JP2018131360A - Bonding method of magnesium fluoride crystal substance - Google Patents

Bonding method of magnesium fluoride crystal substance Download PDF

Info

Publication number
JP2018131360A
JP2018131360A JP2017026513A JP2017026513A JP2018131360A JP 2018131360 A JP2018131360 A JP 2018131360A JP 2017026513 A JP2017026513 A JP 2017026513A JP 2017026513 A JP2017026513 A JP 2017026513A JP 2018131360 A JP2018131360 A JP 2018131360A
Authority
JP
Japan
Prior art keywords
magnesium fluoride
end side
pieces
fluoride crystal
crystal pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017026513A
Other languages
Japanese (ja)
Other versions
JP6892198B2 (en
Inventor
篤 深澤
Atsushi Fukazawa
篤 深澤
智 早田
Satoshi Hayata
智 早田
佐藤 和幸
Kazuyuki Sato
和幸 佐藤
公則 大村
Kiminori Omura
公則 大村
弘 河西
Hiroshi Kawanishi
弘 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN SERU KK
Original Assignee
JAPAN SERU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN SERU KK filed Critical JAPAN SERU KK
Priority to JP2017026513A priority Critical patent/JP6892198B2/en
Priority to PCT/JP2017/009149 priority patent/WO2017154950A1/en
Priority to EP17763290.8A priority patent/EP3428326B1/en
Priority to US15/767,497 priority patent/US10519567B2/en
Publication of JP2018131360A publication Critical patent/JP2018131360A/en
Application granted granted Critical
Publication of JP6892198B2 publication Critical patent/JP6892198B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve production yield, when bonding magnesium fluoride crystal substance pieces excellent in light transmissivity and chemical resistance.SOLUTION: A spacer 3 is interposed between each joint area on the other end side of magnesium fluoride crystal substance pieces 1, 2. As the spacer 3 in an embodiment, a cotton fiber having a diameter of 30 μm is used. As the spacer 3, a material can be used, which is crushed by a pressure applied to the other end side of the magnesium fluoride crystal substance pieces 1, 2 after temporary bonding, and which does not become an obstacle to optical contact or a chemical pressurized close contact state on the other end side of synthetic corundum pieces 1, 2.SELECTED DRAWING: Figure 1

Description

本発明は、超低屈折光学材料として知られるフッ化マグネシウム(MgF2)結晶体の接合方法に関する。 The present invention relates to a method for joining magnesium fluoride (MgF 2 ) crystals known as an ultra-low refractive optical material.

パーティクルカウンターなどに組み込む合成コランダム製のフローセルを製造するには、板状の合成コランダム片を複数用意し、これら合成コランダム片を接合することで得ている。ここで、接着剤を用いたのでは接合面において境界面ができてしまい、光が屈折したり反射してしまう。また、熱融着させた場合には、接合面に気泡が封じ込められるなどの問題もある。   In order to manufacture a flow cell made of synthetic corundum to be incorporated in a particle counter or the like, a plurality of plate-like synthetic corundum pieces are prepared, and these synthetic corundum pieces are joined together. Here, if an adhesive is used, a boundary surface is formed on the joint surface, and light is refracted or reflected. In addition, when heat-sealing, there is a problem that bubbles are contained in the joint surface.

そこで、本出願人は特許文献1〜3を提案した。特許文献1〜3に開示される接合方法は基本的には同じであり、先ず結晶ブロックから合成コランダム片を切り出し、この切り出した合成コランダム片の接合面を研磨し、研磨した面同士を合わせ、合わせた状態の2枚の合成コランダム片の一端部側を強く押し付け、2枚の合成コランダム片の間隔を干渉縞ができる程度とし、この状態で2枚の合成コランダム片を合成コランダムの融点(2030℃)以下に加熱することで、一端側から他端側に向かって徐々に密着状態となるようにしたものである。   Therefore, the present applicant has proposed Patent Documents 1 to 3. The bonding methods disclosed in Patent Documents 1 to 3 are basically the same, first cut out a synthetic corundum piece from the crystal block, polish the bonded surface of the cut out synthetic corundum piece, and match the polished surfaces together, The two synthetic corundum pieces in the combined state are strongly pressed against one end side so that the distance between the two synthetic corundum pieces is such that interference fringes can be formed. C.) or less, by gradually heating from one end side to the other end side, a close contact state is obtained.

上記において、強く押し付けた状態の一端部側ではオプティカルコンタクト状態或いは化学的加圧密着状態になっており、加熱によって干渉縞がなくなるので、この密着状態が他端側まで連続すると考えられる。そして、このように接合された合成コランダム片同士は光学的な境界面が存在せず、極めて優れた三次元構造体が得られる。
In the above, one end side of the strongly pressed state is in an optical contact state or a chemical pressure contact state, and interference fringes are eliminated by heating, so this contact state is considered to continue to the other end side. And the synthetic | combination corundum pieces joined in this way do not have an optical interface, and an extremely excellent three-dimensional structure is obtained.

特許第3499717号公報Japanese Patent No. 3499717 特許第4224336号公報Japanese Patent No. 4224336 特許第4251462号公報Japanese Patent No. 4251462

特許文献1〜3に開示される方法によって製造された接合体は、耐薬品性に優れ、接合面が剥離したり接合面で屈折或いは反射する等の不具合がない反面、歩留りが十分ではないという問題がある。   The joined body manufactured by the method disclosed in Patent Documents 1 to 3 has excellent chemical resistance, and there is no problem such as peeling or reflection or reflection at the joining surface, but the yield is not sufficient. There's a problem.

歩留りが十分ではない原因としては、一端部側を他端側よりも強く押し付けることで、接合面同士の間に干渉縞ができる程度の隙間を形成するようにしているが、他端側は何ら拘束していないため、他端側における合成コランダム片同士の間に形成される微細な隙間が一定でないことが考えられる。
この問題は、フッ化マグネシウム(MgF2)結晶体を接合する場合にも生じる。
The reason why the yield is not sufficient is to press the one end side more strongly than the other end side so that a gap is formed between the joint surfaces so that interference fringes are formed. Since it is not restrained, it is considered that the fine gap formed between the synthetic corundum pieces on the other end side is not constant.
This problem also occurs when magnesium fluoride (MgF 2 ) crystals are joined.

上記課題を解決するため、本発明に係るフッ化マグネシウム(MgF2)結晶体片の接合方法は、互いに接合するフッ化マグネシウム結晶体片の接合する面を合わせ、この合わせた状態の結晶体片の一端側を他端側よりも強く押圧して合わせ面に干渉縞を形成し、この状態で結晶体片を結晶体の融点以下の温度で加熱することで、前記合わせ面を干渉縞が消失した完全な接合状態とする接合方法であって、前記互いに接合する結晶体片の他端側間に加熱時の圧力で圧潰可能な材質からなる微細なスペーサを介在させるようにした。 In order to solve the above-mentioned problem, a method for joining magnesium fluoride (MgF 2 ) crystal pieces according to the present invention is such that the surfaces of magnesium fluoride crystal pieces to be joined together are joined together, and the crystal pieces in this combined state The interference fringe disappears on the mating surface by pressing one end side of the substrate more strongly than the other end side to form an interference fringe on the mating surface and heating the crystal piece at a temperature below the melting point of the crystal in this state. In this joining method, a fine spacer made of a material that can be crushed by pressure during heating is interposed between the other ends of the crystal pieces to be joined together.

前記スペーサとしては、熱処理によって干渉縞が消失するのを妨げることがないもの、つまり接合する結晶体片同士がオプティカルコンタクト或いは化学的加圧密着状態となることを妨げない程度の圧潰性(弾性、柔らかさ)を有することが必要である。   The spacer does not prevent the interference fringes from disappearing by the heat treatment, that is, the collapsibility (elasticity) to such an extent that the crystal pieces to be bonded do not interfere with the optical contact or the chemical pressure contact state. Softness).

スペーサの一例としては綿繊維が挙げられるが、これに限定されるものではない。またスペーサの大きさは必要な干渉縞を形成するものであるから、合成コランダム片の接合長さによって異なるが、概ね15〜60μmの径である。   An example of the spacer is cotton fiber, but is not limited thereto. Further, since the size of the spacer forms a necessary interference fringe, it has a diameter of about 15 to 60 μm, though it varies depending on the joining length of the synthetic corundum piece.

また、本発明に係る接合方法においては、接合する結晶体片の一端側を押圧した仮接合の状態で、合わせた状態の結晶体片の単位長さ当たりの縞の本数によって、加熱処理前に仮接合状態の良否を判断することができる。   Further, in the bonding method according to the present invention, in the temporary bonding state in which one end side of the crystal pieces to be bonded is pressed, the number of stripes per unit length of the combined crystal pieces is determined before the heat treatment. The quality of the temporarily joined state can be determined.

また、合わせた状態の結晶体片の一端部の押圧箇所は幅方向の一部のみとすることも可能である。   Moreover, it is also possible to make only the part of the width direction the press location of the one end part of the crystal body piece of the match | combined state.

本発明によれば、結晶体片同士を接着剤を用いずに、一端側を他端側よりも強く押圧した状態での熱処理によって接合するに際し、他端側の結晶体片間の間隔をスペーサによって正確にコントロールできるため、歩留りを高めることができる。   According to the present invention, when bonding crystal pieces to each other by heat treatment in a state where one end side is pressed more strongly than the other end side without using an adhesive, the interval between the crystal pieces on the other end side is set as a spacer. Because it can be controlled accurately, the yield can be increased.

また、熱処理する前の仮接合の状態で、接合される結晶体片の接合面間に形成される干渉縞の単位長さあたりの本数によって、仮接合の状態の良否を判定できるため、更に歩留りを高めることができる。   Moreover, since the number of interference fringes per unit length formed between the bonding surfaces of the crystal pieces to be bonded can be determined in the temporary bonding state before the heat treatment, the quality of the temporary bonding state can be determined. Can be increased.

更に、合わせた状態の結晶体片の一端部の押圧箇所を幅方向全部ではなく幅方向の一部のみとすることで、押圧治具の跡が付く箇所が一部のみになり、接合後の不適合部分が少なくなり、材料の無駄がなくなる。   Furthermore, by making only one part in the width direction, not the entire pressed part of the one end of the crystal pieces in the combined state, the part where the mark of the pressing jig is attached becomes only a part, and after joining There are fewer non-conforming parts and there is no waste of material.

2つのフッ化マグネシウム(MgF2)結晶体片を重ね合わせた状態の側面図Side view of two magnesium fluoride (MgF 2 ) crystal pieces superimposed 一方のフッ化マグネシウム(MgF2)結晶体片の端部にスペーサを載置した状態の平面図One magnesium fluoride (MgF 2) plan view showing a state of mounting the spacer to the end of the crystal piece 2つのフッ化マグネシウム(MgF2)結晶体片を重ね合わせた際に生じる干渉縞の写真Photograph of interference fringes generated when two magnesium fluoride (MgF 2 ) crystal pieces are superposed (a)は3つのフッ化マグネシウム結晶体を同時に接合した構造体の正面の写真、(b)は同構造体の背面の写真(A) is a photograph of the front surface of a structure in which three magnesium fluoride crystals are bonded simultaneously, and (b) is a photograph of the back surface of the structure.

以下に本発明の実施の形態を添付図面に基づいて説明する。図1は2つのフッ化マグネシウム結晶体片を重ね合わせた状態の側面図、図2は一方のフッ化マグネシウム結晶体片の端部にスペーサを載置した状態の平面図であり、先ず2つのフッ化マグネシウム結晶体片1、2を用意する。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a side view showing a state in which two magnesium fluoride crystal pieces are superposed, and FIG. 2 is a plan view showing a state in which a spacer is placed on the end of one magnesium fluoride crystal piece. Magnesium fluoride crystal pieces 1 and 2 are prepared.

これらフッ化マグネシウム結晶体片1、2は結晶ブロックから切り出した後に、接合される面を研磨した後に洗浄し、微細なゴミなどが接合面にないことを確認したものである。尚、図示例では2つのフッ化マグネシウム結晶体片を重ねているが3つ以上の合成コランダム片を重ねて同時に接合することもできる。   These magnesium fluoride crystal pieces 1 and 2 were cut out from the crystal block, and then the surfaces to be joined were polished and then washed to confirm that there was no fine dust or the like on the joined surfaces. In the illustrated example, two magnesium fluoride crystal pieces are stacked, but three or more synthetic corundum pieces can be stacked and bonded simultaneously.

フッ化マグネシウム結晶体片1、2を重ねる際には結晶の軸、稜線及び軸角を完全に一致させる必要はなく、互いのフッ化マグネシウム結晶体片1、2の結晶の軸、稜線及び軸角のズレが5°以内とするのが好ましい。   When the magnesium fluoride crystal pieces 1 and 2 are stacked, it is not necessary to make the axes, ridge lines, and axis angles of the crystals completely coincide with each other. The angular deviation is preferably within 5 °.

フッ化マグネシウム結晶体片1、2の一端側は治具4によって強く押圧或いは挟持されている。治具4による押圧箇所は幅方向の全域としてもよいが図示例のように幅方向の中央の一部のみとすることで、接合後の不適合部分を少なくしている。   One end sides of the magnesium fluoride crystal pieces 1 and 2 are strongly pressed or clamped by the jig 4. Although the pressing part by the jig 4 may be the entire area in the width direction, only a part of the center in the width direction is used as in the illustrated example, thereby reducing non-conforming parts after joining.

フッ化マグネシウム結晶体片1、2の他端側の接合面間にはスペーサ3が介在している。このスペーサ3は図では分かりやすくするため実際よりは大きく示しているが、実施例では直径が30μmの綿繊維を用いている。スペーサ3は、仮接合後の熱処理の際にフッ化マグネシウム結晶体片1、2の他端側に作用する圧力によって潰れることで、フッ化マグネシウム結晶体片1、2の他端側でのオプティカルコンタクト或いは化学的加圧密着状態の妨げにならないものであればよい。   A spacer 3 is interposed between the joint surfaces on the other end side of the magnesium fluoride crystal pieces 1 and 2. The spacer 3 is shown larger than the actual size for the sake of clarity in the figure, but in the embodiment, a cotton fiber having a diameter of 30 μm is used. The spacer 3 is crushed by the pressure acting on the other end side of the magnesium fluoride crystal pieces 1 and 2 during the heat treatment after the temporary bonding, so that the optical at the other end side of the magnesium fluoride crystal pieces 1 and 2 is reduced. Any material that does not interfere with the contact or chemical pressure contact state may be used.

スペーサ3としては、ゲルビーズなども使用することができるが、仮接合後の熱処理の際に大量にガスを発生するものは、接合面に気泡が残る可能性があるので好ましくない。   Gel beads or the like can be used as the spacer 3, but those that generate a large amount of gas during the heat treatment after temporary bonding are not preferable because bubbles may remain on the bonding surface.

図3は重ね合わせたフッ化マグネシウム結晶体片1、2の一端部を押圧した状態の平面写真であり、この写真からも明らかなように、重ね合わせたフッ化マグネシウム結晶体片1、2の接合面の微細な隙間に由来する干渉縞が観察される。   FIG. 3 is a plan view showing a state in which one end of the superposed magnesium fluoride crystal pieces 1 and 2 is pressed. As is apparent from this photograph, the superposed magnesium fluoride crystal pieces 1 and 2 are shown in FIG. Interference fringes derived from minute gaps on the joint surface are observed.

上記干渉縞の間隔は接合面の微細な隙間の大きさに比例するため、仮接合状態での単位長さあたりの干渉縞の本数をカウントすることにより、フッ化マグネシウム結晶体片1、2の接合面の微細な隙間が適切な範囲にあるか否かを、前もって判断することができる。この実施例にあっては単位長さあたりに5本の縞が観察される。   Since the interval between the interference fringes is proportional to the size of the minute gaps on the joint surface, counting the number of interference fringes per unit length in the temporary joined state allows the magnesium fluoride crystal pieces 1 and 2 to It is possible to determine in advance whether or not the minute gap on the joint surface is in an appropriate range. In this embodiment, five stripes are observed per unit length.

以上の仮接合状態のフッ化マグネシウム結晶体片をフッ化マグネシウムの融点以下の温度まで加熱し一定時間保持する。
すると、既にオプティカルコンタクト或いは化学的加圧密着状態にある一端側から他端側に向かってオプティカルコンタクト或いは化学的加圧密着状態が進行し、この進行に併せて、フッ化マグネシウム結晶体片間に存在するガスは完全に排除され、接合面全体がオプティカルコンタクト或いは化学的加圧密着状態となる。
The above-mentioned temporarily bonded magnesium fluoride crystal piece is heated to a temperature below the melting point of magnesium fluoride and held for a certain period of time.
Then, the optical contact or the chemical pressure contact state advances from the one end side already in the optical contact or chemical pressure contact state toward the other end side, and along with this progress, between the magnesium fluoride crystal pieces. The existing gas is completely eliminated, and the entire bonding surface is in an optical contact or chemical pressure contact state.

図4(a)は3つのフッ化マグネシウム結晶体を同時に接合した構造体の正面の写真、(b)は同構造体の背面の写真であり、これらの写真から接合後には上記の干渉縞が全く観察されず、光学的な境界面が認められないことが分かる。   Fig. 4 (a) is a photograph of the front of the structure in which three magnesium fluoride crystals are bonded simultaneously, and (b) is a photograph of the back of the structure. It is not observed at all, and it can be seen that no optical interface is recognized.

実施例ではフッ化マグネシウム結晶体片同士を接合した例を示したが、本発明方法はフッ化マグネシウム結晶体と合成コランダム片、或いはフッ化マグネシウム結晶体とフッ化カルシウム結晶体片との接合にも応用することができる。   In the examples, magnesium fluoride crystal pieces were joined to each other. However, the method of the present invention can be used to join magnesium fluoride crystals and synthetic corundum pieces, or magnesium fluoride crystals and calcium fluoride crystal pieces. Can also be applied.

本発明方法は微粒子計に組み込まれるフローセルに限らず、レンズ、プリズムなどの各種光学部品、硬度が要求される機械部品、接合面が密閉状態にある特性を利用した真空容器、例えば可変波長レーザの較正、光スペクトラムアナライザの較正、ガス分析器の較正、波長計の較正、周波数標準、安定した周波数源、磁気光学トラップ法を用いた原子のレーザ冷却などに用いられるガス封入ガラスセルや高真空ガラスチャンバなどに応用することができる。   The method of the present invention is not limited to a flow cell incorporated in a particle meter, but includes various optical parts such as lenses and prisms, mechanical parts that require hardness, and vacuum containers that use characteristics in which the joint surface is sealed, such as a variable wavelength laser. Gas-filled glass cell and high vacuum glass used for calibration, optical spectrum analyzer calibration, gas analyzer calibration, wavelength meter calibration, frequency standard, stable frequency source, laser cooling of atoms using magneto-optical trap method, etc. It can be applied to a chamber or the like.

1、2…フッ化マグネシウム結晶体片、3…スペーサ、4…押圧治具。
1, 2 ... Magnesium fluoride crystal piece, 3 ... spacer, 4 ... pressing jig.

Claims (3)

互いに接合するフッ化マグネシウム結晶体片の接合する面を合わせ、合わせた状態のフッ化マグネシウム結晶体片の一端側を他端側よりも強く押圧し、合わせ面に干渉縞を形成し、この状態でフッ化マグネシウム結晶体を結晶体の融点以下の温度で加熱することで、前記合わせ面を干渉縞が消失した完全な接合状態とする結晶体片の接合方法において、前記互いに接合する結晶体片の他端側の合わせ面間に加熱時の圧力で圧潰可能な材質からなる微細なスペーサを介在させることを特徴とするフッ化マグネシウム結晶体片の接合方法。   The joined surfaces of the magnesium fluoride crystal pieces to be joined together are joined together, and one end side of the joined magnesium fluoride crystal pieces is pressed more strongly than the other end side to form interference fringes on the joined surfaces. In the crystal piece joining method, the magnesium fluoride crystals are heated at a temperature equal to or lower than the melting point of the crystal to bring the mating surfaces into a completely joined state in which interference fringes disappear, A method for joining magnesium fluoride crystal pieces, comprising interposing a fine spacer made of a material that can be crushed by a pressure during heating between the mating faces on the other end side of the glass. 請求項1に記載の結晶体片の接合方法において、前記スペーサは径が15〜60μmの綿などの繊維とすることを特徴とするフッ化マグネシウム結晶体片の接合方法。   2. The method for joining crystal pieces according to claim 1, wherein the spacer is a fiber such as cotton having a diameter of 15 to 60 [mu] m. 請求項1に記載の結晶体片の接合方法において、合わせた状態の結晶体片の一端部の押圧箇所は幅方向の一部のみとすることを特徴とするフッ化マグネシウム結晶体片の接合方法。   2. The method for joining magnesium fluoride crystal pieces according to claim 1, wherein a pressed portion of one end of the crystal pieces in a combined state is only a part in the width direction. 3. .
JP2017026513A 2016-03-08 2017-02-16 Joining method of magnesium fluoride crystals Active JP6892198B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017026513A JP6892198B2 (en) 2017-02-16 2017-02-16 Joining method of magnesium fluoride crystals
PCT/JP2017/009149 WO2017154950A1 (en) 2016-03-08 2017-03-08 Method for joining crystal body
EP17763290.8A EP3428326B1 (en) 2016-03-08 2017-03-08 Method for joining crystal body
US15/767,497 US10519567B2 (en) 2016-03-08 2017-03-08 Bonding method of crystal body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017026513A JP6892198B2 (en) 2017-02-16 2017-02-16 Joining method of magnesium fluoride crystals

Publications (2)

Publication Number Publication Date
JP2018131360A true JP2018131360A (en) 2018-08-23
JP6892198B2 JP6892198B2 (en) 2021-06-23

Family

ID=63248151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017026513A Active JP6892198B2 (en) 2016-03-08 2017-02-16 Joining method of magnesium fluoride crystals

Country Status (1)

Country Link
JP (1) JP6892198B2 (en)

Also Published As

Publication number Publication date
JP6892198B2 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
JPS5860722A (en) Coupling of optical fiber
JPS63165808A (en) Connector for connecting optical fiber to optical integrated circuit and manufacture thereof
KR100537685B1 (en) Method of joining synthetic corundum and method of manufacturing synthetic corundum cell
CN108188840B (en) A kind of processing method of curved surface prism
CN102825519B (en) Processing method of prism
JP2023531814A (en) Hermetically sealed package and manufacturing method thereof
CN101598825A (en) The high precision hollow prism reflector device
JP2018131360A (en) Bonding method of magnesium fluoride crystal substance
CN106291821A (en) A kind of hollow-core photonic crystal fiber bonder
JP6113881B1 (en) Crystal joining method
WO2017154950A1 (en) Method for joining crystal body
CN109856716A (en) A kind of processing, shaping and the modulator approach of hollow retroreflector
CN103116212B (en) Atomic beam two-dimension cooling optical prism frame
CN103630155A (en) Folded optics for batch fabricated atomic sensor
JP4224336B2 (en) Synthetic corundum cell
CN203799053U (en) Wdm device
JP5848474B1 (en) Manufacturing method of optical components
CN104090469B (en) Bonding and positioning method applied to precision machining of strip glass mirror in asymmetric structure
JPH1112099A (en) Adhesion of synthetic corundum and production of synthetic corundum
TWI230806B (en) GRIN lenses, devices and methods of manufacture
Chughtai et al. Holding arrangement for end polishing of single mode and other optical fibers
CN208206357U (en) A kind of all-welded fibre optic compression sensor
CN110707514A (en) Module capable of replacing beam expanding optical fiber and preparation method thereof
CN105589163B (en) A kind of method of unstressed installation optical element
JP2007263847A (en) Optical fiber sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210526

R150 Certificate of patent or registration of utility model

Ref document number: 6892198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250