JP2018133922A - Charge control device and control method thereof, and program - Google Patents

Charge control device and control method thereof, and program Download PDF

Info

Publication number
JP2018133922A
JP2018133922A JP2017026362A JP2017026362A JP2018133922A JP 2018133922 A JP2018133922 A JP 2018133922A JP 2017026362 A JP2017026362 A JP 2017026362A JP 2017026362 A JP2017026362 A JP 2017026362A JP 2018133922 A JP2018133922 A JP 2018133922A
Authority
JP
Japan
Prior art keywords
power
charging
power transmission
transmission
transmission efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017026362A
Other languages
Japanese (ja)
Inventor
修也 替地
Shuya Kaechi
修也 替地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017026362A priority Critical patent/JP2018133922A/en
Publication of JP2018133922A publication Critical patent/JP2018133922A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To shorten a charge time while enhancing safety during non-contact charge of a battery.SOLUTION: A charge control device including a power transmission device and a power reception device includes: radio communication means capable of radio communication with the power reception device; power transmission means capable of transmitting power to the power reception device by radio; and control means for controlling radio communication with the power reception device by the radio communication means and power transmission by the power transmission means. The control means acquires transmission efficiency of transmission power on the basis of power transmitted to the power reception device and power received by the power reception device and performs control to make a power transmission time relatively longer in comparison with the transmission efficiency being less than a threshold value if the transmission efficiency is the prescribed threshold value or more.SELECTED DRAWING: Figure 2

Description

本発明は、電池の非接触充電制御に関する。   The present invention relates to battery non-contact charging control.

非接触充電では、送電装置が常に電磁波を放出するような状態では、電磁波の電力が過大であれば受電装置では発熱などの問題が発生する。また、送電装置の近傍に電磁波での電力受電可能でない金属を含む装置や金属を含む異物などが配置された場合でも同様に発熱の問題が発生する。このため、送電装置と受電装置との間で安全に非接触充電を制御する方法が望まれる。   In contactless charging, in a state where the power transmission device always emits electromagnetic waves, problems such as heat generation occur in the power receiving device if the power of the electromagnetic waves is excessive. Further, even when a device including a metal that cannot receive power using electromagnetic waves or a foreign material including a metal is disposed in the vicinity of the power transmission device, the problem of heat generation similarly occurs. For this reason, the method of controlling non-contact charge safely between a power transmission apparatus and a power receiving apparatus is desired.

特許文献1には、電力の伝送効率と電池の蓄電残量とに基づいて、送電装置からの送電電力の大きさを調整する無線電力伝送システムが提案されている。特許文献2には、送電手段と受電手段間の伝送効率を検出し、伝送効率が規定値未満である場合に送電手段による送電を一時的に中止する給電システムが提案されている。   Patent Document 1 proposes a wireless power transmission system that adjusts the magnitude of transmitted power from a power transmission device based on the power transmission efficiency and the remaining amount of electricity stored in the battery. Patent Document 2 proposes a power feeding system that detects transmission efficiency between a power transmission unit and a power reception unit, and temporarily stops power transmission by the power transmission unit when the transmission efficiency is less than a specified value.

特開2012−125112号公報JP 2012-125112 A 特開2010−119246号公報JP 2010-119246 A

非接触充電では、送電装置と受電装置の間の電力伝送効率が高い場合は送電装置と受電装置との位置ずれが少なく、送電装置から放出された電磁波が高い効率で受電装置に吸収され、電磁波の漏れが少なくなる。しかしながら、電力伝送効率が低い場合は送電装置と受電装置との位置ずれが大きく、送電装置から放出された電磁波の漏れが多くなる。   In non-contact charging, when the power transmission efficiency between the power transmitting device and the power receiving device is high, the positional displacement between the power transmitting device and the power receiving device is small, and the electromagnetic waves emitted from the power transmitting device are absorbed by the power receiving device with high efficiency, Less leaks. However, when the power transmission efficiency is low, the positional deviation between the power transmission device and the power reception device is large, and the leakage of electromagnetic waves emitted from the power transmission device increases.

このため、電力伝送効率が低く、送電装置と受電装置との位置がずれている場合は、非接触充電中に送電装置の電磁波発生部分の近傍に電磁波での電力受電可能でない金属を含む装置や金属を含む異物などが配置されると、発熱するおそれがある。また、電力伝送効率が低い場合は電磁波の漏れが多いため人体への電磁波暴露という問題もある。   For this reason, when the power transmission efficiency is low and the positions of the power transmitting device and the power receiving device are shifted, a device including a metal that cannot receive power with electromagnetic waves in the vicinity of the electromagnetic wave generating portion of the power transmitting device during non-contact charging, If foreign matter including metal is disposed, heat may be generated. In addition, when the power transmission efficiency is low, there is a problem of exposure to electromagnetic waves to the human body because there are many leakages of electromagnetic waves.

上記発熱や人体暴露の影響は電磁波電力と時間の積であるエネルギーが効いてくるため、上記発熱や人体暴露の影響を低減するには電磁波電力の制御だけでなく、時間の制御も重要な要素といえる。また、電力伝送効率が低い場合に電磁波電力をゼロにしたり、発熱を考慮して電磁波電力放出時間を極端に短くしたりすると、非接触充電が実施できなくなってしま。   The effect of heat generation and exposure to human body comes from energy that is the product of electromagnetic wave power and time. Therefore, not only the control of electromagnetic wave power but also time control is an important factor to reduce the effect of heat generation and human body exposure. It can be said. Also, if the electromagnetic wave power is reduced to zero when the power transmission efficiency is low, or if the electromagnetic wave power release time is extremely shortened in consideration of heat generation, non-contact charging cannot be performed.

本発明は、上記課題に鑑みてなされ、その目的は、非接触充電時の安全性を高めつつ充電時間を短縮することができる技術を実現することである。   This invention is made | formed in view of the said subject, The objective is to implement | achieve the technique which can shorten charging time, improving the safety | security at the time of non-contact charge.

上記課題を解決し、目的を達成するために、本発明の充電制御装置は、受電装置と無線通信可能な無線通信手段と、前記受電装置に無線で電力を送電可能な電力送電手段と、前記受電装置との間での前記無線通信手段による無線通信と、前記電力送電手段による送電を制御する制御手段と、を有し、前記制御手段は、前記受電装置へ送電した電力と前記受電装置が受電した電力とに基づき送電電力の伝送効率を取得し、前記伝送効率が所定の閾値以上の場合は前記所定の閾値未満の場合に比べて電力送電時間を相対的に長くするように制御する。   In order to solve the above problems and achieve the object, a charging control device of the present invention includes a wireless communication unit capable of wirelessly communicating with a power receiving device, a power transmitting unit capable of transmitting power wirelessly to the power receiving device, Wireless communication with the power receiving device by the wireless communication means, and control means for controlling power transmission by the power transmission means, the control means, the power transmitted to the power receiving device and the power receiving device Based on the received power, the transmission efficiency of the transmission power is acquired, and when the transmission efficiency is equal to or greater than a predetermined threshold, control is performed to make the power transmission time relatively longer than when the transmission efficiency is less than the predetermined threshold.

本発明によれば、非接触充電時の安全性を高めつつ充電時間を短縮することができる。   ADVANTAGE OF THE INVENTION According to this invention, charging time can be shortened, improving the safety | security at the time of non-contact charge.

本実施形態の送電装置と受電装置の構成例を示すブロック図。The block diagram which shows the structural example of the power transmission apparatus and power receiving apparatus of this embodiment. 実施形態1の非接触充電制御における送電装置と受電装置の動作を示すフローチャート。3 is a flowchart illustrating operations of a power transmission device and a power reception device in contactless charging control according to the first embodiment. 送電装置と受電装置の配置例を示す図。The figure which shows the example of arrangement | positioning of a power transmission apparatus and a power receiving apparatus. 実施形態1の電池充電時の電池電圧と充電電流の時間変化を例示する図。The figure which illustrates the time change of the battery voltage at the time of battery charge of Embodiment 1, and a charging current. 実施形態1の非接触充電制御に用いる送電装置と受電装置の組み合わせに基づき最大伝送効率と線図との関係を規定したテーブルを例示する図。The figure which illustrates the table which prescribed | regulated the relationship between the maximum transmission efficiency and a diagram based on the combination of the power transmission apparatus and power receiving apparatus which are used for non-contact charge control of Embodiment 1. 実施形態1の非接触充電制御における伝送効率の閾値判定に用いる伝送効率と充電電力送電時間の関係を示す線図を例示する図。The figure which illustrates the diagram which shows the relationship between the transmission efficiency used for the threshold determination of the transmission efficiency in the non-contact charge control of Embodiment 1, and charging power transmission time. 実施形態1の非接触充電時における充電電力送電時間の制御を概念的に示す図。The figure which shows notionally control of the charging power transmission time at the time of non-contact charge of Embodiment 1. FIG. 実施形態2の非接触充電制御における送電装置と受電装置の動作を示すフローチャート。9 is a flowchart illustrating operations of a power transmission device and a power reception device in contactless charging control according to the second embodiment. 実施形態2の電池充電時の電池電圧と充電電流の時間変化を例示する図。The figure which illustrates the time change of the battery voltage at the time of battery charge of Embodiment 2, and a charging current. 実施形態2の非接触充電制御に用いる送電装置と受電装置の組み合わせに基づき最大伝送効率と電池電圧と線図との関係を規定したテーブルを例示する図。The figure which illustrates the table which prescribed | regulated the relationship between the maximum transmission efficiency, a battery voltage, and a diagram based on the combination of the power transmission apparatus and power receiving apparatus which are used for non-contact charge control of Embodiment 2. 実施形態2の非接触充電制御における伝送効率の閾値判定に用いる伝送効率と充電電力送電時間の関係を示す線図を例示する図。The figure which illustrates the diagram which shows the relationship between the transmission efficiency used for the threshold determination of the transmission efficiency in the non-contact charge control of Embodiment 2, and charging power transmission time. 実施形態2の非接触充電時における充電電力送電時間の制御を概念的に示す図。The figure which shows notionally control of the charging power transmission time at the time of non-contact charge of Embodiment 2. FIG. 実施形態3の送電装置と受電装置との構成例を示すブロック図。FIG. 9 is a block diagram illustrating a configuration example of a power transmission device and a power reception device according to a third embodiment.

以下に、本発明を実施するための形態について詳細に説明する。尚、以下に説明する実施の形態は、本発明を実現するための一例であり、本発明が適用される装置の構成や各種条件によって適宜修正又は変更されるべきものであり、本発明は以下の実施の形態に限定されるものではない。また、後述する各実施形態の一部を適宜組み合わせて構成してもよい。   Hereinafter, embodiments for carrying out the present invention will be described in detail. The embodiment described below is an example for realizing the present invention, and should be appropriately modified or changed according to the configuration and various conditions of the apparatus to which the present invention is applied. It is not limited to the embodiment. Moreover, you may comprise combining suitably one part of each embodiment mentioned later.

[実施形態1]
まず、実施形態1として、送電装置(充電制御装置)が、送電装置と受電装置との間で送受電される電池充電用の無線電力の伝送効率を算出し、算出した伝送効率に応じて受電装置の二次電池を充電するための電力送電時間を制御する形態を説明する。
[Embodiment 1]
First, as Embodiment 1, a power transmission device (charge control device) calculates the transmission efficiency of wireless power for charging a battery transmitted and received between the power transmission device and the power reception device, and receives power according to the calculated transmission efficiency. The form which controls the electric power transmission time for charging the secondary battery of an apparatus is demonstrated.

以下、本実施形態の送電装置および受電装置からなる非接触充電システムについて説明する。   Hereinafter, a non-contact charging system including the power transmission device and the power reception device of the present embodiment will be described.

図1は本実施形態の送電装置および受電装置の構成例を示すブロック図である。   FIG. 1 is a block diagram illustrating a configuration example of a power transmission device and a power reception device according to the present embodiment.

本実施形態の非接触充電システムは、送電装置101と、送電装置101と通信を行い、電力の供給を受ける受電装置151とを含む。送電装置101は、近距離無線通信および無線電力を送電可能な範囲内に受電装置151が配置された場合、非接触により通信を行い、受電装置151との間で装置ステータス情報の送受信を行う。そして、送電装置101は、受電装置151が充電可能な状態であると判定すると、送電アンテナを介して無線電力を出力して受電装置151に電力を供給する。その際、送電装置101は受電装置151から受電電力情報を受信することで、受電装置151が受電する無線電力の伝送効率を取得することができる。   The contactless charging system of the present embodiment includes a power transmission device 101 and a power reception device 151 that communicates with the power transmission device 101 and receives power supply. When the power receiving device 151 is disposed within a range in which short-range wireless communication and wireless power can be transmitted, the power transmitting device 101 performs communication in a non-contact manner and transmits / receives device status information to / from the power receiving device 151. When the power transmitting apparatus 101 determines that the power receiving apparatus 151 is in a chargeable state, the power transmitting apparatus 101 outputs wireless power via the power transmitting antenna and supplies power to the power receiving apparatus 151. At that time, the power transmitting apparatus 101 can acquire the transmission efficiency of the wireless power received by the power receiving apparatus 151 by receiving the received power information from the power receiving apparatus 151.

受電装置151は、二次電池から供給される電力によって動作する通信装置であれば、タブレット型PCやスマートフォン、デジタルスチルカメラやデジタルビデオカメラ等の撮像装置、音声データや映像データの再生を行う再生装置であってもよい。また、受電装置151は、二次電池から供給される電力によって駆動する車のような移動装置であってもよい。また、受電装置151は、二次電池が装着されていない場合に、送電装置101から供給される電力によって動作可能な電子機器であってもよいものとする。   If the power receiving device 151 is a communication device that operates with the power supplied from the secondary battery, a tablet PC, a smartphone, an imaging device such as a digital still camera or a digital video camera, and a playback that plays back audio data and video data. It may be a device. In addition, the power receiving device 151 may be a moving device such as a car that is driven by electric power supplied from the secondary battery. In addition, the power receiving device 151 may be an electronic device that can be operated by electric power supplied from the power transmission device 101 when a secondary battery is not attached.

なお、本実施形態では、送電装置101が無線により送電した電力を送電電力、受電装置151が無線により受電した電力を受電電力と称し、送電装置101が送電した電力と受電装置151が受電した電力の比率を伝送効率と称するものとする。   In the present embodiment, the power transmitted by the power transmission device 101 wirelessly is referred to as transmitted power, the power received by the power receiving device 151 wirelessly is referred to as received power, and the power transmitted by the power transmission device 101 and the power received by the power receiving device 151. This ratio is referred to as transmission efficiency.

<装置構成>次に、図1を参照して、本実施形態の非接触充電システムにおける送電装置および受電装置の構成について説明する。   <Device Configuration> Next, with reference to FIG. 1, the configurations of the power transmitting device and the power receiving device in the non-contact charging system of this embodiment will be described.

図1は本実施形態に係る送電装置と受電装置との構成例を示すブロック図である。本実施形態の説明に使用するブロック図は、本実施形態の説明に不要なブロックへの電源接続は省略している。また、本実施形態の説明に不要なブロックと動作の詳細な説明は省略する。   FIG. 1 is a block diagram illustrating a configuration example of a power transmission device and a power reception device according to the present embodiment. In the block diagram used for the description of the present embodiment, power supply connections to blocks that are not necessary for the description of the present embodiment are omitted. Also, detailed descriptions of blocks and operations that are not necessary for the description of the present embodiment are omitted.

まず、図1(a)を用いて、本実施形態の送電装置101の構成を説明する。   First, the configuration of the power transmission device 101 according to the present embodiment will be described with reference to FIG.

送電装置101は、受電装置151へ無線電力の送電および無線通信可能な装置である。   The power transmission device 101 is a device capable of transmitting wireless power to the power receiving device 151 and performing wireless communication.

AC/DC変換部102は、送電装置101の外部から入力されたAC電圧をDC電圧に変換する回路である。AC/DC変換部102でDCに変換された出力電圧はTX定電圧部103でさらに後段の回路ブロックへ供給可能な電圧に変換される。TX電源IC107はさらに後段のデジタル低電圧系回路ブロックへ供給可能な電圧に変換する。   The AC / DC conversion unit 102 is a circuit that converts an AC voltage input from the outside of the power transmission apparatus 101 into a DC voltage. The output voltage converted to DC by the AC / DC conversion unit 102 is converted by the TX constant voltage unit 103 into a voltage that can be supplied to the subsequent circuit block. The TX power supply IC 107 further converts the voltage into a voltage that can be supplied to the subsequent digital low-voltage circuit block.

TX制御部108は、送電装置101の近距離無線通信および無線送電を含む装置全体の制御を司るCPU、ワークエリアとして使用されるRAM、後述する処理手順を記憶しているROMを有する。   The TX control unit 108 includes a CPU that controls the entire apparatus including short-range wireless communication and wireless power transmission of the power transmission apparatus 101, a RAM that is used as a work area, and a ROM that stores a processing procedure described later.

非接触ICリーダライタ(R/W)109は非接触ICからのデータの読み取りおよび非接触ICへのデータの書き込みが可能であり、受電装置151や他の装置の非接触ICと近距離無線通信を行う。   A non-contact IC reader / writer (R / W) 109 can read data from the non-contact IC and write data to the non-contact IC, and short-range wireless communication with the non-contact IC of the power receiving device 151 and other devices. I do.

TX表示部110は、例えばLCD(Liquid Crystal Display)やLED(Light Emitting Diode)を備え、送電装置101や受電装置151のステータスを表示する。   The TX display unit 110 includes, for example, an LCD (Liquid Crystal Display) and an LED (Light Emitting Diode), and displays the status of the power transmission apparatus 101 and the power reception apparatus 151.

TX送電部104は、受電装置151へ電力を無線送電するための回路であり、主にトランジスタ増幅回路や水晶発振回路などを備える。   The TX power transmitting unit 104 is a circuit for wirelessly transmitting power to the power receiving device 151, and mainly includes a transistor amplifier circuit, a crystal oscillation circuit, and the like.

TX整合部105は、TX送電部104と非接触ICリーダライタ109とTXアンテナ106とのインピーダンス整合を行う回路である。TX整合部105は、TX制御部108の制御によって調整可能な回路であり、受電装置151との近距離無線通信時と無線電力送電時とで回路の設定が可変であるものとする。また、TX整合部105には無線電力送電時に過大な電圧が発生しないよう保護回路を備える。   The TX matching unit 105 is a circuit that performs impedance matching among the TX power transmission unit 104, the non-contact IC reader / writer 109, and the TX antenna 106. The TX matching unit 105 is a circuit that can be adjusted by the control of the TX control unit 108, and the circuit setting is variable during short-range wireless communication with the power receiving apparatus 151 and during wireless power transmission. The TX matching unit 105 includes a protection circuit so that an excessive voltage is not generated during wireless power transmission.

TXアンテナ106は、受電装置151や他の装置と近距離無線通信を行うための電磁波を送受信することができる。また、TXアンテナ106は、受電装置151へ無線電力を送電することができる。RXアンテナ152は、例えばHF帯である13.56MHz付近に共振周波数を有するアンテナである。   The TX antenna 106 can transmit and receive electromagnetic waves for performing short-range wireless communication with the power receiving apparatus 151 and other apparatuses. Further, the TX antenna 106 can transmit wireless power to the power receiving apparatus 151. The RX antenna 152 is an antenna having a resonance frequency in the vicinity of 13.56 MHz, which is an HF band, for example.

次に、本実施形態の受電装置151の構成および機能を説明する。   Next, the configuration and function of the power receiving device 151 of the present embodiment will be described.

受電装置151は、送電装置101から無線で電力の受電および無線通信可能な装置である。   The power receiving device 151 is a device capable of receiving power and communicating wirelessly from the power transmitting device 101.

RXアンテナ152は、送電装置101や他の装置と近距離無線通信を行うための電磁波を送受信することができる。また、RXアンテナ152は、送電装置101から無線で電力を受電することができる。RXアンテナ152は、例えばHF帯である13.56MHz付近に共振周波数を有するアンテナである。   The RX antenna 152 can transmit and receive electromagnetic waves for performing short-range wireless communication with the power transmission apparatus 101 and other apparatuses. Further, the RX antenna 152 can receive power from the power transmission apparatus 101 wirelessly. The RX antenna 152 is an antenna having a resonance frequency in the vicinity of 13.56 MHz, which is an HF band, for example.

RX整合部153は、RXアンテナ152と整流平滑部154と非接触IC158とのインピーダンス整合を行うための回路である。RX整合部153は、RX制御部159の制御によって調整可能な回路であり、送電装置101との近距離無線通信時と無線電力受電時とで回路の設定が可変であるものとする。また、RX整合部153には無線電力受電時に過大な電圧が発生しないよう保護回路を備える。   The RX matching unit 153 is a circuit for performing impedance matching between the RX antenna 152, the rectifying / smoothing unit 154, and the non-contact IC 158. The RX matching unit 153 is a circuit that can be adjusted by the control of the RX control unit 159, and the circuit setting is variable during short-range wireless communication with the power transmission apparatus 101 and when receiving wireless power. In addition, the RX matching unit 153 includes a protection circuit so that an excessive voltage is not generated when wireless power is received.

整流平滑部154は、送電装置101から受電した電力により発生したAC(交流)電圧をDC(直流)電圧に波形整形する回路である。整流平滑部154でDC電圧に波形整形された電圧はRX定電圧部155で定電圧化され、後段の回路ブロックへ供給される。   The rectifying / smoothing unit 154 is a circuit that shapes an AC (alternating current) voltage generated by the power received from the power transmission apparatus 101 into a DC (direct current) voltage. The voltage shaped into a DC voltage by the rectifying / smoothing unit 154 is converted to a constant voltage by the RX constant voltage unit 155 and supplied to the subsequent circuit block.

充電制御部156は、電池157を充電可能な回路である。充電制御部156は電池157を充電する機能の他に、他の回路へ電池157の電圧を出力する機能も備える。電池157は、例えば1セルのリチウムイオン電池であるが、これに限らず、他の充電可能な二次電池でもよい。   The charging control unit 156 is a circuit that can charge the battery 157. In addition to the function of charging the battery 157, the charging control unit 156 has a function of outputting the voltage of the battery 157 to another circuit. The battery 157 is, for example, a one-cell lithium ion battery, but is not limited thereto, and may be another rechargeable secondary battery.

RX電源IC161は充電制御部156から入力される電圧を後段のRX制御部159および主制御部162などのデジタル低電圧系回路ブロックの電圧に変換する。   The RX power supply IC 161 converts the voltage input from the charging control unit 156 into voltages of digital low voltage system circuit blocks such as the RX control unit 159 and the main control unit 162 in the subsequent stage.

RX制御部159は、受電装置151の近距離無線通信および非接触充電シーケンスを含む制御を司るCPU、ワークエリアとして使用されるRAM、後述する処理手順を記憶しているROMを内蔵している。   The RX control unit 159 includes a CPU that performs control including short-range wireless communication and a non-contact charging sequence of the power receiving apparatus 151, a RAM that is used as a work area, and a ROM that stores a processing procedure described later.

電力測定部160は、送電装置101からの無線電力受電時に、受電電力を測定するための回路であり、主に抵抗負荷や定電流回路を備える。   The power measuring unit 160 is a circuit for measuring received power when receiving wireless power from the power transmitting apparatus 101, and mainly includes a resistive load and a constant current circuit.

非接触IC158は、送電装置101との近距離無線通信時の電磁波のみを電力として動作することが可能である。非接触IC158は、例えば近距離無線通信の国際標準規格であるISO/IEC21481に対応している。   The non-contact IC 158 can operate using only electromagnetic waves during short-range wireless communication with the power transmission apparatus 101 as power. The non-contact IC 158 corresponds to, for example, ISO / IEC21481 that is an international standard for short-range wireless communication.

主制御部162は、受電装置151の全体の制御を司るCPUを有する。RAM163は主制御部162のワークエリアとして使用される揮発性メモリである。ROM164は主制御部162の処理手順を記憶している。ROM164は、例えばフラッシュメモリなどの書き換えが可能な不揮発性メモリで構成される。   The main control unit 162 includes a CPU that controls the entire power receiving apparatus 151. The RAM 163 is a volatile memory used as a work area for the main control unit 162. The ROM 164 stores the processing procedure of the main control unit 162. The ROM 164 is configured by a rewritable nonvolatile memory such as a flash memory.

RX表示部165は、受電装置151の操作情報や撮像部168で撮影した映像を表示することのできる表示部であり、例えば液晶表示器(Liquid Crystal Display:LCD)である。   The RX display unit 165 is a display unit that can display operation information of the power receiving apparatus 151 and an image captured by the imaging unit 168, and is, for example, a liquid crystal display (LCD).

操作入力部166は、ユーザ操作による受電装置151への各種操作を受け付けるスイッチ、ボタン、タッチパネル等の操作部材である。操作入力部166は、操作部材の操作に応じた操作情報を主制御部162へ送出する。記録媒体167はメモリーカードやハードディスクであり、画像データの書き込みや読み込みを行うことができる。   The operation input unit 166 is an operation member such as a switch, a button, or a touch panel that receives various operations on the power reception device 151 by a user operation. The operation input unit 166 sends operation information corresponding to the operation of the operation member to the main control unit 162. The recording medium 167 is a memory card or a hard disk, and can write and read image data.

撮像部168は、光学レンズ、CMOSなどのイメージセンサ、レンズ制御部、画像処理部などを備え、動画や静止画の撮像から記録までの動作を行う。   The imaging unit 168 includes an optical lens, an image sensor such as a CMOS, a lens control unit, an image processing unit, and the like, and performs operations from imaging to recording of moving images and still images.

無線通信部169は、アンテナ170を用いて他の装置と無線通信が可能である。無線通信部169は、非接触IC158とは異なる無線通信規格、例えばWLAN規格であるIEEE802.11に対応している。   The wireless communication unit 169 can wirelessly communicate with other devices using the antenna 170. The wireless communication unit 169 supports a wireless communication standard different from the non-contact IC 158, for example, IEEE 802.11 that is a WLAN standard.

<非接触充電制御>次に、図2を参照して、本実施形態の非接触充電制御における送電装置101と受電装置151の動作を説明する。   <Non-Contact Charging Control> Next, with reference to FIG. 2, the operation of the power transmitting apparatus 101 and the power receiving apparatus 151 in the non-contact charging control of this embodiment will be described.

図2は、本実施形態の非接触充電制御における送電装置101と受電装置151の動作を並列に示すフローチャートである。なお、図1の処理において、送電装置101の制御はTX制御部108が実行し、受電装置151の制御はRX制御部159が実行するものとする。なお、主制御部162は受電装置151の非接触充電制御には関与しないため、主制御部162およびその周辺機能ブロックの動作の説明は省略する。   FIG. 2 is a flowchart showing in parallel the operations of the power transmitting apparatus 101 and the power receiving apparatus 151 in the contactless charging control of the present embodiment. In the processing of FIG. 1, the TX control unit 108 executes control of the power transmission device 101, and the RX control unit 159 executes control of the power reception device 151. Note that the main control unit 162 is not involved in the non-contact charging control of the power receiving device 151, and thus description of the operation of the main control unit 162 and its peripheral functional blocks is omitted.

S201では、送電装置101のTX制御部108は、非接触ICリーダライタ109の近距離無線通信機能を用いてポーリング信号を送信する。   In step S <b> 201, the TX control unit 108 of the power transmission apparatus 101 transmits a polling signal using the short-range wireless communication function of the non-contact IC reader / writer 109.

S202では、送電装置101のTX制御部108は、受電装置151の非接触IC158からの応答信号を受信したか否かを判定する。S201の近距離無線通信は、例えばJISX6319−4のリクエストコマンドを用いて非接触IC158を捕捉するものとする。   In S202, the TX control unit 108 of the power transmission apparatus 101 determines whether a response signal from the non-contact IC 158 of the power reception apparatus 151 has been received. The near field communication in S201 captures the non-contact IC 158 using, for example, a request command of JISX6319-4.

S202で送電装置101のTX制御部108は、受電装置151から応答信号を受信したと判定した場合は処理をS203に進め、応答信号を受信していないと判定した場合は処理をS201に戻し、再度ポーリング信号を送信する。   If the TX control unit 108 of the power transmitting apparatus 101 determines in S202 that the response signal has been received from the power receiving apparatus 151, the process proceeds to S203. If it is determined that the response signal has not been received, the process returns to S201. Send polling signal again.

ここで、受電装置151の動作を説明する。   Here, the operation of the power receiving apparatus 151 will be described.

S251では、受電装置151の非接触IC158は、送電装置101から近距離無線通信のポーリング信号を受信したら応答信号を送信する。S252では、受電装置151のRX制御部159は、電池157の充電状態を取得する。S253では、受電装置151のRX制御部159は、非接触IC158のデータの一部である装置ステータス情報を更新する。非接触IC158のデータの一部である装置ステータス情報とは、例えば受電装置151であれば“装置の名称”、“装置ID”、“最大無線受電電力”、“電池の有無”、“電池電圧”、“充電の可否”を含む。S253では、上記装置ステータス情報のうち、電池157の状態に関する“電池の有無”、“電池電圧”、“充電の可否”の情報を更新するものとする。   In S <b> 251, the non-contact IC 158 of the power receiving apparatus 151 transmits a response signal when receiving a polling signal for short-range wireless communication from the power transmission apparatus 101. In S252, the RX control unit 159 of the power receiving apparatus 151 acquires the state of charge of the battery 157. In S253, the RX control unit 159 of the power receiving apparatus 151 updates the apparatus status information that is a part of the data of the non-contact IC 158. The device status information which is a part of the data of the non-contact IC 158 includes, for example, “device name”, “device ID”, “maximum wireless received power”, “battery presence / absence”, “battery voltage” for the power receiving device 151. "," Chargeability ". In S <b> 253, information on “battery presence / absence”, “battery voltage”, and “chargeability” regarding the state of the battery 157 is updated in the device status information.

ここで、送電装置101の動作の説明に戻る。   Here, the description returns to the operation of the power transmission apparatus 101.

S203では、送電装置101のTX制御部108は、非接触ICリーダライタ109の近距離無線通信機能を用いて受電装置151の非接触IC158のデータの一部である装置ステータス情報を読み取る。そして、送電装置101のTX制御部108は、送電装置101の装置ステータス情報を非接触IC158に書き込む。   In step S <b> 203, the TX control unit 108 of the power transmission apparatus 101 reads apparatus status information that is a part of data of the non-contact IC 158 of the power receiving apparatus 151 using the short-range wireless communication function of the non-contact IC reader / writer 109. Then, the TX control unit 108 of the power transmission device 101 writes the device status information of the power transmission device 101 in the non-contact IC 158.

S203の近距離無線通信により非接触IC158の情報を読み取る、また、非接触IC158へ情報を書き込む場合は、例えばJISX6319−4のリードコマンド、ライトコマンドを用いる。以下、近距離無線通信により非接触IC158の情報を読み取る場合はJISX6319−4のリードコマンド、近距離無線通信により非接触IC158へ情報を書き込む場合はJISX6319−4のライトコマンドを用いるものとする。   When reading the information of the non-contact IC 158 by the short-range wireless communication of S203 and writing the information to the non-contact IC 158, for example, a read command and a write command of JISX6319-4 are used. Hereinafter, a read command of JISX6319-4 is used when reading information of the non-contact IC 158 by short-range wireless communication, and a write command of JISX6319-4 is used when writing information to the non-contact IC 158 by short-range wireless communication.

なお、近距離無線通信による非接触IC158の読み取り/書き込みが行われた場合、非接触IC158は割り込み信号を出力する。受電装置151のRX制御部159は、割り込み信号を検出し、非接触IC158へのアクセスと電池157の充電制御を行うための処理を行う。   Note that when the non-contact IC 158 is read / written by the short-range wireless communication, the non-contact IC 158 outputs an interrupt signal. The RX control unit 159 of the power receiving apparatus 151 detects an interrupt signal, and performs processing for accessing the non-contact IC 158 and controlling charging of the battery 157.

S203で送信する送電装置101の装置ステータス情報とは、例えば“装置の名称”、“装置ID”、“最大無線送電電力”を含む。受電装置151の装置ステータス情報とは、例えば“装置の名称”、“装置ID”、“最大無線受電電力”、“電池の有無”、“電池電圧”、“充電の可否”を含む。   The device status information of the power transmission device 101 transmitted in S203 includes, for example, “device name”, “device ID”, and “maximum wireless transmitted power”. The device status information of the power receiving device 151 includes, for example, “device name”, “device ID”, “maximum wireless received power”, “battery presence / absence”, “battery voltage”, and “chargeability”.

ここで、受電装置151の動作を説明する。   Here, the operation of the power receiving apparatus 151 will be described.

S254では、受電装置151のRX制御部159は、非接触IC158から近距離無線通信による受電装置151の装置ステータス情報を読み取り、送電装置101の装置ステータス情報の書き込みに対して応答信号を送信する。   In S254, the RX control unit 159 of the power receiving device 151 reads the device status information of the power receiving device 151 by the short-range wireless communication from the non-contact IC 158, and transmits a response signal to the writing of the device status information of the power transmitting device 101.

S255では、受電装置151のRX制御部159は、充電可能なモードであるか否かを判定し、充電可能なモードであると判定した場合は処理をS256へ進め、充電可能なモードではないと判定した場合は処理を終了する。S255では、例えば受電装置151に電池157が装着されていない場合や、電池157が一度満充電になり自然放電による電圧低下を補うための再充電を禁止している場合は充電可能なモードではないと判定される。   In S255, the RX control unit 159 of the power receiving apparatus 151 determines whether or not it is in a chargeable mode. If it is determined that the mode is chargeable, the process proceeds to S256, and is not in a chargeable mode. If so, the process ends. In S255, for example, when the battery 157 is not attached to the power receiving apparatus 151, or when the battery 157 is fully charged and prohibits recharging to compensate for a voltage drop due to natural discharge, it is not a chargeable mode. It is determined.

ここで、送電装置101の動作の説明に戻る。   Here, the description returns to the operation of the power transmission apparatus 101.

S204では、送電装置101のTX制御部108は、S203で読み取った受電装置151の装置ステータス情報が充電可能なモードであるか否かを判定する。送電装置101のTX制御部108は、充電可能なモードであると判定した場合は処理をS205に進め、充電可能なモードではないと判定した場合は処理を終了する。   In S204, the TX control unit 108 of the power transmitting apparatus 101 determines whether or not the device status information of the power receiving apparatus 151 read in S203 is a chargeable mode. If the TX control unit 108 of the power transmission apparatus 101 determines that the mode is chargeable, the process proceeds to S205, and if it is determined that the mode is not chargeable, the process ends.

S205では、送電装置101のTX制御部108は、非接触ICリーダライタ109の近距離無線通信機能を用いて受電装置151の非接触IC158へ充電電力設定開始情報を書き込む。充電電力設定開始情報は、“充電電力設定用送電電力”、“開始時間”、“終了時間”を含むものとする。また、充電電力設定開始情報のうち、“充電電力設定用送電電力”は0.2Wとする。   In step S <b> 205, the TX control unit 108 of the power transmission apparatus 101 writes the charging power setting start information to the non-contact IC 158 of the power reception apparatus 151 using the short-range wireless communication function of the non-contact IC reader / writer 109. The charging power setting start information includes “charging power setting transmission power”, “start time”, and “end time”. In the charging power setting start information, “charging power setting transmission power” is 0.2 W.

S206では、送電装置101のTX制御部108は、TX送電部104を制御して充電電力設定用の電力を送電する。充電電力設定用の電力は、S205で非接触IC158へ書き込んだ充電電力設定開始情報の1つである“充電電力設定用送電電力”と等しい0.2Wとする。S206で充電電力設定用の電力を送電する場合は、TX整合部105がTX送電部104からの無線送電に適した回路に設定される。   In S <b> 206, the TX control unit 108 of the power transmission apparatus 101 controls the TX power transmission unit 104 to transmit charging power setting power. The charging power setting power is set to 0.2 W which is equal to “charging power setting transmission power” which is one of the charging power setting start information written in the non-contact IC 158 in S205. When transmitting power for setting charging power in S206, the TX matching unit 105 is set to a circuit suitable for wireless power transmission from the TX power transmission unit 104.

以下では、TX送電部104を制御して電力を送電する場合はTX整合部105がTX送電部104からの無線電力の送電に適した回路に設定される。そして、非接触ICリーダライタ109の近距離無線通信機能を用いる場合はTX整合部105が非接触ICリーダライタ109の近距離無線通信に適した回路に設定されるものとし、TX整合部105の制御の切り替えについての説明は省略する。   In the following, when the TX power transmission unit 104 is controlled to transmit power, the TX matching unit 105 is set to a circuit suitable for wireless power transmission from the TX power transmission unit 104. When the short-range wireless communication function of the non-contact IC reader / writer 109 is used, the TX matching unit 105 is set to a circuit suitable for the short-range wireless communication of the non-contact IC reader / writer 109. A description of control switching is omitted.

S207では、送電装置101は、S206で充電電力設定用の電力を送電した後、非接触ICリーダライタ109の近距離無線通信機能を用いて受電装置151の非接触IC158から送信した充電電力設定用の電力に対する受電電力情報を読み取る。受電電力情報は、送電装置101が充電電力設定用の電力を送電した結果、受電装置151が実際に受電した電力である“受電電力”を含むものとする。   In S207, the power transmission apparatus 101 transmits the power for setting the charging power in S206, and then uses the short-range wireless communication function of the non-contact IC reader / writer 109 to set the charging power transmitted from the non-contact IC 158 of the power receiving apparatus 151. The received power information for the power of is read. The received power information includes “received power” that is power actually received by the power receiving apparatus 151 as a result of the power transmission apparatus 101 transmitting power for setting charging power.

ここで、受電装置151の動作を説明する。   Here, the operation of the power receiving apparatus 151 will be described.

S256では、受電装置151の非接触IC158は、近距離無線通信による充電電力設定開始情報の書き込みに対して応答信号を送信する。   In S256, the non-contact IC 158 of the power receiving apparatus 151 transmits a response signal in response to the writing of the charging power setting start information by the short-range wireless communication.

S257では、受電装置151のRX制御部159は、非接触IC158へ充電電力設定開始情報が書き込まれたことをトリガとして、充電電力設定開始情報の1つである“開始時間”に達する前にRX定電圧部155へ電力測定部160を接続する。なお、S257では電力測定部160を接続するのと同時に、RX整合部153を送電装置101のTX送電部104からの無線電力の受電に適した回路に設定するものとする。   In S257, the RX control unit 159 of the power receiving apparatus 151 uses, as a trigger, writing of the charging power setting start information to the non-contact IC 158 before reaching the “starting time” which is one of the charging power setting start information. The power measuring unit 160 is connected to the constant voltage unit 155. In S257, the power matching unit 160 is connected, and at the same time, the RX matching unit 153 is set to a circuit suitable for receiving wireless power from the TX power transmission unit 104 of the power transmission apparatus 101.

S258では、受電装置151のRX制御部159は、充電電力設定用の電力を受電し、電力測定部160で受電中の電力を測定し、その結果を“受電電力”として非接触IC158に書き込む。   In S <b> 258, the RX control unit 159 of the power receiving device 151 receives the power for setting the charging power, measures the power being received by the power measuring unit 160, and writes the result as “received power” in the non-contact IC 158.

S259では、受電装置151のRX制御部159は、充電電力設定開始情報の1つである“終了時間”に達した後に電力測定部160の接続を解除する。なお、S259では電力測定部160の接続を解除するのと同時に、RX整合部153が送電装置101の非接触ICリーダライタ109の近距離無線通信に適した回路の設定に戻される。以下、送電装置101のTX送電部104からの無線電力を受電する場合はRX整合部153をTX送電部104からの無線電力の受電に適した回路に設定する。そして、送電装置101の非接触ICリーダライタ109との近距離無線通信を行う場合はRX整合部153を非接触ICリーダライタ109との近距離無線通信に適した回路に設定するものとし、RX整合部153の制御の切り替えについての説明は省略する。   In S259, the RX control unit 159 of the power receiving apparatus 151 releases the connection of the power measurement unit 160 after reaching the “end time” which is one of the charging power setting start information. In S259, at the same time as the connection of the power measurement unit 160 is released, the RX matching unit 153 returns to the circuit setting suitable for the short-range wireless communication of the non-contact IC reader / writer 109 of the power transmission apparatus 101. Hereinafter, when receiving wireless power from the TX power transmitting unit 104 of the power transmitting apparatus 101, the RX matching unit 153 is set to a circuit suitable for receiving wireless power from the TX power transmitting unit 104. When performing short-range wireless communication with the non-contact IC reader / writer 109 of the power transmission apparatus 101, the RX matching unit 153 is set to a circuit suitable for short-range wireless communication with the non-contact IC reader / writer 109. A description of control switching of the matching unit 153 is omitted.

S260では、受電装置151の非接触IC158は、近距離無線通信による受電電力情報の読み取りに対して応答信号を送信する。受電電力情報は、上記“受電電力”を含むものとする。   In S260, the non-contact IC 158 of the power receiving apparatus 151 transmits a response signal in response to reading of the received power information by short-range wireless communication. The received power information includes the “received power”.

ここで、送電装置101の動作の説明に戻る。   Here, the description returns to the operation of the power transmission apparatus 101.

S207で充電電力設定用の電力に対する受電電力情報を読み取った後、S208では、送電装置101のTX制御部108は、送電装置101が送電した充電電力設定用の電力と、受電装置151が受電した電力に基づく伝送効率を算出する。S206で送電装置101は充電電力設定用の電力を0.2Wに設定しているため、受電装置151の電力測定部160で測定した結果、例えば“受電電力”が0.1Wであれば伝送効率は50%、“受電電力”が0.16Wであれば伝送効率は80%、と求められる。   After reading the received power information for the charging power setting power in S207, in S208, the TX control unit 108 of the power transmitting apparatus 101 receives the charging power setting power transmitted by the power transmitting apparatus 101 and the power receiving apparatus 151. Calculate transmission efficiency based on power. In S206, since the power transmission device 101 sets the power for setting the charging power to 0.2 W, if the power measurement unit 160 of the power reception device 151 measures, for example, “received power” is 0.1 W, the transmission efficiency Is 50%, and if the “received power” is 0.16 W, the transmission efficiency is 80%.

図3は、送電装置101と受電装置151の配置例を示している。図3(A)は送電装置101のTXアンテナ106と受電装置151のRXアンテナ152とのずれが小さく正対に位置した状態を示している。図3(A)の配置状態は非接触充電時の伝送効率が高く、TXアンテナ106で発生した電磁波が効率良くRXアンテナ152に吸収されることになるため、装置間から漏れる電磁波が少ない配置状態といえる。図3(A)の状態を例えば伝送効率は80%の配置であるとする。   FIG. 3 shows an arrangement example of the power transmission device 101 and the power reception device 151. FIG. 3A illustrates a state in which the TX antenna 106 of the power transmission apparatus 101 and the RX antenna 152 of the power reception apparatus 151 are positioned in a directly opposed manner with little deviation. The arrangement state of FIG. 3A has a high transmission efficiency at the time of non-contact charging, and the electromagnetic wave generated by the TX antenna 106 is efficiently absorbed by the RX antenna 152, so that the electromagnetic wave leaking from between the devices is small. It can be said. In the state of FIG. 3A, for example, it is assumed that the transmission efficiency is 80%.

図3(B)は送電装置101のTXアンテナ106と受電装置151のRXアンテナ152とのずれが大きく互い違いに近い位置にある状態を示している。図3(B)の配置状態は非接触充電時の伝送効率が低く、TXアンテナ106で発生した電磁波が効率良くRXアンテナ152に吸収されないため、装置間から漏れる電磁波が多い配置状態といえる。図3(B)の状態を例えば伝送効率は50%であるとする。   FIG. 3B illustrates a state in which the TX antenna 106 of the power transmission apparatus 101 and the RX antenna 152 of the power reception apparatus 151 are in positions close to each other with a large shift. The arrangement state of FIG. 3B has a low transmission efficiency during contactless charging, and the electromagnetic wave generated by the TX antenna 106 is not efficiently absorbed by the RX antenna 152. Therefore, it can be said that the arrangement state has a large amount of electromagnetic waves leaking from between the devices. Assume that the transmission efficiency is 50% in the state of FIG.

図3(B)の配置状態では、送電装置101のTXアンテナ106に正対する位置に受電装置151が位置していないため、TXアンテナ106の正対する位置に異物があると漏れた電磁波のために異物が発熱しやすい。また、TXアンテナ106の正対する位置に人体の一部が近距離すると、漏れた電磁波が人体の一部に暴露されてしまうことになる。よって、図3(B)の配置状態は非接触充電の配置として効率および安全性の観点で好ましくない配置であるといえる。   In the arrangement state of FIG. 3B, since the power receiving device 151 is not located at the position facing the TX antenna 106 of the power transmission device 101, if there is a foreign object at the position facing the TX antenna 106, the leaked electromagnetic wave Foreign matter easily generates heat. Further, when a part of the human body is close to the position where the TX antenna 106 is directly facing, the leaked electromagnetic wave is exposed to a part of the human body. Therefore, it can be said that the arrangement state of FIG. 3B is an unfavorable arrangement from the viewpoint of efficiency and safety as an arrangement of non-contact charging.

S209では、送電装置101のTX制御部108は、S203で取得した受電装置151の装置ステータス情報と、S208で算出した伝送効率に従って充電用の送電電力を設定する。充電用の送電電力の設定方法は既に様々な技術が提案されているので詳細な説明は省略する。   In S209, the TX control unit 108 of the power transmission apparatus 101 sets the transmission power for charging according to the apparatus status information of the power receiving apparatus 151 acquired in S203 and the transmission efficiency calculated in S208. Since various techniques have already been proposed for setting the transmission power for charging, a detailed description thereof will be omitted.

ここで、図4を用いて電池157の電池電圧と充電電流の時間変化を説明する。図4(A)は電池電圧の時間変化、図4(B)は電池充電電流の時間変化をそれぞれ示している。図4(A)において閾値Vt1=3.0Vは電池157のトリクル充電と急速充電の充電制御を切り替える閾値電圧である。図4(A)において満充電時の電池電圧Vc=4.2Vとする。図4(B)においてトリクル充電時の充電電流は50mA、急速充電中かつ定電流制御区間の充電電流は500mA、急速充電中かつ定電圧制御区間の充電終止電流は50mAとする。   Here, the time change of the battery voltage and the charging current of the battery 157 will be described with reference to FIG. FIG. 4A shows the time change of the battery voltage, and FIG. 4B shows the time change of the battery charging current. In FIG. 4A, threshold Vt1 = 3.0 V is a threshold voltage for switching between trickle charge and quick charge control of battery 157. In FIG. 4A, the battery voltage Vc at full charge is set to 4.2V. In FIG. 4B, the charging current during trickle charging is 50 mA, the charging current during fast charging and constant current control section is 500 mA, and the charging end current during fast charging and constant voltage control section is 50 mA.

受電装置151の電池157の充電が急速充電中かつ定電流制御区間であって、RX定電圧部155の出力として電力2.2Wが必要な状態の場合、伝送効率50%であれば送電装置101は送電電力を4.4Wに設定する。また、伝送効率80%であれば、送電装置101は送電電力を2.75Wに設定する。   When charging of the battery 157 of the power receiving apparatus 151 is in the state of constant current control during the rapid charging and the output of the RX constant voltage unit 155 requires 2.2 W, the power transmitting apparatus 101 has a transmission efficiency of 50%. Sets the transmitted power to 4.4W. If the transmission efficiency is 80%, the power transmitting apparatus 101 sets the transmitted power to 2.75W.

受電装置151の電池157の充電がトリクル充電中でRX定電圧部155の出力として電力0.35Wが必要な状態の場合、伝送効率50%であれば送電装置101は送電電力を0.7Wに設定する。また、伝送効率80%であれば送電装置101は送電電力を0.44Wに設定する。   When charging of the battery 157 of the power receiving apparatus 151 is trickle charging and the power of 0.35 W is required as the output of the RX constant voltage unit 155, the power transmitting apparatus 101 sets the transmitted power to 0.7 W if the transmission efficiency is 50%. Set. If the transmission efficiency is 80%, the power transmitting apparatus 101 sets the transmitted power to 0.44 W.

図2の説明に戻り、S212では、送電装置101のTX制御部108は、S208で算出した伝送効率が閾値以上であるか否かを判定する。伝送効率の閾値は、例えば図5に示す送電装置と受電装置の組み合わせに基づき最大伝送効率と線図との関係を規定したテーブルに従って決定する。図5に示すテーブルは、例えば送電装置101のTX制御部108に内蔵されたROMに記憶されている。   Returning to the description of FIG. 2, in S212, the TX control unit 108 of the power transmission apparatus 101 determines whether or not the transmission efficiency calculated in S208 is equal to or greater than a threshold value. The threshold value of the transmission efficiency is determined according to a table that defines the relationship between the maximum transmission efficiency and the diagram based on the combination of the power transmission device and the power reception device shown in FIG. The table shown in FIG. 5 is stored in a ROM built in the TX control unit 108 of the power transmission apparatus 101, for example.

送電装置101のTX制御部108は、S203で取得した受電装置151の装置ステータス情報の1つである“装置の名称”と装置の組み合わせに従って、伝送効率の閾値判定に用いる線図を決定する。なお、装置の組み合わせによって伝送効率の閾値判定に用いる線図は変更してもよい。例えば図5のテーブルに従えば、送電装置101と受電装置151との組み合わせの場合、伝送効率の閾値判定に用いるのは第1の線図(A)となる。   The TX control unit 108 of the power transmission apparatus 101 determines a diagram to be used for threshold determination of transmission efficiency according to a combination of “apparatus name” which is one of apparatus status information of the power receiving apparatus 151 acquired in S203 and the apparatus. The diagram used for transmission efficiency threshold determination may be changed depending on the combination of devices. For example, according to the table of FIG. 5, in the case of a combination of the power transmitting apparatus 101 and the power receiving apparatus 151, the first diagram (A) is used for threshold determination of transmission efficiency.

図6は伝送効率の閾値判定に用いる第1の線図の例である。図6(A)の伝送効率と充電電力送電時間の第1の線図(A)は例えば線図がリニアに変化する。   FIG. 6 is an example of a first diagram used for threshold determination of transmission efficiency. In the first diagram (A) of the transmission efficiency and charging power transmission time in FIG. 6 (A), for example, the diagram changes linearly.

図6(A)の第1の線図(A)は、伝送効率60%未満であれば非接触充電シーケンス1サイクル中の充電電力送電時間を初期値1秒とし、そこからリニアに増加し、伝送効率95%以上では充電電力送電時間を8秒とする。図6(B)の伝送効率と充電電力送電時間の第1の線図(B)は例えば線図が段階的に変化する。   In the first diagram (A) of FIG. 6 (A), if the transmission efficiency is less than 60%, the charging power transmission time in one cycle of the non-contact charging sequence is set to an initial value of 1 second, and linearly increases therefrom. When the transmission efficiency is 95% or more, the charging power transmission time is 8 seconds. In the first diagram (B) of the transmission efficiency and charging power transmission time in FIG. 6 (B), for example, the diagram changes stepwise.

図6(A)および図6(B)に示す第1の線図(A)および第1の線図(B)は、例えば送電装置101のTX制御部108に内蔵されたROMに記憶されており、どちらかを選択可能であるとする。   The first diagram (A) and the first diagram (B) shown in FIGS. 6A and 6B are stored in, for example, a ROM built in the TX control unit 108 of the power transmission apparatus 101. It is assumed that either one can be selected.

なお、図6(A)および図6(B)に示す第1の線図(A)および第1の線図(B)の数値は、本実施形態を説明するための一例としているだけで状況に応じて適宜変更してよい。   Note that the numerical values in the first diagram (A) and the first diagram (B) shown in FIGS. 6 (A) and 6 (B) are merely examples for explaining the present embodiment. It may be changed appropriately according to the situation.

送電装置101のTX制御部108は、S208で算出した伝送効率が閾値未満であると判定した場合は処理をS213に進め、非接触充電シーケンス1サイクル中の充電電力送電時間を第1の線図(A)に従う初期値に設定する。   When the TX control unit 108 of the power transmission apparatus 101 determines that the transmission efficiency calculated in S208 is less than the threshold, the process proceeds to S213, and the charging power transmission time in one cycle of the non-contact charging sequence is a first diagram. Set to the initial value according to (A).

送電装置101のTX制御部108は、S208で算出した伝送効率が閾値以上であると判定した場合は処理をS214に進め、非接触充電シーケンス1サイクル中の充電電力送電時間を第1の線図(A)に従う拡張値に設定する。   When the TX control unit 108 of the power transmission apparatus 101 determines that the transmission efficiency calculated in S208 is equal to or greater than the threshold, the process proceeds to S214, and the charging power transmission time in one cycle of the non-contact charging sequence is set to the first diagram. Set to an extension value according to (A).

例えば、送電装置101と受電装置151の配置状態が図3(A)の状態である場合、伝送効率は80%であり、図6(A)の第1の線図(A)において閾値を超えているため、非接触充電シーケンス1サイクル中の充電電力送電時間は拡張値に設定される。伝送効率80%において、非接触充電シーケンス1サイクル中の充電電力送電時間は5秒となる。   For example, when the arrangement state of the power transmitting apparatus 101 and the power receiving apparatus 151 is the state shown in FIG. 3A, the transmission efficiency is 80%, which exceeds the threshold in the first diagram (A) of FIG. Therefore, the charging power transmission time during one cycle of the non-contact charging sequence is set to an extended value. At a transmission efficiency of 80%, the charging power transmission time during one cycle of the non-contact charging sequence is 5 seconds.

例えば、送電装置101と受電装置151の配置状態が図3(B)の状態である場合、伝送効率は50%であり、図6(A)の第1の線図(A)において閾値未満であるため、非接触充電シーケンス1サイクル中の充電電力送電時間は初期値に設定される。伝送効率50%において、非接触充電シーケンス1サイクル中の充電電力送電時間は1秒となる。   For example, when the arrangement state of the power transmission apparatus 101 and the power reception apparatus 151 is the state of FIG. 3B, the transmission efficiency is 50%, which is less than the threshold in the first diagram (A) of FIG. Therefore, the charging power transmission time during one cycle of the non-contact charging sequence is set to an initial value. When the transmission efficiency is 50%, the charging power transmission time in one cycle of the non-contact charging sequence is 1 second.

S218では、送電装置101のTX制御部108は、非接触ICリーダライタ109の近距離無線通信機能を用いて受電装置151の非接触IC158へ充電電力送電開始情報を書き込む。充電電力送電開始情報は、“充電送電電力”、“充電送電開始時間”、“充電送電終了時間”を含む。   In step S <b> 218, the TX control unit 108 of the power transmission apparatus 101 writes charging power transmission start information to the non-contact IC 158 of the power reception apparatus 151 using the short-range wireless communication function of the non-contact IC reader / writer 109. The charging power transmission start information includes “charging transmission power”, “charging transmission start time”, and “charging transmission end time”.

S218で書き込む充電電力送電開始情報を、受電装置151の電池157の充電が図4の急速充電中かつ定電流制御区間、RX定電圧部155の出力として電力2.2Wが必要な状態の場合を例に説明する。   The charging power transmission start information written in S218 is a case where charging of the battery 157 of the power receiving apparatus 151 is in the state of quick charging in FIG. Explained as an example.

伝送効率80%である場合を例にすると、S218で書き込む充電電力送電開始情報のうち“充電送電電力”は2.75W、“充電電力送電開始時間”と“充電電力送電終了時間”との時間差は5秒である。   Taking the case where the transmission efficiency is 80% as an example, in the charging power transmission start information written in S218, “charging transmission power” is 2.75 W, and the time difference between “charging power transmission start time” and “charging power transmission end time” Is 5 seconds.

なお、S218の処理は送電装置101と受電装置151との間で非接触充電を行うフローにおいては必須ではない。S218を実行する場合、送電装置101は、予め受電装置151へ非接触充電シーケンス1サイクル中の無線電力送電開始情報を通知する。そして、受電装置151が受信した非接触充電シーケンス1サイクル中の“充電電力送電開始時間”と“充電電力送電終了時間”とに従って充電制御を行う。S218を省略する場合、送電装置101はS207の処理を実行後、所定の時間を置いてから無線電力を送電する。受電装置151は無線電力を受電している状態を検出し、その検出状態で非接触充電シーケンス1サイクル中の充電電力送電期間であることを判定して充電制御を行ってもよい。   Note that the process of S218 is not essential in the flow of performing non-contact charging between the power transmitting apparatus 101 and the power receiving apparatus 151. When executing S218, the power transmitting apparatus 101 notifies the power receiving apparatus 151 in advance of wireless power transmission start information during one cycle of the non-contact charging sequence. Then, charging control is performed according to the “charging power transmission start time” and the “charging power transmission end time” in one cycle of the non-contact charging sequence received by the power receiving device 151. When S218 is omitted, the power transmission apparatus 101 transmits wireless power after a predetermined time after performing the process of S207. The power receiving device 151 may detect the state of receiving wireless power, and may determine the charging power transmission period in one cycle of the non-contact charging sequence in the detected state to perform charging control.

S219では、送電装置101のTX制御部108は、S209で設定した送電電力に従い、TX送電部104を制御して無線電力を送電する。   In S219, the TX control unit 108 of the power transmission apparatus 101 controls the TX power transmission unit 104 according to the transmission power set in S209 to transmit wireless power.

本実施形態では、送電装置101と受電装置151の配置状態が図3(A)、伝送効率80%の状態、電池157の充電が急速充電中かつ定電流制御区間である場合、S219で送電する電力はS209で設定した送電電力2.75Wに設定される。また、充電電力送電時間はS218で設定した5秒とする。   In the present embodiment, when the arrangement state of the power transmission device 101 and the power reception device 151 is FIG. 3A, the transmission efficiency is 80%, the battery 157 is being charged rapidly and is in the constant current control section, power is transmitted in S219. The power is set to the transmitted power 2.75 W set in S209. The charging power transmission time is 5 seconds set in S218.

S219で充電電力設定用の電力を送電する場合は、TX整合部105がTX送電部104からの無線電力送電に適した回路に設定される。   When transmitting power for setting charging power in S219, the TX matching unit 105 is set to a circuit suitable for wireless power transmission from the TX power transmission unit 104.

その後、送電装置101はS219で無線電力を送電した後、処理をS201に戻し、再度ポーリング信号を送信し、図2の非接触充電制御を繰り返す。   Thereafter, the power transmission apparatus 101 transmits wireless power in S219, returns the process to S201, transmits a polling signal again, and repeats the non-contact charging control in FIG.

ここで、受電装置151の動作を説明する。   Here, the operation of the power receiving apparatus 151 will be described.

S261では、受電装置151の非接触IC158は、近距離無線通信による充電電力送電時間情報の書き込みに対して応答信号を送信する。   In S261, the non-contact IC 158 of the power receiving apparatus 151 transmits a response signal in response to writing of charging power transmission time information by short-range wireless communication.

S262では、受電装置151のRX制御部159は、S261で非接触IC158へ充電電力送電開始情報が書き込まれたことをトリガとして、充電電力送電開始情報の1つである“充電電力送電開始時間”に達する前にRX定電圧部155へ充電制御部156を接続する。なお、S262では充電制御部156を接続するのと同時に、RX整合部153が送電装置101のTX送電部104からの無線電力受電に適した回路に設定される。   In S262, the RX control unit 159 of the power receiving apparatus 151 uses “charging power transmission start time” which is one of charging power transmission start information triggered by the writing of charging power transmission start information to the non-contact IC 158 in S261. The charging control unit 156 is connected to the RX constant voltage unit 155 before reaching. In S262, the RX matching unit 153 is set to a circuit suitable for receiving wireless power from the TX power transmission unit 104 of the power transmission apparatus 101 at the same time as the charging control unit 156 is connected.

なお、S261の処理は送電装置101と受電装置151との間で非接触充電を行う際に必須ではない。S261の処理を実行する場合、予め送電装置101から非接触充電シーケンス1サイクル中の無線電力送電開始情報を受信し、受電装置151は非接触充電シーケンス1サイクル中の“充電電力送電開始時間”と“充電電力送電終了時間”とに従って充電制御を行うことになる。S261を省略する場合、受電装置151はS260の処理を実行後、所定の時間を置いてからS262を実行し、その後、無線電力を受電する。受電装置151は無線電力を受電している状態を検出し、その検出状態で非接触充電シーケンス1サイクル中の充電電力受電期間であることを判定して充電制御を行ってもよい。   Note that the process of S261 is not essential when performing non-contact charging between the power transmitting apparatus 101 and the power receiving apparatus 151. When executing the process of S261, the wireless power transmission start information in the first cycle of the non-contact charging sequence is received from the power transmission device 101 in advance, and the power receiving device 151 receives the “charging power transmission start time” in the first cycle of the non-contact charging sequence. Charging control is performed according to the “charging power transmission end time”. When S261 is omitted, the power receiving apparatus 151 executes S262 after executing the process of S260 and then executes S262, and then receives wireless power. The power receiving device 151 may detect the state of receiving wireless power, and may determine the charging power receiving period in one cycle of the non-contact charging sequence in the detected state to perform charging control.

S263では、受電装置151のRX制御部159は、送電装置101から無線電力を受電する。   In S263, the RX control unit 159 of the power receiving apparatus 151 receives wireless power from the power transmitting apparatus 101.

S263で送電装置101から無線電力の受電が終了すると、S264で、受電装置151のRX制御部159は電池157の状態を取得する。S264では、受電装置151は例えば電池157の電圧、温度、充電ステータスを取得するものとする。   When the reception of wireless power from the power transmission apparatus 101 is completed in S263, the RX control unit 159 of the power reception apparatus 151 acquires the state of the battery 157 in S264. In S264, the power receiving apparatus 151 acquires the voltage, temperature, and charging status of the battery 157, for example.

S265では、受電装置151のRX制御部159は、S261で受信した充電電力送電開始情報の1つである“充電電力送電終了時間”に達した後、または、充電電力受電期間が終了後に充電制御部156の接続を解除する。   In S265, the RX control unit 159 of the power receiving apparatus 151 performs charge control after reaching the “charging power transmission end time” which is one of the charging power transmission start information received in S261, or after the charging power receiving period ends. The connection of the unit 156 is released.

S266では、受電装置151のRX制御部159は、S264で取得した電池157の状態において、充電ステータスが満充電であるか否かを判定する。受電装置151のRX制御部159は電池157の充電ステータスが満充電ではないと判定した場合は処理をS251に戻し、再度ポーリング信号を待つ。   In S266, the RX control unit 159 of the power receiving apparatus 151 determines whether or not the charging status is fully charged in the state of the battery 157 acquired in S264. If the RX control unit 159 of the power receiving apparatus 151 determines that the charging status of the battery 157 is not fully charged, the process returns to S251 and waits for a polling signal again.

受電装置151のRX制御部159は電池157の充電ステータスが満充電であると判定した場合は、処理をS267に進め、非接触IC158のデータの一部である装置ステータス情報を更新し、処理を終了する。S267では、装置ステータス情報のうち、電池157の状態に関する、“電池電圧”を更新し、“充電の可否”を可から否に更新する。S267で非接触IC158のデータの一部である装置ステータス情報の1つである“充電の可否”が否になることによって、満充電に達した電池157への頻繁な再充電で電池157の内部セルを痛めることを防止できる。   If the RX control unit 159 of the power receiving apparatus 151 determines that the charging status of the battery 157 is full, the process proceeds to S267, where the apparatus status information that is part of the data of the non-contact IC 158 is updated, and the process is performed. finish. In S267, “battery voltage” related to the state of the battery 157 in the apparatus status information is updated, and “chargeability” is updated from possible to not. In S 267, when “charging is possible” which is one of the device status information which is a part of the data of the non-contact IC 158 is rejected, the battery 157 is frequently recharged and the battery 157 is recharged frequently. It can prevent the cell from being damaged.

非接触IC158のデータの一部である装置ステータス情報の1つである“充電の可否”を可にする場合は、例えば受電装置151の主制御部162およびその周辺機能ブロックを動作させて電池157の電力を消費したことをトリガとして装置ステータス情報を更新してもよい。   In order to enable “chargeability”, which is one piece of device status information that is a part of the data of the non-contact IC 158, for example, the main control unit 162 of the power receiving device 151 and its peripheral function blocks are operated to operate the battery 157. The apparatus status information may be updated by using the power consumption as a trigger.

図7は本実施形態の非接触充電時における充電電力送電時間の制御を概念的に示す図である。   FIG. 7 is a diagram conceptually illustrating control of charging power transmission time during contactless charging according to the present embodiment.

図7(A)は送電装置101と受電装置151との配置が図3(A)、伝送効率80%の状態である場合、図7(B)は送電装置101と受電装置151との配置が図3(B)、伝送効率50%の状態である場合とする。   7A shows the arrangement of the power transmitting apparatus 101 and the power receiving apparatus 151 in FIG. 3A and the transmission efficiency is 80%. FIG. 7B shows the arrangement of the power transmitting apparatus 101 and the power receiving apparatus 151 in FIG. In FIG. 3B, it is assumed that the transmission efficiency is 50%.

図7(A)、図7(B)は共に、受電装置151の電池157の充電が図4の急速充電中かつ定電流制御区間、RX定電圧部155の出力として電力2.2Wが必要な状態の場合の例を示している。   7A and 7B both require charging of the battery 157 of the power receiving device 151 during the rapid charging of FIG. 4 and a constant current control period, and an electric power of 2.2 W as an output of the RX constant voltage unit 155. An example of a state is shown.

図7(A)は非接触充電シーケンス1サイクル中の送電電力2.75W、充電電力送電時間は5秒であるのに対し、図7(B)は非接触充電シーケンス1サイクル中の送電電力4.4W、充電電力送電時間は1秒である。   FIG. 7A shows a transmission power of 2.75 W in one cycle of the contactless charging sequence and a charging power transmission time of 5 seconds, whereas FIG. 7B shows a transmission power of 4 in one cycle of the contactless charging sequence. .4W, charging power transmission time is 1 second.

図2のフローに従えば、送電装置101のTXアンテナ106と受電装置151のRXアンテナ152とのずれが小さく非接触充電時の伝送効率が高い場合は低い場合に比べて、図7(A)のように非接触充電シーケンス1サイクル中の充電電力送電時間を相対的に長くすることが可能である。充電電力送電時間を相対的に長くすることができるため、電磁波の漏れが少なく、より速い時間で電池157の充電を完了することができる。   According to the flow of FIG. 2, the shift between the TX antenna 106 of the power transmission apparatus 101 and the RX antenna 152 of the power reception apparatus 151 is small, and the transmission efficiency at the time of non-contact charging is high, compared to the case of low, FIG. As described above, the charging power transmission time during one cycle of the non-contact charging sequence can be made relatively long. Since the charging power transmission time can be made relatively long, there is little leakage of electromagnetic waves, and charging of the battery 157 can be completed in a faster time.

送電装置101のTXアンテナ106と受電装置151のRXアンテナ152とのずれが大きく非接触充電時の伝送効率が低い場合は高い場合に比べて、図7(B)のように非接触充電シーケンス1サイクル中の充電電力送電時間を相対的に短くすることが可能である。充電電力送電時間を相対的に短くすることができるため、電磁波の漏れと発熱の総量を抑えて電池157の充電を行うことができる。   When the transmission antenna 101 of the power transmission apparatus 101 and the RX antenna 152 of the power receiving apparatus 151 have a large deviation and the transmission efficiency at the time of non-contact charging is low, the non-contact charging sequence 1 as shown in FIG. It is possible to relatively shorten the charging power transmission time during the cycle. Since the charging power transmission time can be relatively shortened, the battery 157 can be charged while suppressing the leakage of electromagnetic waves and the total amount of heat generation.

[実施形態2]次に、図8から図12を参照して、実施形態2の非接触充電制御を説明する。   [Embodiment 2] Next, non-contact charge control of Embodiment 2 will be described with reference to FIGS.

実施形態2では、実施形態1に加えて受電装置151の電池157の電圧情報をさらに用いて充電電力送電時間を設定して、受電装置151の電池157を非接触充電する形態を説明する。   In the second embodiment, a mode in which the charging power transmission time is set by further using the voltage information of the battery 157 of the power receiving device 151 in addition to the first embodiment and the battery 157 of the power receiving device 151 is contactlessly charged will be described.

図8は、実施形態2の非接触充電制御における送電装置101と受電装置151の動作を並列に示すフローチャートである。なお、本実施形態の送電装置と受電装置の構成は、図1と同様である。また、図8のS801〜S809、S818、S819、S851〜S867は、図2のS201〜S209、S218、S219、S251〜S267と同様であるため説明は省略し、異なる点を中心に説明を行う。   FIG. 8 is a flowchart illustrating in parallel the operations of the power transmission device 101 and the power reception device 151 in the contactless charging control according to the second embodiment. In addition, the structure of the power transmission apparatus and power receiving apparatus of this embodiment is the same as that of FIG. 8 are the same as S201 to S209, S218, S219, and S251 to S267 in FIG. 2, and thus description thereof is omitted, and different points are mainly described. .

S810では、送電装置101のTX制御部108は、S803で取得した受電装置151の装置ステータス情報の1つである“電池電圧”が閾値Vt1以上であるか否かを判定する。ここで、“電池電圧”の閾値Vt1およびVt2の関係を図9に示す電池157の充電電圧、充電電流の時間変化を例にして説明する。   In step S810, the TX control unit 108 of the power transmission apparatus 101 determines whether “battery voltage”, which is one of the apparatus status information of the power reception apparatus 151 acquired in step S803, is equal to or higher than the threshold value Vt1. Here, the relationship between the threshold voltages Vt1 and Vt2 of the “battery voltage” will be described with reference to the time change of the charging voltage and charging current of the battery 157 shown in FIG.

図9(A)は電池電圧の時間変化、図9(B)は電池充電電流の時間変化である。図9(A)において、閾値Vt1=3.0Vは電池157のトリクル充電制御と急速充電制御を切り替える閾値電圧である。図9(A)において満充電時の電池電圧Vc=4.2Vとする。閾値Vt2=4.15Vは電池157の急速充電中かつ定電圧制御区間の充電終止状態に近い閾値電圧である。この場合、図9(B)の充電電流は充電終止電流50mAよりも少し多い程度、例えば充電終止電流である50mAから所定倍(3倍程度)の150mA程度の充電電流となる電池電圧とすればよい。   FIG. 9A shows the time change of the battery voltage, and FIG. 9B shows the time change of the battery charging current. In FIG. 9A, the threshold value Vt1 = 3.0V is a threshold voltage for switching between trickle charge control and rapid charge control of the battery 157. In FIG. 9A, the battery voltage Vc at full charge is assumed to be 4.2V. The threshold value Vt2 = 4.15V is a threshold voltage that is close to the charge end state in the constant voltage control section during the rapid charging of the battery 157. In this case, if the charging current of FIG. 9B is a battery voltage that is a little higher than the charging end current of 50 mA, for example, a charging current of about 150 mA that is a predetermined multiple (about 3 times) from 50 mA that is the charging end current. Good.

S810で、送電装置101のTX制御部108は、“電池電圧”が閾値Vt1未満であると判定した場合は処理をS815へ進め、S808で算出した伝送効率が第2の線図(A)において閾値以上であるか否かを判定する。   If the TX control unit 108 of the power transmitting apparatus 101 determines that the “battery voltage” is less than the threshold value Vt1 in S810, the process proceeds to S815, and the transmission efficiency calculated in S808 is the second diagram (A). It is determined whether or not the threshold value is exceeded.

伝送効率の閾値は、例えば図10に示すテーブルに従って決定する。図10に示すテーブルは、例えば送電装置101のTX制御部108に内蔵されたROMに記憶されている。   The threshold value of transmission efficiency is determined according to the table shown in FIG. 10, for example. The table shown in FIG. 10 is stored in a ROM built in the TX control unit 108 of the power transmission apparatus 101, for example.

送電装置101のTX制御部108は、S803で取得した受電装置151の装置ステータス情報の1つである“装置の名称”と装置の組み合わせに従って、伝送効率の閾値判定に用いる線図を決定する。なお、装置の組み合わせによって伝送効率の閾値判定に用いる線図は変更してよい。   The TX control unit 108 of the power transmitting apparatus 101 determines a diagram to be used for threshold determination of transmission efficiency according to the combination of “apparatus name” which is one of the apparatus status information of the power receiving apparatus 151 acquired in step S803 and the apparatus. Note that the diagram used for threshold determination of transmission efficiency may be changed depending on the combination of devices.

例えば、図10の装置の組み合わせに基づく最大伝送効率と電池電圧および線図の関係を規定したテーブルに従えば、送電装置101と受電装置151との組み合わせの場合、電池電圧が閾値Vt1未満または閾値Vt2以上であれば伝送効率の閾値判定に用いるのは図11(B)の第2の線図(A)である。そして、電池電圧が閾値Vt1以上、閾値Vt2未満であれば伝送効率の閾値判定に用いるのは図11(A)の第1の線図(A)である。   For example, according to a table that defines the relationship between the maximum transmission efficiency based on the combination of devices in FIG. 10 and the battery voltage and the diagram, in the case of a combination of the power transmitting device 101 and the power receiving device 151, the battery voltage is less than the threshold Vt1 or the threshold If it is Vt2 or more, the second diagram (A) in FIG. 11 (B) is used for threshold determination of transmission efficiency. If the battery voltage is equal to or higher than the threshold value Vt1 and lower than the threshold value Vt2, it is the first diagram (A) in FIG.

図11は伝送効率の閾値判定に用いる第2の線図の例である。図11(A)の伝送効率と充電電力送電時間の第2の線図(A)は例えばリニアに変化する。   FIG. 11 is an example of a second diagram used for threshold determination of transmission efficiency. The second diagram (A) of the transmission efficiency and charging power transmission time in FIG. 11 (A) changes linearly, for example.

図11(A)の第1の線図(A)は、伝送効率30%未満であれば非接触充電シーケンス1サイクル中の充電電力送電時間を初期値1秒とし、そこからリニアに増加し、伝送効率65%以上では充電電力送電時間を8秒とする。   In the first diagram (A) of FIG. 11 (A), if the transmission efficiency is less than 30%, the charging power transmission time in one cycle of the non-contact charging sequence is set to an initial value of 1 second, and increases linearly therefrom. When the transmission efficiency is 65% or more, the charging power transmission time is 8 seconds.

図11(B)の伝送効率と充電電力送電時間の第2の線図(B)は例えば段階的に変化する。なお、第1の線図は実施形態1の図6と同様である。   The second diagram (B) of the transmission efficiency and charging power transmission time in FIG. 11 (B) changes stepwise, for example. The first diagram is the same as FIG. 6 of the first embodiment.

図6および図11に示す伝送効率と充電電力送電時間の第1の線図および第2の線図は、例えば送電装置101のTX制御部108に内蔵されているROMに記憶されており、いずれかが選択可能である。   The first diagram and the second diagram of the transmission efficiency and the charging power transmission time shown in FIGS. 6 and 11 are stored in, for example, the ROM built in the TX control unit 108 of the power transmission apparatus 101. Can be selected.

なお、図6および図11に示す伝送効率と充電電力送電時間の第1の線図および第2の線図の数値は、本実施形態を説明するための一例であり、状況に応じて適宜変更してよい。   The numerical values in the first diagram and the second diagram of the transmission efficiency and the charging power transmission time shown in FIGS. 6 and 11 are examples for explaining the present embodiment, and are appropriately changed according to the situation. You can do it.

S815で、送電装置101のTX制御部108は、S808で算出した伝送効率が第2の線図(A)において閾値未満であると判定した場合は処理をS816に進める。   If the TX control unit 108 of the power transmission apparatus 101 determines in S815 that the transmission efficiency calculated in S808 is less than the threshold value in the second diagram (A), the process proceeds to S816.

S816では、送電装置101のTX制御部108は、非接触充電シーケンス1サイクル中の充電電力送電時間を第2の線図(A)に従う初期値に設定する。   In S816, the TX control unit 108 of the power transmission apparatus 101 sets the charging power transmission time during one cycle of the non-contact charging sequence to an initial value according to the second diagram (A).

S815で、送電装置101のTX制御部108は、S808で算出した伝送効率が第2の線図(A)において閾値以上であると判定した場合は処理をS817に進める。   If the TX control unit 108 of the power transmission apparatus 101 determines in S815 that the transmission efficiency calculated in S808 is equal to or greater than the threshold in the second diagram (A), the process proceeds to S817.

S817では、送電装置101のTX制御部108は、非接触充電シーケンス1サイクル中の充電電力送電時間を第2の線図(A)に従う拡張値に設定する。   In S817, the TX control unit 108 of the power transmission apparatus 101 sets the charging power transmission time during one cycle of the non-contact charging sequence to an extended value according to the second diagram (A).

S810で、送電装置101のTX制御部108は、“電池電圧”が閾値Vt1以上であると判定した場合は処理をS811へ進める。   If the TX control unit 108 of the power transmission apparatus 101 determines in S810 that the “battery voltage” is equal to or higher than the threshold value Vt1, the process proceeds to S811.

S811では、送電装置101のTX制御部108は、S803で取得した受電装置151の装置ステータス情報の1つである“電池電圧”が閾値Vt2以上であるか否かを判定する。送電装置101は“電池電圧”が閾値Vt2以上であると判定した場合は処理をS815へ進め、“電池電圧”が閾値Vt2未満であると判定した場合は処理をS812へ進める。   In S811, the TX control unit 108 of the power transmission apparatus 101 determines whether or not “battery voltage”, which is one of the apparatus status information of the power receiving apparatus 151 acquired in S803, is equal to or higher than the threshold value Vt2. If the power transmission apparatus 101 determines that the “battery voltage” is equal to or greater than the threshold value Vt2, the process proceeds to step S815. If the power transmission apparatus 101 determines that the “battery voltage” is less than the threshold value Vt2, the process proceeds to step S812.

S812では、送電装置101のTX制御部108は、S808で算出した伝送効率が第1の線図(A)において閾値以上であるか否かを判定する。送電装置101はS808で算出した伝送効率が第1の線図(A)において閾値未満であると判定した場合は処理をS813に進め、閾値以上であると判定した場合は処理をS814に進める。   In S812, the TX control unit 108 of the power transmission apparatus 101 determines whether or not the transmission efficiency calculated in S808 is equal to or greater than a threshold in the first diagram (A). If the power transmission apparatus 101 determines that the transmission efficiency calculated in S808 is less than the threshold in the first diagram (A), the process proceeds to S813, and if it is determined that the transmission efficiency is greater than or equal to the threshold, the process proceeds to S814.

S813では、送電装置101のTX制御部108は、非接触充電シーケンス1サイクル中の充電電力送電時間を第1の線図(A)に従う初期値に設定する。   In S813, the TX control unit 108 of the power transmission apparatus 101 sets the charging power transmission time during one cycle of the non-contact charging sequence to an initial value according to the first diagram (A).

S814では、送電装置101のTX制御部108は、非接触充電シーケンス1サイクル中の充電電力送電時間を第1の線図(A)に従う拡張値に設定する。   In S814, the TX control unit 108 of the power transmission apparatus 101 sets the charging power transmission time during one cycle of the non-contact charging sequence to an extended value according to the first diagram (A).

例えば電池157の“電池電圧”が閾値Vt1=3.0V未満または閾値Vt2=4.15V以上であって、送電装置101と受電装置151の配置状態が図3(B)の状態の場合、伝送効率は50%であり、図11(A)の第2の線図(A)の閾値を超えている。よって、非接触充電シーケンス1サイクル中の充電電力送電時間は拡張値に設定される。伝送効率50%において、非接触充電シーケンス1サイクル中の充電電力送電時間は5秒となる。   For example, when the “battery voltage” of the battery 157 is less than the threshold value Vt1 = 3.0V or the threshold value Vt2 = 4.15V and the arrangement state of the power transmission apparatus 101 and the power reception apparatus 151 is the state shown in FIG. The efficiency is 50%, which exceeds the threshold of the second diagram (A) in FIG. Therefore, the charging power transmission time in one cycle of the non-contact charging sequence is set to an extended value. When the transmission efficiency is 50%, the charging power transmission time in one cycle of the non-contact charging sequence is 5 seconds.

例えば電池157の“電池電圧”が閾値Vt1=3.0V以上、閾値Vt2=4.15V未満であって、送電装置101と受電装置151の配置状態が図3(B)の状態の場合、伝送効率は50%であり、図6(A)の第1の線図(A)の閾値未満である。よって、非接触充電シーケンス1サイクル中の充電電力送電時間は初期値に設定される。伝送効率50%において、非接触充電シーケンス1サイクル中の充電電力送電時間は1秒となる。   For example, when the “battery voltage” of the battery 157 is greater than or equal to the threshold value Vt1 = 3.0V and less than the threshold value Vt2 = 4.15V, and the arrangement state of the power transmission apparatus 101 and the power reception apparatus 151 is the state shown in FIG. The efficiency is 50%, which is less than the threshold of the first diagram (A) in FIG. Therefore, the charging power transmission time in one cycle of the non-contact charging sequence is set to an initial value. When the transmission efficiency is 50%, the charging power transmission time in one cycle of the non-contact charging sequence is 1 second.

図12は本実施形態の非接触充電時における充電電力送電時間の制御を概念的に示す図である。   FIG. 12 is a diagram conceptually illustrating control of charging power transmission time during contactless charging according to the present embodiment.

図12(A)は受電装置151の電池157の“電池電圧”が閾値Vt1=3.0V未満または閾値Vt2=4.15V以上であって、送電装置101と受電装置151との配置が図3(B)、伝送効率50%の状態である場合とする。図12(A)は受電装置151の電池157の充電が図9におけるトリクル充電中、または急速充電中かつ定電圧制御区間の中でも充電終止に近い状態であり、RX定電圧部155の出力として電力0.35Wが必要な状態の場合を例に説明する。   12A shows that the “battery voltage” of the battery 157 of the power receiving apparatus 151 is less than the threshold value Vt1 = 3.0 V or more than the threshold value Vt2 = 4.15 V, and the arrangement of the power transmitting apparatus 101 and the power receiving apparatus 151 is as shown in FIG. (B) Assume that the transmission efficiency is 50%. FIG. 12A shows a state in which charging of the battery 157 of the power receiving apparatus 151 is during trickle charging or rapid charging in FIG. 9 and close to the end of charging in the constant voltage control section, and power is output as the output of the RX constant voltage unit 155. A case where 0.35 W is required will be described as an example.

図12(B)は受電装置151の電池157の“電池電圧”が閾値Vt1=3.0V以上、閾値Vt2=4.15V未満であって、送電装置101と受電装置151との配置が図3(B)、伝送効率50%の状態である場合とする。図12(B)は受電装置151の電池157の充電が図9の急速充電中かつ定電流制御区間であり、RX定電圧部155の出力として電力2.2Wが必要な状態の場合を例に説明する。   12B shows that the “battery voltage” of the battery 157 of the power receiving apparatus 151 is not less than the threshold value Vt1 = 3.0 V and less than the threshold value Vt2 = 4.15 V, and the arrangement of the power transmitting apparatus 101 and the power receiving apparatus 151 is as shown in FIG. (B) Assume that the transmission efficiency is 50%. FIG. 12B illustrates an example in which charging of the battery 157 of the power receiving device 151 is during the rapid charging and the constant current control section of FIG. 9 and the power of 2.2 W is required as the output of the RX constant voltage unit 155. explain.

図12(A)は非接触充電シーケンス1サイクル中の送電電力0.7W、充電電力送電時間は5秒であるのに対し、図12(B)は非接触充電シーケンス1サイクル中の送電電力4.4W、充電電力送電時間は1秒である。   FIG. 12A shows a transmission power of 0.7 W during one cycle of the non-contact charging sequence and a charging power transmission time of 5 seconds, while FIG. 12B shows a transmission power of 4 during one cycle of the non-contact charging sequence. .4W, charging power transmission time is 1 second.

本実施形態の図8のフローに従えば実施形態1の効果に加えて以下の効果が得られる。   According to the flow of FIG. 8 of the present embodiment, the following effects are obtained in addition to the effects of the first embodiment.

送電装置101と受電装置151のアンテナのずれが大きく非接触充電時の伝送効率が低い場合であっても、電池電圧によって図12(B)のように非接触充電シーケンス1サイクル中の充電電力送電時間を相対的に長くすることができる。   Even when the antenna difference between the power transmitting apparatus 101 and the power receiving apparatus 151 is large and the transmission efficiency at the time of non-contact charging is low, the charging power transmission during one cycle of the non-contact charging sequence as shown in FIG. The time can be made relatively long.

充電に供する電力が低い場合は、電磁波の漏れと発熱の総量は自ずと抑えられることになるため、非接触充電シーケンス1サイクル中の充電電力送電時間を相対的に長くすることで、放電状態が大きい電池であればより速い電圧の復帰、そして、より速い時間で電池157の充電を完了することができる。   When the power supplied for charging is low, the total amount of electromagnetic wave leakage and heat generation is naturally suppressed. Therefore, the discharge state is large by relatively increasing the charging power transmission time in one cycle of the non-contact charging sequence. If the battery is used, the voltage can be restored faster and the battery 157 can be charged in a faster time.

[実施形態3]次に、図13を参照して、実施形態3の非接触充電システムを説明する。   [Third Embodiment] Next, a non-contact charging system according to a third embodiment will be described with reference to FIG.

実施形態1、2では、送電装置と受電装置は、近距離無線通信用のアンテナと充電電力送受電用のアンテナを共用する構成を説明した。   In the first and second embodiments, the power transmission device and the power reception device have been described to share the antenna for short-range wireless communication and the antenna for charging power transmission / reception.

本実施形態では、送電装置と受電装置は、近距離無線通信用のアンテナと充電電力送受電用のアンテナを別々に備える構成を説明する。   In the present embodiment, a configuration in which the power transmission device and the power reception device are separately provided with an antenna for short-range wireless communication and an antenna for charging power transmission and reception will be described.

図13は本実施形態の送電装置と受電装置の構成例を示すブロック図である。本実施形態の説明に使用するブロック図は、本実施形態の説明に不要なブロックへの電源接続は省略している。また、本実施形態の説明に不要なブロックと動作の詳細な説明は省略する。   FIG. 13 is a block diagram illustrating a configuration example of the power transmission device and the power reception device of the present embodiment. In the block diagram used for the description of the present embodiment, power supply connections to blocks that are not necessary for the description of the present embodiment are omitted. Also, detailed descriptions of blocks and operations that are not necessary for the description of the present embodiment are omitted.

図13において、送電装置1301の各機能ブロック1302〜1310は、図2の機能ブロック102〜110と同様であり、受電装置1351の各機能ブロック1352〜1370は、図2の機能ブロック152〜170と同様であるため説明は省略し、異なる点を中心に説明を行う。   13, functional blocks 1302 to 1310 of the power transmitting apparatus 1301 are the same as the functional blocks 102 to 110 of FIG. 2, and functional blocks 1352 to 1370 of the power receiving apparatus 1351 are functional blocks 152 to 170 of FIG. The description is omitted because it is the same, and the description will focus on the different points.

送電装置1301と受電装置1351は、装置間の近距離無線通信をTX通信アンテナ1322およびRX通信アンテナ1381で行い、無線電力の送受電は実施形態1および実施形態2と同様にTXアンテナ1306およびRXアンテナ1352で行う。   The power transmission device 1301 and the power reception device 1351 perform short-range wireless communication between the devices using the TX communication antenna 1322 and the RX communication antenna 1381, and wireless power transmission / reception is performed using the TX antenna 1306 and the RX as in the first and second embodiments. This is done with the antenna 1352.

送電装置1301のTX通信アンテナ1322と非接触ICリーダライタ1309の間には、近距離無線通信に最適化されたTX通信整合部1321が配置されている。受電装置1351のRX通信アンテナ1381と非接触IC1358の間には、近距離無線通信に最適化されたRX通信整合部1382が配置されている。   A TX communication matching unit 1321 optimized for short-range wireless communication is disposed between the TX communication antenna 1322 and the non-contact IC reader / writer 1309 of the power transmission device 1301. An RX communication matching unit 1382 optimized for short-range wireless communication is disposed between the RX communication antenna 1381 and the non-contact IC 1358 of the power receiving apparatus 1351.

非接触IC1358が、例えば近距離無線通信の国際標準規格であるISO/IEC21481に対応している場合、TX通信アンテナ1322およびX通信アンテナ1381はHF帯である13.56MHz付近に共振周波数を有するアンテナである。   When the non-contact IC 1358 is compatible with, for example, ISO / IEC21481 which is an international standard for short-range wireless communication, the TX communication antenna 1322 and the X communication antenna 1381 are antennas having a resonance frequency near 13.56 MHz which is the HF band. It is.

本実施形態では、送電装置と受電装置の間で、2対のアンテナの一方を近距離無線通信用として用いるため、もう一方のアンテナで充電用の無線電力の送受電が可能となる。よって、充電用の無線電力の送受電に用いるTXアンテナ1306とTX整合部1305、RXアンテナ1352とRX整合部1353はHF帯である13.56MHz付近に共振周波数を有するアンテナである必要がなく、様々な周波数帯の構成を適用することが可能である。例えばLF帯である100〜400kHzに共振周波数を持つ電磁誘導型コイルをアンテナとして構成してもよい。   In the present embodiment, since one of the two pairs of antennas is used for short-range wireless communication between the power transmission device and the power reception device, the other antenna can transmit and receive wireless power for charging. Therefore, the TX antenna 1306 and the TX matching unit 1305, and the RX antenna 1352 and the RX matching unit 1353 used for transmitting and receiving the wireless power for charging do not need to be antennas having a resonance frequency near 13.56 MHz which is the HF band. Various frequency band configurations can be applied. For example, an electromagnetic induction coil having a resonance frequency in the LF band of 100 to 400 kHz may be configured as an antenna.

[他の実施形態]
上述した実施形態1から3では、送電装置と受電装置との間で送受電される充電用の無線電力の伝送効率を算出し、算出した伝送効率に応じて受電装置の二次電池を充電するための無線電力の送電時間を制御する形態を説明した。これに対して、伝送効率の算出のための電力を送電する手順を省略し、無線通信中の電力を測定しその結果に基づいて伝送効率を算出する構成としてもよい。
[Other Embodiments]
In Embodiments 1 to 3 described above, the transmission efficiency of charging wireless power transmitted and received between the power transmission device and the power reception device is calculated, and the secondary battery of the power reception device is charged according to the calculated transmission efficiency. The form which controls the power transmission time of the wireless power for the purpose has been described. On the other hand, the procedure for transmitting the power for calculating the transmission efficiency may be omitted, the power during wireless communication may be measured, and the transmission efficiency may be calculated based on the result.

また、本発明を適用可能な充電電力送電時間の設定は伝送効率を用いる方法でなくてもよい。伝送効率の代わりに無線通信中の磁束によるアンテナの結合係数や、進行波と反射波によるアンテナの電圧定在波比によって充電電力送電時間を設定しても本発明を適用可能である。その場合、図1および図13のブロック図には上記アンテナの結合係数やアンテナの電圧定在波比を測定するための機能ブロックが追加されることになる。そして、図6および図11の線図における伝送効率はアンテナの結合係数やアンテナの電圧定在波比に置き換えられ、適宜線図に対する数値が設定されることになる。   The setting of the charging power transmission time to which the present invention is applicable may not be a method using transmission efficiency. The present invention can be applied even if the charging power transmission time is set by the coupling coefficient of the antenna due to the magnetic flux during wireless communication or the voltage standing wave ratio of the antenna by the traveling wave and the reflected wave instead of the transmission efficiency. In that case, functional blocks for measuring the coupling coefficient of the antenna and the voltage standing wave ratio of the antenna are added to the block diagrams of FIGS. The transmission efficiency in the diagrams of FIGS. 6 and 11 is replaced with the antenna coupling coefficient and the antenna voltage standing wave ratio, and numerical values for the diagrams are set as appropriate.

実施形態2、3では、送電装置と受電装置との間で非接触通信を行い、電池電圧を取得し充電電力送電時間を設定するための線図を選択する形態を説明した。これに対して、本発明を適用可能な充電電力送電時間を設定するための線図選択は電池電圧を用いる方法でなくてもよい。例えば、充電制御部156で電池の充電電流などから充電モードを判定し、受電装置151のRX制御部159が充電モードを取得し、さらに送電装置101が充電モードを取得し、取得した充電モードにより充電電力送電時間を設定するための線図を選択してもよい。なお、充電モードとは、例えばトリクル充電、急速充電中の定電流制御区間、急速充電中の定電圧制御区間、急速充電中の定電圧制御区間で充電終止タイマ差動中などのモードであってもよい。   In the second and third embodiments, a mode has been described in which contactless communication is performed between a power transmission device and a power reception device, a battery voltage is acquired, and a diagram for setting a charging power transmission time is selected. On the other hand, the diagram selection for setting the charging power transmission time to which the present invention is applicable may not be a method using the battery voltage. For example, the charging control unit 156 determines the charging mode from the charging current of the battery, the RX control unit 159 of the power receiving apparatus 151 acquires the charging mode, the power transmission apparatus 101 acquires the charging mode, and the acquired charging mode depends on the acquired charging mode. A diagram for setting the charging power transmission time may be selected. Note that the charge mode is a mode such as trickle charge, constant current control section during quick charge, constant voltage control section during quick charge, or during charge termination timer differential in constant voltage control section during quick charge. Also good.

その場合、図8のフローの非接触充電シーケンス1サイクルの中で最初の装置ステータス情報取得時には充電モードを取得できないので、図6および図11の線図では拡張値でなく初期値が設定されることになる。   In that case, since the charging mode cannot be acquired when the first device status information is acquired in one cycle of the non-contact charging sequence in the flow of FIG. 8, the initial values are set instead of the extended values in the diagrams of FIGS. It will be.

また、実施形態1から3では、充電電力送電時間は、図6および図11に示す伝送効率と充電電力送電時間の関係を規定した線図従って設定されることを説明したが、本発明を適用可能な充電電力送電時間の設定は線図に限ったものでない。例えばルックアップテーブルの参照や数式を用いた演算によって充電電力送電時間の設定を変えてよい。この場合、ルックアップテーブルや数式は送電装置に記憶しておくことになる。   Further, in the first to third embodiments, it has been described that the charging power transmission time is set according to the diagram defining the relationship between the transmission efficiency and the charging power transmission time shown in FIGS. 6 and 11, but the present invention is applied. Possible charging power transmission time settings are not limited to diagrams. For example, the charging power transmission time setting may be changed by referring to a lookup table or calculating using a mathematical expression. In this case, the lookup table and the mathematical formula are stored in the power transmission device.

また、実施形態1から3では、非接触ICの近距離無線通信のコマンドとしてJISX6319−4のコマンドを用いて非接触ICの捕捉、読み込み/書き込みを行う例を説明したが、本発明を適用可能な非接触ICの無線通信のコマンドはこれに限らない。例えばISO/IEC14443のコマンドやISO/IEC15693のコマンドを用いて非接触ICを捕捉、読み込み/書き込みしても本発明を適用可能である。   In the first to third embodiments, the example in which the non-contact IC is captured and read / written using the JISX6319-4 command as the short-range wireless communication command of the non-contact IC has been described. However, the present invention can be applied. The wireless communication command of such non-contact IC is not limited to this. For example, the present invention can be applied even when a non-contact IC is captured and read / written using an ISO / IEC 14443 command or an ISO / IEC 15693 command.

また、実施形態1から3では、非接触ICは近距離無線通信の国際標準規格であるISO/IEC21481に対応しているものとして説明したが、本発明を適用可能な非接触ICの無線通信規格はISO/IEC21481に限ったものでない。外部からの電磁波を電力として動作する非接触ICであればどのような規格であっても適用可能である。電磁波の周波数で説明すると、ISO/IEC21481の13.56MHzでなくてもISO/IEC18000規格の各パートの周波数kHz帯〜GHz帯であっても本発明を適用可能である。   In the first to third embodiments, the non-contact IC is described as being compatible with ISO / IEC 21481, which is an international standard for short-range wireless communication. However, the wireless communication standard for a non-contact IC to which the present invention can be applied. Is not limited to ISO / IEC21481. Any standard can be applied as long as it is a non-contact IC that operates using external electromagnetic waves as power. In terms of the frequency of electromagnetic waves, the present invention can be applied even if the frequency is in the frequency band of kHz to GHz of each part of the ISO / IEC18000 standard, even if it is not 13.56 MHz of ISO / IEC21481.

また、実施形態1では充電用の無線電力の送受電に用いるアンテナをHF帯である13.56MHz付近に共振周波数を持つアンテナとして説明した。実施形態2では充電用の無線電力の送受電に用いるアンテナを例えばLF帯である100〜400kHzに共振周波数を持つ電磁誘導型コイルをアンテナとして構成してもよいことを説明した。しかし、本発明を適用可能な充電用の無線電力の送受電に用いる周波数帯は上記HF帯やLF帯に限ったものでなく、無線電力の送受電可能な電磁波であればどのような周波数であっても本発明を適用可能である。   In the first embodiment, the antenna used for transmitting and receiving the wireless power for charging is described as an antenna having a resonance frequency near 13.56 MHz which is the HF band. In the second embodiment, it has been described that the antenna used for transmitting and receiving the wireless power for charging may be an electromagnetic induction coil having a resonance frequency in the LF band of 100 to 400 kHz, for example. However, the frequency band used for transmission / reception of charging wireless power to which the present invention is applicable is not limited to the HF band or LF band, and any frequency can be used as long as it can transmit and receive wireless power. Even if it exists, this invention is applicable.

また、実施形態1から3では、受電装置の無線通信手段として非接触ICを例に説明したが、本発明を適用可能な無線通信手段は非接触ICに限ったものでない。受電装置は非接触ICの代わりに非接触ICリーダライタを備え、カードエミュレーションモードやP2Pモードで無線通信を行っても本発明を適用可能である。   In the first to third embodiments, the non-contact IC is described as an example of the wireless communication unit of the power receiving apparatus. However, the wireless communication unit to which the present invention can be applied is not limited to the non-contact IC. The power receiving apparatus includes a contactless IC reader / writer instead of the contactless IC, and the present invention can be applied even if wireless communication is performed in the card emulation mode or the P2P mode.

さらに、本発明の無線通信手段はWLAN規格であるIEEE802.11および近距離無線規格であるIEEE802.15.1であってもよい。要は、本発明は送電装置と受電装置間で無線通信を行い、充電用の無線電力を送受電する装置構成であれば、無線通信手段と充電用の無線電力の送受電手段は何であっても構わない。   Furthermore, the wireless communication means of the present invention may be IEEE 802.11, which is a WLAN standard, and IEEE 802.15.1, which is a short-range wireless standard. In short, as long as the present invention is a device configuration that performs wireless communication between a power transmission device and a power reception device and transmits and receives wireless power for charging, what is the wireless communication means and the power transmission and reception means for wireless power for charging? It doesn't matter.

また、本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。   Further, the present invention supplies a program that realizes one or more functions of the above-described embodiment to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus execute the program. It can also be realized by a process of reading and executing. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.

101、1301…送電装置(充電制御装置)、106、1306…TXアンテナ、108、1308…TX制御部、151、1351…受電装置、152、1352…RXアンテナ、162、1362…RX制御部 101, 1301 ... Power transmission device (charge control device), 106, 1306 ... TX antenna, 108, 1308 ... TX control unit, 151, 1351 ... Power receiving device, 152, 1352 ... RX antenna, 162, 1362 ... RX control unit

Claims (21)

受電装置と無線通信可能な無線通信手段と、
前記受電装置に無線で電力を送電可能な電力送電手段と、
前記受電装置との間での前記無線通信手段による無線通信と、前記電力送電手段による送電を制御する制御手段と、を有し、
前記制御手段は、前記受電装置へ送電した電力と前記受電装置が受電した電力とに基づき送電電力の伝送効率を取得し、
前記伝送効率が所定の閾値以上の場合は前記所定の閾値未満の場合に比べて電力送電時間を相対的に長くするように制御することを特徴とする充電制御装置。
Wireless communication means capable of wireless communication with the power receiving device;
Power transmission means capable of wirelessly transmitting power to the power receiving device;
Wireless communication by the wireless communication means with the power receiving device, and control means for controlling power transmission by the power transmission means,
The control means acquires transmission efficiency of transmitted power based on the power transmitted to the power receiving device and the power received by the power receiving device,
When the transmission efficiency is equal to or higher than a predetermined threshold value, the charging control device controls the power transmission time to be relatively longer than that when the transmission efficiency is lower than the predetermined threshold value.
前記制御手段は、前記受電装置の電池電圧が第1の閾値未満の場合は前記伝送効率が前記所定の閾値未満の場合であっても前記電力送電時間を長くするように制御することを特徴とする請求項1に記載の充電制御装置。   The control means controls the power transmission time to be increased when the battery voltage of the power receiving apparatus is less than a first threshold value even when the transmission efficiency is less than the predetermined threshold value. The charge control device according to claim 1. 前記電池電圧が前記第1の閾値未満の場合は前記受電装置の電池のトリクル充電中であることを特徴とする請求項2に記載の充電制御装置。   The charge control device according to claim 2, wherein when the battery voltage is less than the first threshold value, trickle charging of the battery of the power receiving device is being performed. 前記制御手段は、前記電池電圧が前記第1の閾値未満の場合または前記第1の閾値より大きい第2の閾値以上の場合は、前記伝送効率が前記所定の閾値未満の場合であっても前記電力送電時間を長くするように制御することを特徴とする請求項2に記載の充電制御装置。   When the battery voltage is less than the first threshold or greater than or equal to a second threshold greater than the first threshold, the control means may The charging control device according to claim 2, wherein control is performed so as to lengthen the power transmission time. 前記第2の閾値は、前記受電装置の電池の充電終止電流から所定倍の充電電流となる電圧であることを特徴とする請求項4に記載の充電制御装置。   5. The charge control device according to claim 4, wherein the second threshold value is a voltage that is a predetermined multiple of charge current from a charge termination current of a battery of the power receiving device. 前記電力送電時間は、前記伝送効率が前記所定の閾値未満の場合の初期値と、前記初期値から増加する線図に従って設定されることを特徴とする請求項4または5に記載の充電制御装置。   The charge control device according to claim 4 or 5, wherein the power transmission time is set according to an initial value when the transmission efficiency is less than the predetermined threshold and a diagram increasing from the initial value. . 前記線図は前記電力送電時間が前記初期値からリニアに変化することを特徴とする請求項6に記載の充電制御装置。   The charge control device according to claim 6, wherein the power transmission time varies linearly from the initial value in the diagram. 前記線図は前記電力送電時間が前記初期値から段階的に変化することを特徴とする請求項6に記載の充電制御装置。   The charging control device according to claim 6, wherein the power transmission time of the diagram changes stepwise from the initial value. 前記線図は、送電装置と受電装置の組み合わせに基づく最大伝送効率との関係から決定されることを特徴とする請求項6から8のいずれか1項に記載の充電制御装置。   The charge control device according to claim 6, wherein the diagram is determined from a relationship with a maximum transmission efficiency based on a combination of a power transmission device and a power reception device. 前記線図は、送電装置と受電装置の組み合わせに基づく最大伝送効率と電池電圧の関係から決定されることを特徴とする請求項6から8のいずれか1項に記載の充電制御装置。   The charge control device according to any one of claims 6 to 8, wherein the diagram is determined from a relationship between a maximum transmission efficiency and a battery voltage based on a combination of a power transmission device and a power reception device. 前記線図は、前記電池電圧が前記第1の閾値以上の場合かつ前記第2の閾値未満の場合の第1の線図と、前記電池電圧が前記第1の閾値未満の場合または前記第2の閾値以上の場合の第2の線図を含み、前記第2の線図は前記第1の線図よりも前記伝送効率の閾値が低いことを特徴とする請求項10に記載の充電制御装置。   The diagram includes a first diagram when the battery voltage is greater than or equal to the first threshold and less than the second threshold, and a case where the battery voltage is less than the first threshold or the second 11. The charging control device according to claim 10, further comprising a second diagram when the threshold is equal to or greater than a threshold value, wherein the second diagram has a lower threshold for the transmission efficiency than the first diagram. . 前記電力送電時間は、非接触充電制御における1サイクルの時間であることを特徴とする請求項1から11のいずれか1項に記載の充電制御装置。   The charge control device according to any one of claims 1 to 11, wherein the power transmission time is one cycle time in contactless charge control. 前記制御手段は、充電用の電力を送電する前に所定の電力を送電することで伝送効率を算出することを特徴とする請求項1から12のいずれか1項に記載の充電制御装置。   The charging control apparatus according to claim 1, wherein the control unit calculates transmission efficiency by transmitting predetermined power before transmitting charging power. 前記制御手段は、無線通信中の電力を測定した結果に基づいて伝送効率を算出することを特徴とする請求項1から12のいずれか1項に記載の充電制御装置。   The charging control apparatus according to claim 1, wherein the control unit calculates transmission efficiency based on a result of measuring power during wireless communication. 前記伝送効率に代えてアンテナの結合係数を用いることを特徴とする請求項1から14のいずれか1項に記載の充電制御装置。   The charging control apparatus according to claim 1, wherein a coupling coefficient of an antenna is used instead of the transmission efficiency. 前記伝送効率に代えてアンテナの定在波比を用いることを特徴とする請求項1から14のいずれか1項に記載の充電制御装置。   The charging control apparatus according to claim 1, wherein a standing wave ratio of an antenna is used instead of the transmission efficiency. 前記線図に代えてルックアップテーブルまたは数式を用いることを特徴とする請求項6から11のいずれか1項に記載の充電制御装置。   The charge control device according to any one of claims 6 to 11, wherein a lookup table or a mathematical expression is used instead of the diagram. 前記無線通信手段と前記電力送電手段はアンテナを共用することを特徴とする請求項1から17のいずれか1項に記載の充電制御装置。   The charging control device according to claim 1, wherein the wireless communication unit and the power transmission unit share an antenna. 前記無線通信手段は無線通信用のアンテナを有し、前記電力送電手段は無線で電力を送電するためのアンテナを有することを特徴とする請求項1から17のいずれか1項に記載の充電制御装置。   The charging control according to any one of claims 1 to 17, wherein the wireless communication unit includes an antenna for wireless communication, and the power transmission unit includes an antenna for transmitting power wirelessly. apparatus. 受電装置と無線通信可能な無線通信手段と、
前記受電装置に無線で電力を送電可能な電力送電手段と、を有する充電制御装置の制御方法であって、
前記受電装置との間での前記無線通信手段による無線通信と、前記電力送電手段による送電を制御するステップを有し、
前記制御するステップでは、前記受電装置へ送電した電力と前記受電装置が受電した電力とに基づき送電電力の伝送効率を取得し、
前記伝送効率が所定の閾値以上の場合は前記所定の閾値未満の場合に比べて電力送電時間を相対的に長くするように制御することを特徴とする充電制御装置の制御方法。
Wireless communication means capable of wireless communication with the power receiving device;
A method of controlling a charging control device comprising: a power transmission means capable of wirelessly transmitting power to the power receiving device;
Controlling wireless communication by the wireless communication means with the power receiving device and power transmission by the power transmission means,
In the controlling step, the transmission efficiency of the transmitted power is acquired based on the power transmitted to the power receiving device and the power received by the power receiving device,
A control method for a charge control device, wherein when the transmission efficiency is equal to or greater than a predetermined threshold, control is performed such that the power transmission time is relatively longer than when the transmission efficiency is less than the predetermined threshold.
コンピュータを、請求項1から19のいずれか1項に記載された充電制御装置の制御手段として機能させるためのプログラム。   The program for functioning a computer as a control means of the charge control apparatus as described in any one of Claim 1 to 19.
JP2017026362A 2017-02-15 2017-02-15 Charge control device and control method thereof, and program Pending JP2018133922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017026362A JP2018133922A (en) 2017-02-15 2017-02-15 Charge control device and control method thereof, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017026362A JP2018133922A (en) 2017-02-15 2017-02-15 Charge control device and control method thereof, and program

Publications (1)

Publication Number Publication Date
JP2018133922A true JP2018133922A (en) 2018-08-23

Family

ID=63248737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017026362A Pending JP2018133922A (en) 2017-02-15 2017-02-15 Charge control device and control method thereof, and program

Country Status (1)

Country Link
JP (1) JP2018133922A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114175453A (en) * 2019-08-19 2022-03-11 欧姆龙株式会社 Wireless power transmission system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110199A (en) * 2010-10-27 2012-06-07 Equos Research Co Ltd Electric power transmission system
JP2012125112A (en) * 2010-12-10 2012-06-28 Hitachi Ltd Wireless power transmission system, power transmitting device, and power receiving device
JP2013090483A (en) * 2011-10-19 2013-05-13 Toshiba Tec Corp Power transmission device, power transmitter, power receiver, and power transmission method
JP2013135572A (en) * 2011-12-27 2013-07-08 Toyota Motor Corp Non contact power reception device and non contact charging system
JP2013172506A (en) * 2012-02-20 2013-09-02 Sumitomo Electric Ind Ltd Non-contact power supply system, non-contact power supply unit, non-contact power receiving unit and non-contact power supply method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110199A (en) * 2010-10-27 2012-06-07 Equos Research Co Ltd Electric power transmission system
JP2012125112A (en) * 2010-12-10 2012-06-28 Hitachi Ltd Wireless power transmission system, power transmitting device, and power receiving device
JP2013090483A (en) * 2011-10-19 2013-05-13 Toshiba Tec Corp Power transmission device, power transmitter, power receiver, and power transmission method
JP2013135572A (en) * 2011-12-27 2013-07-08 Toyota Motor Corp Non contact power reception device and non contact charging system
JP2013172506A (en) * 2012-02-20 2013-09-02 Sumitomo Electric Ind Ltd Non-contact power supply system, non-contact power supply unit, non-contact power receiving unit and non-contact power supply method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114175453A (en) * 2019-08-19 2022-03-11 欧姆龙株式会社 Wireless power transmission system

Similar Documents

Publication Publication Date Title
JP6053439B2 (en) Power supply apparatus and program
US9595838B2 (en) Electronic apparatus, control method and recording medium
US11171512B2 (en) Method and electronic device for performing wireless charging
US9553458B2 (en) Power supply apparatus, control method, and recording medium
US11171690B2 (en) Method and device for wirelessly transmitting power
KR20180013280A (en) Wireless power receiving device and method for controlling thereof
US9829942B2 (en) Method, apparatus and recording medium for detecting change of position of wirelessly chargeable electronic device
KR102098006B1 (en) Electronic device and method for controlling wireless transmit power by detecting foreign object
JP5959862B2 (en) Power supply apparatus and program
US10630097B2 (en) Power supply apparatus
JP6632326B2 (en) Power transmission device, power transmission device control method, and program
KR102588076B1 (en) Electronic device for receiving wireless power and method for wireless charging thereof
US10110280B2 (en) Electronic device wirelessly communicating with external device
KR20170064380A (en) Wireless power receiver and method for controlling thereof
JP2014007863A (en) Power supply device, control method, and program
US9853500B2 (en) Power supply apparatus, method, and recording medium
US11404864B2 (en) Wireless power receiving device and control method thereof
JP2017085711A (en) Power transmission device
JP2018143031A (en) Power supply device, electronic apparatus, control method therefor, program, and wireless power transmission system
JP2018133922A (en) Charge control device and control method thereof, and program
US20230082647A1 (en) Power transmitting apparatus, power receiving apparatus, control method, and storage medium
US20230097511A1 (en) Power receiving apparatus, power transmitting apparatus, control method, and storage medium
JP6222986B2 (en) Electronic device, control method, program, and recording medium
JP2018191401A (en) Electronic device, control method of the same, and program
US9847680B2 (en) Power supply apparatus and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201130

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210611