性媒質に印加する振動印加部とを備え、
前記周波数変調により異なる周波数の振動を含む前記弾性振動を、前記弾性媒質の群速度分散の効果によって圧縮することを特徴とする弾性振動圧縮装置。
An elastic medium having desired group velocity dispersion characteristics;
A vibration applying unit for applying frequency-modulated elastic vibration to the elastic medium,
An elastic vibration compressing apparatus, wherein the elastic vibration including vibrations of different frequencies by the frequency modulation is compressed by an effect of group velocity dispersion of the elastic medium.
請求項1記載の弾性振動圧縮装置において、
前記振動印加部は、前記弾性媒質が異常分散の特性を有する場合に、周波数が時間の経過と共に増加するアップチャープ弾性振動を前記弾性媒質に印加し、前記弾性媒質が正常分散の特性を有する場合に、周波数が時間の経過と共に減少するダウンチャープ弾性振動を前記弾性媒質に印加することを特徴とする弾性振動圧縮装置。
The elastic vibration compression apparatus according to claim 1,
When the elastic medium has anomalous dispersion characteristics, the vibration applying unit applies up-chirp elastic vibration whose frequency increases over time to the elastic medium, and the elastic medium has normal dispersion characteristics. In addition, an elastic vibration compression apparatus characterized by applying down-chirp elastic vibration whose frequency decreases with time to the elastic medium.
請求項1または2記載の弾性振動圧縮装置において、
前記弾性媒質は、
前記振動印加部によって前記弾性振動が印加される第1の弾性媒質と、
前記弾性振動の伝搬距離が前記圧縮の効果が得られる距離となる位置において前記第1の弾性媒質と直列に結合された、群速度分散が略0の特性を有する第2の弾性媒質とからなることを特徴とする弾性振動圧縮装置。
The elastic vibration compression apparatus according to claim 1 or 2,
The elastic medium is
A first elastic medium to which the elastic vibration is applied by the vibration applying unit;
A second elastic medium coupled in series with the first elastic medium at a position where the propagation distance of the elastic vibration is a distance at which the compression effect is obtained, and having a characteristic of substantially zero group velocity dispersion The elastic vibration compression apparatus characterized by the above-mentioned.
所望の群速度分散の特性を有する弾性媒質と、
周波数変調した弾性振動を前記弾性媒質に印加する振動印加部とを備え、
前記周波数変調により異なる周波数の振動を含む前記弾性振動を、前記弾性媒質の群速度分散の効果によって増幅することを特徴とする弾性振動増幅装置。
An elastic medium having desired group velocity dispersion characteristics;
A vibration applying unit for applying frequency-modulated elastic vibration to the elastic medium,
An elastic vibration amplifying apparatus, wherein the elastic vibration including vibrations having different frequencies by the frequency modulation is amplified by an effect of group velocity dispersion of the elastic medium.
請求項4記載の弾性振動増幅装置において、
前記振動印加部は、前記弾性媒質が異常分散の特性を有する場合に、周波数が時間の経過と共に増加するアップチャープ弾性振動を前記弾性媒質に印加し、前記弾性媒質が正常分散の特性を有する場合に、周波数が時間の経過と共に減少するダウンチャープ弾性振動を前記弾性媒質に印加することを特徴とする弾性振動増幅装置。
The elastic vibration amplifying device according to claim 4,
When the elastic medium has anomalous dispersion characteristics, the vibration applying unit applies up-chirp elastic vibration whose frequency increases over time to the elastic medium, and the elastic medium has normal dispersion characteristics. In addition, an elastic vibration amplifying apparatus, wherein down-chirp elastic vibration whose frequency decreases with time is applied to the elastic medium.
請求項4または5記載の弾性振動増幅装置において、
前記弾性媒質は、
前記振動印加部によって前記弾性振動が印加される第1の弾性媒質と、
前記弾性振動の伝搬距離が前記増幅の効果が得られる距離となる位置において前記第1の弾性媒質と直列に結合された、群速度分散が略0の特性を有する第2の弾性媒質とからなることを特徴とする弾性振動増幅装置。
The elastic vibration amplifying device according to claim 4 or 5,
The elastic medium is
A first elastic medium to which the elastic vibration is applied by the vibration applying unit;
A second elastic medium coupled in series with the first elastic medium at a position where the propagation distance of the elastic vibration is a distance at which the amplification effect is obtained, and having a characteristic of substantially zero group velocity dispersion An elastic vibration amplifying device characterized by that.
所望の群速度分散の特性を有する弾性媒質に、周波数変調した弾性振動を印加するステップを含み、
前記周波数変調により異なる周波数の振動を含む前記弾性振動を、前記弾性媒質の群速度分散の効果によって圧縮することを特徴とする弾性振動圧縮方法。
Applying a frequency-modulated elastic vibration to an elastic medium having a desired group velocity dispersion characteristic;
An elastic vibration compression method comprising compressing the elastic vibration including vibrations having different frequencies by the frequency modulation by an effect of group velocity dispersion of the elastic medium.
所望の群速度分散の特性を有する弾性媒質に、周波数変調した弾性振動を印加するステップを含み、
前記周波数変調により異なる周波数の振動を含む前記弾性振動を、前記弾性媒質の群速度分散の効果によって増幅することを特徴とする弾性振動増幅方法。
Applying a frequency-modulated elastic vibration to an elastic medium having a desired group velocity dispersion characteristic;
A method for amplifying elastic vibrations, comprising amplifying the elastic vibrations including vibrations of different frequencies by the frequency modulation by an effect of group velocity dispersion of the elastic medium.
JP2017029796A 2017-02-21 2017-02-21 Elastic vibration compression apparatus, elastic vibration amplifier, and method Pending JP2018134578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017029796A JP2018134578A (en) 2017-02-21 2017-02-21 Elastic vibration compression apparatus, elastic vibration amplifier, and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017029796A JP2018134578A (en) 2017-02-21 2017-02-21 Elastic vibration compression apparatus, elastic vibration amplifier, and method

Publications (1)

Publication Number Publication Date
JP2018134578A true JP2018134578A (en) 2018-08-30

Family

ID=63365050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017029796A Pending JP2018134578A (en) 2017-02-21 2017-02-21 Elastic vibration compression apparatus, elastic vibration amplifier, and method

Country Status (1)

Country Link
JP (1) JP2018134578A (en)

Similar Documents

Publication Publication Date Title
US10985700B2 (en) Piezoelectric resonance controlled terahertz wave modulators
JP6684817B2 (en) Ultrasound system and method
Nakamura Evaluation methods for materials for power ultrasonic applications
WO2005087391A2 (en) Asymmetric membrane cmut devices and fabrication methods
CN112871613A (en) Piezoelectric micromachined ultrasonic transducer with support posts
Surappa et al. A capacitive ultrasonic transducer based on parametric resonance
JP2004504749A (en) Acoustic device with alternating polarization domains
Coffy et al. Evidence of a broadband gap in a phononic crystal strip
Liu et al. A dual-frequency piezoelectric micromachined ultrasound transducer array with low inter-element coupling effects
US10141495B1 (en) Microsystems-based method and apparatus for passive detection and processing of radio-frequency signals
Yaralioglu et al. Lamb wave devices using capacitive micromachined ultrasonic transducers
Surappa et al. Characterization of a parametric resonance based capacitive ultrasonic transducer in air for acoustic power transfer and sensing
JP2018134578A (en) Elastic vibration compression apparatus, elastic vibration amplifier, and method
CN108602093B (en) Method for driving a piezoelectric transducer and sound source device
Lani et al. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials
US20030173864A1 (en) Heat pumped parametric MEMS device
CN115038008A (en) Dual-mode acoustic parametric array transmitting device based on air coupling CMUT array
Guo et al. Model of scandium doped aluminum nitride based PMUT with high transmitting performance
Eiras et al. Vibration modes in ultrasonic Bessel transducer
Santos et al. Acoustic field for the control of electronic excitations in semiconductor nanostructures
Hesjedal et al. High-resolution imaging of a single circular surface acoustic wave source: Effects of crystal anisotropy
US3673474A (en) Means for generating (a source of) surface and bulk elastic wares
JP3464529B2 (en) Broadband ultrasonic transducer and method of manufacturing broadband ultrasonic transducer
JP6105498B2 (en) Parametric control method of mechanical vibration
Yashvanth et al. A new scheme for high frequency ultrasound generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200602