JP2018133467A - Polymer coated ferromagnetic particle - Google Patents

Polymer coated ferromagnetic particle Download PDF

Info

Publication number
JP2018133467A
JP2018133467A JP2017026568A JP2017026568A JP2018133467A JP 2018133467 A JP2018133467 A JP 2018133467A JP 2017026568 A JP2017026568 A JP 2017026568A JP 2017026568 A JP2017026568 A JP 2017026568A JP 2018133467 A JP2018133467 A JP 2018133467A
Authority
JP
Japan
Prior art keywords
polymer
particles
coated ferromagnetic
particle
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017026568A
Other languages
Japanese (ja)
Other versions
JP6999148B2 (en
Inventor
士 畠山
Tsukasa Hatakeyama
士 畠山
尚広 羽生
Naohiro Haniyu
尚広 羽生
宏 半田
Hiroshi Handa
宏 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP2017026568A priority Critical patent/JP6999148B2/en
Publication of JP2018133467A publication Critical patent/JP2018133467A/en
Application granted granted Critical
Publication of JP6999148B2 publication Critical patent/JP6999148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer coated ferromagnetic particle which is high in responsiveness to a magnetic field and excellent in moving speed in the magnetic field.SOLUTION: A polymer coated ferromagnetic particle 1 is formed by coating a ferrite particle 2 with a polymer coating 3 that has a polymer layer 30 and a pGMA (polyglycidyl methacrylate) layer 31. The pGMA layer 31 forms a surface layer of the polymer coated ferromagnetic particle 1, so that nonspecific adsorption of proteins on the surface of the polymer coated ferromagnetic particle 1 hardly occurs. In addition, a highly reactive epoxy group derived from pGMA is present on the surface of the pGMA layer 31, so that functional groups, such as amino groups, hydroxyl groups, carboxyl groups, that can immobilize any kind of ligands (not shown) selectively bonded to specific biological materials or the like can be introduced. A linker that promotes selective bonding between the ligands and specific biological materials or the like can be also introduced.SELECTED DRAWING: Figure 1

Description

本発明はポリマー被覆強磁性粒子に関する。   The present invention relates to polymer-coated ferromagnetic particles.

生物化学分野及び医療分野等において、液体中で生物学的分子又は化学的分子と結合するリガンドを有し、磁界に応答して移動することで、特定の生体物質の検出や分離精製に用いられるポリマー被覆強磁性粒子が知られている。従来の前記ポリマー被覆強磁性粒子としては、例えば以下の特許文献1に記載されたポリマー被覆強磁性粒子を挙げることができる。   In the biochemical field and medical field, etc., it has a ligand that binds to a biological molecule or chemical molecule in a liquid and moves in response to a magnetic field. Polymer coated ferromagnetic particles are known. Examples of the conventional polymer-coated ferromagnetic particles include polymer-coated ferromagnetic particles described in Patent Document 1 below.

特開2006−88131号公報JP 2006-88131 A

しかしながら、上記のような従来の前記ポリマー被覆強磁性粒子は、磁界に応答して移動する際の移動速度が遅く、生体物質の検出や分離精製に時間を要するという問題点があった。   However, the conventional polymer-coated ferromagnetic particles as described above have a problem that the movement speed when moving in response to a magnetic field is slow, and it takes time to detect and separate and purify biological substances.

本発明は、このような問題点を解決するためになされたものであり、磁界に対する応答性が高く、磁界中において移動速度に優れるポリマー被覆強磁性粒子を提供することを目的とする。   The present invention has been made to solve such problems, and an object of the present invention is to provide polymer-coated ferromagnetic particles having high response to a magnetic field and excellent movement speed in the magnetic field.

上記の課題を解決するために、本発明のポリマー被覆強磁性粒子は、強磁性粒子と、前記強磁性粒子を被覆した状態で設けられたポリマー層と、前記ポリマー層を被覆した状態で設けられた表面層とを備えたポリマー被覆強磁性粒子であって、総重量に対する前記強磁性粒子の重量比が33%を超え88%未満で構成され、また、前記強磁性粒子が、強磁性のフェライト粒子で構成される。   In order to solve the above problems, a polymer-coated ferromagnetic particle of the present invention is provided with a ferromagnetic particle, a polymer layer provided in a state of covering the ferromagnetic particle, and a state of covering the polymer layer. A polymer-coated ferromagnetic particle having a surface layer, wherein the weight ratio of the ferromagnetic particle to the total weight is more than 33% and less than 88%, and the ferromagnetic particle is a ferromagnetic ferrite Composed of particles.

本発明に係るポリマー被覆強磁性粒子によれば、強磁性粒子と、前記強磁性粒子を被覆した状態で設けられたポリマー層と、前記ポリマー層を被覆した状態で設けられた表面層とを備えたポリマー被覆強磁性粒子であって、総重量に対する前記強磁性粒子の重量比が33%を超え88%未満で構成され、磁界に対する応答性が高く、磁界中において移動速度に優れる。   The polymer-coated ferromagnetic particles according to the present invention include ferromagnetic particles, a polymer layer provided in a state of covering the ferromagnetic particles, and a surface layer provided in a state of covering the polymer layer. The polymer-coated ferromagnetic particles have a weight ratio of the ferromagnetic particles to the total weight of more than 33% and less than 88%, and are highly responsive to a magnetic field and excellent in moving speed in the magnetic field.

本発明の実施の形態に係るポリマー被覆強磁性粒子の概略図である。It is the schematic of the polymer covering ferromagnetic particle which concerns on embodiment of this invention. 従来のポリマー被覆強磁性粒子の透過型電子顕微鏡画像である。It is a transmission electron microscope image of the conventional polymer-coated ferromagnetic particles. 本発明の実施の形態に係るポリマー被覆強磁性粒子の透過型電子顕微鏡画像である。It is a transmission electron microscope image of the polymer covering ferromagnetic particle which concerns on embodiment of this invention. 従来のポリマー被覆強磁性粒子の総重量に対するポリマー被覆の重量比である。It is the weight ratio of polymer coating to the total weight of conventional polymer-coated ferromagnetic particles. 本発明の実施の形態に係るポリマー被覆強磁性粒子の総重量に対するポリマー被覆の重量比である。It is the weight ratio of the polymer coating to the total weight of the polymer-coated ferromagnetic particles according to the embodiment of the present invention. 従来のポリマー被覆強磁性粒子及び本発明の実施の形態に係るポリマー被覆強磁性粒子の質量磁化率測定結果である。It is a mass magnetic susceptibility measurement result of the conventional polymer covering ferromagnetic particle and the polymer covering ferromagnetic particle which concerns on embodiment of this invention. 温度25℃の液体中における従来のポリマー被覆強磁性粒子及び本発明の実施の形態に係る磁気分離実験結果である。It is the magnetic separation experiment result which concerns on the conventional polymer covering ferromagnetic particle in the liquid of temperature 25 degreeC, and embodiment of this invention. 温度4℃の液体中における従来のポリマー被覆強磁性粒子及び本発明の実施の形態に係る磁気分離実験結果である。It is the magnetic separation experiment result which concerns on the conventional polymer covering ferromagnetic particle in the liquid of temperature 4 degreeC, and embodiment of this invention.

以下、本発明の実施の形態を添付図面の図1〜図5bに基づいて説明する。
本発明に係るポリマー被覆強磁性粒子を、図1に模式的に示す。ポリマー被覆強磁性粒子1は、フェライト粒子2が、ポリマー層30とpGMA(ポリグリシジルメタクリレート)層31とを有するポリマー被覆3に被覆されて形成されている。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 5b of the accompanying drawings.
A polymer-coated ferromagnetic particle according to the present invention is schematically shown in FIG. The polymer-coated ferromagnetic particle 1 is formed by coating a ferrite particle 2 with a polymer coating 3 having a polymer layer 30 and a pGMA (polyglycidyl methacrylate) layer 31.

前記フェライト粒子2は、例えばマグネタイト(Fe)、マグヘマイト(γ−Fe)及びその中間体等からなり、親水性の強磁性粒子を構成している。また、前記フェライト粒子2は、マグネタイトやマグヘマイト及びその中間体等のFeを一部置換して、Li、Mg、Mn、Co、Ni、Cu及びZnなどの各種元素を含有させることで、その特性を目的に応じて適正に制御した強磁性粒子であってもよい。いずれにせよ、前記フェライト粒子2は、前記ポリマー被覆強磁性粒子1が使用される温度で強磁性を有することが好ましい。さらに、前記フェライト粒子2は、平均粒径が20〜300nmであることが好ましい。 The ferrite particles 2 are composed of, for example, magnetite (Fe 3 O 4 ), maghemite (γ-Fe 2 O 3 ), and intermediates thereof, and constitute hydrophilic ferromagnetic particles. In addition, the ferrite particles 2 are obtained by partially replacing Fe such as magnetite, maghemite, and intermediates thereof, and by including various elements such as Li, Mg, Mn, Co, Ni, Cu, and Zn. May be ferromagnetic particles appropriately controlled according to the purpose. In any case, the ferrite particles 2 preferably have ferromagnetism at the temperature at which the polymer-coated ferromagnetic particles 1 are used. Further, the ferrite particles 2 preferably have an average particle size of 20 to 300 nm.

前記フェライト粒子2には、親水基と疎水基とを有する図示しない公知の疎水化物質の親水基が吸着しており、前記フェライト粒子2を疎水化している。前記フェライト粒子2は、前記ポリマー層30に被覆されている。詳細に説明すると、前記ポリマー層30は、前記フェライト粒子2に吸着した疎水化物質を介してモノマーが前記フェライト粒子2を被覆し、そのモノマーが重合することでポリマーとして形成されている。前記モノマーとしては、例えばスチレン、GMA(グリシジルメタクリレート)、ジビニルベンゼン等の公知のモノマーを任意に用いてよい。   The ferrite particle 2 is adsorbed with a hydrophilic group of a known hydrophobic substance (not shown) having a hydrophilic group and a hydrophobic group, thereby hydrophobizing the ferrite particle 2. The ferrite particles 2 are covered with the polymer layer 30. More specifically, the polymer layer 30 is formed as a polymer by a monomer covering the ferrite particle 2 through a hydrophobizing substance adsorbed on the ferrite particle 2, and the monomer is polymerized. As said monomer, you may use arbitrarily well-known monomers, such as styrene, GMA (glycidyl methacrylate), divinylbenzene, for example.

前記ポリマー層30は、前記pGMA層31に被覆されている。前記pGMA層31は、前記ポリマー被覆強磁性粒子1の表面層を構成している。前記pGMA層31がpGMAからなるので、前記ポリマー被覆強磁性粒子1の表面への非特異的なタンパク質の吸着が発生しづらい。また、前記pGMA層31の表面には、pGMA由来の反応性に富むエポキシ基が存在し、特定の生体物質等に選択的に結合される任意の種類の図示しないリガンドを固定化できるアミノ基、水酸基、カルボキシル基等の官能基を導入することができる。またリガンドと特定の生体物質等との選択的結合を促進するリンカーを導入することができる。前記ポリマー被覆強磁性粒子1は、そのリガンドに検出及び分離精製対象の特定の生体物質等が結合された状態で、磁界によって前記フェライト粒子2に吸引力が加わることで液体中を移動し、収集されることで、特定の生体物質等の検出や分離精製を行うことができる。   The polymer layer 30 is covered with the pGMA layer 31. The pGMA layer 31 constitutes a surface layer of the polymer-coated ferromagnetic particles 1. Since the pGMA layer 31 is made of pGMA, it is difficult for nonspecific protein adsorption to occur on the surface of the polymer-coated ferromagnetic particles 1. Further, on the surface of the pGMA layer 31, there is an epoxy group rich in reactivity derived from pGMA, and an amino group capable of immobilizing any kind of ligand (not shown) that is selectively bonded to a specific biological substance, Functional groups such as a hydroxyl group and a carboxyl group can be introduced. In addition, a linker that promotes selective binding between a ligand and a specific biological substance can be introduced. The polymer-coated ferromagnetic particles 1 are moved and collected in a liquid by applying an attractive force to the ferrite particles 2 by a magnetic field in a state where a specific biological substance to be detected and separated and purified is bound to the ligand. By doing so, it is possible to detect and separate and purify specific biological substances.

図2aは、従来のポリマー被覆強磁性粒子の透過型電子顕微鏡画像であり、図2bは、本発明の実施の形態のポリマー被覆強磁性粒子の透過型電子顕微鏡画像である。図2aに示す従来のポリマー被覆強磁性粒子に対して、図2bに示す本発明の実施の形態のポリマー被覆強磁性粒子はフェライト粒子が含有されている重量はほぼ変わらないが、ポリマー層が薄く形成されている。そのため、従来のポリマー被覆強磁性粒子の水中粒子径は199.7nmであるのに対し、実施の形態のポリマー被覆強磁性粒子の水中粒子径は147.5nmである。   2a is a transmission electron microscope image of a conventional polymer-coated ferromagnetic particle, and FIG. 2b is a transmission electron microscope image of the polymer-coated ferromagnetic particle according to the embodiment of the present invention. Compared to the conventional polymer-coated ferromagnetic particles shown in FIG. 2a, the polymer-coated ferromagnetic particles of the embodiment of the present invention shown in FIG. 2b have almost the same weight as the ferrite particles but the polymer layer is thin. Is formed. Therefore, the underwater particle diameter of the conventional polymer-coated ferromagnetic particles is 199.7 nm, whereas the underwater particle diameter of the polymer-coated ferromagnetic particles of the embodiment is 147.5 nm.

したがって、従来のポリマー被覆強磁性粒子に対して、実施の形態のポリマー被覆強磁性粒子はフェライトの含有率が大きい。具体的には、前記ポリマー被覆強磁性粒子1(図1参照)の総重量に対する前記フェライト粒子2の重量比が33%を超え88%未満であるように、前記ポリマー層30の厚さが調節されることで、前記ポリマー被覆強磁性粒子1が形成されている。   Therefore, the polymer-coated ferromagnetic particles of the embodiment have a higher ferrite content than the conventional polymer-coated ferromagnetic particles. Specifically, the thickness of the polymer layer 30 is adjusted so that the weight ratio of the ferrite particles 2 to the total weight of the polymer-coated ferromagnetic particles 1 (see FIG. 1) is more than 33% and less than 88%. As a result, the polymer-coated ferromagnetic particles 1 are formed.

ポリマー被覆強磁性粒子の総重量に対するポリマー被覆の重量比は、熱重量分析により分析することができる。すなわち、ポリマー被覆強磁性粒子を高温にすると、フェライト粒子よりも熱に弱いポリマー被覆が失われてフェライト粒子が残る。そのため、ポリマー被覆磁性体粒子の総重量に対し、熱重量分析で失われた重量比がポリマー被覆の重量比であり、ポリマー被覆の重量比から、残ったフェライト粒子の重量比を得ることができる。   The weight ratio of the polymer coating to the total weight of the polymer-coated ferromagnetic particles can be analyzed by thermogravimetric analysis. That is, when the polymer-coated ferromagnetic particles are heated to a high temperature, the polymer coating that is weaker to heat than the ferrite particles is lost and the ferrite particles remain. Therefore, the weight ratio lost in thermogravimetric analysis to the total weight of the polymer-coated magnetic particles is the weight ratio of the polymer coating, and the weight ratio of the remaining ferrite particles can be obtained from the weight ratio of the polymer coating. .

図3aは、従来のポリマー被覆強磁性粒子の総重量に対するポリマー被覆の重量比を熱重量分析によって分析したグラフである。図3bは本発明の実施の形態に係るポリマー被覆強磁性粒子の総重量に対するポリマー被覆の重量比を熱重量分析によって分析したグラフである。   FIG. 3a is a graph analyzing the weight ratio of polymer coating to the total weight of conventional polymer-coated ferromagnetic particles by thermogravimetric analysis. FIG. 3 b is a graph obtained by analyzing the weight ratio of the polymer coating to the total weight of the polymer-coated ferromagnetic particles according to the embodiment of the present invention by thermogravimetric analysis.

図3a,図3bを参照すると、グラフの横軸は分析開始からの経過時間であり、右側縦軸は分析時の環境の温度であってグラフ中の線「TEMP」で表されており、左側縦軸は分析開始時からのポリマー被覆強磁性粒子の総重量に対する失われたポリマー被覆の重量比であってグラフ中の線「TG」で表されている。   Referring to FIGS. 3a and 3b, the horizontal axis of the graph is the elapsed time from the start of analysis, and the right vertical axis is the temperature of the environment at the time of analysis, which is represented by the line “TEMP” in the graph, The vertical axis represents the weight ratio of the lost polymer coating to the total weight of the polymer-coated ferromagnetic particles from the start of the analysis, and is represented by the line “TG” in the graph.

図3aに示すように、従来のポリマー被覆強磁性粒子では熱重量分析終了時の失われたポリマー被覆の重量比は約−78%であり、フェライト粒子の重量比は約22%である。一方、図3bに示すように、実施の形態に係るポリマー被覆強磁性粒子では熱重量分析終了時の失われたポリマー被覆の重量比は約−56%であり、フェライト粒子の重量比は約44%である。したがって、実施の形態に係るポリマー被覆強磁性粒子の総重量に対するフェライト粒子の重量比が33%を超え88%未満であり、また、従来のポリマー被覆強磁性粒子のフェライト粒子の含有率に対して、実施の形態に係るポリマー被覆強磁性粒子のフェライト粒子は約2倍の含有率を有する。   As shown in FIG. 3a, in the conventional polymer-coated ferromagnetic particles, the weight ratio of polymer coating lost at the end of thermogravimetric analysis is about -78% and the weight ratio of ferrite particles is about 22%. On the other hand, as shown in FIG. 3b, in the polymer-coated ferromagnetic particles according to the embodiment, the weight ratio of the polymer coating lost at the end of the thermogravimetric analysis is about −56%, and the weight ratio of the ferrite particles is about 44%. %. Therefore, the weight ratio of the ferrite particles to the total weight of the polymer-coated ferromagnetic particles according to the embodiment is more than 33% and less than 88%, and with respect to the ferrite particle content of the conventional polymer-coated ferromagnetic particles The ferrite particles of the polymer-coated ferromagnetic particles according to the embodiment have a content of about twice.

図4に、従来のポリマー被覆強磁性粒子と本発明の実施の形態に係るポリマー被覆強磁性粒子との質量磁化率測定結果のグラフを示す。グラフの横軸は磁界強度であり、グラフの縦軸は質量磁化率である。磁界強度を正又は負の方向に連続的に強くし、質量磁化率が正又は負の方向に飽和したときの値を飽和磁化量とすると、従来のポリマー被覆強磁性粒子は約15.7emu/g、ポリマー被覆強磁性粒子は約31.5emu/gである。すなわち、従来のポリマー被覆強磁性粒子に対して実施の形態に係るポリマー被覆強磁性粒子は約2倍の飽和磁化量を有している。   FIG. 4 shows a graph of measurement results of mass magnetic susceptibility between conventional polymer-coated ferromagnetic particles and polymer-coated ferromagnetic particles according to an embodiment of the present invention. The horizontal axis of the graph is the magnetic field strength, and the vertical axis of the graph is the mass susceptibility. When the magnetic field strength is continuously increased in the positive or negative direction and the value obtained when the mass magnetic susceptibility is saturated in the positive or negative direction is defined as the saturation magnetization amount, the conventional polymer-coated ferromagnetic particles have about 15.7 emu / g, the polymer-coated ferromagnetic particles are about 31.5 emu / g. That is, the polymer-coated ferromagnetic particles according to the embodiment have a saturation magnetization amount approximately twice that of the conventional polymer-coated ferromagnetic particles.

図5aに、25℃の液体中においてポリマー被覆強磁性粒子を磁気により分離・回収する磁気分離実験を、従来のポリマー被覆強磁性粒子及び本発明の実施の形態に係るポリマー被覆強磁性粒子についてそれぞれ行った結果を示す。また、図5bに、4℃の液体中においてポリマー被覆強磁性粒子を磁気により分離・回収する磁気分離実験を、従来のポリマー被覆強磁性粒子及び本発明の実施の形態に係るポリマー被覆強磁性粒子についてそれぞれ行った結果を示す。   FIG. 5a shows a magnetic separation experiment in which polymer-coated ferromagnetic particles are separated and collected in a liquid at 25 ° C. by using a conventional polymer-coated ferromagnetic particle and a polymer-coated ferromagnetic particle according to an embodiment of the present invention. The results are shown. FIG. 5b shows a magnetic separation experiment in which the polymer-coated ferromagnetic particles are separated and collected in a liquid at 4 ° C. by using a conventional polymer-coated ferromagnetic particle and the polymer-coated ferromagnetic particle according to the embodiment of the present invention. The results obtained for each are shown.

なお、図5a,図5bに示す磁気分離実験では、ポリマー被覆強磁性粒子の回収率97.5%以上で磁気分離完了と定義している。また、図5a,図5bでは横軸が実験開始からの経過時間、縦軸がポリマー被覆強磁性粒子の回収率である。   In the magnetic separation experiment shown in FIGS. 5a and 5b, it is defined that the magnetic separation is completed when the recovery rate of the polymer-coated ferromagnetic particles is 97.5% or more. 5a and 5b, the horizontal axis represents the elapsed time from the start of the experiment, and the vertical axis represents the recovery rate of the polymer-coated ferromagnetic particles.

図5aを参照すると、25℃の液体中において、従来のポリマー被覆強磁性粒子は3分経過しても磁気分離完了していないのに対して、実施の形態に係るポリマー被覆強磁性粒子は30秒以内に磁気分離完了している。また、図5bを参照すると、4℃の液体中において、従来のポリマー被覆強磁性粒子は3分経過しても磁気分離完了していないのに対して、実施の形態に係るポリマー被覆強磁性粒子は1分以内に磁気分離完了している。したがって、従来のポリマー被覆強磁性粒子に対して、実施の形態に係るポリマー被覆強磁性粒子は、磁界に対する応答性が高く磁界中において移動速度に優れる。   Referring to FIG. 5a, in the liquid at 25 ° C., the conventional polymer-coated ferromagnetic particles do not complete magnetic separation even after 3 minutes, whereas the polymer-coated ferromagnetic particles according to the embodiment have 30 Magnetic separation is completed within seconds. Referring to FIG. 5b, in the liquid at 4 ° C., the conventional polymer-coated ferromagnetic particles do not complete magnetic separation even after 3 minutes, whereas the polymer-coated ferromagnetic particles according to the embodiment Completes magnetic separation within 1 minute. Therefore, compared with the conventional polymer-coated ferromagnetic particles, the polymer-coated ferromagnetic particles according to the embodiment have a high response to a magnetic field and an excellent moving speed in the magnetic field.

なお、ポリマー被覆強磁性粒子の総重量に対するフェライト粒子の重量比が33%以下である場合は、25℃の液体中において30秒以下、4℃の液体中において1分以下という短時間で磁気分離完了する磁気応答性を持つ磁性粒子が得られないため、ポリマー被覆強磁性粒子の総重量に対するフェライト粒子の重量比を33%以下にすることは好ましくない。また、ポリマー被覆強磁性粒子の総重量に対するフェライト粒子の重量比が88%以上である場合は、ポリマー被覆が確認できず粒子の分散性が悪くなるため、ポリマー被覆強磁性粒子の総重量に対するフェライト粒子の重量比を88%以上にすることは好ましくない。   When the weight ratio of the ferrite particles to the total weight of the polymer-coated ferromagnetic particles is 33% or less, magnetic separation is performed in a short time of 30 seconds or less in a liquid at 25 ° C. and 1 minute or less in a liquid at 4 ° C. Since magnetic particles having complete magnetic responsiveness cannot be obtained, it is not preferable that the weight ratio of the ferrite particles to the total weight of the polymer-coated ferromagnetic particles is 33% or less. Further, when the weight ratio of the ferrite particles to the total weight of the polymer-coated ferromagnetic particles is 88% or more, the polymer coating cannot be confirmed and the dispersibility of the particles is deteriorated. Therefore, the ferrite with respect to the total weight of the polymer-coated ferromagnetic particles It is not preferable that the weight ratio of the particles is 88% or more.

このように、前記フェライト粒子2と、前記フェライト粒子2を被覆した状態で設けられた前記ポリマー層30と、前記ポリマー層30を被覆した状態で設けられた前記pGMA層31とを備えたポリマー被覆強磁性粒子であって、総重量に対する前記フェライト粒子2の重量比が33%を超え88%未満であるので、磁界に対する応答性が高く、磁界中において移動速度に優れる。   Thus, a polymer coating comprising the ferrite particles 2, the polymer layer 30 provided in a state of covering the ferrite particles 2, and the pGMA layer 31 provided in a state of covering the polymer layer 30. Since it is a ferromagnetic particle and the weight ratio of the ferrite particle 2 to the total weight is more than 33% and less than 88%, the response to a magnetic field is high and the moving speed is excellent in the magnetic field.

また、強磁性粒子として強磁性の前記フェライト粒子2を利用しているので、磁気応答性が高く、粒子表面の耐食性が確保されているので前記ポリマー被覆強磁性粒子1の品質が向上する。   Further, since the ferromagnetic ferrite particles 2 are used as the ferromagnetic particles, the magnetic response is high and the corrosion resistance of the particle surface is ensured, so that the quality of the polymer-coated ferromagnetic particles 1 is improved.

なお、本発明の実施の形態において、強磁性粒子として前記フェライト粒子2を用いていたが、前記フェライト粒子2の代わりに、強磁性を有するFe,Co及びNi等の金属、金属合金又は金属間化合物の微粒子を用いることができる。これにより、体積当たりの飽和磁化量を大きくすることもできる。なお、これらの微粒子を用いる場合には、強磁性粒子の耐食性が確保されていることが好ましい。例えば、Fe金属の微粒子を用いる場合には、表面をマグネタイトのような安定な酸化物で完全に被覆されることが好ましい。   In the embodiment of the present invention, the ferrite particles 2 are used as the ferromagnetic particles, but instead of the ferrite particles 2, metals such as Fe, Co, and Ni having ferromagnetism, metal alloys, or metal-to-metal Fine particles of the compound can be used. Thereby, the saturation magnetization amount per volume can also be increased. In addition, when using these microparticles | fine-particles, it is preferable that the corrosion resistance of a ferromagnetic particle is ensured. For example, when Fe metal fine particles are used, the surface is preferably completely covered with a stable oxide such as magnetite.

なお、本発明によるポリマー被覆強磁性粒子の要旨としては、以下の通りである。すなわち、前記フェライト粒子2と、前記フェライト粒子2を被覆した状態で設けられた前記ポリマー層30と、前記ポリマー層30を被覆した状態で設けられた前記pGMA層とを備えたポリマー被覆強磁性粒子であって、総重量に対する前記フェライト粒子2の重量比が33%を超え88%未満である構成であり、また、強磁性粒子として強磁性の前記フェライト粒子2を利用している構成である。   The gist of the polymer-coated ferromagnetic particles according to the present invention is as follows. That is, a polymer-coated ferromagnetic particle comprising the ferrite particle 2, the polymer layer 30 provided in a state of covering the ferrite particle 2, and the pGMA layer provided in a state of covering the polymer layer 30. In this configuration, the weight ratio of the ferrite particles 2 to the total weight is more than 33% and less than 88%, and the ferromagnetic ferrite particles 2 are used as the ferromagnetic particles.

本発明によるポリマー被覆強磁性粒子は、強磁性粒子と、強磁性粒子を被覆した状態で設けられたポリマー層と、ポリマー層を被覆した状態で設けられた表面層とを備えたポリマー被覆強磁性粒子であって、総重量に対する強磁性粒子の重量比が33%を超え88%未満であることを特徴とするので、磁界に対する応答性が高く、磁界中において移動速度に優れる。   The polymer-coated ferromagnetic particles according to the present invention comprise a polymer-coated ferromagnetic particle comprising a ferromagnetic particle, a polymer layer provided in a state of covering the ferromagnetic particle, and a surface layer provided in a state of covering the polymer layer. Since the weight ratio of the ferromagnetic particles to the total weight is more than 33% and less than 88%, the response to a magnetic field is high and the moving speed is excellent in the magnetic field.

1 ポリマー被覆強磁性粒子
2 フェライト粒子(強磁性粒子)
30 ポリマー層
31 pGMA層(表面層)
1 Polymer-coated ferromagnetic particles 2 Ferrite particles (ferromagnetic particles)
30 Polymer layer 31 pGMA layer (surface layer)

Claims (2)

強磁性粒子(2)と、
前記強磁性粒子(2)を被覆した状態で設けられたポリマー層(30)と、
前記ポリマー層(30)を被覆した状態で設けられた表面層(31)と
を備えたポリマー被覆強磁性粒子であって、
総重量に対する前記強磁性粒子(2)の重量比が33%を超え88%未満であることを特徴とするポリマー被覆強磁性粒子。
Ferromagnetic particles (2);
A polymer layer (30) provided in a state of covering the ferromagnetic particles (2);
A polymer-coated ferromagnetic particle comprising a surface layer (31) provided in a state of covering the polymer layer (30),
Polymer-coated ferromagnetic particles, wherein the weight ratio of the ferromagnetic particles (2) to the total weight is more than 33% and less than 88%.
前記強磁性粒子(2)が、強磁性のフェライト粒子であることを特徴とする、請求項1に記載のポリマー被覆強磁性粒子。   Polymer-coated ferromagnetic particles according to claim 1, characterized in that the ferromagnetic particles (2) are ferromagnetic ferrite particles.
JP2017026568A 2017-02-16 2017-02-16 Polymer-coated ferromagnetic particles Active JP6999148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017026568A JP6999148B2 (en) 2017-02-16 2017-02-16 Polymer-coated ferromagnetic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017026568A JP6999148B2 (en) 2017-02-16 2017-02-16 Polymer-coated ferromagnetic particles

Publications (2)

Publication Number Publication Date
JP2018133467A true JP2018133467A (en) 2018-08-23
JP6999148B2 JP6999148B2 (en) 2022-02-04

Family

ID=63249823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017026568A Active JP6999148B2 (en) 2017-02-16 2017-02-16 Polymer-coated ferromagnetic particles

Country Status (1)

Country Link
JP (1) JP6999148B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446193A (en) * 1990-06-08 1992-02-17 Nippon Zeon Co Ltd Dna immobilized microsphere and purification of dna transcription control factor using the same microsphere
JP2006131771A (en) * 2004-11-05 2006-05-25 Tokyo Institute Of Technology Polymer-coated magnetic bead and method for producing the same
JP2009057230A (en) * 2007-08-30 2009-03-19 Tokyo Institute Of Technology Method for producing ferrite particulate, ferrite particulate, and production device for ferrite particulate
JP2009300239A (en) * 2008-06-12 2009-12-24 Canon Inc Composite particle, method for manufacturing the same, dispersion, magnetic biosensing device and magnetic biosensing method
CN104069517A (en) * 2014-07-16 2014-10-01 复旦大学 Magnetism polymer nanometer microsphere material capable of degrading ring structure, as well as preparation method and application of magnetism polymer nanometer microsphere material
JP2014193972A (en) * 2013-03-29 2014-10-09 Tokyo Institute Of Technology Method for manufacturing polymer particulates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446193A (en) * 1990-06-08 1992-02-17 Nippon Zeon Co Ltd Dna immobilized microsphere and purification of dna transcription control factor using the same microsphere
JP2006131771A (en) * 2004-11-05 2006-05-25 Tokyo Institute Of Technology Polymer-coated magnetic bead and method for producing the same
JP2009057230A (en) * 2007-08-30 2009-03-19 Tokyo Institute Of Technology Method for producing ferrite particulate, ferrite particulate, and production device for ferrite particulate
JP2009300239A (en) * 2008-06-12 2009-12-24 Canon Inc Composite particle, method for manufacturing the same, dispersion, magnetic biosensing device and magnetic biosensing method
JP2014193972A (en) * 2013-03-29 2014-10-09 Tokyo Institute Of Technology Method for manufacturing polymer particulates
CN104069517A (en) * 2014-07-16 2014-10-01 复旦大学 Magnetism polymer nanometer microsphere material capable of degrading ring structure, as well as preparation method and application of magnetism polymer nanometer microsphere material

Also Published As

Publication number Publication date
JP6999148B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
Ansari et al. Recent configurations and progressive uses of magnetic molecularly imprinted polymers for drug analysis
Huang et al. Functionalized magnetic nanomaterials as solid-phase extraction adsorbents for organic pollutants in environmental analysis
Giakisikli et al. Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review
JP6452704B2 (en) Production of magnetic particles
Pyrzynska Use of nanomaterials in sample preparation
Cao et al. Facile synthesis of a Ni (ii)-immobilized core–shell magnetic nanocomposite as an efficient affinity adsorbent for the depletion of abundant proteins from bovine blood
EP1662256A1 (en) Tailored magnetic particles and method to produce same
Shang et al. Synthesis and characterization of paramagnetic microparticles through emulsion-templated free radical polymerization
Liu et al. Thermal-responsive ion-imprinted polymer based on magnetic mesoporous silica SBA-15 for selective removal of Sr (II) from aqueous solution
JP2018514794A5 (en)
WO2009151148A1 (en) Composite particle, method for producing the same, dispersion solution, magnetic biosensing apparatus and magnetic biosensing method
Luo et al. Grafting of molecularly imprinted polymers from the surface of Fe3O4 nanoparticles containing double bond via suspension polymerization in aqueous environment: A selective sorbent for theophylline
US9157841B2 (en) Magnetic particles based separation and assaying method
Idil et al. Concanavalin A immobilized magnetic poly (glycidyl methacrylate) beads for prostate specific antigen binding
Yang et al. Selective adsorption and separation of Cs (I) from salt lake brine by a novel surface magnetic ion-imprinted polymer
Liu et al. Selective removal of hemoglobin from blood using hierarchical copper shells anchored to magnetic nanoparticles
US9389226B2 (en) Partial derivatization of particles
JP2018133467A (en) Polymer coated ferromagnetic particle
JP2009128169A (en) Detection method, detection cartridge and detection kit of target material
Li et al. Applications of magnetic molecularly imprinted polymers (MMIPs) in the separation and purification fields
Schwaminger et al. Iron oxide nanoparticles: Multiwall carbon nanotube composite materials for batch or chromatographic biomolecule separation
JP2013167528A (en) Functional particle subjected to fluorine-containing polymer coating
Koneracká et al. Immobilization of enzymes on magnetic particles
CN110935405B (en) Preparation method of magnetic polystyrene microspheres with surfaces rich in double bonds
US20140316108A1 (en) Protein Chromatography Matrices with Hydrophilic Copolymer Coatings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210713

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20210915

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211012

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211012

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20211019

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211105

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211215

R150 Certificate of patent or registration of utility model

Ref document number: 6999148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150