JP2018132090A - Fluid control valve - Google Patents

Fluid control valve Download PDF

Info

Publication number
JP2018132090A
JP2018132090A JP2017024837A JP2017024837A JP2018132090A JP 2018132090 A JP2018132090 A JP 2018132090A JP 2017024837 A JP2017024837 A JP 2017024837A JP 2017024837 A JP2017024837 A JP 2017024837A JP 2018132090 A JP2018132090 A JP 2018132090A
Authority
JP
Japan
Prior art keywords
magnetic body
housing
fluid
control valve
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017024837A
Other languages
Japanese (ja)
Other versions
JP6812822B2 (en
Inventor
健一 小室
Kenichi Komuro
健一 小室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2017024837A priority Critical patent/JP6812822B2/en
Priority to CN201721181921.8U priority patent/CN207394082U/en
Priority to US15/704,250 priority patent/US10273868B2/en
Priority to DE102017126190.7A priority patent/DE102017126190A1/en
Publication of JP2018132090A publication Critical patent/JP2018132090A/en
Application granted granted Critical
Publication of JP6812822B2 publication Critical patent/JP6812822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Check Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluid control valve capable of being quickly and surely opened and closed.SOLUTION: A fluid control valve includes a housing 4 having an inflow port 43a and an outflow port 41a for a fluid, a first magnetic body 8 provided with a circulation hole 81 for circulating the fluid, a solenoid B making magnetic flux flow to the first magnetic body 8, a second magnetic body 7 kept into contact with a peripheral edge portion of the circulation hole 81 to close the circulation hole 81 by being attracted to the first magnetic body 8 by the flowing of the magnetic flux generated from the solenoid B, an energization member S for energizing the second magnetic body 7 in a direction to separate from the first magnetic body 7, and a stopper 9 fixed to the housing 4 at a side of the outflow port 41a and preventing the movement of the second magnetic body 7 by energization force of the energization member S. Flow channel throttle portions 45, 92b for throttling a flow channel area in valve opening when the second magnetic body 7 is separated from the first magnetic body 8, are formed between a back face 7a kept into contact with the stopper 9, of the second magnetic body 7 and an inner face of the housing 4.SELECTED DRAWING: Figure 2

Description

本発明は、ポンプからの流体の流通を遮断可能な流体制御弁に関する。   The present invention relates to a fluid control valve capable of blocking the flow of fluid from a pump.

従来、例えば自動車用エンジンなどの内燃機関を冷却する冷却システムにおいて、ウォータポンプにより内燃機関と暖房用のヒータコアとに亘って冷却水を循環させる循環流路に設けられた流体制御弁が知られている(例えば特許文献1参照)。特許文献1の流体制御弁は、ハウジングにインサート成形された板状の第一磁性体(文献では固定ヨーク)を有する弁座と、板状の第二磁性体(文献では帯板部材)を有する弁体と、第一磁性体に磁束を流すソレノイドとを備えた流体制御弁が知られている。この流体制御弁は、弁体を弁座の側に付勢する付勢部材(文献では、コイルスプリング)を設けている。   2. Description of the Related Art Conventionally, in a cooling system that cools an internal combustion engine such as an automobile engine, a fluid control valve provided in a circulation passage that circulates cooling water between the internal combustion engine and a heater core by a water pump is known. (For example, refer to Patent Document 1). The fluid control valve of Patent Literature 1 includes a valve seat having a plate-like first magnetic body (in the literature, a fixed yoke) insert-molded in a housing, and a plate-like second magnetic body (in the literature, a strip plate member). There is known a fluid control valve including a valve body and a solenoid that allows a magnetic flux to flow through a first magnetic body. This fluid control valve is provided with a biasing member (in the literature, a coil spring) that biases the valve body toward the valve seat.

特許文献1の流体制御弁は、エンジンの停止時には、ウォータポンプが停止されており、付勢部材の付勢力によって弁体は閉弁状態にある。そして、エンジン始動時には、ウォータポンプが駆動され弁体に水圧が作用するが、ソレノイドの通電による駆動力および付勢部材の付勢力によって、弁体が弁座に押し付けられて閉弁状態が保持される。エンジン始動後に暖房を使用する時には、ソレノイドの通電を解除すると共に、弁体に作用する水圧が付勢部材の付勢力を上回ると弁体が弁座から離間し、開弁状態となって冷却水がヒータコアに流れる。   In the fluid control valve of Patent Document 1, the water pump is stopped when the engine is stopped, and the valve body is closed by the urging force of the urging member. When the engine is started, the water pump is driven and water pressure is applied to the valve body. However, the valve body is pressed against the valve seat by the driving force generated by energization of the solenoid and the urging force of the urging member, and the valve closed state is maintained. The When heating is used after the engine is started, the solenoid is de-energized, and when the water pressure acting on the valve body exceeds the urging force of the urging member, the valve body is separated from the valve seat, and the valve becomes open and cooling water Flows into the heater core.

特開2015−121247号公報JP 2015-121247 A

従来の流体制御弁は、ソレノイドに通電しなくても水圧が付勢部材の付勢力を上回るまで閉弁状態が保持される。このため、エンジン始動時の水圧が低いときに、例えばデフロスタ、ヒータコアやEGRクーラ等からの冷却水の供給要求があった場合、早急に開弁することができないおそれがある。また、エンジン停止時には常に閉弁状態なので、弁体と弁座とが固着してしまい、エンジン始動後に早急に開弁しようとしても、開弁し難いおそれがある。   The conventional fluid control valve is kept closed until the water pressure exceeds the urging force of the urging member without energizing the solenoid. For this reason, when the water pressure at the time of starting the engine is low, for example, when there is a request for supplying cooling water from a defroster, a heater core, an EGR cooler, or the like, there is a possibility that the valve cannot be opened immediately. Further, since the valve is always closed when the engine is stopped, the valve body and the valve seat are fixed, and even if an attempt is made to open the valve immediately after the engine is started, it may be difficult to open the valve.

一方、開弁状態にあるときは、ソレノイドに通電しても、ソレノイドの駆動力および付勢部材の付勢力の合計が水圧を上回るまで閉弁しない。このため、エンジン回転数が低いとき等、暖気を促進して暖房を効かせたい場合、早急に閉弁できないおそれがある。   On the other hand, in the valve open state, even if the solenoid is energized, it does not close until the sum of the driving force of the solenoid and the urging force of the urging member exceeds the water pressure. For this reason, there is a possibility that the valve cannot be closed immediately when it is desired to promote the warm air and to effect the heating, such as when the engine speed is low.

そこで、迅速且つ確実に開閉動作させることができる流体制御弁を提供することが望まれている。   Therefore, it is desired to provide a fluid control valve that can be opened and closed quickly and reliably.

流体制御弁の特徴構成は、流体の流入口と流出口とを有するハウジングと、前記流体が流通する流通孔が設けられた第一磁性体と、前記第一磁性体に磁束を流すソレノイドと、前記ソレノイドから発生した前記磁束が流れることで前記第一磁性体に吸引されることにより、前記流通孔の周縁部に当接して前記流通孔を閉塞する第二磁性体と、前記第二磁性体を前記第一磁性体から離間する方向に付勢する付勢部材と、前記流出口の側で前記ハウジングに対して固定され、前記付勢部材の付勢力による前記第二磁性体の移動を阻止するストッパと、を備え、前記第二磁性体の前記ストッパに当接する背面と前記ハウジングの内面との間における流路の一部には、流路面積が絞られた流路絞り部が形成されている点にある。   The characteristic configuration of the fluid control valve includes a housing having a fluid inlet and outlet, a first magnetic body provided with a flow hole through which the fluid flows, a solenoid that flows magnetic flux to the first magnetic body, A second magnetic body that contacts the peripheral edge of the flow hole and closes the flow hole by being attracted to the first magnetic body by flowing the magnetic flux generated from the solenoid; and the second magnetic body A biasing member that biases the first magnetic body in a direction away from the first magnetic body, and is fixed to the housing on the outlet side, and prevents the second magnetic body from being moved by the biasing force of the biasing member. And a flow path restricting portion having a reduced flow area is formed in a part of the flow path between the back surface of the second magnetic body that contacts the stopper and the inner surface of the housing. There is in point.

本構成では、第一磁性体と、ソレノイドに通電することで第一磁性体に吸引されて第一磁性体の流通孔を閉塞する第二磁性体と、第二磁性体を第一磁性体から離間する方向に付勢する付勢部材と、を備えている。つまり、ソレノイドに通電しないときは、付勢部材の付勢力により、流体制御弁は開弁状態にある。このため、エンジン始動時の流体圧が低いときに、例えばデフロスタ等から開弁要求があった場合でも、早急に開弁して流体を流通させることができる。しかも、エンジン停止時は常に開弁状態なので、第一磁性体と第二磁性体とが固着して開弁し難い不都合もない。   In this configuration, the first magnetic body, the second magnetic body that is attracted to the first magnetic body by energizing the solenoid and closes the flow hole of the first magnetic body, and the second magnetic body are separated from the first magnetic body. And an urging member that urges in a separating direction. That is, when the solenoid is not energized, the fluid control valve is open due to the urging force of the urging member. For this reason, when the fluid pressure at the time of starting the engine is low, even when there is a valve opening request from, for example, a defroster or the like, the valve can be opened quickly and fluid can be circulated. Moreover, since the valve is always open when the engine is stopped, there is no inconvenience that the first magnetic body and the second magnetic body are fixed and difficult to open.

また、本構成では、第二磁性体の背面とハウジングの内面との間に流路絞り部が形成されている。その結果、開弁時において、第二磁性体の背面が常に流体圧を受けて第二磁性体が第一磁性体に向かって押圧されるので、第二磁性体の背面に作用する流体圧が第一磁性体に吸着するためのソレノイドの駆動力をアシストして、迅速に閉弁することができる。よって、迅速且つ確実に開閉動作させることができる流体制御弁を提供することができた。   Further, in this configuration, a flow path restricting portion is formed between the back surface of the second magnetic body and the inner surface of the housing. As a result, when the valve is opened, the back surface of the second magnetic body is always subjected to fluid pressure and the second magnetic body is pressed toward the first magnetic body, so that the fluid pressure acting on the back surface of the second magnetic body is reduced. The solenoid can be swiftly closed by assisting the driving force of the solenoid for attracting the first magnetic body. Therefore, the fluid control valve which can be opened / closed quickly and reliably can be provided.

他の特徴構成は、前記流路絞り部における前記第二磁性体の側方には、前記流路絞り部に流通する前記流体を貯留する溜り部が前記ハウジングの前記内面を窪ませて形成されている点にある。   According to another characteristic configuration, a reservoir for storing the fluid flowing through the flow passage restricting portion is formed on the side of the second magnetic body in the flow restricting portion so that the inner surface of the housing is recessed. There is in point.

本構成のように、流路絞り部に流通する流体を貯留する溜り部を設ければ、溜り部からの流体が流路絞り部に流通し易いので、流体の流通が途切れることによる第二磁性体の背面に作用する流体圧の低下を抑制することができる。しかも、この溜り部はハウジングの内面を窪ませることで形成されるので、加工が容易である。よって、簡便な構成でより迅速に閉弁することができる。   If a reservoir for storing the fluid flowing through the flow restrictor is provided as in this configuration, the fluid from the reservoir can easily flow through the flow restrictor, so that the second magnetism due to the interruption of fluid flow A decrease in fluid pressure acting on the back of the body can be suppressed. In addition, since the reservoir is formed by recessing the inner surface of the housing, processing is easy. Therefore, the valve can be closed more quickly with a simple configuration.

他の特徴構成は、前記第一磁性体と前記第二磁性体との間には、前記流入口から流入する前記流体の圧力を受け止める流体圧受け部が、前記流通孔を閉塞可能な前記第二磁性体の閉塞面に対向して設けられている点にある。   According to another characteristic configuration, a fluid pressure receiving portion that receives a pressure of the fluid flowing in from the inflow port is provided between the first magnetic body and the second magnetic body so that the flow hole can be closed. It exists in the point provided facing the obstruction | occlusion surface of a 2 magnetic body.

本構成のように第二磁性体の閉塞面に対向して流体圧受け部を設ければ、第二磁性体を第一磁性体から離間させる方向に働く流体圧が第二磁性体に作用することを減少させることが可能となる。その結果、第二磁性体の背面に流体圧を作用させながら、第二磁性体を開弁させる方向に働く流体圧の作用を減少させることで、より迅速に閉弁することができる。   If the fluid pressure receiving portion is provided facing the closing surface of the second magnetic body as in this configuration, the fluid pressure acting in the direction of separating the second magnetic body from the first magnetic body acts on the second magnetic body. This can be reduced. As a result, it is possible to close the valve more quickly by reducing the action of the fluid pressure acting in the direction of opening the second magnetic body while applying the fluid pressure to the back surface of the second magnetic body.

エンジン冷却系の説明図である。It is explanatory drawing of an engine cooling system. 第一実施形態に係る開状態の流体制御弁を示す縦断面図である。It is a longitudinal cross-sectional view which shows the fluid control valve of the open state which concerns on 1st embodiment. 第一実施形態に係る閉状態の流体制御弁を示す縦断面図である。It is a longitudinal cross-sectional view which shows the fluid control valve of the closed state which concerns on 1st embodiment. 図2のIV−IV線矢視図である。It is the IV-IV arrow line view of FIG. 第一実施形態に係る支持部材の斜視図である。It is a perspective view of the support member concerning a first embodiment. 第一実施形態に係る第二ハウジングの平面図である。It is a top view of the 2nd housing concerning a first embodiment. 流体制御弁の制御フローを示す図である。It is a figure which shows the control flow of a fluid control valve. 第二実施形態に係る開状態の流体制御弁を示す縦断面図である。It is a longitudinal cross-sectional view which shows the fluid control valve of the open state which concerns on 2nd embodiment. 第二実施形態に係る閉状態の流体制御弁を示す縦断面図である。It is a longitudinal cross-sectional view which shows the fluid control valve of the closed state which concerns on 2nd embodiment. 図8の流体制御弁を90度回転させた縦断面図である。It is the longitudinal cross-sectional view which rotated the fluid control valve of FIG. 8 90 degree | times. 第二実施形態に係る第二ハウジングの平面図である。It is a top view of the 2nd housing concerning a second embodiment.

以下に、本発明に係る流体制御弁の実施形態について、図面に基づいて説明する。本実施形態では、流体制御弁の一例として、自動車用のエンジンEの冷却システムに用いられる流体制御弁Vとして説明する。ただし、以下の実施形態に限定されることなく、その要旨を逸脱しない範囲内で種々の変形が可能である。   Hereinafter, embodiments of a fluid control valve according to the present invention will be described with reference to the drawings. In the present embodiment, an example of the fluid control valve will be described as a fluid control valve V used in a cooling system for an engine E for an automobile. However, the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the invention.

図1に示すように、エンジンEの冷却システムは、エンジンEとラジエータRとの間に冷却水(流体の一例)を循環させる第一循環路1と、エンジンEとヒータコアHとの間に冷却水を循環させる第二循環路2と、エンジンEに冷却水を供給するウォータポンプPとを備えている。本実施形態におけるウォータポンプPは、不図示のクランクプーリからタイミングベルトを介して駆動力を得て回転する機械式ウォータポンプで構成されており、エンジンの回転数に応じて流量が変化する。   As shown in FIG. 1, the cooling system of the engine E is cooled between the engine E and the heater core H, and the first circulation path 1 that circulates cooling water (an example of fluid) between the engine E and the radiator R. A second circulation path 2 that circulates water and a water pump P that supplies cooling water to the engine E are provided. The water pump P in the present embodiment is a mechanical water pump that rotates by obtaining a driving force from a crank pulley (not shown) via a timing belt, and the flow rate changes according to the rotational speed of the engine.

第一循環路1や第二循環路2におけるラジエータRやヒータコアHからの冷却水の流出流路は、サーモスタットバルブ3を介してウォータポンプPに接続されている。第一循環路1は、エンジンEで加熱された冷却水をラジエータRで冷却した後、サーモスタットバルブ3を介してエンジンEに還流させる。第二循環路2は、エンジンEとヒータコアHとの間に流体制御弁Vを配置し、この流体制御弁Vが開弁状態のとき、エンジンEで加熱された冷却水を、車室内の空気を暖めるヒータコアHに流入させる。このとき、ヒータコアHで熱交換されて冷却された冷却水は、サーモスタットバルブ3を介してエンジンEに還流される。   Outflow passages of cooling water from the radiator R and the heater core H in the first circulation path 1 and the second circulation path 2 are connected to the water pump P via the thermostat valve 3. In the first circulation path 1, the cooling water heated by the engine E is cooled by the radiator R and then returned to the engine E through the thermostat valve 3. In the second circulation path 2, a fluid control valve V is disposed between the engine E and the heater core H, and when the fluid control valve V is in an open state, the cooling water heated by the engine E is used as air in the passenger compartment. Is allowed to flow into the heater core H that warms the heater. At this time, the cooling water cooled by heat exchange with the heater core H is returned to the engine E through the thermostat valve 3.

一方、冷却水が所定の温度(暖機完了温度T1)より低い場合、流体制御弁Vを閉弁して、ヒータコアHの熱交換による冷却水の温度の低下を防止する。また、冷却水の温度が低い場合にはサーモスタットバルブ3も閉弁しているため、冷却水はラジエータRにも循環しない。このため、エンジンEの暖機運転時における冷却水の温度上昇を促進して、燃費の向上を図ることができる。   On the other hand, when the cooling water is lower than a predetermined temperature (warming-up completion temperature T1), the fluid control valve V is closed to prevent the temperature of the cooling water from being lowered due to heat exchange of the heater core H. When the temperature of the cooling water is low, the thermostat valve 3 is also closed, so that the cooling water does not circulate to the radiator R. For this reason, the temperature rise of the cooling water during the warm-up operation of the engine E can be promoted, and the fuel efficiency can be improved.

(第一実施形態)
以下、第一実施形態について図面を用いて説明する。
(First embodiment)
The first embodiment will be described below with reference to the drawings.

図2〜図3に示すように、流体制御弁Vは、ハウジング4と、ハウジング4に固定されたストッパ9と、軸部材5と、軸部材5を支持する支持部材6と、支持部材6の内部に収容されたコイルスプリングS(付勢部材の一例)と、弁座としての第一磁性体8と、第一磁性体8に磁束を流すソレノイドBと、軸部材5に一体形成された弁体としての第二磁性体7と、を備えている。本実施形態では、第一磁性体8と軸部材5および第二磁性体7とは、鉄などの磁性体で構成されている。また、ハウジング4,支持部材6,およびストッパ9は、非磁性体の樹脂やステンレス等で構成されている。   As shown in FIGS. 2 to 3, the fluid control valve V includes a housing 4, a stopper 9 fixed to the housing 4, a shaft member 5, a support member 6 that supports the shaft member 5, and a support member 6. A coil spring S (an example of an urging member) housed inside, a first magnetic body 8 as a valve seat, a solenoid B for flowing a magnetic flux through the first magnetic body 8, and a valve formed integrally with the shaft member 5 And a second magnetic body 7 as a body. In this embodiment, the 1st magnetic body 8, the shaft member 5, and the 2nd magnetic body 7 are comprised with magnetic bodies, such as iron. The housing 4, the support member 6, and the stopper 9 are made of nonmagnetic resin, stainless steel, or the like.

ハウジング4は、ストッパ9が内側に固定された第一ハウジング41と、第一磁性体8がインサート成形された第二ハウジング42と、支持部材6が内側に固定された第三ハウジング43とを備えている。これら第一ハウジング41,第二ハウジング42,および第三ハウジング43は、ボルト締結、接着、圧入などによって互いに接続されている。なお、第一ハウジング41,第二ハウジング42,および第三ハウジング43は、いずれか2つを一体形成しても良いし、4分割以上で構成しても良い。   The housing 4 includes a first housing 41 in which the stopper 9 is fixed inside, a second housing 42 in which the first magnetic body 8 is insert-molded, and a third housing 43 in which the support member 6 is fixed inside. ing. The first housing 41, the second housing 42, and the third housing 43 are connected to each other by bolt fastening, adhesion, press fitting, or the like. Note that any one of the first housing 41, the second housing 42, and the third housing 43 may be integrally formed, or may be constituted by four or more divisions.

第一ハウジング41は、軸部材5の軸芯Xに沿う冷却水の流出口41aが円筒状に形成されている。また、複数(本実施形態では3箇所)の延出部44が第一ハウジング41の内面から延出形成されており、この延出部44の端部に円筒状のストッパ9が一体形成されている。なお、延出部44やストッパ9は、第一ハウジング41に接着等で固定される別部材であっても良い。   In the first housing 41, a cooling water outlet 41 a along the axis X of the shaft member 5 is formed in a cylindrical shape. In addition, a plurality of (three in this embodiment) extending portions 44 are formed to extend from the inner surface of the first housing 41, and a cylindrical stopper 9 is integrally formed at the end of the extending portion 44. Yes. The extending portion 44 and the stopper 9 may be separate members that are fixed to the first housing 41 by bonding or the like.

図4に示すように、延出部44は、底面(第一ハウジング41の内面のうち第二磁性体7の背面7aに対向する面)の中央付近を第二磁性体7から離間させる方向に窪ませて形成される水通路45(流路絞り部の一例)と、この水通路45に対して周方向の両側で、且つ径方向に亘って第二磁性体7の側に突出形成された側壁部46とを有している。コイルスプリングSによる付勢力による第二磁性体7の移動がストッパ9によって阻止された開弁時には、側壁部46の底面(ストッパ9の底面92aと同一面)が第二磁性体7の背面7aに当接して、水通路45の側方への冷却水の漏出が防止される(図2参照)。このように、第二磁性体7のストッパ9に当接する背面7aと第一ハウジング41の内面との間における流路の一部には、流路面積が絞られた水通路45が、第一ハウジング41の延出部44の底面を窪ませて形成されている。   As shown in FIG. 4, the extending portion 44 is formed in a direction in which the vicinity of the center of the bottom surface (the surface of the inner surface of the first housing 41 facing the back surface 7 a of the second magnetic body 7) is separated from the second magnetic body 7. A water passage 45 formed as a depression (an example of a flow path narrowing portion) and the water passage 45 are formed on both sides in the circumferential direction and on the second magnetic body 7 side in the radial direction. And a side wall portion 46. At the time of valve opening when the movement of the second magnetic body 7 due to the urging force of the coil spring S is blocked by the stopper 9, the bottom surface of the side wall portion 46 (the same surface as the bottom surface 92 a of the stopper 9) is on the back surface 7 a of the second magnetic body 7. It contacts and the leakage of the cooling water to the side of the water passage 45 is prevented (see FIG. 2). Thus, a water passage 45 with a reduced flow area is formed in a part of the flow path between the back surface 7a contacting the stopper 9 of the second magnetic body 7 and the inner surface of the first housing 41. The bottom surface of the extended portion 44 of the housing 41 is formed to be recessed.

また、図2および図4に示すように、水通路45のうち第二磁性体7よりも径方向外側に位置する部分においては、延出部44の底面を第二磁性体7から離間する方向に更に窪ませた溜り部45aが形成されている。この溜り部45aは、開弁時に水通路45に流通する冷却水を貯留する機能を有する。なお、溜り部45aを省略しても良い。   As shown in FIGS. 2 and 4, in the portion of the water passage 45 located radially outside the second magnetic body 7, the direction in which the bottom surface of the extending portion 44 is separated from the second magnetic body 7. A recess 45a that is further recessed is formed. The reservoir 45a has a function of storing cooling water flowing through the water passage 45 when the valve is opened. The reservoir 45a may be omitted.

ストッパ9は、第一ハウジング41の延出部44に接続させた環状鍔部92を有している。この環状鍔部92には、水通路45に接続される接続通路92b(流路絞り部の一例)が、底面92a(第一ハウジング41の内面のうち第二磁性体7の背面7aに対向する面)を第二磁性体7から離間させる方向に窪ませて形成されている。この接続通路92bも、水通路45と同様に、第二磁性体7が第一磁性体8から離間した開弁時に流路面積を絞る機能を有している。また、環状鍔部92の中央には貫通孔部92cが形成されている。   The stopper 9 has an annular flange 92 connected to the extension 44 of the first housing 41. In the annular flange 92, a connection passage 92b (an example of a flow passage restricting portion) connected to the water passage 45 is opposed to the bottom surface 92a (the back surface 7a of the second magnetic body 7 on the inner surface of the first housing 41). The surface) is recessed in the direction away from the second magnetic body 7. Similar to the water passage 45, the connection passage 92 b also has a function of reducing the flow passage area when the second magnetic body 7 is opened from the first magnetic body 8. A through hole 92 c is formed at the center of the annular flange 92.

これらによって、図2に示すように、第二磁性体7の開弁時には、冷却水が水通路45の溜り部45aに流入して、水通路45,接続通路92b,貫通孔部92cの順番で流通する。このとき、水通路45および接続通路92bを流通する冷却水により、第二磁性体7の背面7aが水圧(流体圧)を受けて第二磁性体7が第一磁性体8に向かって押圧される。なお、コイルスプリングSによる付勢力は、この水圧よりも大きく設定されているため、ソレノイドBに通電しないときには開弁状態が維持されている。   Accordingly, as shown in FIG. 2, when the second magnetic body 7 is opened, the cooling water flows into the reservoir 45a of the water passage 45, and the water passage 45, the connection passage 92b, and the through-hole portion 92c in this order. Circulate. At this time, the back surface 7a of the second magnetic body 7 receives water pressure (fluid pressure) by the cooling water flowing through the water passage 45 and the connection passage 92b, and the second magnetic body 7 is pressed toward the first magnetic body 8. The Since the urging force by the coil spring S is set to be larger than this water pressure, the valve-open state is maintained when the solenoid B is not energized.

図2〜図3に戻って、第二ハウジング42には、平板状の第一磁性体8がインサート成形されている。また、第二ハウジング42の側方には、後述するソレノイドBの固定ヨーク11が一体形成されている。   2 to 3, the flat first magnetic body 8 is insert-molded in the second housing 42. Further, a fixed yoke 11 of a solenoid B described later is integrally formed on the side of the second housing 42.

第三ハウジング43には、軸部材5の軸芯Xに沿う冷却水の流入口43aが円筒状に形成されている。また、第三ハウジング43の内周面には、平板状に構成された複数(本実施形態では3箇所)の平板部43bが延出形成されており、この平板部43bの先端に有底筒状の支持部材6が第一磁性体8と一体形成されている。   In the third housing 43, a cooling water inlet 43 a along the axis X of the shaft member 5 is formed in a cylindrical shape. A plurality of (three in the present embodiment) flat plate portions 43b are formed on the inner peripheral surface of the third housing 43 so as to extend, and a bottomed tube is formed at the tip of the flat plate portion 43b. A support member 6 is integrally formed with the first magnetic body 8.

軸部材5は、ハウジング4の内部を移動可能に、一方の端部の側が支持部材6に支持されている。軸部材5の外面が支持部材6の内面に摺接することで、軸部材5の移動が支持部材6の内面にガイドされる。また、軸部材5の他方の端部は、第一磁性体8よりも流出口41aの側まで延在しており、この他方の端部に第二磁性体7が一体形成されている。なお、軸部材5と第二磁性体7とを一体形成せずに、第二磁性体7の中央に貫通孔を設けて、この貫通孔に軸部材5の他方の端部を固定(圧入)する構成であっても良い。   The shaft member 5 is supported by the support member 6 at one end side so as to be movable in the housing 4. Since the outer surface of the shaft member 5 is in sliding contact with the inner surface of the support member 6, the movement of the shaft member 5 is guided to the inner surface of the support member 6. Further, the other end of the shaft member 5 extends to the outlet 41a side from the first magnetic body 8, and the second magnetic body 7 is integrally formed at the other end. The shaft member 5 and the second magnetic body 7 are not integrally formed, and a through hole is provided in the center of the second magnetic body 7, and the other end of the shaft member 5 is fixed (press-fit) to the through hole. It may be configured to do so.

支持部材6は、流入口43aの側で第三ハウジング43に固定されており、側壁61が第一磁性体8の流通孔81に侵入している。つまり、側壁61により軸部材5の摺接領域を確保して、支持部材6の軸部材5に対する支持機能を高めている。   The support member 6 is fixed to the third housing 43 on the inflow port 43 a side, and the side wall 61 enters the flow hole 81 of the first magnetic body 8. That is, the side wall 61 secures the sliding contact region of the shaft member 5 and enhances the support function of the support member 6 with respect to the shaft member 5.

図5に示すように、支持部材6は、筒状本体62と、筒状本体62の第二磁性体7の側にある開口端部を径方向外側に拡径させた円環状部63(流体圧受け部の一例)とを備えている。筒状本体62は、中央に小孔64aが形成された底部64と、底部64から軸芯X方向に沿って立設した第一立設部65と、第一立設部65から次第に拡径されたテーパ部66と、テーパ部66の最大径と同径となるようにテーパ部66から軸芯X方向に沿って立設した第二立設部67とを有している。つまり、支持部材6の側壁61は、第一立設部65とテーパ部66と第二立設部67とで構成されている。上述した軸部材5は、第二立設部67の領域で移動可能に構成されている。   As shown in FIG. 5, the support member 6 includes a cylindrical main body 62 and an annular portion 63 (fluid) in which the opening end on the second magnetic body 7 side of the cylindrical main body 62 is radially expanded outward. An example of a pressure receiving portion). The cylindrical main body 62 has a bottom portion 64 with a small hole 64a formed at the center, a first standing portion 65 standing from the bottom portion 64 along the axis X direction, and a diameter gradually increasing from the first standing portion 65. And a second standing portion 67 erected along the axis X direction from the tapered portion 66 so as to have the same diameter as the maximum diameter of the tapered portion 66. That is, the side wall 61 of the support member 6 includes the first standing portion 65, the tapered portion 66, and the second standing portion 67. The shaft member 5 described above is configured to be movable in the region of the second standing portion 67.

円環状部63は、第一磁性体8と第二磁性体7との間に配置されている(図2参照)。この円環状部63の内面には、軸部材5よりも径方向外側に窪んだ溝部68が形成されている。この溝部68は、周方向に沿って等間隔に複数(本実施形態では4箇所)設けられており、円環状部63および第二立設部67の領域に亘って軸芯X方向に沿って配置されている。   The annular portion 63 is disposed between the first magnetic body 8 and the second magnetic body 7 (see FIG. 2). On the inner surface of the annular portion 63, a groove portion 68 that is recessed outward in the radial direction from the shaft member 5 is formed. A plurality of grooves 68 are provided at equal intervals along the circumferential direction (four in the present embodiment), and extend along the axis X direction over the region of the annular portion 63 and the second standing portion 67. Has been placed.

図2〜図3に示すように、コイルスプリングSは、軸部材5の他方の端部に形成された凸部52にガイドされながら軸部材5の端面と支持部材6の底部64とに当接した状態で、支持部材6の内部に収容されている。本実施形態では、支持部材6の第一立設部65およびテーパ部66の内部がコイルスプリングSの収容空間となっている(図5参照)。このコイルスプリングSは、第二磁性体7が第一磁性体8から離間するように、軸部材5(第二磁性体7)を流出口41aに向かって付勢している。   As shown in FIGS. 2 to 3, the coil spring S abuts against the end surface of the shaft member 5 and the bottom portion 64 of the support member 6 while being guided by a convex portion 52 formed at the other end of the shaft member 5. In this state, it is accommodated inside the support member 6. In this embodiment, the inside of the 1st standing part 65 and the taper part 66 of the support member 6 becomes the accommodation space of the coil spring S (refer FIG. 5). The coil spring S urges the shaft member 5 (second magnetic body 7) toward the outlet 41a so that the second magnetic body 7 is separated from the first magnetic body 8.

第一磁性体8は、冷却水が流通する流通孔81が設けられており、軸芯X方向に沿う第二磁性体7と支持部材6との間に配置されている。図6に示すように、第一磁性体8は、流通孔81の周囲にある円環状の周縁部84と、周縁部84の径方向内側に形成された流通孔81と、を含んでいる。この周縁部84が、後述する第二磁性体7の突出部72が当接する弁座として機能する。第一磁性体8は、ソレノイドBの固定ヨーク11と一体化された板状に形成されており、固定ヨーク11と共に第二ハウジング42にインサート成形されている。   The first magnetic body 8 is provided with a flow hole 81 through which cooling water flows, and is disposed between the second magnetic body 7 and the support member 6 along the axial direction X. As shown in FIG. 6, the first magnetic body 8 includes an annular peripheral edge 84 around the circulation hole 81 and a circulation hole 81 formed on the radially inner side of the peripheral edge 84. The peripheral edge 84 functions as a valve seat with which a protrusion 72 of the second magnetic body 7 described later comes into contact. The first magnetic body 8 is formed in a plate shape integrated with the fixed yoke 11 of the solenoid B, and is insert-molded in the second housing 42 together with the fixed yoke 11.

第一磁性体8は、流通孔81の周縁部84から径方向内側に延出した一対の腕部82を有している。各々の腕部82は、流通孔81の周縁部84と接続される直線状に形成された一対の接続部82aと、一対の接続部82aの端部を弧状に連結する弧状部82bとを有している。この弧状部82bの内周面は、非磁性体の支持部材6が介在した状態で軸部材5の外周面と径方向視で重複している。また、第一磁性体8は、周縁部84のうち磁束が通過する部分に一対の磁束絞り部83が設けられている。一対の腕部82は、周縁部84のうち一対の磁束絞り部83を挟む両側の領域から延出するように設けられている。腕部82の接続部82a(腕部82のうち周縁部84から径方向に延出する部位)の幅L1は、磁束絞り部83の幅L2より大きく形成されている。また、本実施形態では、腕部82の弧状部82bの幅L3を接続部82aの幅L1や磁束絞り部83の幅L2よりも小さく形成して磁束密度を高めている。なお、弧状部82bの幅L3を、接続部82aの幅L1と同様に磁束絞り部83の幅L2より大きく形成しても良い。   The first magnetic body 8 has a pair of arm portions 82 extending radially inward from the peripheral edge portion 84 of the flow hole 81. Each arm portion 82 has a pair of connecting portions 82a formed in a straight line connected to the peripheral edge portion 84 of the flow hole 81, and an arc-shaped portion 82b that connects the ends of the pair of connecting portions 82a in an arc shape. doing. The inner peripheral surface of the arc-shaped portion 82b overlaps the outer peripheral surface of the shaft member 5 in the radial direction with the nonmagnetic support member 6 interposed. Further, the first magnetic body 8 is provided with a pair of magnetic flux restricting portions 83 at a portion where the magnetic flux passes in the peripheral portion 84. The pair of arm portions 82 are provided so as to extend from regions on both sides of the peripheral edge portion 84 that sandwich the pair of magnetic flux restricting portions 83. The width L1 of the connecting portion 82a of the arm portion 82 (the portion extending in the radial direction from the peripheral edge portion 84 of the arm portion 82) is formed larger than the width L2 of the magnetic flux restricting portion 83. Further, in the present embodiment, the magnetic flux density is increased by forming the width L3 of the arc-shaped portion 82b of the arm portion 82 smaller than the width L1 of the connecting portion 82a and the width L2 of the magnetic flux restricting portion 83. Note that the width L3 of the arc-shaped portion 82b may be formed larger than the width L2 of the magnetic flux restricting portion 83 in the same manner as the width L1 of the connecting portion 82a.

図2〜図3に示すように、ソレノイドBは、鉄などの磁性体で構成される板状の固定ヨーク11と、通電により磁場を発生させる電磁コイル12と、電磁コイル12を外部の駆動回路(不図示)に電気的に接続するソケット13とを有している。つまり、電磁コイル12に通電することで、固定ヨーク11を介して第一磁性体8に磁束が流れる。   As shown in FIGS. 2 to 3, the solenoid B includes a plate-like fixed yoke 11 made of a magnetic material such as iron, an electromagnetic coil 12 that generates a magnetic field when energized, and an electromagnetic coil 12 connected to an external drive circuit. And a socket 13 electrically connected to (not shown). That is, when the electromagnetic coil 12 is energized, a magnetic flux flows through the first magnetic body 8 via the fixed yoke 11.

第二磁性体7は、軸部材5の軸芯Xと同軸芯となるように、軸部材5の他方の端部に一体形成された弁体として機能する。第二磁性体7は、第一磁性体8の流通孔81を閉塞可能な円板状の閉塞面71と、閉塞面71の外周部から第一磁性体8に向かって突出する円筒状の突出部72と、を有している。閉弁時には、この突出部72が流通孔81の周縁部84に当接して、第二磁性体7の閉塞面71が第一磁性体8の流通孔81を閉塞する(図3参照)。   The second magnetic body 7 functions as a valve body integrally formed at the other end of the shaft member 5 so as to be coaxial with the shaft core X of the shaft member 5. The second magnetic body 7 includes a disk-shaped closing surface 71 that can close the flow hole 81 of the first magnetic body 8, and a cylindrical protrusion that protrudes from the outer periphery of the closing surface 71 toward the first magnetic body 8. Part 72. When the valve is closed, the protrusion 72 comes into contact with the peripheral edge 84 of the flow hole 81, and the closing surface 71 of the second magnetic body 7 closes the flow hole 81 of the first magnetic body 8 (see FIG. 3).

一方、開弁時には、ストッパ9の環状鍔部92が、第二磁性体7の背面7aの径方向内側の部分に当接して第二磁性体7の移動を阻止している(図2参照)。このとき、第二磁性体7の径方向外側から第一ハウジング41の延出部44の間に形成された空間を主流路として、冷却水が流入口43aから流出口41aに向かって流通する。加えて、冷却水が水通路45の溜り部45aに流入し、延出部44の水通路45,ストッパ9の接続通路92b,ストッパ9の貫通孔部92cの順番で流通する副流路も形成されている。なお、本実施形態では、ストッパ9が、第二磁性体7の突出部72よりも径方向内側に配置されており、第二磁性体7の閉塞面71よりも径方向外側に形成された主流路の流通抵抗の増大を抑制している。   On the other hand, when the valve is opened, the annular flange 92 of the stopper 9 is in contact with the radially inner portion of the back surface 7a of the second magnetic body 7 to prevent the movement of the second magnetic body 7 (see FIG. 2). . At this time, the cooling water flows from the inflow port 43a toward the outflow port 41a with the space formed between the extending portion 44 of the first housing 41 from the radially outer side of the second magnetic body 7 as a main flow path. In addition, the cooling water flows into the pool portion 45a of the water passage 45 and forms a sub-flow passage through which the water passage 45 of the extension portion 44, the connection passage 92b of the stopper 9, and the through hole portion 92c of the stopper 9 are circulated in this order. Has been. In the present embodiment, the stopper 9 is disposed on the radially inner side with respect to the projecting portion 72 of the second magnetic body 7 and is formed on the radially outer side with respect to the closing surface 71 of the second magnetic body 7. The increase in the distribution resistance of the road is suppressed.

(制御例)
図7には、上述した流体制御弁Vを用いた制御方法の一例が示されている。エンジンEを始動したとき、ソレノイドBは非通電となっており、コイルスプリングSの付勢力によって第二磁性体7が第一磁性体8から離間して流体制御弁Vが開弁している(図2参照)。まず、デフロスタ等から開弁要求があるか否かが判定される(♯01)。開弁要求がない場合(♯01No判定)、ソレノイドBを通電することによりコイルスプリングSの付勢力に抗して第二磁性体7が第一磁性体8に引き寄せられ、第二磁性体7が第一磁性体8に当接して流体制御弁Vが閉弁される(♯02、図3参照)。その結果、エンジンEの暖機が促進される。次いで、冷却水温度が暖機完了温度T1以上になれば(♯03Yes判定)、ソレノイドBの通電を停止して流体制御弁Vを開弁する(♯04)。冷却水温度が暖機完了温度T1に達していない場合には(♯03No判定)、流体制御弁Vの閉弁状態を維持する(♯02)。
(Control example)
FIG. 7 shows an example of a control method using the fluid control valve V described above. When the engine E is started, the solenoid B is not energized, the second magnetic body 7 is separated from the first magnetic body 8 by the biasing force of the coil spring S, and the fluid control valve V is opened ( (See FIG. 2). First, it is determined whether or not there is a valve opening request from a defroster or the like (# 01). When there is no valve opening request (# 01 No determination), by energizing the solenoid B, the second magnetic body 7 is attracted to the first magnetic body 8 against the urging force of the coil spring S, and the second magnetic body 7 is The fluid control valve V is closed in contact with the first magnetic body 8 (see # 02, FIG. 3). As a result, warm-up of the engine E is promoted. Next, when the coolant temperature becomes equal to or higher than the warm-up completion temperature T1 (# 03 Yes determination), energization of the solenoid B is stopped and the fluid control valve V is opened (# 04). If the coolant temperature has not reached the warm-up completion temperature T1 (# 03 No determination), the closed state of the fluid control valve V is maintained (# 02).

一方、開弁要求がある場合(♯01Yes判定)は、緊急性の高い流体供給の制御が優先され、ソレノイドBが非通電の状態で流体制御弁Vの開弁状態を維持し、ヒータコアHに冷却水を循環させる(♯05)。そして、開弁要求が解除された場合(♯06Yes判定)、冷却水温度が暖機完了温度T1に達していないときには、流体制御弁Vを再度閉弁して暖機を促進させ(♯02〜♯04)、冷却水温度が暖機完了温度T1に達していれば、開弁を維持してエンジンEに冷却水を循環させる通常運転モードに移行する。   On the other hand, when there is a valve opening request (# 01 Yes determination), priority is given to the control of fluid supply with high urgency, and the fluid control valve V is kept open while the solenoid B is not energized. Cooling water is circulated (# 05). When the valve opening request is canceled (# 06 Yes determination), when the coolant temperature has not reached the warm-up completion temperature T1, the fluid control valve V is closed again to promote the warm-up (# 02- # 04) If the cooling water temperature has reached the warm-up completion temperature T1, the routine proceeds to a normal operation mode in which the valve E is maintained and the cooling water is circulated through the engine E.

通常運転モードに移行してから、暖房要求があった場合(♯07Yes判定)、エンジンEの回転数が低回転領域にあり(Rrpm以下)、且つ冷却水が所定温度T2以下である場合(♯08Yes判定)、ソレノイドBに通電して流体制御弁Vを閉弁する(♯09)。その結果、エンジンEの運転に影響を及ぼさない範囲で、冷却水の温度が上昇する。そして、冷却水が所定温度T2より大きくなった場合(♯08No判定)、ソレノイドBの通電を停止して流体制御弁Vを開弁すれば(♯10)、ヒータコアHに高温の冷却水が循環するので、室内を迅速に暖めることができる。また、エンジンEの回転数が低回転領域より大きくなった場合(♯08No判定)は、エンジンEの冷却を優先するために、ソレノイドBの通電を停止して流体制御弁Vを開弁し(♯10)、ラジエータRおよびヒータコアHで熱交換して冷却水の温度を低下させる。   When there is a heating request after shifting to the normal operation mode (# 07 Yes determination), when the rotational speed of the engine E is in the low rotation range (Rrpm or less) and the cooling water is equal to or lower than the predetermined temperature T2 (# 08), the solenoid B is energized and the fluid control valve V is closed (# 09). As a result, the temperature of the cooling water rises within a range that does not affect the operation of the engine E. When the cooling water becomes higher than the predetermined temperature T2 (# 08 No determination), if the energization of the solenoid B is stopped and the fluid control valve V is opened (# 10), the high-temperature cooling water circulates in the heater core H. Therefore, the room can be warmed up quickly. Further, when the rotational speed of the engine E becomes larger than the low speed region (# 08 No determination), in order to give priority to cooling of the engine E, the energization of the solenoid B is stopped and the fluid control valve V is opened ( # 10) Heat is exchanged between the radiator R and the heater core H to lower the temperature of the cooling water.

その他の制御方法としては、例えば、ヒータコアH、EGRクーラやトランスミッション等に各別に流体制御弁Vを配置し、必要に応じて開閉動作を繰り返す形態などが想定される。このように、開閉動作を頻繁に行う流体制御弁Vにあっては、エンジンEの回転数に応じて流量が変化する機械式のウォータポンプPのように水圧を制御できない場合であっても、水圧に拘らず開閉動作を迅速に行えることが望ましい。   As another control method, for example, a mode in which the fluid control valve V is separately provided in each of the heater core H, the EGR cooler, the transmission, and the like, and the opening / closing operation is repeated as necessary is assumed. Thus, in the fluid control valve V that frequently opens and closes, even when the water pressure cannot be controlled like the mechanical water pump P in which the flow rate changes in accordance with the rotational speed of the engine E, It is desirable to be able to quickly open and close regardless of water pressure.

図2に示すように、第二磁性体7は、第一磁性体8から離間する方向に付勢されており、ソレノイドBに通電しないときは、流体制御弁Vは開弁状態にある。このため、エンジンEの始動時のように水圧が低いときにデフロスタ等から開弁要求があった場合でも、早急に開弁して冷却水を流通させることができる。しかも、エンジン停止時は常に開弁状態なので、第二磁性体7と第一磁性体8とが固着して開弁し難い不都合もない。   As shown in FIG. 2, the second magnetic body 7 is biased in a direction away from the first magnetic body 8, and when the solenoid B is not energized, the fluid control valve V is in the valve open state. For this reason, even when there is a valve opening request from a defroster or the like when the water pressure is low, such as when the engine E is started, the valve can be opened quickly and the coolant can be circulated. Moreover, since the valve is always open when the engine is stopped, there is no inconvenience that the second magnetic body 7 and the first magnetic body 8 are fixed and difficult to open.

図2,図6に示すように、第二磁性体7が他方の端部に一体形成された軸部材5は第一磁性体8の腕部82に対して近い位置に設けられている。このため、ソレノイドBに通電したとき、第一磁性体8から軸部材5を経由して第二磁性体7に向かう磁気回路が形成され、第二磁性体7が第一磁性体8に吸着される。このとき、腕部82の弧状部82bの幅L3を、接続部82aの幅L1や磁束絞り部83の幅L2よりも小さく形成しているので、弧状部82bの磁束密度を高まることができる(図6参照)。また、第一磁性体8の腕部82の接続部82aの幅L1を磁束絞り部83の幅L2より大きく形成すれば、腕部82に磁束が流れやすくなり、軸部材5を介して第二磁性体7に流す磁束量を増大させることが可能となる。その結果、第一磁性体8と第二磁性体7との吸着力が高まり、少ない電力で開弁状態から閉弁状態へと移行させることができる。   As shown in FIGS. 2 and 6, the shaft member 5 in which the second magnetic body 7 is integrally formed at the other end is provided at a position close to the arm portion 82 of the first magnetic body 8. Therefore, when the solenoid B is energized, a magnetic circuit is formed from the first magnetic body 8 to the second magnetic body 7 via the shaft member 5, and the second magnetic body 7 is attracted to the first magnetic body 8. The At this time, since the width L3 of the arc-shaped portion 82b of the arm portion 82 is formed smaller than the width L1 of the connecting portion 82a and the width L2 of the magnetic flux restricting portion 83, the magnetic flux density of the arc-shaped portion 82b can be increased ( (See FIG. 6). Further, if the width L1 of the connecting portion 82a of the arm portion 82 of the first magnetic body 8 is formed to be larger than the width L2 of the magnetic flux restricting portion 83, the magnetic flux can easily flow through the arm portion 82, It is possible to increase the amount of magnetic flux flowing through the magnetic body 7. As a result, the attractive force between the first magnetic body 8 and the second magnetic body 7 is increased, and the valve opening state can be shifted to the valve closing state with a small amount of electric power.

また、図2および図5に示すように、第一磁性体8と第二磁性体7との間には、流入口43aから流入する冷却水の圧力を受け止める支持部材6の円環状部63が、第一磁性体8の流通孔81を閉塞可能な第二磁性体7の閉塞面71に対向して設けられている。支持部材6の円環状部63が水圧を受け止めることによって、この閉塞面71に作用して第二磁性体7を第一磁性体8から離間させる方向に作用する水圧を減少させることが可能となる。その結果、流体制御弁Vを開弁状態から閉弁状態へと迅速に移行させることができる。   As shown in FIGS. 2 and 5, an annular portion 63 of the support member 6 that receives the pressure of the cooling water flowing from the inflow port 43 a is provided between the first magnetic body 8 and the second magnetic body 7. The first magnetic body 8 is provided so as to face the closing surface 71 of the second magnetic body 7 that can close the flow hole 81 of the first magnetic body 8. Since the annular portion 63 of the support member 6 receives the water pressure, it is possible to reduce the water pressure acting on the closing surface 71 and acting in the direction of separating the second magnetic body 7 from the first magnetic body 8. . As a result, the fluid control valve V can be quickly shifted from the open state to the closed state.

しかも、図2および図4に示すように、開弁時に第二磁性体7の背面7aと第一ハウジング41(延出部44およびストッパ9)の内面との間に流路面積を絞る水通路45および接続通路92bが形成されている。その結果、第二磁性体7の背面7aが水圧を受けて第二磁性体7が第一磁性体8に向かって押圧されるので、第二磁性体7の背面7aに作用する水圧が第一磁性体8に吸着するためのソレノイドBの駆動力をアシストして、より迅速に閉弁することができる。本実施形態のように、この水通路45に流通する冷却水を貯留する溜り部45aを設ければ、溜り部45aからの冷却水が水通路45に流通し易いので、冷却水の流通が途切れることによる第二磁性体7の背面7aに作用する水圧の低下を抑制することができる。   Moreover, as shown in FIGS. 2 and 4, a water passage that narrows the flow path area between the back surface 7 a of the second magnetic body 7 and the inner surface of the first housing 41 (the extension portion 44 and the stopper 9) when the valve is opened. 45 and a connection passage 92b are formed. As a result, the back surface 7a of the second magnetic body 7 receives water pressure and the second magnetic body 7 is pressed toward the first magnetic body 8, so that the water pressure acting on the back surface 7a of the second magnetic body 7 is the first. The driving force of the solenoid B for adsorbing to the magnetic body 8 can be assisted to close the valve more quickly. If the reservoir 45a for storing the cooling water flowing through the water passage 45 is provided as in the present embodiment, the cooling water from the reservoir 45a easily flows through the water passage 45, so that the circulation of the cooling water is interrupted. The fall of the water pressure which acts on the back surface 7a of the 2nd magnetic body 7 by that can be suppressed.

また、第二磁性体7の他方の端部に固定された軸部材5が支持部材6によってガイドされるので、軸部材5が軸ぶれすることなく第二磁性体7の移動が円滑なものとなって開閉動作が安定する。本実施形態では、図5に示すように、支持部材6の内面に溝部68を設けると共に底部64に小孔64aを設けているので、軸部材5と支持部材6との間に異物が混入した場合でも、溝部68から小孔64aを介して支持部材6の外部に該異物を排出することができる。その結果、軸部材5の移動が円滑なものとなり、軸部材5の端部に固定された第二磁性体7の開閉動作が安定する。   Further, since the shaft member 5 fixed to the other end of the second magnetic body 7 is guided by the support member 6, the movement of the second magnetic body 7 is smooth without causing the shaft member 5 to shake. The opening and closing operation becomes stable. In this embodiment, as shown in FIG. 5, since the groove portion 68 is provided on the inner surface of the support member 6 and the small hole 64 a is provided on the bottom portion 64, foreign matter is mixed between the shaft member 5 and the support member 6. Even in this case, the foreign matter can be discharged from the groove 68 to the outside of the support member 6 through the small hole 64a. As a result, the movement of the shaft member 5 becomes smooth, and the opening / closing operation of the second magnetic body 7 fixed to the end of the shaft member 5 is stabilized.

(第二実施形態)
以下、第二実施形態について図面を用いて説明する。なお、制御方法や作用効果は上述した実施形態と同様であるため、説明を省略する。また、第一実施形態と同様の構成については、詳細な説明を省略する。
(Second embodiment)
The second embodiment will be described below with reference to the drawings. In addition, since the control method and an effect are the same as that of embodiment mentioned above, description is abbreviate | omitted. Detailed description of the same configuration as that of the first embodiment is omitted.

図8〜図10に示すように、流体制御弁VAは、ハウジング4Aと、ハウジング4Aに固定されたストッパ9Aと、ハウジング4Aに固定されたガイド部材6Aと、ガイド部材6Aの内部に収容されたコイルスプリングSA(付勢部材の一例)と、弁座としての第一磁性体8Aと、第一磁性体8Aに磁束を流すソレノイドBAと、弁体としての第二磁性体7Aと、を備えている。本実施形態では、第一磁性体8Aと第二磁性体7Aとは、鉄などの磁性体で構成されている。また、ハウジング4A,ガイド部材6A,およびストッパ9Aは、非磁性体の樹脂やステンレス等で構成されている。   As shown in FIGS. 8 to 10, the fluid control valve VA is accommodated in the housing 4A, a stopper 9A fixed to the housing 4A, a guide member 6A fixed to the housing 4A, and the guide member 6A. A coil spring SA (an example of an urging member), a first magnetic body 8A as a valve seat, a solenoid BA for flowing a magnetic flux through the first magnetic body 8A, and a second magnetic body 7A as a valve body are provided. Yes. In the present embodiment, the first magnetic body 8A and the second magnetic body 7A are made of a magnetic body such as iron. The housing 4A, the guide member 6A, and the stopper 9A are made of a nonmagnetic resin, stainless steel, or the like.

ハウジング4Aは、ストッパ9Aが内側に固定された第一ハウジング41Aと、第一磁性体8Aがインサート成形された第二ハウジング42Aと、ガイド部材6Aが内側に固定された第三ハウジング43Aとを備えている。   The housing 4A includes a first housing 41A in which the stopper 9A is fixed on the inside, a second housing 42A in which the first magnetic body 8A is insert-molded, and a third housing 43A in which the guide member 6A is fixed on the inside. ing.

第一ハウジング41Aには、複数(本実施形態では3箇所)の延出部44Aが第一ハウジング41Aの内面から延出形成されており、この延出部44Aの端部に円筒状のストッパ9Aが一体形成されている。この延出部44Aおよびストッパ9Aは、第一実施形態における延出部44およびストッパ9と同様の構成であるので説明を省略する。つまり、延出部44Aの水通路45Aおよび溜り部45Aa,ストッパ9Aの接続通路92Abおよび貫通孔部92Acは、夫々、第一実施形態における延出部44の水通路45および溜り部45a,ストッパ9の接続通路92bおよび貫通孔部92cに相当する。また、第二ハウジング42Aは、第一実施形態における第二ハウジング42と同様の構成であるので説明を省略する。   The first housing 41A has a plurality of (three in the present embodiment) extending portions 44A extending from the inner surface of the first housing 41A, and a cylindrical stopper 9A is formed at the end of the extending portion 44A. Are integrally formed. Since the extending portion 44A and the stopper 9A have the same configuration as the extending portion 44 and the stopper 9 in the first embodiment, description thereof is omitted. That is, the water passage 45A and the reservoir 45Aa of the extension portion 44A, the connection passage 92Ab and the through-hole portion 92Ac of the stopper 9A are respectively the water passage 45 and the reservoir portion 45a of the extension portion 44 and the stopper 9 in the first embodiment. This corresponds to the connection passage 92b and the through-hole portion 92c. Moreover, since the second housing 42A has the same configuration as the second housing 42 in the first embodiment, the description thereof is omitted.

図10に示すように、第三ハウジング43Aの内周面には、軸芯XAに沿って配置された複数(本実施形態では2箇所)の曲板部43Abが延出形成されており、この曲板部43Abの一端にガイド部材6Aが一体形成されている。曲板部43Abの第三ハウジング43Aとの接続部位が第一磁性体8Aよりも流入口43Aaの側に設けられており、曲板部43Abが第一磁性体8Aの流通孔81Aに侵入して、ガイド部材6Aが第一磁性体8Aよりも流出口41Aaの側に配置されている。   As shown in FIG. 10, a plurality of (two in this embodiment) curved plate portions 43Ab arranged along the axis XA are extended and formed on the inner peripheral surface of the third housing 43A. A guide member 6A is integrally formed at one end of the curved plate portion 43Ab. The connection portion of the curved plate portion 43Ab with the third housing 43A is provided on the inflow port 43Aa side of the first magnetic body 8A, and the curved plate portion 43Ab enters the flow hole 81A of the first magnetic body 8A. The guide member 6A is disposed closer to the outlet 41Aa than the first magnetic body 8A.

ガイド部材6Aは、底部64Aと底部64Aの外周に接続される筒部62Aとを有する有底筒状に構成されている。ガイド部材6Aの筒部62Aの外面および曲板部43Abの一部の外面は、カップ状の第二磁性体7Aの内面に摺接して、第二磁性体7Aの移動をガイドする。図11に示すように、ガイド部材6Aには、筒部62Aの外面を径方向内側に窪ませた溝部68Aが周方向に沿って等間隔に複数(本実施形態では4箇所)形成されており、この溝部68Aに後述する第一磁性体8Aの立上がり部82Aが挿入されている。また、隣り合う一対の溝部68Aa,68Abの外側面の間に曲板部43Abが配置されており、曲板部43Abの肉厚が溝部68Aa,68Abの肉厚と等しく設定されている。   6 A of guide members are comprised by the bottomed cylinder shape which has the bottom part 64A and the cylinder part 62A connected to the outer periphery of the bottom part 64A. The outer surface of the cylindrical portion 62A of the guide member 6A and a part of the outer surface of the curved plate portion 43Ab are in sliding contact with the inner surface of the cup-shaped second magnetic body 7A to guide the movement of the second magnetic body 7A. As shown in FIG. 11, the guide member 6A has a plurality of groove portions 68A (four locations in the present embodiment) formed at equal intervals along the circumferential direction in which the outer surface of the cylindrical portion 62A is recessed radially inward. A rising portion 82A of the first magnetic body 8A described later is inserted into the groove 68A. The curved plate portion 43Ab is disposed between the outer surfaces of the pair of adjacent groove portions 68Aa and 68Ab, and the thickness of the curved plate portion 43Ab is set equal to the thickness of the groove portions 68Aa and 68Ab.

図8〜図10に示すように、ガイド部材6Aの底部64A(流体圧受け部の一例)は、第二磁性体7Aの閉塞面71Aに対向しており、流入口43Aaから流入する冷却水の圧力を受け止めるように構成されている。また、ガイド部材6Aの底部64Aには、小孔64Aaが形成されている。ガイド部材6Aと第二磁性体7Aとの間に異物が混入した場合、この異物は、ガイド部材6Aの溝部68Aから小孔64Aaを介してガイド部材6Aの外部に排出される。   As shown in FIGS. 8 to 10, the bottom portion 64A (an example of the fluid pressure receiving portion) of the guide member 6A is opposed to the closing surface 71A of the second magnetic body 7A, and the cooling water flowing in from the inflow port 43Aa. It is configured to receive pressure. A small hole 64Aa is formed in the bottom 64A of the guide member 6A. When a foreign substance is mixed between the guide member 6A and the second magnetic body 7A, the foreign substance is discharged from the groove 68A of the guide member 6A to the outside of the guide member 6A through the small hole 64Aa.

図8〜図10に示すように、コイルスプリングSAは、ガイド部材6Aの底部64Aと第二磁性体7Aの閉塞面71Aとに当接した状態で、ガイド部材6Aの内部に収容されている。このコイルスプリングSAは、第二磁性体7Aが第一磁性体8Aから離間するように、第二磁性体7Aを流出口41Aaに向かって付勢している。なお、コイルスプリングSAを収容する筒状部材をガイド部材6Aの底部64Aから延出形成しても良い。   As shown in FIGS. 8 to 10, the coil spring SA is housed inside the guide member 6 </ b> A in contact with the bottom 64 </ b> A of the guide member 6 </ b> A and the closing surface 71 </ b> A of the second magnetic body 7 </ b> A. The coil spring SA urges the second magnetic body 7A toward the outlet 41Aa so that the second magnetic body 7A is separated from the first magnetic body 8A. A cylindrical member that accommodates the coil spring SA may be formed to extend from the bottom 64A of the guide member 6A.

第一磁性体8Aは、冷却水が流通する流通孔81Aが設けられている。図11に示すように、この流通孔81Aの周囲にある円環状の周縁部84Aが、後述する第二磁性体7Aの鍔部7dが当接する弁座として機能する。第一磁性体8Aは、ソレノイドBAの固定ヨーク11Aと一体化された板状に形成されており、固定ヨーク11Aと共に第二ハウジング42Aにインサート成形されている。   The first magnetic body 8A is provided with a circulation hole 81A through which cooling water flows. As shown in FIG. 11, an annular peripheral edge portion 84A around the circulation hole 81A functions as a valve seat with which a flange portion 7d of the second magnetic body 7A described later comes into contact. The first magnetic body 8A is formed in a plate shape integrated with the fixed yoke 11A of the solenoid BA, and is insert-molded in the second housing 42A together with the fixed yoke 11A.

第一磁性体8Aは、流通孔81Aの周縁部84Aから軸芯XA方向に沿って垂直に立設した複数(本実施形態では4箇所)の立上がり部82Aを有している。この立上がり部82Aは、ガイド部材6Aの溝部68Aに挿入された状態で、第二磁性体7Aの内面に対向している(図10参照)。また、第一磁性体8Aは、周縁部84Aのうち磁束が通過する部分に、幅を小さくした複数の磁束絞り部83Aが設けられている。一対の立上がり部82Aa,82Abは、周縁部84のうち一つの磁束絞り部83Aを挟む両側の領域から延出するように設けられている。これによって立上がり部82Aの磁束密度が高まるので、第二磁性体7Aに流れる磁束量を増大させることが可能となる。その結果、第一磁性体8Aと第二磁性体7Aとの吸着力が高まり、少ない電力で開弁状態から閉弁状態へと移行させることができる。   The first magnetic body 8A has a plurality of (four in this embodiment) rising portions 82A that are vertically provided along the axial center XA direction from the peripheral edge portion 84A of the flow hole 81A. The rising portion 82A faces the inner surface of the second magnetic body 7A while being inserted into the groove 68A of the guide member 6A (see FIG. 10). Further, the first magnetic body 8A is provided with a plurality of magnetic flux restricting portions 83A having a reduced width at a portion of the peripheral portion 84A through which the magnetic flux passes. The pair of rising portions 82 </ b> Aa and 82 </ b> Ab are provided so as to extend from regions on both sides sandwiching one magnetic flux constriction portion 83 </ b> A in the peripheral portion 84. This increases the magnetic flux density of the rising portion 82A, so that the amount of magnetic flux flowing through the second magnetic body 7A can be increased. As a result, the attractive force between the first magnetic body 8A and the second magnetic body 7A increases, and the valve opening state can be shifted to the valve closing state with a small amount of electric power.

ソレノイドBAは、第一実施形態におけるソレノイドBと同様の構成であるので説明を省略する。   Since the solenoid BA has the same configuration as the solenoid B in the first embodiment, the description thereof is omitted.

図8〜図10に示すように、第二磁性体7Aは、カップ状に形成されており、弁体として機能する。第二磁性体7Aは、底壁部7bと、底壁部7bから第一磁性体8Aに向かって延出する周壁部7cと、周壁部7cの端部を径方向外側に拡径した鍔部7dとを備えている。第二磁性体7Aの底壁部7bは、第一磁性体8Aの流通孔81Aを閉塞可能な閉塞面71Aを有している。閉弁時には、鍔部7dが流通孔81Aの周縁部84Aに当接して、第二磁性体7Aの閉塞面71Aが第一磁性体8Aの流通孔81Aを閉塞する(図9参照)。   As shown in FIGS. 8 to 10, the second magnetic body 7 </ b> A is formed in a cup shape and functions as a valve body. The second magnetic body 7A includes a bottom wall portion 7b, a peripheral wall portion 7c extending from the bottom wall portion 7b toward the first magnetic body 8A, and a flange portion in which an end portion of the peripheral wall portion 7c is expanded radially outward. 7d. The bottom wall 7b of the second magnetic body 7A has a closing surface 71A that can close the flow hole 81A of the first magnetic body 8A. When the valve is closed, the flange portion 7d comes into contact with the peripheral edge portion 84A of the flow hole 81A, and the closing surface 71A of the second magnetic body 7A closes the flow hole 81A of the first magnetic body 8A (see FIG. 9).

一方、開弁時には、ストッパ9Aの環状鍔部92Aが、第二磁性体7Aの閉塞面71Aの背面7Aaの径方向内側の部分に当接して第二磁性体7Aの移動を阻止している(図8および図10参照)。このとき、第二磁性体7Aの径方向外側から第一ハウジング41Aの延出部44Aの間に形成された空間を主流路として、冷却水が流入口43Aaから流出口41Aaに向かって流通する。加えて、冷却水が水通路45Aの溜り部45Aaに流入し、延出部44Aの水通路45A,ストッパ9Aの接続通路92Ab,ストッパ9Aの貫通孔部92Acの順番で流通する副流路も形成されている。   On the other hand, when the valve is opened, the annular flange 92A of the stopper 9A abuts against the radially inner portion of the back surface 7Aa of the closing surface 71A of the second magnetic body 7A to prevent the movement of the second magnetic body 7A ( FIG. 8 and FIG. 10). At this time, the cooling water flows from the inflow port 43Aa toward the outflow port 41Aa using the space formed between the extending portion 44A of the first housing 41A from the radially outer side of the second magnetic body 7A as a main flow path. In addition, cooling water flows into the reservoir 45Aa of the water passage 45A, and a sub-flow passage is also formed in which the water passage 45A of the extension portion 44A, the connection passage 92Ab of the stopper 9A, and the through-hole portion 92Ac of the stopper 9A are circulated in this order. Has been.

[その他の実施形態]
(1)上述した実施形態における流体圧受け部としての支持部材6の円環状部63やガイド部材6Aの底部64Aを省略しても良い。この場合でも、流路絞り部としての延出部44,44Aの水通路45,45Aおよびストッパ9,9Aの接続通路92b,92Abによって、第二磁性体7,7Aの背面7a,7Aaに水圧を作用させて迅速な閉弁を実現することができる。
(2)上述した実施形態における流路絞り部としての延出部44,44Aの水通路45,45Aおよびストッパ9,9Aの接続通路92b,92Abを、第二磁性体7の背面7aを窪ませて形成しても良い。
(3)第二実施形態において、第一磁性体8Aの立上がり部82Aが挿入されるガイド部材6Aの溝部68Aだけでなく、径方向内側に窪ませた異なる溝部を更に設けても良い。これによって、ガイド部材6Aと第二磁性体7Aとの間に異物が混入した場合でも、該異物を確実にガイド部材6Aの外部に排出することができる。
(4)第二実施形態におけるガイド部材6Aの曲板部43Abのうち、第一磁性体8Aよりもストッパ9Aの側の部位に貫通孔を形成しても良い。この場合、開弁時に該貫通孔から第一ハウジング41Aの延出部44Aの間に冷却水を循環させて、主流路における流路抵抗を減少させることができる。
(5)上述した実施形態における第二磁性体7,7Aは、全領域を露出させずに一部を樹脂で覆っても良い。
(6)上述した実施形態における流入口43a,43Aaと流出口41a,41Aaとは軸芯X,XAをずらして配置しても良い。
(7)流体制御弁V,VAが配置される流路に流体を流通させるポンプは、エンジンEの冷却水を供給するウォータポンプPに限定されず、エンジンオイルを循環させるオイルポンプであっても良いし、車両以外の用途に用いても良い。また、ウォータポンプPは、機械式ポンプではなく、三相交流モータ等を用いた電動ポンプであっても良い。
[Other Embodiments]
(1) The annular portion 63 of the support member 6 and the bottom portion 64A of the guide member 6A as the fluid pressure receiving portion in the above-described embodiment may be omitted. Even in this case, the water pressure is applied to the back surfaces 7a and 7Aa of the second magnetic bodies 7 and 7A by the water passages 45 and 45A of the extending portions 44 and 44A as the flow passage restricting portions and the connection passages 92b and 92Ab of the stoppers 9 and 9A. By acting, it is possible to realize quick valve closing.
(2) The water passages 45, 45A of the extending portions 44, 44A and the connection passages 92b, 92Ab of the stoppers 9, 9A as the flow restrictors in the embodiment described above are recessed in the back surface 7a of the second magnetic body 7. May be formed.
(3) In the second embodiment, not only the groove portion 68A of the guide member 6A into which the rising portion 82A of the first magnetic body 8A is inserted, but a different groove portion recessed inward in the radial direction may be further provided. As a result, even when foreign matter is mixed between the guide member 6A and the second magnetic body 7A, the foreign matter can be reliably discharged to the outside of the guide member 6A.
(4) In the curved plate portion 43Ab of the guide member 6A in the second embodiment, a through hole may be formed in a portion closer to the stopper 9A than the first magnetic body 8A. In this case, when the valve is opened, the cooling water can be circulated from the through hole to the extending portion 44A of the first housing 41A to reduce the flow resistance in the main flow path.
(5) The second magnetic bodies 7 and 7A in the above-described embodiment may be partially covered with resin without exposing the entire region.
(6) The inflow ports 43a and 43Aa and the outflow ports 41a and 41Aa in the above-described embodiment may be arranged by shifting the axes X and XA.
(7) The pump that circulates fluid in the flow path in which the fluid control valves V and VA are arranged is not limited to the water pump P that supplies the cooling water of the engine E, and may be an oil pump that circulates engine oil. It may be good or used for purposes other than vehicles. Further, the water pump P may be an electric pump using a three-phase AC motor or the like instead of a mechanical pump.

本発明は、流体の流通を遮断可能な流体制御弁に利用可能である。   The present invention can be used for a fluid control valve capable of blocking the flow of fluid.

4,4A ハウジング
5 軸部材
6 支持部材
6A ガイド部材
7,7A 第二磁性体
7a,7Aa 背面
8,8A 第一磁性体
9,9A ストッパ
41a,41Aa 流出口
43a,43Aa 流入口
45,45A 水通路(流路絞り部)
45a,45Aa 溜り部
63 円環状部(流体圧受け部)
64A 底部(流体圧受け部)
71,71A 閉塞面
81、81A 流通孔
84,84A 周縁部
92b,92Ab 接続通路(流路絞り部)
B,BA ソレノイド
S,SA コイルスプリング(付勢部材)
V,VA 流体制御弁
4, 4A Housing 5 Shaft member 6 Support member 6A Guide member 7, 7A Second magnetic body 7a, 7Aa Back surface 8, 8A First magnetic body 9, 9A Stopper 41a, 41Aa Outlet port 43a, 43Aa Inlet port 45, 45A Water passage (Flow path restriction)
45a, 45Aa Reservoir 63 Annular part (fluid pressure receiving part)
64A Bottom (fluid pressure receiving part)
71, 71A Blocking surface 81, 81A Circulation hole 84, 84A Peripheral portion 92b, 92Ab Connection passage (flow passage restricting portion)
B, BA Solenoid S, SA Coil spring (biasing member)
V, VA Fluid control valve

Claims (3)

流体の流入口と流出口とを有するハウジングと、
前記流体が流通する流通孔が設けられた第一磁性体と、
前記第一磁性体に磁束を流すソレノイドと、
前記ソレノイドから発生した前記磁束が流れることで前記第一磁性体に吸引されることにより、前記流通孔の周縁部に当接して前記流通孔を閉塞する第二磁性体と、
前記第二磁性体を前記第一磁性体から離間する方向に付勢する付勢部材と、
前記流出口の側で前記ハウジングに対して固定され、前記付勢部材の付勢力による前記第二磁性体の移動を阻止するストッパと、を備え、
前記第二磁性体の前記ストッパに当接する背面と前記ハウジングの内面との間における流路の一部には、流路面積が絞られた流路絞り部が形成されている流体制御弁。
A housing having a fluid inlet and outlet;
A first magnetic body provided with a flow hole through which the fluid flows;
A solenoid for flowing magnetic flux through the first magnetic body;
A second magnetic body that is attracted to the first magnetic body by flowing the magnetic flux generated from the solenoid, and closes the flow hole by contacting the peripheral edge of the flow hole;
A biasing member that biases the second magnetic body in a direction away from the first magnetic body;
A stopper that is fixed to the housing on the outlet side and prevents movement of the second magnetic body due to the biasing force of the biasing member,
A fluid control valve in which a flow passage restricting portion with a reduced flow passage area is formed in a part of a flow passage between a back surface of the second magnetic body that contacts the stopper and an inner surface of the housing.
前記流路絞り部における前記第二磁性体の側方には、前記流路絞り部に流通する前記流体を貯留する溜り部が前記ハウジングの前記内面を窪ませて形成されている請求項1に記載の流体制御弁。   The reservoir part which stores the said fluid which distribute | circulates to the said flow-path restricting part is formed in the side of the said 2nd magnetic body in the said flow-flow restricting part so that the said inner surface of the said housing may be depressed. The fluid control valve described. 前記第一磁性体と前記第二磁性体との間には、前記流入口から流入する前記流体の圧力を受け止める流体圧受け部が、前記流通孔を閉塞可能な前記第二磁性体の閉塞面に対向して設けられている請求項1又は2に記載の流体制御弁。
Between the first magnetic body and the second magnetic body, a fluid pressure receiving portion that receives the pressure of the fluid flowing from the inlet port closes the flow hole, and the closing surface of the second magnetic body The fluid control valve according to claim 1, wherein the fluid control valve is provided so as to be opposed to the fluid.
JP2017024837A 2017-02-14 2017-02-14 Fluid control valve Active JP6812822B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017024837A JP6812822B2 (en) 2017-02-14 2017-02-14 Fluid control valve
CN201721181921.8U CN207394082U (en) 2017-02-14 2017-09-13 Control valve for fluids
US15/704,250 US10273868B2 (en) 2017-02-14 2017-09-14 Fluid control valve
DE102017126190.7A DE102017126190A1 (en) 2017-02-14 2017-11-09 Fluid control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017024837A JP6812822B2 (en) 2017-02-14 2017-02-14 Fluid control valve

Publications (2)

Publication Number Publication Date
JP2018132090A true JP2018132090A (en) 2018-08-23
JP6812822B2 JP6812822B2 (en) 2021-01-13

Family

ID=63248885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017024837A Active JP6812822B2 (en) 2017-02-14 2017-02-14 Fluid control valve

Country Status (1)

Country Link
JP (1) JP6812822B2 (en)

Also Published As

Publication number Publication date
JP6812822B2 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
US10273868B2 (en) Fluid control valve
JP5257713B2 (en) Vehicle cooling system
JP5299728B2 (en) Vehicle coolant control valve
JP3978395B2 (en) Flow control valve
US9163553B2 (en) Vehicular coolant control valve
WO2012060188A1 (en) Fluid control valve
JP2013117297A5 (en)
JP6319019B2 (en) Fluid control device
JP5257712B2 (en) Engine cooling system
JP4916233B2 (en) Engine cooling system
JP2018132090A (en) Fluid control valve
JP6972776B2 (en) Fluid control valve
JP2018132091A (en) Fluid control valve
JP6852360B2 (en) Fluid control valve
JP5574180B2 (en) Fluid control valve
JP6442880B2 (en) Control valve
JP2013096377A (en) Coolant control valve for vehicle
JP5614585B2 (en) Fluid control valve
JP2007205197A (en) Engine cooling device
JP5618141B2 (en) Fluid control valve
JP4417644B2 (en) Vehicle cooling device
JP7358754B2 (en) fluid control valve
WO2022176871A1 (en) Thermostat device
JP5799530B2 (en) Cooling device for internal combustion engine
JP6303490B2 (en) Vehicle coolant control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R151 Written notification of patent or utility model registration

Ref document number: 6812822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151