JP2018130665A - Powder active carbon injection facility and powder active carbon injection method - Google Patents

Powder active carbon injection facility and powder active carbon injection method Download PDF

Info

Publication number
JP2018130665A
JP2018130665A JP2017025416A JP2017025416A JP2018130665A JP 2018130665 A JP2018130665 A JP 2018130665A JP 2017025416 A JP2017025416 A JP 2017025416A JP 2017025416 A JP2017025416 A JP 2017025416A JP 2018130665 A JP2018130665 A JP 2018130665A
Authority
JP
Japan
Prior art keywords
activated carbon
storage tank
pulverized
pulverizer
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017025416A
Other languages
Japanese (ja)
Other versions
JP6401807B2 (en
Inventor
武雄 大島
Takeo Oshima
武雄 大島
亨 加賀山
Toru Kagayama
亨 加賀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2017025416A priority Critical patent/JP6401807B2/en
Publication of JP2018130665A publication Critical patent/JP2018130665A/en
Application granted granted Critical
Publication of JP6401807B2 publication Critical patent/JP6401807B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a powder active carbon injection technology which is easily applied to an existing water purification facility.SOLUTION: A powder active carbon injection facility 40 that crushes powdery raw material coal with a crusher 30 installed in a water purification plant to produce crushed active carbon, and supplies the crushed active carbon for water purification treatment includes: a storage tank 41 of the active carbon; a crushed product supply path 42 supplying the active carbon stored in the storage tank 41 to the crusher 30; and a crushed product return path 43 returning the crushed active carbon crushed by the crusher 30 to the storage tank, and is structured so that the active carbon stored in the storage tank 41 is supplied for water purification treatment.SELECTED DRAWING: Figure 6

Description

本発明は、粉末活性炭注入設備及び粉末活性炭注入方法に関するものである。   The present invention relates to a powdered activated carbon injection facility and a powdered activated carbon injection method.

近年では、通常の浄水処理では十分に対応できない臭気物質やトリハロメタン生成物質、陰イオン界面活性剤、アンモニア態窒素などを処理するために、いわゆる高度浄水処理が採用されている。高度浄水処理としては、オゾン処理法、活性炭処理法及び生物処理方法等があり、被処理水の状況によってこれらの処理方法が単独又はいくつか組み合わされて用いられている。   In recent years, so-called advanced water purification treatment has been adopted to treat odorous substances, trihalomethane-forming substances, anionic surfactants, ammonia nitrogen, and the like that cannot be adequately handled by ordinary water purification treatment. The advanced water purification treatment includes an ozone treatment method, an activated carbon treatment method, a biological treatment method, and the like, and these treatment methods are used alone or in combination according to the condition of the water to be treated.

このうち、活性炭処理法には、浄水場の急速ろ過池の上流側又は下流側に、粒状活性炭層によるろ過を行う活性炭ろ過池を設けるものの他、図1〜図3に示すように、活性炭ろ過池を設けず、着水井6又はその上流の導水路5において原水RWに粉末活性炭DC、WCを注入(添加)するものが知られている。図示例は、より詳細には、導水路5を経て着水井(又は原水槽)6に供給された河川水などの原水(被処理水)RWを、凝集剤等を添加混合するための混和池1、フロックを形成するためのフロック形成池2、フロックを沈殿させるための沈殿池3、及び砂層等で水をろ過するろ過池4を経て浄化する一般的な浄水形態を基本として、原水RWの混和池1への供給に先立ち、粉末活性炭注入設備10により着水井6又はその上流の導水路5等の注入点で原水RWに粉末活性炭DC、WCを添加するようにしたものである。   Among these, in the activated carbon treatment method, as shown in FIG. 1 to FIG. 3, the activated carbon filter basin is provided with an activated carbon filter basin that performs filtration with a granular activated carbon layer on the upstream side or downstream side of the rapid filter basin of the water purification plant. In this case, the activated carbon DC and WC are injected (added) into the raw water RW in the landing well 6 or the water conduit 5 upstream thereof. More specifically, the illustrated example is a mixing pond for adding raw water (treated water) RW such as river water supplied to the landing well (or raw water tank) 6 through the water conduit 5 and adding a flocculant or the like. 1. Based on a general water purification form purifying through a floc formation pond 2 for forming flocs, a sedimentation basin 3 for precipitating flocs, and a filtration basin 4 for filtering water with a sand layer or the like, the raw water RW Prior to supply to the mixing basin 1, powdered activated carbon DC and WC are added to the raw water RW at the injection point of the landing well 6 or the water conduit 5 upstream thereof by the powdered activated carbon injection facility 10.

粉末活性炭注入設備(粉末活性炭添加設備ともいわれる)の例としては、図1及び図2に示すような乾燥状態のドライ粉末活性炭を利用する設備10と、図3示すような水分を含有するウエット粉末活性炭WCを利用する設備20とが知られている。   Examples of powder activated carbon injection equipment (also called powder activated carbon addition equipment) include equipment 10 using dry powder activated carbon in a dry state as shown in FIGS. 1 and 2, and wet powder containing moisture as shown in FIG. A facility 20 using activated carbon WC is known.

ウエット粉末活性炭注入設備20は、フレコンバッグ(フレキシブルコンテナバッグ)FBで搬入されるウエット粉末活性炭WCを作業員がクレーンを操作して攪拌機付の溶解槽21に投入し、溶解槽21内で給水SWと混合して所定濃度の活性炭のスラリーを製造し、このスラリーを注入ポンプ22により注入点に供給して原水RWに混合するものである。この場合、スラリーの製造がバッチ式となるため、通常、溶解槽21は複数設置され、スラリーの製造が終了した溶解槽21から注入を行いつつ、他の溶解槽21では次の注入に備えてスラリーの製造を行うことになる。また、常に規定量のフレコンバッグFBを使用し、かつ規定量の給水SWと混合することにより、溶解槽21内に規定濃度のスラリーを製造し、注入ポンプ22の供給流量を変化させることにより、原水RWに対する活性炭注入量を制御することができる。   In the wet powder activated carbon injection facility 20, an operator operates a crane to put wet powder activated carbon WC carried in a flexible container bag (flexible container bag) FB into a dissolution tank 21 with a stirrer, and supplies water in the dissolution tank 21. To produce a slurry of activated carbon having a predetermined concentration, and this slurry is supplied to the injection point by the injection pump 22 and mixed with the raw water RW. In this case, since the slurry is manufactured batchwise, normally, a plurality of dissolution tanks 21 are installed, and the other dissolution tanks 21 prepare for the next injection while injecting from the dissolution tanks 21 where the manufacture of the slurry is completed. A slurry will be produced. In addition, by always using a specified amount of flexible container bag FB and mixing with a specified amount of water supply SW, a slurry having a specified concentration is produced in the dissolution tank 21, and by changing the supply flow rate of the injection pump 22, The amount of activated carbon injected into the raw water RW can be controlled.

ウエット粉末活性炭注入設備20は、ドライ粉末活性炭注入設備10と比較して、設備が簡素で、設備建設費が比較的安価となる利点があるものの、フレコンバッグFBを移動し溶解槽21へ投入する作業のための作業員が必要であり、全自動化が困難であるという問題点の他、フレコンバッグFBによる活性炭溶解のため、活性炭注入量の精度が低くならざるを得ない、といった問題点も有している。   The wet powder activated carbon injection facility 20 has the advantage that the facility is simple and the construction cost is relatively low compared with the dry powder activated carbon injection facility 10, but the flexible container bag FB is moved and put into the dissolution tank 21. In addition to the problem that a worker is required for the work and it is difficult to fully automate, there is a problem that the accuracy of the activated carbon injection has to be lowered because the activated carbon is dissolved by the flexible container bag FB. doing.

一般に活性炭注入設備では、ランニングコスト低減のため、原水の水質変化に応じて活性炭注入量を変化させ、活性炭使用量を必要最小限にすることが行われている。しかし、原水の水質変化に対して細かく対応するためには、人員作業を必須とし活性炭注入量の精度が低いウエット粉末活性炭方式では限界があり、この観点ではドライ粉末活性炭方式が優位である。   In general, in an activated carbon injection facility, in order to reduce running costs, the activated carbon injection amount is changed according to changes in the quality of raw water to minimize the amount of activated carbon used. However, in order to respond finely to changes in the water quality of raw water, there is a limit in the wet powder activated carbon method in which manpower is indispensable and the accuracy of the activated carbon injection amount is low, and in this respect, the dry powder activated carbon method is superior.

ドライ粉末活性炭注入設備10は、図1及び図2に示すように、ジェットパック車JC等で搬入される乾燥状態のドライ粉末活性炭(原料炭)DCを、活性炭貯留槽11に貯留しておき、この活性炭貯留槽11のドライ粉末活性炭DCを、供給量可変の供給部12〜14、18を介して攪拌機付の溶解槽15に定量供給し、溶解槽15内で、場内給水SWから流量一定で別途供給される溶解水と混合して所定濃度の活性炭のスラリーを連続的に製造し、溶解槽15から一定流量でオーバーフローするスラリーを、エジェクタ17により場内給水SWからポンプ16により流量一定で別途供給される駆動水とともに、注入点に供給して原水RWに添加するものである。エジェクタ17の代わりにポンプを用いて溶解槽15からのスラリーを注入点に供給するものもある。なお、図1の符号19は溶解槽15へ溶解水を定流量で供給するための流量調整弁を示している。また、図1に示す設備例では、供給部12〜14が、活性炭貯留槽11の排出口に設けられた振動排出機12と、この振動排出機12により排出されるドライ粉末活性炭DCを所定の切り出し量で切り出すロータリーバルブ13と、このロータリーバルブ13により切り出されたドライ粉末活性炭DCを溶解槽15に定量供給する供給量可変の粉末定量供給機14とから主に構成されており、かつ粉末定量供給機14として、計量槽減量制御方式(フィードバック制御)のものが採用されている。この計量槽減量制御方式の粉末定量供給機14とは、ドライ粉末活性炭DCを一時的に貯留して計量するための計量槽と、この計量槽の重量を計測するロードセルと、計量槽内のドライ粉末活性炭DCを所定の容積で切り出す切り出し供給部とを備え、ロードセルによる計量槽の減量を排出量とみなして、排出量が一定となるように切り出し速度(回転式の切り出し機構の場合は回転数)を可変制御するものである。計量槽減量制御方式の粉末定量供給機の例としては、粉研パウテックス社の粉体用定量供給機「フンケンオートフィーダー」等を挙げることができる。   As shown in FIGS. 1 and 2, the dry powder activated carbon injection facility 10 stores dry powder activated carbon (raw carbon) DC that is carried in a jet pack car JC or the like in an activated carbon storage tank 11, The dry powder activated carbon DC of the activated carbon storage tank 11 is quantitatively supplied to the dissolution tank 15 with a stirrer via the supply units 12 to 14 and 18 with variable supply amounts, and the flow rate is constant from the in-situ water supply SW in the dissolution tank 15. A slurry of activated carbon having a predetermined concentration is continuously produced by mixing with dissolved water supplied separately, and slurry that overflows from the dissolution tank 15 at a constant flow rate is separately supplied from the in-site water supply SW by the pump 16 at a constant flow rate by the ejector 17. It is supplied to the injection point together with the driving water to be added to the raw water RW. In some cases, a slurry is supplied from the dissolution tank 15 to the injection point using a pump instead of the ejector 17. In addition, the code | symbol 19 of FIG. 1 has shown the flow regulating valve for supplying dissolved water to the dissolution tank 15 by constant flow. In addition, in the example of equipment shown in FIG. 1, the supply units 12 to 14 are provided with the vibration discharger 12 provided at the discharge port of the activated carbon storage tank 11 and the dry powder activated carbon DC discharged by the vibration discharger 12. It is mainly composed of a rotary valve 13 that cuts out with a cut-out amount, and a powder feed quantity variable supply device 14 that feeds dry powder activated carbon DC cut out by the rotary valve 13 into a dissolution tank 15 in a variable quantity, and the powder quantity is determined. As the feeder 14, a measuring tank reduction control method (feedback control) is adopted. This metering tank weight reduction control type powder quantification feeder 14 includes a metering tank for temporarily storing and metering dry powder activated carbon DC, a load cell for measuring the weight of the metering tank, and a dry cell in the metering tank. A cutting supply unit that cuts powdered activated carbon DC at a predetermined volume, considering the reduction of the measuring tank by the load cell as the discharge amount, and the cutting speed so that the discharge amount is constant (in the case of a rotary cutting mechanism, the number of rotations) ) Is variably controlled. As an example of the powder quantification feeder of the measuring tank weight loss control system, there can be mentioned a powder quantification feeder “Funken Auto Feeder”, etc., produced by Gakken Powtex.

一方、図2に示す設備例では、供給部18が、活性炭貯留槽11に貯留されているドライ粉末活性炭DCを所定の切り出し量で切り出して溶解槽15に供給する供給量可変の粉末定量供給機18のみから主に構成されており、かつ粉末定量供給機18として切り出し重量制御方式のものが採用されている。この切り出し重量制御方式の粉末定量供給機18とは、ドライ粉末活性炭DCを所定の容積に切り出す切り出し部と、切り出した所定容積のドライ粉末活性炭DCの重量を計測する重量計側部とを備え、重量計測結果及び切り出し速度(回転式の切り出し機構の場合は回転数)に基づいてドライ粉末活性炭DCの実供給量を算出し、この実供給量が設定供給量となるように切り出し速度を可変制御するものである。切り出し重量制御方式の粉末定量供給機18の例としては、大盛工業社のロードセル内蔵型定量供給機「セルインチェッカー」を挙げることができる。前述の計量槽減量制御方式の粉末定量供給機14は、小供給量時(時間あたりの切り出し量が小さい時)に外乱影響(風や人の歩行による振動)供給精度誤差が大きくなり易いのに対して、切り出し重量制御方式の粉末定量供給機18は、外乱影響を受けないため、供給精度が高く、外乱対策費用が削減可能であるとともに、計量槽減量制御方式における振動排出機12、ロータリーバルブ13及び粉末定量供給機14の計量槽が不要となるため、設備費低減及び設備設置高さの抑制の点では優位なものである。   On the other hand, in the facility example shown in FIG. 2, the supply unit 18 supplies a variable amount of powder to the dry powder activated carbon DC stored in the activated carbon storage tank 11 with a predetermined cutout amount and supplies it to the dissolution tank 15. It is mainly composed of only 18 and a cut-out weight control type is adopted as the powder fixed quantity feeder 18. The cut-out weight control type powder quantitative supply machine 18 includes a cut-out unit that cuts dry powder activated carbon DC into a predetermined volume, and a weighing scale side unit that measures the weight of the cut-out predetermined volume of dry powder activated carbon DC, The actual supply amount of dry powder activated carbon DC is calculated based on the weight measurement result and the cutting speed (rotation speed in the case of a rotary cutting mechanism), and the cutting speed is variably controlled so that this actual supply amount becomes the set supply amount. To do. As an example of the cut-out weight control type powder quantitative supply device 18, there can be mentioned a cell supply checker “cell in checker” built in a load cell. The above-mentioned metering-quantity feeder 14 of the weighing tank reduction control method is likely to have a large supply accuracy error due to disturbance effects (vibrations caused by wind and human walking) when the supply amount is small (when the cut-out amount per hour is small). On the other hand, the cut-out weight control type powder quantitative supply machine 18 is not affected by disturbances, so that the supply accuracy is high and the disturbance countermeasure cost can be reduced, and the vibration ejector 12 and rotary valve in the weighing tank weight reduction control type. 13 and the metering tank of the powder fixed amount supply device 14 are unnecessary, which is advantageous in terms of reducing the equipment cost and suppressing the equipment installation height.

図1、2に示す設備例10は、ウエット粉末活性炭注入設備と比べて全自動化が容易であり、溶解槽15への活性炭供給は定量供給機14、18によって行われるため活性炭注入量の精度が高く、また、注入量変更の応答性が早いため、より細かな制御に向いており、緊急時の対応にも向いている等の優位性がある。   The facility example 10 shown in FIGS. 1 and 2 is easier to fully automate than the wet powder activated carbon injection facility, and since the activated carbon supply to the dissolution tank 15 is performed by the quantitative feeders 14 and 18, the accuracy of the activated carbon injection amount is high. It is high, and the responsiveness of changing the injection amount is fast, so that it is suitable for finer control and is suitable for emergency response.

粉末活性炭注入においては、吸着性能の向上、及びそれによる活性炭消費量の低減等を目的として、D50が0.01〜10μm程度の微細な活性炭を用いることが知られており、また、原料となる粉末活性炭(以下、原料炭ともいう)を、オンサイト、つまり浄水場で粉砕機により粉砕して微細な粉砕活性炭としてから注入することも知られている(特許文献1〜4参照)。   In powder activated carbon injection, it is known to use fine activated carbon having a D50 of about 0.01 to 10 μm for the purpose of improving adsorption performance and reducing activated carbon consumption, thereby becoming a raw material. It is also known that powdered activated carbon (hereinafter also referred to as raw coal) is injected on-site, that is, after being pulverized by a pulverizer at a water purification plant into fine pulverized activated carbon (see Patent Documents 1 to 4).

しかしながら、従来のオンサイト粉砕による活性炭注入は、粉砕機から排出される粉砕活性炭をそのまま注入するものであったため、粉砕機の設置スペースの確保や基本設備との連動の確保が困難である等により、既存の浄水設備に適用することが困難であるという問題点を有していた。   However, the conventional activated carbon injection by on-site pulverization involves injecting the pulverized activated carbon discharged from the pulverizer as it is, and it is difficult to ensure the installation space of the pulverizer and the interlocking with the basic equipment. However, it was difficult to apply to existing water purification equipment.

特開平10−309567号公報JP-A-10-309567 特許4468895号公報Japanese Patent No. 4468895 特開2013−233486号公報JP2013-233486A 特開2016−036803号公報Japanese Patent Laid-Open No. 2006-036803

そこで、本発明の主たる課題は、既存浄水設備に対する適用が容易な粉末活性炭注入技術を提供すること等にある。   Then, the main subject of this invention is providing the powder activated carbon injection | pouring technique with easy application with respect to the existing water purification plant.

<第1の態様>
浄水場に設置された粉砕機により粉末状の原料炭を粉砕して粉砕活性炭を製造し、この粉砕活性炭を浄水処理に対して供給する、粉末活性炭注入設備において、
活性炭の貯留槽と、
前記貯留槽に貯留されている活性炭を、前記粉砕機に対して供給する被粉砕品供給路と、
前記粉砕機で粉砕された粉砕活性炭を前記貯留槽に返送する粉砕品返送路とを含み、
前記貯留槽に貯留されている活性炭を、前記浄水処理に対して供給する構成とした、
ことを特徴とする粉末活性炭注入設備。
<First aspect>
In the powdered activated carbon injection facility, which pulverized activated carbon is manufactured by pulverizing powdered raw coal with a pulverizer installed in the water purification plant, and this pulverized activated carbon is supplied to the water purification treatment,
An activated carbon reservoir,
The pulverized product supply path for supplying the activated carbon stored in the storage tank to the pulverizer,
Including a pulverized product return path for returning the pulverized activated carbon pulverized by the pulverizer to the storage tank;
The activated carbon stored in the storage tank is configured to supply the purified water treatment.
Powder activated carbon injection equipment characterized by that.

(作用効果)
本態様のように、貯留槽から浄水処理に対して供給する経路に粉砕機を介在させるのではなく、活性炭が貯留槽及び粉砕機を循環する循環経路を構成し、循環する活性炭に対して粉砕を繰り返し行いうる構成とし、貯留槽から浄水処理に対して粉砕活性炭を供給する構成を採用したことにより、粉砕機を貯留槽や浄水処理に対する供給系統から分離して設置することができるため、粉砕機の設置スペースの確保及び基本設備との連動の確保が容易となり、既存設備への適用が容易となる。また、粉砕を繰り返し行うことができるため、原料炭の粒度と粉砕活性炭の目標粒度との差が大きくても目標粒度の粉砕活性炭を製造し、注入することが可能となる。本態様は、活性炭の貯留槽を一槽のみ備える既存設備に、貯留槽の増設を行わずにオンサイト粉砕を追加する場合に好適なものである。特に、粉砕の循環系統を構成する貯留槽から粉砕活性炭を浄水処理に対して供給する構成としたため、粉砕と注入とを繰り返し行うだけでなく、必要に応じて同時に行うことも可能である。
(Function and effect)
Instead of interposing a pulverizer in the path for supplying water to the water purification treatment from the storage tank as in this embodiment, the activated carbon constitutes a circulation path for circulating the storage tank and the pulverizer, and pulverizes the circulating activated carbon. By adopting a configuration in which the pulverized activated carbon is supplied from the storage tank to the water purification treatment, the crusher can be installed separately from the supply system for the storage tank and the water purification treatment. It will be easy to secure the installation space of the machine and interlock with the basic equipment, and it will be easy to apply to existing equipment. Further, since the pulverization can be repeated, even if the difference between the particle size of the raw coal and the target particle size of the pulverized activated carbon is large, the pulverized activated carbon having the target particle size can be manufactured and injected. This aspect is suitable for the case where on-site pulverization is added to an existing facility having only one activated carbon storage tank without adding the storage tank. In particular, since the pulverized activated carbon is supplied to the water purification process from the storage tank constituting the pulverization circulation system, not only the pulverization and the injection are repeated, but also simultaneously as necessary.

<第2の態様>
前記粉砕活性炭と、別途流量一定で供給される溶解水とを混合して所定濃度の活性炭のスラリーを連続的に製造する溶解槽を有し、
前記貯留槽に貯留されている活性炭を、前記溶解槽に対して連続的に定量供給する注入品定量供給機を有し、
前記溶解槽で連続的に製造されるスラリーを、前記浄水処理に対して供給する構成とし、
前記被粉砕品供給路又は粉砕品返送路に、活性炭の粒度代表値を計測する粒度計測装置を有し、
前記粒度計測装置により計測される粒度代表値の増減に応じて、前記注入品定量供給機の供給量を増減する制御装置を有する、
第1の態様の粉末活性炭注入設備。
<Second aspect>
Having a dissolution tank for continuously producing a slurry of activated carbon having a predetermined concentration by mixing the pulverized activated carbon and separately dissolved water supplied at a constant flow rate;
Having an injectable product quantitative supply machine for continuously supplying the activated carbon stored in the storage tank to the dissolution tank;
The slurry continuously produced in the dissolution tank is configured to supply to the water purification treatment,
In the pulverized product supply path or pulverized product return path, it has a particle size measuring device for measuring the representative particle size of activated carbon,
In accordance with the increase or decrease of the particle size representative value measured by the particle size measuring device, it has a control device that increases or decreases the supply amount of the infusion product quantitative supply machine,
The powdered activated carbon injection equipment of a 1st aspect.

(作用効果)
前述のように、第1の態様は、目標粒度までの粉砕が終了する前に注入が必要となったときには、粉砕と注入とを同時に行うことができる。しかし、その場合、粉砕が不十分な状態での注入となるため、目標粒度の粉砕活性炭を注入する場合と比較して吸着性能が低下する。換言すると、粉砕活性炭の注入量が不足する。よって、本第2の態様のように、粒度計測装置により計測される粒度代表値の増減に応じて、注入品定量供給機の供給量を増減する制御装置を設け、目標粒度の粉砕活性炭を注入したときと同等の吸着性能が得られるように、粉砕活性炭の注入量を補正することは望ましい。
(Function and effect)
As described above, according to the first aspect, when injection is necessary before pulverization to the target particle size is completed, pulverization and injection can be performed simultaneously. However, in that case, since the injection is performed in a state where the pulverization is insufficient, the adsorption performance is reduced as compared with the case where the pulverized activated carbon having the target particle size is injected. In other words, the amount of pulverized activated carbon injected is insufficient. Therefore, as in the case of the second aspect, a control device is provided for increasing or decreasing the supply amount of the infusion product quantitative supply machine according to the increase or decrease of the representative particle size measured by the particle size measuring device, and the pulverized activated carbon having the target particle size is injected. It is desirable to correct the injection amount of the pulverized activated carbon so that the same adsorption performance as that obtained can be obtained.

<第3の態様>
前記被粉砕品供給路における、前記貯留槽から前記粉砕機に向かう経路の一部又は全部、並びに前記粉砕品返送路の一部又は全部が、空気輸送により活性炭を移送するものである、第1又は2の態様の粉末活性炭注入設備。
<Third Aspect>
Part or all of the path from the storage tank to the pulverizer and part or all of the pulverized product return path in the pulverized product supply path transfer activated carbon by pneumatic transportation. Or the powdered activated carbon injection | pouring equipment of 2 aspect.

(作用効果)
本態様のように、空気輸送により活性炭を移送することにより、粉砕機を貯留槽や浄水処理に対する供給系統から遠くに離して設置することができるため好ましい。
(Function and effect)
Since the activated carbon is transferred by pneumatic transportation as in this embodiment, the pulverizer can be installed far away from the supply system for the storage tank and the water purification treatment, which is preferable.

<第4の態様>
浄水場に設置された粉砕機により粉末状の原料炭を粉砕して粉砕活性炭を製造し、この粉砕活性炭を浄水処理に対して供給する、粉末活性炭注入設備において、
被粉砕活性炭を貯留する被粉砕品貯留槽と、
目標粒度に粉砕した粉砕活性炭を貯留する注入品貯留槽と、
前記被粉砕品貯留槽に貯留されている被粉砕活性炭を、前記粉砕機に対して供給する被粉砕品供給路と、
前記粉砕機で粉砕された粉砕活性炭を、前記被粉砕品貯留槽又は前記注入品貯留槽に対して選択的に返送する粉砕品返送路とを含み、
前記注入品貯留槽に貯留された粉砕活性炭を、前記浄水処理に対して供給する構成とした、
ことを特徴とする粉末活性炭注入設備。
<Fourth aspect>
In the powdered activated carbon injection facility, which pulverized activated carbon is manufactured by pulverizing powdered raw coal with a pulverizer installed in the water purification plant, and this pulverized activated carbon is supplied to the water purification treatment,
To-be-ground product storage tank for storing to-be-ground activated carbon,
An infusion storage tank for storing pulverized activated carbon pulverized to a target particle size;
A pulverized product supply path for supplying the pulverized activated carbon stored in the pulverized product storage tank to the pulverizer,
The pulverized activated carbon pulverized by the pulverizer includes a pulverized product return path for selectively returning the pulverized activated carbon storage tank or the injected product storage tank,
The pulverized activated carbon stored in the infusion product storage tank is configured to supply the purified water treatment.
Powder activated carbon injection equipment characterized by that.

(作用効果)
本態様のように、貯留槽から浄水処理に対して供給する経路に粉砕機を介在させるのではなく、活性炭が被粉砕品貯留槽及び粉砕機を循環する循環経路を構成し、循環する活性炭に対して粉砕を繰り返し行いうる構成とし、目標粒度まで粉砕した粉砕活性炭については注入品貯留槽に貯留し、この注入品貯留槽から浄水処理に対して粉砕活性炭を供給しうる構成を採用したことにより、粉砕機を貯留槽や浄水処理に対する供給系統から分離して設置することができるため、粉砕機の設置スペースの確保及び基本設備との連動の確保が容易となり、既存設備への適用が容易となる。また、粉砕を繰り返し行うことができるため、原料炭の粒度と粉砕活性炭の目標粒度との差が大きくても目標粒度の粉砕活性炭を製造し、注入することが可能となる。本態様は、活性炭の貯留槽を一槽のみ備える既存設備(貯留槽増設が必要)、又は貯留槽を複数備える既存設備に、オンサイト粉砕を追加する場合に好適なものである。特に、被粉砕品貯留槽と注入品貯留槽とを個別に備え、粉砕系統と注入系統とが独立しているため、粉砕と注入とを同時に行うことも可能であり、かつ注入量が粉砕処理量を超えない限り、目標粒度の粉砕活性炭を実質連続的に製造して注入することができるため、注入品の不足や吸着性能の低下が発生しにくい。
(Function and effect)
Instead of interposing a pulverizer in the path for supplying water to the water purification treatment from the storage tank as in this aspect, the activated carbon constitutes a circulation path for circulating the article storage tank and the pulverizer, and the circulated activated carbon By adopting a configuration in which pulverized activated carbon pulverized to the target particle size is stored in the injected product storage tank and pulverized activated carbon can be supplied to the water purification treatment from this injected product storage tank. Since the crusher can be installed separately from the storage system for the storage tank and water purification treatment, it is easy to secure the installation space of the crusher and interlock with the basic equipment, making it easy to apply to existing equipment. Become. Further, since the pulverization can be repeated, even if the difference between the particle size of the raw coal and the target particle size of the pulverized activated carbon is large, the pulverized activated carbon having the target particle size can be manufactured and injected. This aspect is suitable when adding on-site crushing to an existing facility having only one activated carbon storage tank (an additional storage tank is required) or an existing facility having a plurality of storage tanks. In particular, since the pulverized product storage tank and the injected product storage tank are provided separately, and the pulverization system and the injection system are independent, pulverization and injection can be performed simultaneously, and the injection amount is pulverized. As long as the amount is not exceeded, the pulverized activated carbon having the target particle size can be manufactured and injected substantially continuously, so that the shortage of injection products and the reduction in adsorption performance are unlikely to occur.

<第5の態様>
前記被粉砕品供給路の一部又は全部、並びに前記粉砕品返送路の一部又は全部が、空気輸送により活性炭を移送するものである、第4の態様の粉末活性炭注入設備。
<Fifth aspect>
The powder activated carbon injection facility according to the fourth aspect, wherein a part or all of the pulverized product supply path and a part or all of the pulverized product return path transfer activated carbon by pneumatic transportation.

(作用効果)
本態様のように、空気輸送により活性炭を移送することにより、粉砕機を貯留槽や浄水処理に対する供給系統から遠くに離して設置することができるため好ましい。
(Function and effect)
Since the activated carbon is transferred by pneumatic transportation as in this embodiment, the pulverizer can be installed far away from the supply system for the storage tank and the water purification treatment, which is preferable.

<第6の態様>
浄水場に設置された粉砕機により粉末状の原料炭を粉砕して粉砕活性炭を製造し、この粉砕活性炭を浄水処理に対して供給する、粉末活性炭注入設備において、
活性炭を貯留する第1貯留槽と、
前記第1貯留槽に貯留されている活性炭を前記粉砕機に対して供給する、第1被粉砕品供給路と、
活性炭を貯留する第2貯留槽と、
前記第2貯留槽に貯留されている活性炭を前記粉砕機に対して供給する、第2被粉砕品供給路と、
前記粉砕機で粉砕された粉砕活性炭を、前記第1貯留槽又は第2貯留槽に対して選択的に返送する粉砕品返送路とを含み、
前記第1貯留槽に貯留されている活性炭、又は前記第2貯留槽に貯留されている活性炭を、選択的に前記浄水処理に対して供給する構成とした、
ことを特徴とする粉末活性炭注入設備。
<Sixth aspect>
In the powdered activated carbon injection facility, which pulverized activated carbon is manufactured by pulverizing powdered raw coal with a pulverizer installed in the water purification plant, and this pulverized activated carbon is supplied to the water purification treatment,
A first storage tank for storing activated carbon;
A first pulverized product supply path for supplying the activated carbon stored in the first storage tank to the pulverizer;
A second storage tank for storing activated carbon;
A second pulverized product supply path for supplying activated carbon stored in the second storage tank to the pulverizer;
Pulverized activated carbon pulverized by the pulverizer, including a pulverized product return path for selectively returning the pulverized activated carbon to the first storage tank or the second storage tank,
Activated carbon stored in the first storage tank, or activated carbon stored in the second storage tank is configured to selectively supply the purified water treatment.
Powder activated carbon injection equipment characterized by that.

(作用効果)
本態様のように、貯留槽から浄水処理に対して供給する経路に粉砕機を介在させるのではなく、活性炭が第1貯留槽及び粉砕機を循環する循環経路と、活性炭が第2貯留槽及び粉砕機を循環する循環経路とを構成し、それぞれ循環する活性炭に対して粉砕を繰り返し行いうる構成とし、浄水処理に対して第1貯留槽又は第2貯留槽から選択的に粉砕活性炭を供給する構成を採用したことにより、粉砕機を貯留槽や浄水処理に対する供給系統から分離して設置することができるため、粉砕機の設置スペースの確保及び基本設備との連動の確保が容易となり、既存設備への適用が容易となる。また、粉砕を繰り返し行うことができるため、原料炭の粒度と粉砕活性炭の目標粒度との差が大きくても目標粒度の粉砕活性炭を製造し、注入することが可能となる。本態様は、活性炭の貯留槽を一槽のみ備える既存設備(貯留槽増設が必要)、又は貯留槽を複数備える既存設備に、オンサイト粉砕を追加する場合に好適なものである。特に、粉砕のための活性炭の循環経路を2系統独立して備えるため、一方を粉砕に利用し、他方を注入に利用することにより、粉砕と注入とを同時に行うことも可能であり、かつ注入量が粉砕処理量を超えない限り、目標粒度の粉砕活性炭を実質連続的に製造して注入することができるため、注入品の不足や吸着性能の低下が発生しにくい。さらに、粉砕のための活性炭の循環経路は2系統必要であるが、粉砕機は1台で済むため、機器構成の割に設置スペースは小さくて済むという利点もある。
(Function and effect)
As in this embodiment, the pulverizer is not interposed in the path for supplying water from the storage tank to the water purification treatment, but the circulation path through which the activated carbon circulates the first storage tank and the pulverizer, and the activated carbon is the second storage tank and A circulation path that circulates through the pulverizer, and a configuration in which pulverization can be repeatedly performed on each activated carbon, and the pulverized activated carbon is selectively supplied from the first storage tank or the second storage tank to the water purification treatment. By adopting the configuration, the crusher can be installed separately from the storage system for the storage tank and water purification treatment, so it is easy to secure the installation space of the crusher and interlock with the basic equipment. Application to is easy. Further, since the pulverization can be repeated, even if the difference between the particle size of the raw coal and the target particle size of the pulverized activated carbon is large, the pulverized activated carbon having the target particle size can be manufactured and injected. This aspect is suitable when adding on-site crushing to an existing facility having only one activated carbon storage tank (an additional storage tank is required) or an existing facility having a plurality of storage tanks. In particular, since two systems of activated carbon circulation paths for pulverization are provided independently, pulverization and injection can be performed simultaneously by using one for pulverization and the other for injection. As long as the amount does not exceed the pulverization amount, pulverized activated carbon having the target particle size can be manufactured and injected substantially continuously, so that the shortage of injection products and the reduction in adsorption performance are unlikely to occur. Furthermore, although two circulation paths of activated carbon for pulverization are required, since only one pulverizer is required, there is an advantage that a small installation space is required for the equipment configuration.

<第7の態様>
前記第1被粉砕品供給路の一部又は全部、前記第被粉砕品2供給路の一部又は全部、並びに前記粉砕品返送路の一部又は全部が、空気輸送により活性炭を移送するものである、第6の態様の粉末活性炭注入設備。
<Seventh aspect>
Part or all of the first pulverized product supply path, part or all of the first pulverized product 2 supply path, and part or all of the pulverized product return path transfer activated carbon by pneumatic transportation. A powdered activated carbon injection facility according to a sixth aspect.

(作用効果)
本態様のように、空気輸送により活性炭を移送することにより、粉砕機を貯留槽や浄水処理に対する供給系統から遠くに離して設置することができるため好ましい。
(Function and effect)
Since the activated carbon is transferred by pneumatic transportation as in this embodiment, the pulverizer can be installed far away from the supply system for the storage tank and the water purification treatment, which is preferable.

<第8の態様>
浄水場に設置された粉砕機により粉末状の原料炭を粉砕して粉砕活性炭を製造し、この粉砕活性炭を浄水処理に対して供給する、粉末活性炭注入方法において、
活性炭の貯留槽貯留槽に貯留されている活性炭を、前記粉砕機に対して供給し、
前記粉砕機で粉砕された粉砕活性炭を前記貯留槽に返送し、
前記貯留槽に貯留されている活性炭を、前記浄水処理に対して供給する、
ことを特徴とする粉末活性炭注入方法。
<Eighth aspect>
In the powdered activated carbon injection method, pulverized activated carbon is produced by pulverizing powdered raw coal with a pulverizer installed in a water purification plant, and this pulverized activated carbon is supplied to the water purification treatment.
Activated carbon stored in an activated carbon storage tank is supplied to the pulverizer,
Return the pulverized activated carbon crushed by the pulverizer to the storage tank,
Supplying activated carbon stored in the storage tank to the water purification treatment,
A method for injecting powdered activated carbon.

(作用効果)
第1の態様と同様の作用効果が奏せられる。
(Function and effect)
The same effects as those of the first aspect can be achieved.

<第9の態様>
浄水場に設置された粉砕機により粉末状の原料炭を粉砕して粉砕活性炭を製造し、この粉砕活性炭を浄水処理に対して供給する、粉末活性炭注入方法において、
被粉砕活性炭を貯留する被粉砕品貯留槽に貯留されている被粉砕活性炭を、前記粉砕機に対して供給し、
前記粉砕機で粉砕された目標粒度に達しない粉砕活性炭を、前記被粉砕品貯留槽に対して返送し、
前記粉砕機で粉砕された目標粒度に達した粉砕活性炭を、注入品貯留槽に対して供給し、
前記注入品貯留槽に貯留された粉砕活性炭を、前記浄水処理に対して供給する、
ことを特徴とする粉末活性炭注入方法。
<Ninth aspect>
In the powdered activated carbon injection method, pulverized activated carbon is produced by pulverizing powdered raw coal with a pulverizer installed in a water purification plant, and this pulverized activated carbon is supplied to the water purification treatment.
Supplying activated carbon to be crushed stored in a pulverized product storage tank for storing activated carbon to be crushed, to the pulverizer;
The pulverized activated carbon that does not reach the target particle size pulverized by the pulverizer is returned to the pulverized product storage tank,
Supplying the pulverized activated carbon that has reached the target particle size pulverized by the pulverizer, to the injection storage tank,
Supply the pulverized activated carbon stored in the infusion product storage tank to the water purification treatment,
A method for injecting powdered activated carbon.

(作用効果)
第4の態様と同様の作用効果が奏せられる。
<第10の態様>
浄水場に設置された粉砕機により粉末状の原料炭を粉砕して粉砕活性炭を製造し、この粉砕活性炭を浄水処理に対して供給する、粉末活性炭注入方法において、
第1貯留槽及び第2貯留槽のいずれか一方の貯留槽に貯留されている活性炭を、選択的に前記粉砕機に対して供給するとともに、
前記粉砕機で粉砕された粉砕活性炭を前記一方の貯留槽に返送し、
前記第1貯留槽及び第2貯留槽のいずれか他方の貯留槽に貯留されている活性炭を、選択的に前記浄水処理に対して供給する、
ことを特徴とする粉末活性炭注入方法。
(Function and effect)
The same effect as the 4th mode is produced.
<Tenth aspect>
In the powdered activated carbon injection method, pulverized activated carbon is produced by pulverizing powdered raw coal with a pulverizer installed in a water purification plant, and this pulverized activated carbon is supplied to the water purification treatment.
While selectively supplying activated carbon stored in one of the first storage tank and the second storage tank to the pulverizer,
Return the pulverized activated carbon crushed by the pulverizer to the one storage tank,
Selectively supplying activated carbon stored in the other storage tank of the first storage tank and the second storage tank to the water purification treatment;
A method for injecting powdered activated carbon.

(作用効果)
第6の態様と同様の作用効果が奏せられる。
(Function and effect)
The same effects as the sixth aspect are achieved.

以上のとおり、本発明によれば、既存浄水設備に対する適用が容易な粉末活性炭注入技術となる、等の利点がもたらされる。   As described above, according to the present invention, there are advantages such as a powdered activated carbon injection technique that can be easily applied to existing water purification facilities.

従来のドライ粉末活性炭利用浄水処理設備のフロー図である。It is a flowchart of the conventional dry powder activated carbon utilization water purification processing equipment. 従来のドライ粉末活性炭利用浄水処理設備のフロー図である。It is a flowchart of the conventional dry powder activated carbon utilization water purification processing equipment. 従来のウエット粉末活性炭利用浄水処理設備のフロー図である。It is a flowchart of the conventional water purification equipment using wet powder activated carbon. オンサイト粉砕工程のフロー図である。It is a flowchart of an on-site grinding | pulverization process. D50比と粉砕エネルギーとの関係を示すグラフである。It is a graph which shows the relationship between D50 ratio and grinding | pulverization energy. 例1のドライ粉末活性炭注入設備のフロー図である。It is a flowchart of the dry powder activated carbon injection equipment of Example 1. 粉砕運転のフローチャートである。It is a flowchart of a grinding | pulverization driving | operation. 注入運転のフローチャートである。It is a flowchart of injection | pouring driving | operation. 例2のドライ粉末活性炭注入設備のフロー図である。6 is a flowchart of the dry powder activated carbon injection facility of Example 2. FIG. 例3のドライ粉末活性炭注入設備のフロー図である。6 is a flowchart of the dry powder activated carbon injection facility of Example 3. FIG.

以下、本発明の一実施形態について添付図面を参照しながら詳説する。
<粉砕制御の例>
図4は、原料炭の粒度変化に関係なく、安定した粒度の粉砕活性炭を製造するためのオンサイト粉砕工程を概略的に示している。原料炭等の被粉砕活性炭C1が粉砕機30に供給され、粉砕機30で粉砕された粉砕活性炭C2は浄水処理に対して直接的又は間接的に供給するほか、再び被粉砕活性炭C1として粉砕機30に返送し、循環粉砕してもよい。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
<Example of grinding control>
FIG. 4 schematically shows an on-site pulverization process for producing pulverized activated carbon having a stable particle size regardless of changes in the particle size of the raw coal. The activated carbon C1 to be crushed, such as raw coal, is supplied to the pulverizer 30, and the pulverized activated carbon C2 pulverized by the pulverizer 30 is supplied directly or indirectly to the water purification treatment, and again as the pulverized activated carbon C1. It may be returned to 30 and circulated and ground.

粉砕機30としては、連続的に粉砕を行うものであるとともに、粉砕前後の活性炭の粒度代表値の比と、単位処理量の粉砕に要する粉砕エネルギーとの間に相関を有するものを用いる。このような粉砕機30としては、湿式粉砕機を用いることもできるが、安定的にシャープな粒度分布が得られにくいため、一回の粉砕処理によりシャープな粒度分布が得られる点で、乾式ビーズミル、ジェットミル等の乾式粉砕機が好ましく、中でも乾式ビーズミルが特に好ましい。   As the pulverizer 30, a pulverizer that continuously pulverizes and that has a correlation between the ratio of the representative particle size of the activated carbon before and after pulverization and the pulverization energy required for pulverizing the unit processing amount is used. As such a pulverizer 30, a wet pulverizer can be used. However, since it is difficult to stably obtain a sharp particle size distribution, it is possible to obtain a sharp particle size distribution by a single pulverization process. A dry pulverizer such as a jet mill is preferable, and a dry bead mill is particularly preferable.

図5は、乾式ビーズミルにおける、粉砕前活性炭のD50に対する粉砕後活性炭のD50の比と、単位処理量の粉砕に要する粉砕エネルギーとの関係を実験により求めたものである。粉砕前後の活性炭の粒度代表値の比と、単位処理量の粉砕に要する粉砕エネルギーとの間に良好な相関があることが分かる。   FIG. 5 shows the relationship between the ratio of the D50 of the activated carbon after pulverization to the D50 of the activated carbon before pulverization in the dry bead mill and the pulverization energy required for pulverizing the unit throughput. It can be seen that there is a good correlation between the ratio of the representative particle size of the activated carbon before and after pulverization and the pulverization energy required for pulverizing the unit throughput.

粒度代表値としては、D50(中央値。周知のように、粒度分布における累積体積分布の小径側から累積50%に相当する粒径を意味し、一般に平均粒径ともいわれている。粒径はレーザー回折散乱法により測定される粒径を意味する。)が好適であるが、最頻値、算術平均値(個数平均、長さ平均、面積平均、又は体積平均)の他、D10やD90とすることもできる。   The particle size representative value is D50 (median value. As is well known, it means a particle size corresponding to 50% cumulative from the smaller diameter side of the cumulative volume distribution in the particle size distribution, and is generally referred to as an average particle size. (Meaning the particle size measured by the laser diffraction scattering method) is preferable, but in addition to the mode value and the arithmetic average value (number average, length average, area average, or volume average), D10 and D90 You can also

また、粉砕機30に対する被粉砕活性炭C1の供給は、連続的な定量供給を行うことができる粉砕機用定量供給機31によりなされる。粉砕機用定量供給機31としては、前述の計量槽減量制御方式や、切り出し重量制御方式のもの等、公知のものを特に限定なく用いることができる。粉砕機用定量供給機31は、粉砕機30に装備されていてもよく、粉砕機30とは別に備え付けてもよい。   Further, the activated carbon C1 to be crushed to the pulverizer 30 is supplied by a pulverizer quantitative supply device 31 that can perform continuous quantitative supply. As the pulverizer constant supply device 31, known ones such as the above-described measuring tank weight reduction control method and the cut-out weight control method can be used without particular limitation. The pulverizer quantitative supply device 31 may be provided in the pulverizer 30 or may be provided separately from the pulverizer 30.

特徴的には、被粉砕活性炭C1の粒度代表値を計測する粒度計測装置32を設けるとともに、目標粒度代表値(目標とする注入品の粒度代表値)に対する、粒度計測装置32により計測される被粉砕活性炭C1の粒度代表値の比と、前述の相関とに基づき粉砕エネルギー適正値を求め、この粉砕エネルギー適正値で粉砕を行うように粉砕機30の駆動源の駆動制御を行う制御装置33を設ける。被粉砕活性炭C1が乾燥粉末である場合、粒度計測装置32としては、市販のインライン乾式粒度センサー(粒度分布測定装置)を用いることができ、制御装置33としては、シーケンスコントローラ等の公知の制御装置33を用いることができる。   Characteristically, a particle size measuring device 32 that measures the particle size representative value of the activated carbon C1 to be crushed is provided, and the target particle size measured by the particle size measuring device 32 with respect to the target particle size representative value (the target particle size representative value). Based on the ratio of the representative particle size of the pulverized activated carbon C1 and the above-described correlation, an appropriate pulverization energy value is obtained, and a control device 33 that performs drive control of the drive source of the pulverizer 30 so as to perform pulverization with the appropriate pulverization energy value is provided. Provide. When the activated carbon C1 to be crushed is a dry powder, a commercially available in-line dry particle size sensor (particle size distribution measuring device) can be used as the particle size measuring device 32, and a known control device such as a sequence controller can be used as the control device 33. 33 can be used.

粉砕エネルギー適正値となるように粉砕機30の駆動源の駆動制御を行うには、その時点における現実の粉砕機30の粉砕エネルギー実測値を求め、その差が無くなるように、例えば駆動源がモータの場合、モータの回転速度の増減を行う。粉砕エネルギー実測値は、粉砕機30が電動の場合、粉砕機30の消費電力(瞬時値)を、粉砕機用定量供給機31の単位時間あたりの供給質量で除した値であり、粉砕処理する活性炭の単位質量あたりの消費電力量に相当する。粉砕機用定量供給機31の単位時間あたりの供給質量は固定とするほか、粉砕機用定量供給機31に計測機能がある場合には、その計測結果を用いることもできる。   In order to perform drive control of the drive source of the pulverizer 30 so that the pulverization energy is appropriate, the actual pulverization energy measurement value of the pulverizer 30 at that time is obtained, and the drive source is, for example, a motor so that the difference is eliminated. In this case, the rotational speed of the motor is increased or decreased. When the pulverizer 30 is electrically powered, the actual pulverization energy value is a value obtained by dividing the power consumption (instantaneous value) of the pulverizer 30 by the supply mass per unit time of the pulverizer constant supply device 31. Corresponds to the power consumption per unit mass of activated carbon. The supply mass per unit time of the pulverizer quantitative feeder 31 is fixed, and when the pulverizer quantitative feeder 31 has a measurement function, the measurement result can be used.

このような制御装置33による制御によって、原料炭の粒度が変化しても、目標粒度の粉砕活性炭を安定製造し、注入することができ、活性炭の過剰又は不十分な使用を防止できる。粒度計測装置32による計測及び粉砕機30の駆動制御は、適宜の時間を空けて間欠的に行っても、また連続的に行ってもよい。   By such control by the control device 33, even if the particle size of the raw coal changes, pulverized activated carbon having the target particle size can be stably produced and injected, and excessive or insufficient use of activated carbon can be prevented. The measurement by the particle size measuring device 32 and the drive control of the pulverizer 30 may be performed intermittently with an appropriate time interval or continuously.

<活性炭注入設備の例1>
図6は、ドライ粉末活性炭注入設備40を示している。この設備40は、活性炭の貯留槽41と、貯留槽41に貯留されている活性炭を被粉砕活性炭として粉砕機30に対して供給する被粉砕品供給路42と、粉砕機30で粉砕された粉砕活性炭を貯留槽41に戻す粉砕品返送路43と、貯留槽41に貯留されている活性炭を、浄水処理の注入点APに対して供給可能としたものである。
<Example 1 of activated carbon injection equipment>
FIG. 6 shows a dry powder activated carbon injection facility 40. The equipment 40 includes an activated carbon storage tank 41, a pulverized product supply path 42 that supplies activated carbon stored in the storage tank 41 as pulverized activated carbon to the pulverizer 30, and pulverized by the pulverizer 30. The pulverized product return path 43 for returning the activated carbon to the storage tank 41 and the activated carbon stored in the storage tank 41 can be supplied to the injection point AP of the water purification treatment.

図示形態についてより詳細に説明すると、貯留槽41には、ジェットパック車JC等で搬入される乾燥状態の粉末原料炭が原料炭供給配管41iを介して供給され、貯留される。貯留槽41内に貯留された原料炭は、ダンパー41d及び貯留槽ロータリーバルブ41rを介して切り出され、分配定量供給機44に供給されるようになっている。分配定量供給機44は、2系統への分配供給(いずれか一方への選択的供給を含む)が可能であり、かつ各系統へ定量供給が可能なものである。図示形態では、ホッパ44hとこのホッパ44h内の活性炭を独立的に定量切り出しする第1定量供給部44a及び第2定量供給部44bを有するものである。被粉砕品供給路42における第1定量供給部44aから粉砕機までの部分は、図示形態では空気輸送設備により構成されている。すなわち、第1定量供給部44aにより供給される活性炭は供給用ロータリーバルブ45rを介して供給用エジェクタ45eに供給され、供給用送風機45fから供給される空気により、粉砕機30の付近に設置された受け槽45tに供給され、一時的に貯留された後、粉砕機用定量供給機31により切り出され、粉砕機30に定量供給されるようになっている。   If it demonstrates in detail about the form of illustration, in the storage tank 41, the dry powder raw coal carried in by the jet pack car JC etc. will be supplied via the raw coal supply piping 41i, and will be stored. The raw coal stored in the storage tank 41 is cut out via the damper 41d and the storage tank rotary valve 41r and supplied to the distribution fixed quantity supply unit 44. The distribution quantitative supply unit 44 can distribute and supply two systems (including selective supply to either one) and can supply a fixed quantity to each system. In the illustrated embodiment, a hopper 44h and a first fixed supply unit 44a and a second fixed supply unit 44b for independently and quantitatively cutting the activated carbon in the hopper 44h are provided. The part from the 1st fixed supply part 44a to the grinder in the to-be-ground product supply path 42 is comprised by the pneumatic transport equipment in the illustration form. That is, the activated carbon supplied from the first fixed supply unit 44a is supplied to the supply ejector 45e via the supply rotary valve 45r, and is installed near the crusher 30 by the air supplied from the supply blower 45f. After being supplied to the receiving tank 45t and temporarily stored, it is cut out by the pulverizer quantitative supply device 31 and supplied to the pulverizer 30 in a fixed amount.

図示形態では、粉砕機30から活性炭貯留槽41に至る粉砕品返送路43も空気輸送設備により構成されている。すなわち、粉砕機30により粉砕された粉砕活性炭は、粉砕機30からホッパ46hに供給された後、返送用ロータリーバルブ46rにより切り出されて返送用エジェクタ46eに供給され、返送用送風機46fから供給される空気により、返送配管46pを介して貯留槽41に返送される。なお、本設備例40の返送配管46pは、原料炭供給配管41iに合流しており、合流点よりも上流側にそれぞれ開閉弁v1,v2が設けられ、この開閉弁v1,v2を選択的に開閉することにより、貯留槽41に対する原料炭の供給と粉砕活性炭の返送とを選択できるようになっている。   In the illustrated embodiment, the pulverized product return path 43 from the pulverizer 30 to the activated carbon storage tank 41 is also constituted by pneumatic transportation equipment. That is, the pulverized activated carbon pulverized by the pulverizer 30 is supplied from the pulverizer 30 to the hopper 46h, then cut out by the return rotary valve 46r, supplied to the return ejector 46e, and supplied from the return blower 46f. The air is returned to the storage tank 41 via the return pipe 46p. The return pipe 46p of the present facility example 40 is joined to the raw coal supply pipe 41i, and on-off valves v1 and v2 are provided on the upstream side of the junction point, and the on-off valves v1 and v2 are selectively connected. By opening and closing, supply of raw coal to the storage tank 41 and return of pulverized activated carbon can be selected.

分配定量供給機44の第2定量供給部44bにより切り出される活性炭は、攪拌機付の溶解槽47に定量供給され、場内給水SWから注入ポンプ47pにより流量一定で別途供給される溶解水と溶解槽47内で混合されて所定濃度の活性炭のスラリーが連続的に製造され、溶解槽47から一定流量でオーバーフローするスラリーが注入エジェクタ47eに供給され、場内給水SWから注入ポンプ47pにより流量一定で別途供給される駆動水とともに注入点APに供給されるようになっている。注入エジェクタ47eの代わりにポンプを用いて溶解槽47からのスラリーを注入点APに供給する等、貯留槽41に貯留されている活性炭を浄水処理に対して供給する方法は特に限定されるものではない。   The activated carbon cut out by the second fixed amount supply unit 44b of the distribution fixed amount supply unit 44 is supplied in a fixed amount to a dissolution tank 47 with a stirrer, and dissolved water and dissolution tank 47 separately supplied at a constant flow rate from the in-situ water supply SW by an injection pump 47p. A slurry of activated carbon having a predetermined concentration is continuously produced by mixing in the reactor, and a slurry that overflows from the dissolution tank 47 at a constant flow rate is supplied to the injection ejector 47e, and is separately supplied from the on-site water supply SW at a constant flow rate by the injection pump 47p. It is supplied to the injection point AP together with the driving water. A method of supplying activated carbon stored in the storage tank 41 to the water purification process, such as supplying slurry from the dissolution tank 47 to the injection point AP using a pump instead of the injection ejector 47e, is not particularly limited. Absent.

貯留槽41及び受け槽45tは、図示形態のように空気抜きのためのバグフィルタbg及び活性炭冷却のための冷却エアパージpgを備えていることが好ましい。   The storage tank 41 and the receiving tank 45t are preferably provided with a bag filter bg for venting air and a cooling air purge pg for cooling activated carbon as shown in the figure.

粉砕機30を分配定量供給機44の付近に設置できる場合や、貯留槽41の付近に設置できる場合には、被粉砕品供給路42及び粉砕品返送路43の少なくとも一方について、空気輸送設備を省略して直接的に接続したり、他の機械的移送設備を用いたりすることができる。例えば、粉砕機30を分配定量供給機44の付近に設置できる場合、被粉砕品供給路42における空気輸送設備(供給用ロータリーバルブ45rから受け槽45tまで)及び粉砕機用定量供給機31を省略し、第1定量供給部44aから粉砕機30に直接供給する(換言すると第1定量供給部44aが粉砕機用定量供給機31を兼ねる)構成となっていてもよい。   In the case where the pulverizer 30 can be installed in the vicinity of the dispensing fixed quantity supply device 44 or in the vicinity of the storage tank 41, the pneumatic transportation facility is provided for at least one of the pulverized product supply path 42 and the pulverized product return path 43. It can be omitted and connected directly, or other mechanical transfer equipment can be used. For example, when the pulverizer 30 can be installed in the vicinity of the distribution quantitative supply device 44, the pneumatic transportation equipment (from the supply rotary valve 45r to the receiving tank 45t) and the pulverizer quantitative supply device 31 in the pulverized product supply path 42 are omitted. The first constant supply unit 44a may supply the pulverizer 30 directly (in other words, the first constant supply unit 44a may also serve as the pulverizer fixed supply unit 31).

また、図示形態では前述の粉砕機駆動制御を行うために、粒度計測装置32が被粉砕品供給路42に設けられており、その測定結果が制御装置33に送信されるようになっている。また点線で示されるように、制御装置33に対しては、粉砕機30から消費電力が送信され、また必要に応じて粉砕機用定量供給機31から供給量(単位時間当たりの供給質量)が送信されるようになっており、制御装置33から粉砕機30に対しては粉砕駆動源の制御信号が送信されるようになっている。   In the illustrated embodiment, the particle size measuring device 32 is provided in the pulverized product supply path 42 in order to perform the above-described pulverizer drive control, and the measurement result is transmitted to the control device 33. As indicated by the dotted line, power is transmitted from the pulverizer 30 to the control device 33, and the supply amount (supply mass per unit time) is supplied from the pulverizer quantitative supply device 31 as necessary. The control device 33 transmits a control signal for the pulverization drive source to the pulverizer 30.

図7及び図8は、以上に述べた活性炭注入設備40の運転フローの一例を示している。いま、貯留槽41に原料炭が貯留されている初期状態から粉砕運転を開始すると、返送用空気輸送設備(返送用ファン45f、返送用ロータリーバルブ45r)、粉砕設備(粉砕機30、粉砕機用定量供給機31)がこの順に運転を開始するが、これらの運転は受け槽45tの貯留レベルが所定のローレベル(LL)以下であると停止するが、ローレベルでない限り継続される。受け槽45tの貯留レベルは受け槽45tの重量をロードセルにより計測する等、公知の計測装置により計測することができる。   7 and 8 show an example of an operation flow of the activated carbon injection facility 40 described above. Now, when the crushing operation is started from the initial state where the raw coal is stored in the storage tank 41, the return air transport equipment (return fan 45f, the return rotary valve 45r), the crush equipment (for the crusher 30 and the crusher) The fixed amount feeder 31) starts operation in this order. These operations are stopped when the storage level of the receiving tank 45t is equal to or lower than a predetermined low level (LL), but are continued unless the storage level is low. The storage level of the receiving tank 45t can be measured by a known measuring device such as measuring the weight of the receiving tank 45t with a load cell.

一方、粉砕運転の開始に伴い、受け槽45tの貯留レベルがLL以下であると、貯留槽ロータリーバルブ41r、供給用空気輸送設備(供給用ファン45f、供給用ロータリーバルブ45r)、及び第1定量供給部44aが運転を開始し、これらの運転は受け槽45tの貯留レベルが所定のハイレベル(HL)以上になると停止するが、ハイレベルにならない限り継続される。受け槽45tの貯留レベルがLLを超えると、前述のように粉砕設備及び返送用空気輸送設備が運転を開始し、貯留槽41から切り出される活性炭が第1定量供給部44a、供給用空気輸送設備を介して受け槽45tに順次供給されるとともに、受け槽45tから粉砕機30に供給され、粉砕機30から排出される粉砕活性炭が返送用空気設備により貯留槽41に返送される。   On the other hand, with the start of the pulverization operation, if the storage level of the receiving tank 45t is LL or less, the storage tank rotary valve 41r, the supply air transport equipment (supply fan 45f, supply rotary valve 45r), and the first fixed amount The supply unit 44a starts operation, and these operations are stopped when the storage level of the receiving tank 45t becomes equal to or higher than a predetermined high level (HL), but are continued as long as the level does not become high level. When the storage level of the receiving tank 45t exceeds LL, as described above, the pulverization facility and the return air transport facility start operation, and the activated carbon cut out from the storage tank 41 is the first fixed supply unit 44a, the supply air transport facility. Are sequentially supplied to the receiving tank 45t, and supplied to the pulverizer 30 from the receiving tank 45t, and the pulverized activated carbon discharged from the pulverizer 30 is returned to the storage tank 41 by the return air facility.

他方、前述の粉砕駆動制御を行うには、粉砕運転の開始に伴い、制御装置33により第1定量供給部44aが運転中であるか否かを監視し、第1定量供給部44aが運転中であるときには粒度計測装置32による計測を行うとともに、現実の粉砕機30の粉砕エネルギー実測値を求め、この粉砕エネルギー実測値が粉砕エネルギー適正値となるように粉砕機30の駆動源の駆動制御を行う(駆動源がモータの場合、モータの回転速度の増減を行う)。なお、運転初期には、粉砕エネルギー適正値を求めることができないため、初期設定値や前回運転時の粉砕エネルギー適正値となるように、粉砕機30の駆動源の駆動制御を行う。   On the other hand, in order to perform the above-described pulverization drive control, the controller 33 monitors whether or not the first fixed amount supply unit 44a is in operation with the start of the pulverization operation, and the first fixed amount supply unit 44a is in operation. Is measured by the particle size measuring device 32, and the actual pulverization energy measurement value of the pulverizer 30 is obtained, and the drive control of the drive source of the pulverizer 30 is performed so that the actual pulverization energy measurement value becomes the appropriate pulverization energy value. (If the drive source is a motor, increase or decrease the rotational speed of the motor). In addition, since an appropriate value of pulverization energy cannot be obtained at the initial stage of operation, drive control of the drive source of the pulverizer 30 is performed so that the initial setting value and the appropriate value of pulverization energy at the previous operation are obtained.

粒度計測装置32により計測される被粉砕活性炭の粒度代表値が、目標粒度代表値になるまで、粉砕運転は継続される。粒度計測装置32により計測される被粉砕活性炭の粒度代表値が、目標粒度代表値になると粉砕運転は停止される。この時には、貯留槽41に目標粒度代表値の粉砕活性炭が貯留されていることになる。   The grinding operation is continued until the particle size representative value of the activated carbon to be crushed measured by the particle size measuring device 32 becomes the target particle size representative value. When the particle size representative value of the activated carbon to be crushed measured by the particle size measuring device 32 reaches the target particle size representative value, the pulverization operation is stopped. At this time, the pulverized activated carbon having the target particle size representative value is stored in the storage tank 41.

浄水処理において活性炭注入を行うときには、図8に示すように、注入ポンプ46pの運転を開始し、溶解水を溶解槽47に、及び駆動水を注入エジェクタ47eにそれぞれ供給するとともに、貯留槽ロータリーバルブ41r及び第2定量供給部44bの運転を開始し、貯留槽41に貯留された粉砕活性炭が切り出され、溶解槽47に対して定量供給される。溶解槽47では所定濃度の活性炭スラリーが製造され、この活性炭スラリーが注入点に供給される。   When the activated carbon is injected in the water purification treatment, as shown in FIG. 8, the operation of the injection pump 46p is started, the dissolved water is supplied to the dissolution tank 47, and the driving water is supplied to the injection ejector 47e. The operation of 41r and the second constant supply unit 44b is started, and the pulverized activated carbon stored in the storage tank 41 is cut out and supplied to the dissolution tank 47 in a fixed amount. In the dissolution tank 47, activated carbon slurry having a predetermined concentration is produced, and this activated carbon slurry is supplied to the injection point.

本設備40のように、貯留槽41から浄水処理に対して供給する経路に粉砕機30を介在させるのではなく、活性炭が貯留槽41及び粉砕機30を循環する循環経路を構成し、循環する活性炭に対して粉砕を繰り返し行いうる構成とし、貯留槽41から浄水処理に対して粉砕活性炭を供給する構成を採用すると、粉砕機30を貯留槽41や浄水処理に対する供給系統から分離して設置することができるため、粉砕機30の設置スペースの確保及び基本設備との連動の確保が容易となり、既存設備への適用が容易となる。特に、本例のように、空気輸送により活性炭を移送することにより、粉砕機30を貯留槽41や浄水処理に対する供給系統から遠くに離して設置することができるため好ましい。また、粉砕を繰り返し行うことができるため、原料炭の粒度と粉砕活性炭の目標粒度との差が大きくても目標粒度の粉砕活性炭を製造し、注入することが可能となる。本設備40は、活性炭の貯留槽を一槽のみ備える既存設備に、貯留槽の増設を行わずにオンサイト粉砕を追加する場合に好適なものである。特に、粉砕の循環系統を構成する貯留槽41から粉砕活性炭を浄水処理に対して供給する構成とすると、粉砕と注入とを繰り返し行うだけでなく、必要に応じて同時に行うことも可能である。   Rather than interposing the pulverizer 30 in the path for supplying water to the water purification process from the storage tank 41 as in the present equipment 40, a circulation path through which the activated carbon circulates the storage tank 41 and the pulverizer 30 is configured and circulated. When the activated carbon is configured to be repeatedly pulverized and the configuration in which the pulverized activated carbon is supplied from the storage tank 41 to the purified water treatment, the pulverizer 30 is installed separately from the storage tank 41 and the supply system for the purified water treatment. Therefore, it is easy to secure the installation space of the pulverizer 30 and the interlocking with the basic equipment, and the application to the existing equipment becomes easy. In particular, as in this example, it is preferable to transfer activated carbon by pneumatic transportation because the pulverizer 30 can be installed far away from the storage system 41 and the supply system for water purification treatment. Further, since the pulverization can be repeated, even if the difference between the particle size of the raw coal and the target particle size of the pulverized activated carbon is large, the pulverized activated carbon having the target particle size can be manufactured and injected. This facility 40 is suitable for the case where on-site pulverization is added to an existing facility having only one activated carbon storage tank without adding a storage tank. In particular, when the pulverized activated carbon is supplied from the storage tank 41 constituting the pulverization circulation system to the water purification treatment, not only the pulverization and the injection are repeated, but also simultaneously as necessary.

他方、本活性炭注入設備40は、目標粒度までの粉砕が終了する前に注入が必要となったときには、粉砕と注入とを同時に行うことができる。しかし、その場合、粉砕が不十分な状態での注入となるため、目標粒度の粉砕活性炭を注入する場合と比較して吸着性能が低下する。換言すると、粉砕活性炭の注入量が不足する。そこで、粒度計測装置32により計測される粒度代表値の増減に応じて、制御装置33により第2定量供給部44aの供給量を増減するようにし、目標粒度の粉砕活性炭を注入したときと同等の吸着性能が得られるように、粉砕活性炭の注入量を補正することが望ましい。   On the other hand, the activated carbon injection facility 40 can perform the pulverization and the injection simultaneously when the injection is required before the pulverization to the target particle size is completed. However, in that case, since the injection is performed in a state where the pulverization is insufficient, the adsorption performance is reduced as compared with the case where the pulverized activated carbon having the target particle size is injected. In other words, the amount of pulverized activated carbon injected is insufficient. Therefore, according to the increase / decrease of the representative particle size measured by the particle size measuring device 32, the control device 33 increases / decreases the supply amount of the second constant supply unit 44a, which is equivalent to the case where the pulverized activated carbon having the target particle size is injected. It is desirable to correct the injection amount of the pulverized activated carbon so that the adsorption performance can be obtained.

このような制御は、例えば図8に示すフローのようにして行うことができる。すなわち、注入運転の開始に伴い、制御装置33により第1定量供給部44aが運転中であるか否かを監視し、第1定量供給部44aが運転中であるときには粉砕運転中であるため、補正必要注入量を算出し、その算出結果と第2定量供給部44bの供給量との差が無くなるように、第2定量供給部44bの供給量を増減する。第1定量供給部44aが運転中でない場合には、予め定めた基準注入量(目標D50の粉砕活性炭を用いる場合の必要注入量)と第2定量供給部44bの供給量との差が無くなるように、第2定量供給部44bの供給量を増減する。   Such control can be performed, for example, according to the flow shown in FIG. That is, with the start of the injection operation, the controller 33 monitors whether or not the first fixed amount supply unit 44a is in operation, and when the first fixed amount supply unit 44a is in operation, the crushing operation is in progress. The correction required injection amount is calculated, and the supply amount of the second fixed amount supply unit 44b is increased or decreased so that the difference between the calculation result and the supply amount of the second fixed amount supply unit 44b is eliminated. When the first constant supply unit 44a is not in operation, there is no difference between the predetermined reference injection amount (necessary injection amount when the pulverized activated carbon of the target D50 is used) and the supply amount of the second constant supply unit 44b. In addition, the supply amount of the second constant supply unit 44b is increased or decreased.

補正必要注入量は適宜求めればよいが、例えば以下のようにして求めることができる。すなわちいま、粒度代表値をD50とし、被粉砕活性炭が原料炭から目標までどの程度粉砕が進行しているかを、原料炭のD50に等しい粒径の粉末と、目標とするD50に等しい粒径の粉末との混合比率で表すと次式のようになる。
(混合比率 X)
被粉砕活性炭D50 = 目標D50 × X% + 初期原料炭D50 × (100 − X%)
また、初期原料炭の吸着性能を1としたときの、目標D50まで粉砕した粉砕活性炭の吸着性能を吸着性能係数αとすると、性能倍率は次式で表される。ここで、吸着性能係数αは、所定の吸着対象物質に対する初期原料炭及び粉砕活性炭の吸着性能試験を実施し、この試験により得られる粉砕活性炭の吸着性能値を初期原料炭の吸着性能値を1としたときの比で表したものである。吸着性能係数αを求める場合、初期原料炭及び粉砕活性炭の両者について同一の吸着性能試験を行う限り、吸着対象物質の種類及び試験方法は特に限定されるものではないが、水道施設に用いる活性炭の性能指標として一般的な吸着性能値(例えば2−MIB価、フェノール価、ABS価、メチレンブルー脱色力)を用いることが好ましい。これらの吸着性能値を求めるための試験方法は独自の方式でも、規格化された方式でもよい。後者の例としては、水道用粉末活性炭に関する日本水道協会規格であるJWWA K113:2005に記載されている試験方法を例示することができる。なお、2−MIB価のように、値が小さいものほど性能が高い吸着性能値の場合、逆数を吸着性能値として吸着性能係数αを算出する。
(性能倍率)
性能倍率 = α × X% + 1.0 ×(100 − X%)
したがって、性能倍率を加味して補正した補正後注入量は次式により算出することができる。
(補正後注入量 Y)
Y = 基準注入量 ÷ 性能倍率
The correction required injection amount may be determined as appropriate, but can be determined as follows, for example. That is, the particle size representative value is D50, and the degree of pulverization of the activated carbon to be crushed from the raw coal to the target is determined by the powder having a particle size equal to the D50 of the raw coal and the particle size equal to the target D50. When expressed in a mixing ratio with the powder, the following formula is obtained.
(Mixing ratio X)
Activated carbon D50 = target D50 x X% + initial coking coal D50 x (100-X%)
Further, assuming that the adsorption performance of the pulverized activated carbon pulverized to the target D50 when the adsorption performance of the initial raw coal is 1, the performance magnification is expressed by the following equation. Here, the adsorption performance coefficient α is obtained by conducting an adsorption performance test of the initial raw coal and pulverized activated carbon with respect to a predetermined adsorption target substance. It is expressed as a ratio. When obtaining the adsorption performance coefficient α, as long as the same adsorption performance test is performed on both the initial raw coal and the pulverized activated carbon, the type and test method of the adsorption target substance are not particularly limited. It is preferable to use a general adsorption performance value (for example, 2-MIB value, phenol value, ABS value, methylene blue decolorizing power) as a performance index. The test method for obtaining these adsorption performance values may be an original method or a standardized method. As an example of the latter, the test method described in JWWA K113: 2005 which is the Japan Water Works Association standard regarding the powder activated carbon for water supply can be illustrated. When the adsorption performance value is such that the smaller the value is, such as the 2-MIB value, the adsorption performance coefficient α is calculated with the reciprocal as the adsorption performance value.
(Performance magnification)
Performance magnification = α × X% + 1.0 × (100 – X%)
Therefore, the corrected injection amount corrected with the performance magnification taken into account can be calculated by the following equation.
(Injection amount Y after correction)
Y = reference injection amount ÷ performance magnification

本設備40において、粉砕機30としては、一回の粉砕処理によりシャープな粒度分布が得られる点で、乾式ビーズミル、ジェットミル等の乾式粉砕機が好ましく、中でも乾式ビーズミルが特に好ましい。また、粉砕機用定量供給機31を含め、各種定量供給機及び定量供給部としては、前述の計量槽減量制御方式や、切り出し重量制御方式のもの等、公知のものを特に限定なく用いることができる。   In this equipment 40, as the pulverizer 30, a dry pulverizer such as a dry bead mill and a jet mill is preferable, and among them, a dry bead mill is particularly preferable in that a sharp particle size distribution can be obtained by a single pulverization treatment. In addition, as various quantitative feeders and quantitative feeders including the pulverizer quantitative feeder 31, known ones such as the above-described measuring tank weight loss control method and the cut-out weight control method can be used without particular limitation. it can.

<活性炭注入設備の例2>
図9は、別のドライ粉末活性炭注入設備50を示している。この設備50は、被粉砕活性炭を貯留する被粉砕品貯留槽51と、目標粒度に粉砕した粉砕活性炭を貯留する注入品貯留槽54と、被粉砕品貯留槽51に貯留されている被粉砕活性炭を、粉砕機30に対して供給する被粉砕品供給路52と、粉砕機30で粉砕された粉砕活性炭を、被粉砕品貯留槽51又は注入品貯留槽54に対して選択的に返送する粉砕品返送路53とを含み、注入品貯留槽54に貯留された粉砕活性炭を、浄水処理に対して供給する構成としたものである。
<Example 2 of activated carbon injection equipment>
FIG. 9 shows another dry powder activated carbon injection facility 50. The equipment 50 includes a pulverized product storage tank 51 for storing pulverized activated carbon, an injection product storage tank 54 for storing pulverized activated carbon pulverized to a target particle size, and a pulverized activated carbon stored in the pulverized product storage tank 51. The pulverized activated carbon pulverized by the pulverizer 30 and the pulverized activated carbon pulverized by the pulverizer 30 are selectively returned to the pulverized product storage tank 51 or the injected product storage tank 54. The pulverized activated carbon stored in the injected product storage tank 54 is supplied to the purified water treatment including the product return path 53.

図示形態についてより詳細に説明すると、被粉砕品貯留槽51には、ジェットパック車JC等で搬入される乾燥状態の粉末原料炭が原料炭供給配管51iを介して供給され、貯留される。図示形態では、注入品貯留槽54に対しても、ジェットパック車JC等で搬入される乾燥状態の粉末原料炭が原料炭供給配管54iを介して供給できるようになっているが、被粉砕品貯留槽51のみに原料炭を供給する構成としてもよい。被粉砕品貯留槽51内に貯留された原料炭は、ダンパー51d及び供給用ロータリーバルブ55rを介して切り出されて供給用エジェクタ55eに供給され、供給用送風機55fから供給される空気により、粉砕機30の付近に設置された受け槽55tに供給され、一時的に貯留された後、粉砕機用定量供給機31により切り出され、粉砕機30に定量供給されるようになっている。   The illustrated embodiment will be described in more detail. In the pulverized product storage tank 51, dry powder raw coal fed by a jet pack car JC or the like is supplied and stored via the raw coal supply pipe 51i. In the illustrated embodiment, the dry powder raw coal fed by the jet pack vehicle JC or the like can be supplied to the injected product storage tank 54 via the raw coal supply pipe 54i. It is good also as a structure which supplies raw coal only to the storage tank 51. FIG. Coking coal stored in the pulverized product storage tank 51 is cut out via a damper 51d and a supply rotary valve 55r, supplied to a supply ejector 55e, and pulverized by air supplied from a supply blower 55f. After being supplied to a receiving tank 55t installed in the vicinity of 30 and temporarily stored, it is cut out by the pulverizer quantitative supply device 31 and supplied to the pulverizer 30 in a fixed amount.

図示形態では、粉砕機30から被粉砕品貯留槽51及び注入品貯留槽54に至る粉砕品返送路53も空気輸送設備により構成されている。すなわち、粉砕機30から排出される粉砕活性炭は、ホッパ56hに供給された後、返送用ロータリーバルブ56rにより切り出されて返送用エジェクタ56eに供給され、返送用送風機56fから供給される空気により、返送配管56pを介して被粉砕品貯留槽51又は注入品貯留槽54に対して選択的に返送される。本設備50の返送配管56pは、エジェクタ側の共通部分と、この共通部分からか2路に分岐して、その一方が被粉砕品貯留槽51に及び他方が注入品貯留槽54に接続された部分とを有し、分岐点より下流側にそれぞれ開閉弁v2が設けられ、この開閉弁v2を選択的に開閉することにより、被粉砕品貯留槽51及び注入品貯留槽54のいずれか一方にのみ選択供給できるようになっている。また、本設備例50の返送配管56pは、原料炭供給配管51i,54iに合流しており、合流点よりも上流側にそれぞれ開閉弁v1,v2が設けられ、この開閉弁v1,v2を選択的に開閉することにより、貯留槽51,54に対する原料炭の供給と粉砕活性炭の返送とを選択できるようになっている。   In the illustrated embodiment, the pulverized product return path 53 extending from the pulverizer 30 to the pulverized product storage tank 51 and the injected product storage tank 54 is also constituted by pneumatic transportation equipment. That is, the pulverized activated carbon discharged from the pulverizer 30 is supplied to the hopper 56h, then cut out by the return rotary valve 56r, supplied to the return ejector 56e, and returned by the air supplied from the return blower 56f. It is selectively returned to the pulverized product storage tank 51 or the injected product storage tank 54 via the pipe 56p. The return pipe 56p of the present facility 50 branches from the common part on the ejector side to the two paths from this common part, one of which is connected to the pulverized product storage tank 51 and the other connected to the injected product storage tank 54. And an opening / closing valve v2 is provided on the downstream side of the branch point. By selectively opening / closing the opening / closing valve v2, either the crushed product storage tank 51 or the injected product storage tank 54 is provided. It can only be selected and supplied. In addition, the return pipe 56p of this facility example 50 is joined to the raw coal supply pipes 51i and 54i, and on-off valves v1 and v2 are provided on the upstream side from the junction point, and the on-off valves v1 and v2 are selected. By opening and closing automatically, supply of raw coal to the storage tanks 51 and 54 and return of pulverized activated carbon can be selected.

注入品貯留槽51内に貯留された粉砕活性炭は、ダンパー54d及び注入品ロータリーバルブ54rを介して切り出されて注入用定量供給機54fに供給され、この注入用定量供給機54fにより切り出される活性炭は、攪拌機付の溶解槽57に定量供給され、溶解槽57内で、場内給水SWから流量一定で別途供給される溶解水と混合されて所定濃度の活性炭のスラリーが連続的に製造され、溶解槽57から注入ポンプ57pにより一定流量でオーバーフローするスラリーが注入エジェクタ57eに供給され、場内給水SWから注入ポンプ57pにより流量一定で別途供給される駆動水とともに注入点APに供給されるようになっている。注入エジェクタ57eの代わりにポンプを用いて溶解槽57からのスラリーを注入点APに供給する等、注入品貯留槽54に貯留されている活性炭を浄水処理に対して供給する方法は特に限定されるものではない。   The pulverized activated carbon stored in the infusion product storage tank 51 is cut out via the damper 54d and the infusion product rotary valve 54r and supplied to the injecting quantitative feeder 54f, and the activated carbon to be cut out by the injecting quantitative feeder 54f is A fixed amount of activated carbon slurry is continuously supplied to the dissolution tank 57 with a stirrer and mixed with the dissolution water separately supplied at a constant flow rate from the on-site feed water SW in the dissolution tank 57. The slurry that overflows at a constant flow rate from 57 to the injection ejector 57e is supplied to the injection ejector 57e, and is supplied to the injection point AP together with the drive water supplied separately at a constant flow rate from the in-situ water supply SW by the injection pump 57p. . A method for supplying activated carbon stored in the injection storage tank 54 to the purified water treatment such as supplying slurry from the dissolution tank 57 to the injection point AP using a pump instead of the injection ejector 57e is particularly limited. It is not a thing.

粉砕機30を被粉砕品貯留槽51の付近に設置できる場合には、被粉砕品供給路52及び粉砕品供給路53の少なくとも一方について、空気輸送設備を省略して直接的に接続したり、他の機械的移送設備を用いたりすることができる。例えば、被粉砕品供給路52における空気輸送設備(供給用エジェクタ55eから受け槽55tまで)を省略し、被粉砕品貯留槽51から切り出される活性炭を粉砕機用定量供給機31に直接供給し、粉砕機30に供給する構成とすることもできる。   When the pulverizer 30 can be installed in the vicinity of the pulverized product storage tank 51, at least one of the pulverized product supply path 52 and the pulverized product supply path 53 may be directly connected by omitting the air transportation facility, Other mechanical transfer equipment can be used. For example, the pneumatic transportation equipment (from the supply ejector 55e to the receiving tank 55t) in the pulverized product supply path 52 is omitted, and the activated carbon cut out from the pulverized product storage tank 51 is directly supplied to the pulverizer quantitative supply device 31; It can also be set as the structure supplied to the grinder 30. FIG.

また、図示形態では前述の粉砕機30駆動制御を行うために、粒度計測装置32が被粉砕品供給路52に設けられており、その測定結果が制御装置33に送信されるようになっている。また点線で示されるように、制御装置33に対しては、粉砕機30から消費電力が送信され、また必要に応じて粉砕機用定量供給機31から供給量(単位時間当たりの供給質量)が送信されるようになっており、制御装置33から粉砕機30に対しては粉砕駆動源の制御信号が送信されるようになっている。   In the illustrated embodiment, the particle size measuring device 32 is provided in the pulverized product supply path 52 in order to perform the above-described drive control of the pulverizer 30, and the measurement result is transmitted to the control device 33. . As indicated by the dotted line, power is transmitted from the pulverizer 30 to the control device 33, and the supply amount (supply mass per unit time) is supplied from the pulverizer quantitative supply device 31 as necessary. The control device 33 transmits a control signal for the pulverization drive source to the pulverizer 30.

以上に述べた活性炭注入設備は、次のように運転することができる。すなわちいま、被粉砕品貯留槽51に原料炭が貯留されている初期状態から粉砕運転を開始すると、返送用空気輸送設備(返送用ファン56f、返送用ロータリーバルブ56r)、粉砕設備(粉砕機3、粉砕機用定量供給機31)がこの順に運転を開始するが、これらの運転は受け槽55tの貯留レベルが所定のローレベル(LL)以下であると停止するが、ローレベルでない限り継続される。   The activated carbon injection facility described above can be operated as follows. That is, when the pulverization operation is started from the initial state where the raw coal is stored in the pulverized product storage tank 51, the return air transport facility (return fan 56f, the return rotary valve 56r), the pulverization facility (pulverizer 3). The pulverizer quantitative feeder 31) starts operation in this order. These operations are stopped when the storage level of the receiving tank 55t is equal to or lower than a predetermined low level (LL), but are continued unless the storage level is low. The

一方、粉砕運転の開始に伴い、受け槽55tの貯留レベルがLL以下であると、供給用空気輸送設備(供給用ファン55f、供給用ロータリーバルブ55r)が運転を開始し、これらの運転は受け槽55tの貯留レベルが所定のハイレベル(HL)以上になると停止するが、ハイレベルにならない限り継続される。受け槽55tの貯留レベルがLLを超えると、前述のように粉砕設備及び返送用空気輸送設備が運転を開始し、被粉砕品貯留槽51から切り出される活性炭が供給用空気輸送設備を介して受け槽55tに順次供給されるとともに、受け槽55tから粉砕機30に供給され、粉砕機から排出される粉砕活性炭が返送用空気設備により被粉砕品貯留槽51に返送される。   On the other hand, when the storage level of the receiving tank 55t is LL or less with the start of the pulverization operation, the supply air transport equipment (supply fan 55f, supply rotary valve 55r) starts operation, and these operations are received. When the storage level of the tank 55t becomes equal to or higher than a predetermined high level (HL), the tank 55t is stopped. When the storage level of the receiving tank 55t exceeds LL, as described above, the pulverization facility and the return air transport facility start operation, and the activated carbon cut out from the pulverized product storage tank 51 is received via the supply air transport facility. While being sequentially supplied to the tank 55t, the pulverized activated carbon supplied from the receiving tank 55t to the pulverizer 30 and discharged from the pulverizer is returned to the pulverized product storage tank 51 by the return air equipment.

粒度計測装置32により計測される被粉砕活性炭の粒度代表値が、目標粒度代表値になるまで、粉砕運転は継続される。粒度計測装置32により計測される被粉砕活性炭の粒度代表値が、目標粒度代表値(又は1回の粉砕で目標粒度代表値に達する所定の粒度代表値)になったならば、返送配管56pの開閉弁v2を切り替えて、粉砕機30から排出される粉砕活性炭が返送用空気設備により注入品貯留槽54に返送される。この結果、注入品貯留槽54には目標粒度代表値の粉砕活性炭が貯留されることになる。   The grinding operation is continued until the particle size representative value of the activated carbon to be crushed measured by the particle size measuring device 32 becomes the target particle size representative value. When the representative particle size of the activated carbon measured by the particle size measuring device 32 reaches the target particle size representative value (or the predetermined particle size representative value that reaches the target particle size representative value in one pulverization), the return pipe 56p By switching the on-off valve v2, the pulverized activated carbon discharged from the pulverizer 30 is returned to the injected product storage tank 54 by the return air equipment. As a result, the pulverized activated carbon having the target particle size representative value is stored in the injected product storage tank 54.

浄水処理において活性炭注入を行うときには、注入ポンプ56pの運転を開始し、溶解水を溶解槽57に、及び駆動水を注入エジェクタ57eにそれぞれ供給するとともに、注入品ロータリーバルブ54r及び注入用定量供給機54fの運転を開始し、注入品貯留槽54に貯留された粉砕活性炭が切り出され、溶解槽57に対して定量供給される。溶解槽57では所定濃度の活性炭スラリーが製造され、この活性炭スラリーが注入点APに供給される。   When the activated carbon is injected in the water purification treatment, the operation of the injection pump 56p is started, the dissolved water is supplied to the dissolution tank 57, and the driving water is supplied to the injection ejector 57e, and the injection product rotary valve 54r and the injection quantitative feeder The operation of 54 f is started, and the pulverized activated carbon stored in the injected product storage tank 54 is cut out and supplied to the dissolution tank 57 in a fixed amount. In the dissolution tank 57, activated carbon slurry having a predetermined concentration is manufactured, and this activated carbon slurry is supplied to the injection point AP.

本設備50のように、注入品貯留槽54から浄水処理に対して供給する経路に粉砕機30を介在させるのではなく、活性炭が被粉砕品貯留槽51及び粉砕機30を循環する循環経路を構成し、循環する活性炭に対して粉砕を繰り返し行いうる構成とし、目標粒度まで粉砕した粉砕活性炭については注入品貯留槽54に貯留し、この注入品貯留槽54から浄水処理に対して粉砕活性炭を供給する構成を採用したことにより、粉砕機30を貯留槽51,54や浄水処理に対する供給系統から分離して設置することができるため、粉砕機30の設置スペースの確保及び基本設備との連動の確保が容易となり、既存設備への適用が容易となる。特に、本例のように、空気輸送により活性炭を移送することにより、粉砕機30を貯留槽51,54や浄水処理に対する供給系統から遠くに離して設置することができるため好ましい。また、粉砕を繰り返し行うことができるため、原料炭の粒度と粉砕活性炭の目標粒度との差が大きくても目標粒度の粉砕活性炭を製造し、注入することが可能となる。本設備50は、活性炭の貯留槽を一槽のみ備える既存設備(貯留槽増設が必要)、又は貯留槽を複数備える既存設備に、オンサイト粉砕を追加する場合に好適なものである。特に、被粉砕品貯留槽51と注入品貯留槽54とを個別に備え、粉砕系統と注入系統とが独立しているため、粉砕と注入とを同時に行うことも可能であり、かつ注入量が粉砕処理量を超えない限り、目標粒度の粉砕活性炭を実質連続的に製造して注入することができるため、注入品の不足や吸着性能の低下が発生しにくい。   Instead of interposing the pulverizer 30 in the path for supplying the purified water from the injected product storage tank 54 as in the present facility 50, a circulation path through which the activated carbon circulates the pulverized product storage tank 51 and the pulverizer 30 is provided. The pulverized activated carbon pulverized to the target particle size is stored in the injected product storage tank 54, and the pulverized activated carbon is supplied from the injected product storage tank 54 to the purified water treatment. By adopting the supply configuration, the crusher 30 can be installed separately from the supply systems for the storage tanks 51 and 54 and the water purification treatment, so that the installation space for the crusher 30 can be secured and linked with the basic equipment. Securement becomes easy, and application to existing facilities becomes easy. In particular, as in this example, it is preferable to transfer activated carbon by pneumatic transportation because the pulverizer 30 can be installed far away from the storage tanks 51 and 54 and the supply system for water purification treatment. Further, since the pulverization can be repeated, even if the difference between the particle size of the raw coal and the target particle size of the pulverized activated carbon is large, the pulverized activated carbon having the target particle size can be manufactured and injected. This facility 50 is suitable for the case where on-site grinding is added to an existing facility including only one activated carbon storage tank (an additional storage tank is required) or an existing facility including a plurality of storage tanks. In particular, since the pulverized product storage tank 51 and the injected product storage tank 54 are provided separately, and the pulverization system and the injection system are independent, pulverization and injection can be performed simultaneously, and the injection amount can be reduced. As long as the pulverization amount is not exceeded, the pulverized activated carbon having the target particle size can be manufactured and injected substantially continuously, so that the shortage of injected products and the reduction in adsorption performance are unlikely to occur.

本例2の設備50においても、例1の設備40と同様に、粉砕エネルギー実測値及び粉砕エネルギー適正値に基づく粉砕駆動制御を行うことができる。また、本例2の設備においても、粉砕と浄水処理に対する活性炭注入を同時に行うことができ、その際に、前述の注入量補正を行うこともできる。その他、例2の基本構成の範囲内において、例1と同様の変更が可能である。また、例1と同様の構成については、同じ符号を用いているため、あえて説明を省略する。   In the facility 50 of the second example, similarly to the facility 40 of the first example, the pulverization drive control based on the measured pulverization energy value and the appropriate pulverization energy value can be performed. Moreover, also in the installation of this Example 2, activated carbon injection | pouring with respect to a grinding | pulverization and a water purification process can be performed simultaneously, and the above-mentioned injection | pouring amount correction | amendment can also be performed in that case. In addition, within the scope of the basic configuration of Example 2, the same changes as in Example 1 can be made. In addition, since the same reference numerals are used for the same configurations as in Example 1, the description thereof is omitted.

<活性炭注入設備の例3>
図10は、例1の設備とほぼ同様の設備を2並列とし、粉砕設備及び空気輸送設備の大部分を共通利用とした、別のドライ粉末活性炭注入設備60を示している。すなわち、この設備60は、活性炭を貯留する第1貯留槽61と、第1貯留槽61に貯留されている活性炭を粉砕機30に対して供給する、第1被粉砕品供給路62と、活性炭を貯留する第2貯留槽70と、第2貯留槽70に貯留されている活性炭を粉砕機30に対して供給する、第2被粉砕品供給路72と、粉砕機30で粉砕された粉砕活性炭を、第1貯留槽61又は第2貯留槽72に対して選択的に返送する粉砕品返送路63とを含み、第1貯留槽61に貯留されている活性炭、又は第2貯留槽71に貯留されている活性炭を、選択的に浄水処理に対して供給する構成としたものである。
<Example 3 of activated carbon injection equipment>
FIG. 10 shows another dry powder activated carbon injection facility 60 in which almost the same facilities as those of Example 1 are arranged in parallel, and most of the pulverization facility and the air transportation facility are used in common. That is, the facility 60 includes a first storage tank 61 that stores activated carbon, a first pulverized product supply path 62 that supplies the activated carbon stored in the first storage tank 61 to the pulverizer 30, and activated carbon. A second storage tank 70 that stores the activated carbon, a second pulverized product supply path 72 that supplies the activated carbon stored in the second storage tank 70 to the pulverizer 30, and pulverized activated carbon pulverized by the pulverizer 30 The activated carbon stored in the first storage tank 61 or the second storage tank 71 is stored in the first storage tank 61 or the second storage tank 72. The activated carbon used is selectively supplied to the water purification treatment.

図示形態についてより詳細に説明すると、第1貯留槽61には、ジェットパック車JC等で搬入される乾燥状態の粉末原料炭が原料炭供給配管61iを介して供給され、貯留される。第1貯留槽61内に貯留された活性炭は、ダンパー61d及び第1貯留槽ロータリーバルブ61rを介して切り出され、第1貯留槽定量供給機61fを介して第1切替機64に供給されるようになっている。第1切替機64は、2系統への供給の切り替えが可能なものであれば特に限定されるものではない。図示形態の第1切替機64は、ケーシングにおけるスクリュー軸の長手方向一端側に供給ホッパ64hを備え、他端側に間隔を空けて注入系排出口64a及び粉砕系排出口64bを備え、他端側に向かって上りこう配で移送を行うスクリューフィーダであり、各排出口64a,64bの出側に開閉弁v3,v4を設け、この開閉弁v3,v4を選択的に開閉することにより、供給系統を切り替えできるようになっている。第1被粉砕品供給路62における第1切替機64の粉砕系排出口64bから粉砕機30までの部分は、図示形態では空気輸送設備により構成されている。すなわち、粉砕系排出口64bから排出される活性炭は第1供給ホッパ65hに供給され、この第1供給ホッパ65h内の活性炭が第1供給ロータリーバルブ65rにより切り出されて第1供給用エジェクタ65eに供給され、供給用送風機65fから供給される空気により、粉砕機30の付近に設置された受け槽65tに供給され、一時的に貯留された後、粉砕機用定量供給機31により切り出され、粉砕機30に定量供給されるようになっている。一方、注入系排出口64aから排出される活性炭は、攪拌機付の第1溶解槽67に定量供給され、第1溶解槽67内で、場内給水SWから注入ポンプ67pにより流量一定で別途供給される溶解水と混合されて所定濃度の活性炭のスラリーが連続的に製造され、第1溶解槽67から一定流量でオーバーフローするスラリーが第1注入エジェクタ67eに供給され、場内給水SWから注入ポンプ67pにより流量一定で別途供給される駆動水とともに注入点APに供給されるようになっている。   If it demonstrates in detail about the form of illustration, in the 1st storage tank 61, the dry powder raw coal carried in by the jet pack car JC etc. will be supplied via the raw coal supply piping 61i, and will be stored. The activated carbon stored in the first storage tank 61 is cut out via the damper 61d and the first storage tank rotary valve 61r, and supplied to the first switching machine 64 through the first storage tank quantitative supply device 61f. It has become. The first switching machine 64 is not particularly limited as long as the supply to the two systems can be switched. The illustrated first switching machine 64 includes a supply hopper 64h on one end side in the longitudinal direction of the screw shaft in the casing, and includes an injection system discharge port 64a and a pulverization system discharge port 64b at intervals on the other end side. A screw feeder that moves in an upward gradient toward the side, and is provided with on-off valves v3 and v4 on the outlet side of the respective discharge ports 64a and 64b, and selectively opens and closes the on-off valves v3 and v4. Can be switched. The part from the crushing system discharge port 64b of the 1st switching machine 64 in the 1st to-be-ground product supply path 62 to the crusher 30 is comprised by the pneumatic transport equipment in the illustration form. That is, the activated carbon discharged from the crushing system discharge port 64b is supplied to the first supply hopper 65h, and the activated carbon in the first supply hopper 65h is cut out by the first supply rotary valve 65r and supplied to the first supply ejector 65e. Then, the air supplied from the supply blower 65f is supplied to the receiving tank 65t installed in the vicinity of the pulverizer 30 and temporarily stored, and then cut out by the pulverizer quantitative supply device 31 to be pulverized. 30 is supplied in a fixed amount. On the other hand, the activated carbon discharged from the injection system discharge port 64a is quantitatively supplied to the first dissolution tank 67 with a stirrer, and is separately supplied from the in-situ water supply SW to the first dissolution tank 67 at a constant flow rate by the injection pump 67p. A slurry of activated carbon having a predetermined concentration is continuously produced by mixing with dissolved water, and a slurry overflowing at a constant flow rate from the first dissolution tank 67 is supplied to the first injection ejector 67e, and the flow rate is supplied from the in-situ water supply SW to the injection pump 67p. It is supplied to the injection point AP together with a constant and separately supplied drive water.

第2貯留槽側も同様である。すなわち第2貯留槽71には、ジェットパック車JC等で搬入される乾燥状態の粉末原料炭が原料炭供給配管71iを介して供給され、貯留される。第2貯留槽71内に貯留された活性炭は、ダンパー71d及び第2貯留槽ロータリーバルブ71rを介して切り出され、第2貯留槽定量供給機71fを介して第2切替機74に供給されるようになっている。第2切替機74は、2系統への供給の切り替えが可能なものであれば特に限定されるものではない。図示形態の第2切替機74は、ケーシングにおけるスクリュー軸の長手方向一端側に供給ホッパ74hを備え、他端側に間隔を空けて注入系排出口74a及び粉砕系排出口74bを備え、他端側に向かって上りこう配で移送を行うスクリューフィーダであり、各排出口74a,74bの出側に開閉弁v3,v4を設け、この開閉弁v3,v4を選択的に開閉することにより、供給系統を切り替えできるようになっている。第2被粉砕品供給路72における第2切替機74の粉砕系排出口74bから粉砕機30までの部分は、図示形態では空気輸送設備により構成されている。すなわち、粉砕系排出口74bから排出される活性炭は第2供給ホッパ75hに供給され、この第2供給ホッパ75h内の活性炭が第2供給ロータリーバルブ75rにより切り出されて第2供給用エジェクタ75eに供給され、供給用送風機65fから供給される空気により、粉砕機30の付近に設置された受け槽65tに供給され、一時的に貯留された後、粉砕機用定量供給機31により切り出され、粉砕機30に定量供給されるようになっている。一方、注入系排出口74aから排出される活性炭は、攪拌機付の第2溶解槽77に定量供給され、第2溶解槽77内で、場内給水SWから注入ポンプ67pにより流量一定で別途供給される溶解水と混合されて所定濃度の活性炭のスラリーが連続的に製造され、第2溶解槽77から一定流量でオーバーフローするスラリーが第2注入エジェクタ77eに供給され、場内給水SWから注入ポンプ67pにより流量一定で別途供給される駆動水とともに注入点APに供給されるようになっている。なお、図示形態では、第1溶解槽67及び第1注入エジェクタ67eに対する注入ポンプと、第2溶解槽77及び第2注入エジェクタ77eに対する注入ポンプとを共通的に利用するために、単一の注入ポンプ67pの送り出し側の配管を分岐するとともに、分岐点の下流側にそれぞれ開閉弁v5,v6を設け、この開閉弁v5,v6の切り替えにより、いずれか一方の溶解槽及び注入エジェクタに対する溶解水及び駆動水の供給を選択できるようになっている。   The same applies to the second storage tank side. That is, in the second storage tank 71, the dry powder raw coal carried in the jet pack car JC or the like is supplied and stored through the raw coal supply pipe 71i. The activated carbon stored in the second storage tank 71 is cut out via the damper 71d and the second storage tank rotary valve 71r, and supplied to the second switch 74 through the second storage tank quantitative supply unit 71f. It has become. The second switching machine 74 is not particularly limited as long as the supply to the two systems can be switched. The illustrated second switching machine 74 includes a supply hopper 74h on one end side in the longitudinal direction of the screw shaft in the casing, and includes an injection system discharge port 74a and a pulverization system discharge port 74b with a gap on the other end side. A screw feeder that moves in an upward gradient toward the side, and is provided with on-off valves v3 and v4 on the outlet side of the respective discharge ports 74a and 74b, and selectively opens and closes the on-off valves v3 and v4. Can be switched. The part from the crushing system discharge port 74b of the 2nd switching machine 74 in the 2nd to-be-ground product supply path 72 to the grinder 30 is comprised by the pneumatic transport equipment in the illustration form. That is, the activated carbon discharged from the crushing system outlet 74b is supplied to the second supply hopper 75h, and the activated carbon in the second supply hopper 75h is cut out by the second supply rotary valve 75r and supplied to the second supply ejector 75e. Then, the air supplied from the supply blower 65f is supplied to the receiving tank 65t installed in the vicinity of the pulverizer 30 and temporarily stored, and then cut out by the pulverizer quantitative supply device 31 to be pulverized. 30 is supplied in a fixed amount. On the other hand, the activated carbon discharged from the injection system discharge port 74a is quantitatively supplied to the second dissolution tank 77 with a stirrer, and is separately supplied from the in-situ water supply SW to the constant flow rate by the injection pump 67p in the second dissolution tank 77. A slurry of activated carbon having a predetermined concentration is continuously produced by mixing with dissolved water, and a slurry overflowing at a constant flow rate from the second dissolution tank 77 is supplied to the second injection ejector 77e, and the flow rate is supplied from the in-situ water supply SW to the injection pump 67p. It is supplied to the injection point AP together with a constant and separately supplied drive water. In the illustrated embodiment, a single injection is used to commonly use the injection pump for the first dissolution tank 67 and the first injection ejector 67e and the injection pump for the second dissolution tank 77 and the second injection ejector 77e. The piping on the delivery side of the pump 67p is branched, and on-off valves v5 and v6 are provided on the downstream side of the branch point. By switching the on-off valves v5 and v6, the dissolved water for one of the dissolution tanks and the injection ejector The drive water supply can be selected.

図示形態では、粉砕機30から第1貯留槽61及び第2貯留槽71に至る粉砕品返送路63も空気輸送設備により構成されている。すなわち、粉砕機30から排出される粉砕活性炭は、ホッパ66hに供給された後、返送用ロータリーバルブ66rにより切り出されて返送用エジェクタ66eに供給され、返送用送風機66fから供給される空気により、返送配管66pを介して第1貯留槽61又は第2貯留槽71に選択的に返送される。本設備60の返送配管66pは、エジェクタ側の共通部分と、この共通部分からか2路に分岐して、その一方が第1貯留槽61に及び他方が第2貯留槽71に接続された部分とを有し、分岐点より下流側にそれぞれ開閉弁v2が設けられ、この開閉弁v2を選択的に開閉することにより、第1貯留槽61及び第2貯留槽71のいずれか一方にのみ選択供給できるようになっている。また、本設備例60の返送配管66pは、原料炭供給配管61i,71iに合流しており、合流点よりも上流側にそれぞれ開閉弁v1,v2が設けられ、この開閉弁v1,v2を選択的に開閉することにより、第1貯留槽61及び第2貯留槽71に対する原料炭の供給と粉砕活性炭の返送とを選択できるようになっている。   In the illustrated form, the pulverized product return path 63 extending from the pulverizer 30 to the first storage tank 61 and the second storage tank 71 is also constituted by pneumatic transportation equipment. That is, the pulverized activated carbon discharged from the pulverizer 30 is supplied to the hopper 66h, cut out by the return rotary valve 66r, supplied to the return ejector 66e, and returned by the air supplied from the return blower 66f. It is selectively returned to the first storage tank 61 or the second storage tank 71 via the pipe 66p. The return pipe 66p of the present facility 60 is a common part on the ejector side and a part branched from this common part into two paths, one of which is connected to the first storage tank 61 and the other is connected to the second storage tank 71. And an open / close valve v2 is provided on the downstream side of the branch point. By selectively opening and closing the open / close valve v2, only one of the first storage tank 61 and the second storage tank 71 is selected. It can be supplied. Further, the return pipe 66p of the present facility example 60 is joined to the raw coal supply pipes 61i and 71i, and on-off valves v1 and v2 are provided on the upstream side from the junction point, and the on-off valves v1 and v2 are selected. By opening and closing automatically, the supply of raw coal to the first storage tank 61 and the second storage tank 71 and the return of the pulverized activated carbon can be selected.

粉砕機30を第1切替機64及び第2切替機74の少なくとも一方の付近に設置できる場合や、第1貯留槽61及び第2貯留槽71の少なくとも一方の付近に設置できる場合には、粉砕機30と付近の設備との間については空気輸送設備を省略して直接的に接続したり、他の機械的移送設備を用いたりすることができる。   When the crusher 30 can be installed in the vicinity of at least one of the first switching machine 64 and the second switching machine 74, or when it can be installed in the vicinity of at least one of the first storage tank 61 and the second storage tank 71, crushing Between the machine 30 and nearby equipment, the pneumatic transportation equipment can be omitted and directly connected, or other mechanical transfer equipment can be used.

また、図示形態では前述の粉砕機駆動制御を行うために、第1被粉砕品供給路62及び第2被粉砕品供給路72が途中で一つの配管に合流されるとともに、この合流点よりも下流側の共通配管に粒度計測装置32が設けられており、その測定結果が制御装置33に送信されるようになっている。また点線で示されるように、制御装置33に対しては、粉砕機30から消費電力が送信され、また必要に応じて粉砕機用定量供給機31から供給量(単位時間当たりの供給質量)が送信されるようになっており、制御装置33から粉砕機30に対しては粉砕駆動源の制御信号が送信されるようになっている。   In the illustrated embodiment, in order to perform the above-described pulverizer drive control, the first pulverized product supply path 62 and the second pulverized product supply path 72 are joined to one pipe on the way, and more than this joining point. A particle size measuring device 32 is provided in the common pipe on the downstream side, and the measurement result is transmitted to the control device 33. As indicated by the dotted line, power is transmitted from the pulverizer 30 to the control device 33, and the supply amount (supply mass per unit time) is supplied from the pulverizer quantitative supply device 31 as necessary. The control device 33 transmits a control signal for the pulverization drive source to the pulverizer 30.

以上に述べた活性炭注入設備60は、次のように活性炭が第1貯留槽61及び粉砕機30を循環する循環経路と、活性炭が第2貯留槽71及び粉砕機30を循環する循環経路とを交互に粉砕に利用し、粉砕の終了した貯留槽の粉砕活性炭を注入に利用することができる。例えばいま、第1貯留槽61に原料炭が貯留されている初期状態から粉砕運転を開始すると、返送用空気輸送設備(返送用ファン66f、返送用ロータリーバルブ66r)、粉砕設備(粉砕機30、粉砕機用定量供給機31)がこの順に運転を開始するが、これらの運転は受け槽65tの貯留レベルが所定のローレベル(LL)以下であると停止するが、ローレベルでない限り継続される。   The activated carbon injection facility 60 described above has a circulation path in which activated carbon circulates in the first storage tank 61 and the pulverizer 30 and a circulation path in which activated carbon circulates in the second storage tank 71 and the pulverizer 30 as follows. By alternately using for pulverization, pulverized activated carbon in the storage tank after pulverization can be used for injection. For example, when the pulverization operation is started from the initial state where the raw coal is stored in the first storage tank 61, the return air transport facility (return fan 66f, return rotary valve 66r), pulverization facility (pulverizer 30, The pulverizer quantitative feeder 31) starts operation in this order. These operations are stopped when the storage level of the receiving tank 65t is equal to or lower than a predetermined low level (LL), but are continued unless the storage level is low. .

一方、粉砕運転の開始に伴い、受け槽65tの貯留レベルがLL以下であると、第1貯留槽ロータリーバルブ61r、第1貯留槽定量供給機61f、第1切替機64、及び供給用空気輸送設備(供給用ファン65f、供給用ロータリーバルブ65r)が運転を開始し、第1切替機64が粉砕系排出口64bに排出するよう開閉弁v3が開、開閉弁v4が閉となる。これらの運転は受け槽65tの貯留レベルが所定のハイレベル(HL)以上になると停止するが、ハイレベルにならない限り継続される。受け槽65tの貯留レベルがローレベルを超えると、前述のように粉砕設備及び返送用空気輸送設備が運転を開始し、第1貯留槽61から切り出される活性炭が供給用空気輸送設備を介して受け槽65tに順次供給されるとともに、受け槽65tから粉砕機30に供給され、粉砕機30から排出される粉砕活性炭が返送用空気設備により第1貯留槽61に返送される。粒度計測装置32により計測される被粉砕活性炭の粒度代表値が、目標粒度代表値になるまで、粉砕運転は継続される。この結果、第1貯留槽61には目標粒度代表値の粉砕活性炭が貯留されることになる。   On the other hand, when the storage level of the receiving tank 65t is LL or less with the start of the pulverization operation, the first storage tank rotary valve 61r, the first storage tank quantitative supply device 61f, the first switching device 64, and the supply pneumatic transport The equipment (supply fan 65f, supply rotary valve 65r) starts operation, and the on-off valve v3 is opened and the on-off valve v4 is closed so that the first switching machine 64 discharges to the crushing system discharge port 64b. These operations are stopped when the storage level of the receiving tank 65t becomes equal to or higher than a predetermined high level (HL), but are continued as long as the level does not become high. When the storage level of the receiving tank 65t exceeds the low level, as described above, the pulverization facility and the return air transport facility start operation, and the activated carbon cut out from the first storage tank 61 is received via the supply air transport facility. While being sequentially supplied to the tank 65t, the pulverized activated carbon supplied from the receiving tank 65t to the pulverizer 30 and discharged from the pulverizer 30 is returned to the first storage tank 61 by the return air facility. The grinding operation is continued until the particle size representative value of the activated carbon to be crushed measured by the particle size measuring device 32 becomes the target particle size representative value. As a result, the first storage tank 61 stores the pulverized activated carbon having the target particle size representative value.

次いで第2貯留槽71に原料炭が供給されるか、又は予め第2貯留槽71に原料炭が貯留されている場合、第1貯留槽61の場合と同様に、第2貯留槽71と粉砕機30との間で活性炭を循環粉砕する。すなわち、返送用空気輸送設備(返送用ファン66f、返送用ロータリーバルブ66r)、粉砕設備(粉砕機30、粉砕機用定量供給機31)がこの順に運転を開始するが、これらの運転は受け槽65tの貯留レベルが所定のローレベル(LL)以下であると停止するが、ローレベルでない限り継続される。粉砕運転の開始に伴い、受け槽65tの貯留レベルがLL以下であると、第2貯留槽ロータリーバルブ71r、第2貯留槽定量供給機71f、第2切替機74、及び供給用空気輸送設備(供給用ファン65f、供給用ロータリーバルブ75r)が運転を開始し、第2切替機74が粉砕系排出口74bに排出するよう開閉弁v3が開、開閉弁v4が閉となる。これらの運転は受け槽65tの貯留レベルが所定のハイレベル(HL)以上になると停止するが、ハイレベルにならない限り継続される。受け槽65tの貯留レベルがローレベルを超えると、前述のように粉砕設備及び返送用空気輸送設備が運転を開始し、第2貯留槽71から切り出される活性炭が供給用空気輸送設備を介して受け槽65tに順次供給されるとともに、受け槽65tから粉砕機30に供給され、粉砕機30から排出される粉砕活性炭が返送用空気設備により第2貯留槽71に返送される。粒度計測装置32により計測される被粉砕活性炭の粒度代表値が、目標粒度代表値になるまで、粉砕運転は継続される。この結果、第2貯留槽71には目標粒度代表値の粉砕活性炭が貯留されることになる。   Next, when the raw coal is supplied to the second storage tank 71, or when the raw coal is stored in the second storage tank 71 in advance, as in the case of the first storage tank 61, the second storage tank 71 and pulverization are performed. The activated carbon is circulated and pulverized with the machine 30. That is, the return pneumatic transport equipment (return fan 66f, return rotary valve 66r) and the grinding equipment (grinding machine 30, fixed quantity feeder for grinding machine 31) start operation in this order. If the storage level of 65t is equal to or lower than a predetermined low level (LL), the operation stops, but continues unless the storage level is low. With the start of the pulverization operation, when the storage level of the receiving tank 65t is LL or less, the second storage tank rotary valve 71r, the second storage tank fixed amount supply device 71f, the second switching device 74, and the supply air transport facility ( The supply fan 65f and the supply rotary valve 75r) start operation, and the on-off valve v3 is opened and the on-off valve v4 is closed so that the second switching device 74 discharges to the crushing system discharge port 74b. These operations are stopped when the storage level of the receiving tank 65t becomes equal to or higher than a predetermined high level (HL), but are continued as long as the level does not become high. When the storage level of the receiving tank 65t exceeds the low level, as described above, the pulverization facility and the return air transport facility start operation, and the activated carbon cut out from the second storage tank 71 is received via the supply air transport facility. While being sequentially supplied to the tank 65t, the pulverized activated carbon supplied from the receiving tank 65t to the pulverizer 30 and discharged from the pulverizer 30 is returned to the second storage tank 71 by the return air facility. The grinding operation is continued until the particle size representative value of the activated carbon to be crushed measured by the particle size measuring device 32 becomes the target particle size representative value. As a result, the second storage tank 71 stores the pulverized activated carbon having the target particle size representative value.

他方、浄水処理において活性炭注入を行うときには、第1貯留槽61及び第2貯留槽71のうち、目標粒度代表値まで粉砕した活性炭を貯留するいずれか一方の貯留槽から注入を行う。例えばいま、第1貯留槽61に目標粒度代表値まで粉砕した活性炭が貯留されており、第2貯留槽71と粉砕機30との間で循環粉砕を行っているとすると、第1溶解槽67につながる注入ポンプ67pの運転を開始し、開閉弁v5を開、開閉弁v6を閉として、溶解水を第1溶解槽67に、及び駆動水を第1注入エジェクタ67eにそれぞれ供給するとともに、第1貯留槽ロータリーバルブ61r、第1貯留槽定量供給機61f、及び第1切替機64の運転を開始し、第1切替機64が注入系排出口64aに排出するよう開閉弁v3を閉、開閉弁v4を開に切り替える。これにより、第1貯留槽61内に貯留された粉砕活性炭が切り出され、第1溶解槽67に対して定量供給される。第1溶解槽67では所定濃度の活性炭スラリーが製造され、この活性炭スラリーが注入点APに供給される。   On the other hand, when the activated carbon is injected in the water purification treatment, the injection is performed from any one of the first storage tank 61 and the second storage tank 71 that stores the activated carbon pulverized to the target particle size representative value. For example, if activated carbon pulverized to the target particle size representative value is stored in the first storage tank 61 and circulation pulverization is performed between the second storage tank 71 and the pulverizer 30, the first dissolution tank 67 is now stored. The operation of the infusion pump 67p leading to is started, the on-off valve v5 is opened, the on-off valve v6 is closed, dissolved water is supplied to the first dissolving tank 67, and driving water is supplied to the first injecting ejector 67e. The operation of the first storage tank rotary valve 61r, the first storage tank quantitative supply device 61f, and the first switching device 64 is started, and the on-off valve v3 is closed and opened so that the first switching device 64 discharges to the injection system discharge port 64a. Switch valve v4 to open. Thereby, the pulverized activated carbon stored in the first storage tank 61 is cut out and supplied to the first dissolution tank 67 in a fixed amount. In the first dissolution tank 67, activated carbon slurry having a predetermined concentration is manufactured, and this activated carbon slurry is supplied to the injection point AP.

第1貯留槽61の粉砕活性炭を使いきったならば、第1切替機64が粉砕系排出口に排出するよう開閉弁v3,v4を切り替え、第1貯留槽61側を粉砕運転に切り替える。また、この時点で、第2貯留槽71に目標粒度代表値まで粉砕した活性炭が貯留されており、注入を継続する場合には、開閉弁v5を閉、開閉弁v6を開に切り替えて、溶解水を第2溶解槽77に、及び駆動水を第2注入エジェクタ77eにそれぞれ供給するとともに、第2貯留槽ロータリーバルブ71r、第2貯留槽定量供給機71f、及び第2切替機74の運転を開始し、第2切替機74が注入系排出口74aに排出するよう開閉弁v3,v4を切り替える。これにより、第2貯留槽71内に貯留された粉砕活性炭が切り出され、第2溶解槽77に対して定量供給される。第2溶解槽77では所定濃度の活性炭スラリーが製造され、この活性炭スラリーが注入点に供給される。   When the pulverized activated carbon in the first storage tank 61 has been used up, the on-off valves v3 and v4 are switched so that the first switching machine 64 discharges to the pulverization system outlet, and the first storage tank 61 side is switched to the pulverization operation. At this time, the activated carbon pulverized to the target particle size representative value is stored in the second storage tank 71, and when the injection is continued, the on-off valve v5 is closed and the on-off valve v6 is switched to open and dissolved. While supplying water to the 2nd dissolution tank 77 and driving water to the 2nd injection ejector 77e, operation of the 2nd storage tank rotary valve 71r, the 2nd storage tank fixed quantity supply machine 71f, and the 2nd change machine 74 is carried out, respectively. The on-off valves v3 and v4 are switched so that the second switching device 74 discharges to the injection system discharge port 74a. Thereby, the pulverized activated carbon stored in the second storage tank 71 is cut out and supplied to the second dissolution tank 77 in a fixed amount. In the second dissolution tank 77, activated carbon slurry having a predetermined concentration is produced, and this activated carbon slurry is supplied to the injection point.

これら第1貯留槽61及び第2貯留槽71の粉砕・注入の切り替えは、注入使用中の貯留槽に十分に活性炭が残っている注入途中や、機器故障時、機器保守時等、任意の時点で行ってもよい。   The pulverization / injection switching of the first storage tank 61 and the second storage tank 71 can be performed at any time such as during the injection in which activated carbon remains sufficiently in the storage tank in use, at the time of equipment failure, during equipment maintenance, etc. You may go on.

本設備60のように、貯留槽から浄水処理に対して供給する経路に粉砕機を介在させるのではなく、活性炭が第1貯留槽61及び粉砕機30を循環する循環経路と、活性炭が第2貯留槽71及び粉砕機30を循環する循環経路とを構成し、それぞれ循環する活性炭に対して粉砕を繰り返し行いうる構成とし、浄水処理に対して第1貯留槽61又は第2貯留槽71から選択的に粉砕活性炭を供給する構成を採用したことにより、粉砕機30を第1貯留槽61及び第2貯留槽71や浄水処理に対する供給系統から分離して設置することができるため、粉砕機30の設置スペースの確保及び基本設備との連動の確保が容易となり、既存設備への適用が容易となる。また、粉砕を繰り返し行うことができるため、原料炭の粒度と粉砕活性炭の目標粒度との差が大きくても目標粒度の粉砕活性炭を製造し、注入することが可能となる。本設備60は、活性炭の貯留槽を一槽のみ備える既存設備(貯留槽増設が必要)、又は貯留槽を複数備える既存設備に、オンサイト粉砕を追加する場合に好適なものである。特に、粉砕のための活性炭の循環経路を2系統独立して備えるため、一方を粉砕に利用し、他方を注入に利用することにより、粉砕と注入とを同時に行うことも可能であり、かつ注入量が粉砕処理量を超えない限り、目標粒度の粉砕活性炭を実質連続的に製造して注入することができるため、注入品の不足や吸着性能の低下が発生しにくい。さらに、粉砕のための活性炭の循環経路のそれぞれに粉砕設備(粉砕機30、粉砕機用定量供給機31)等を個別に設けることもできるが、本設備60では粉砕機30は1台で済むため、機器構成の割には設置スペースは小さくて済むという利点もある。   Rather than interposing a pulverizer in the path for supplying water from the storage tank to the water purification treatment as in the present facility 60, the activated carbon circulates through the first storage tank 61 and the pulverizer 30, and the activated carbon is the second. The storage tank 71 and a circulation path that circulates through the pulverizer 30 are configured, and the pulverization can be repeatedly performed on each of the circulating activated carbon, and the water purification process is selected from the first storage tank 61 or the second storage tank 71. Since the pulverized activated carbon is supplied, the pulverizer 30 can be installed separately from the supply system for the first storage tank 61 and the second storage tank 71 and the water purification process. It is easy to secure the installation space and interlock with the basic equipment, making it easy to apply to existing equipment. Further, since the pulverization can be repeated, even if the difference between the particle size of the raw coal and the target particle size of the pulverized activated carbon is large, the pulverized activated carbon having the target particle size can be manufactured and injected. This facility 60 is suitable when adding on-site crushing to an existing facility having only one activated carbon storage tank (an additional storage tank is required) or an existing facility having a plurality of storage tanks. In particular, since two systems of activated carbon circulation paths for pulverization are provided independently, pulverization and injection can be performed simultaneously by using one for pulverization and the other for injection. As long as the amount does not exceed the pulverization amount, pulverized activated carbon having the target particle size can be manufactured and injected substantially continuously, so that the shortage of injection products and the reduction in adsorption performance are unlikely to occur. Furthermore, a pulverization facility (a pulverizer 30 and a pulverizer quantitative supply device 31) and the like can be individually provided in each of the circulation paths of the activated carbon for pulverization, but in this facility 60, only one pulverizer 30 is sufficient. Therefore, there is an advantage that the installation space is small for the device configuration.

本例3の設備60においても、例1の設備と同様に、粉砕エネルギー実測値及び粉砕エネルギー適正値に基づく粉砕駆動制御を行うことができる。また、本例2の設備においても、粉砕と浄水処理に対する活性炭注入を同時に行うことができ、その際に、前述の注入量補正を行うこともできる。その他、例3の基本構成の範囲内において、例1と同様の変更が可能である。また、例1と同様の構成については、同じ符号を用いているため、あえて説明を省略する。   In the facility 60 of the third example, similarly to the facility of the first example, pulverization drive control based on the measured pulverization energy value and the appropriate pulverization energy value can be performed. Moreover, also in the installation of this Example 2, activated carbon injection | pouring with respect to a grinding | pulverization and a water purification process can be performed simultaneously, and the above-mentioned injection | pouring amount correction | amendment can also be performed in that case. In addition, within the scope of the basic configuration of Example 3, the same changes as in Example 1 can be made. In addition, since the same reference numerals are used for the same configurations as in Example 1, the description thereof is omitted.

<その他>
・上記実施形態は、循環粉砕が可能となっているが、循環せずに一回の粉砕のみで目標粒度に達するのであれば循環粉砕しなくてもよい。
・上記実施形態は、ドライ粉末活性炭注入設備への適用例であるが、本発明は、ウエット粉末活性炭注入設備に適用することもできる。
<Others>
In the above embodiment, circulation pulverization is possible, but circulation pulverization is not necessary if the target particle size is reached by only one pulverization without circulation.
-Although the said embodiment is an application example to dry powder activated carbon injection equipment, this invention can also be applied to wet powder activated carbon injection equipment.

本発明は、河川水、各種工業用水等の被処理水を活性炭により浄化するのに利用される。   The present invention is used to purify water to be treated such as river water and various industrial water with activated carbon.

AP…注入点、C1…被粉砕活性炭、C2…粉砕活性炭、CW…処理済み水、DC…ドライ粉末活性炭、RW…原水、SW…給水、SW…場内給水、WC…ウエット粉末活性炭、bg…バグフィルタ、pg…冷却エアパージ、v1,v2…開閉弁、v3,v4…開閉弁、v5,v6…開閉弁、 1…混和池、2…フロック形成池、3…沈殿池、4…ろ過池、10…ドライ粉末活性炭注入設備、11…活性炭貯留槽、12…振動排出機、13…ロータリーバルブ、14,18…粉末定量供給機、15…溶解槽、16…ポンプ、17…エジェクタ、20…ウエット粉末活性炭注入設備、21…溶解槽、22…注入ポンプ、30…粉砕機、31…粉砕機用定量供給機、32…粒度計測装置、33…制御装置、41…貯留槽、41d…ダンパー、41i…原料炭供給配管、41r…貯留槽ロータリーバルブ、42…被粉砕品供給路、43…粉砕品返送路、44…分配定量供給機、44a…第1定量供給部、44b…第2定量供給部、44h…ホッパ、45e…供給用エジェクタ、45f…供給用送風機、45r…供給用ロータリーバルブ、45t…受け槽、46e…返送用エジェクタ、46f…返送用送風機、46h…ホッパ、46p…返送配管、46r…返送用ロータリーバルブ、47…溶解槽、47e…注入エジェクタ、47p…注入ポンプ、50…ドライ粉末活性炭注入設備、51…被粉砕品貯留槽、51d…ダンパー、51i…原料炭供給配管、52…被粉砕品供給路、53…粉砕品返送路、54…注入品貯留槽、54d…ダンパー、54f…注入用定量供給機、54r…注入品ロータリーバルブ、55e…供給用エジェクタ、55f…供給用送風機、55r…供給用ロータリーバルブ、55t…受け槽、56e…返送用エジェクタ、56f…返送用送風機、56h…ホッパ、56p…返送配管、56r…返送用ロータリーバルブ、57…溶解槽、57e…注入エジェクタ、57p…注入ポンプ、60…ドライ粉末活性炭注入設備、61…第1貯留槽、61d…ダンパー、61f…第1貯留槽定量供給機、61i…原料炭供給配管、61r…第1貯留槽ロータリーバルブ、62…第1被粉砕品供給路、63…粉砕品返送路、64…第1切替機、64a…注入系排出口、64b…粉砕系排出口、64h…供給ホッパ、65e…第1供給用エジェクタ、65f…供給用送風機、65h…第1供給ホッパ、65r…第1供給ロータリーバルブ、65t…受け槽、66e…返送用エジェクタ、66h…ホッパ、66p…返送配管、66r…返送用ロータリーバルブ、67…第1溶解槽、67e…第1注入エジェクタ、67p…注入ポンプ、70…第2貯留槽、71d…ダンパー、71f…第2貯留槽定量供給機、71i…原料炭供給配管、71r…第2貯留槽ロータリーバルブ、72…第2被粉砕品供給路、74…第2切替機、74a…注入系排出口、74b…粉砕系排出口、74h…供給ホッパ、75e…第2供給用エジェクタ、75h…第2供給ホッパ、75r…第2供給ロータリーバルブ、77…第2溶解槽、77e…第2注入エジェクタ。   AP: injection point, C1: activated carbon to be pulverized, C2: pulverized activated carbon, CW: treated water, DC: dry powder activated carbon, RW: raw water, SW: water supply, SW: in-site water supply, WC: wet powder activated carbon, bg: bug Filter, pg ... Cooling air purge, v1, v2 ... Open / close valve, v3, v4 ... Open / close valve, v5, v6 ... Open / close valve, 1 ... Mixing pond, 2 ... Flock formation pond, 3 ... Sedimentation basin, 4 ... Filtration basin, 10 DESCRIPTION OF SYMBOLS ... Dry powder activated carbon injection equipment, 11 ... Activated carbon storage tank, 12 ... Vibration ejector, 13 ... Rotary valve, 14, 18 ... Powder fixed quantity supply machine, 15 ... Dissolution tank, 16 ... Pump, 17 ... Ejector, 20 ... Wet powder Activated carbon injection equipment, 21 ... dissolution tank, 22 ... injection pump, 30 ... pulverizer, 31 ... quantitative supply device for pulverizer, 32 ... particle size measuring device, 33 ... control device, 41 ... storage tank, 41d ... damper, 41 ... coking coal supply pipe, 41r ... storage tank rotary valve, 42 ... crushed product supply path, 43 ... crushed product return path, 44 ... distributed metering feeder, 44a ... first metering supply unit, 44b ... second metering supply unit 44h ... Hopper, 45e ... Ejector for supply, 45f ... Blower for supply, 45r ... Rotary valve for supply, 45t ... Receiving tank, 46e ... Ejector for return, 46f ... Blower for return, 46h ... Hopper, 46p ... Return pipe, 46r ... Rotary valve for return, 47 ... Dissolution tank, 47e ... Injection ejector, 47p ... Injection pump, 50 ... Dry powder activated carbon injection equipment, 51 ... Shattered article storage tank, 51d ... Damper, 51i ... Coal supply pipe, 52 ... pulverized product supply path, 53 ... pulverized product return path, 54 ... injection product storage tank, 54d ... damper, 54f ... injection quantitative meter, 54r ... injection product low Tally valve, 55e ... ejector for supply, 55f ... blower for supply, 55r ... rotary valve for supply, 55t ... receiving tank, 56e ... ejector for return, 56f ... blower for return, 56h ... hopper, 56p ... return pipe, 56r ... Rotary valve for return, 57 ... Dissolution tank, 57e ... Injection ejector, 57p ... Injection pump, 60 ... Dry powder activated carbon injection equipment, 61 ... First storage tank, 61d ... Damper, 61f ... First storage tank quantitative supply machine, 61i ... coking coal supply pipe, 61r ... first storage tank rotary valve, 62 ... first pulverized product supply path, 63 ... crushed product return path, 64 ... first switching machine, 64a ... injection system discharge port, 64b ... pulverization system Discharge port, 64h ... supply hopper, 65e ... first supply ejector, 65f ... supply blower, 65h ... first supply hopper, 65r ... first supply rotor -Valve, 65t ... receiving tank, 66e ... return ejector, 66h ... hopper, 66p ... return pipe, 66r ... return rotary valve, 67 ... first dissolution tank, 67e ... first injection ejector, 67p ... injection pump, 70 ... 2nd storage tank, 71d ... damper, 71f ... 2nd storage tank fixed quantity feeder, 71i ... coking coal supply pipe, 71r ... 2nd storage tank rotary valve, 72 ... 2nd to-be-ground product supply path, 74 ... 2nd switching 74a ... injection system discharge port, 74b ... grinding system discharge port, 74h ... feed hopper, 75e ... second supply ejector, 75h ... second supply hopper, 75r ... second supply rotary valve, 77 ... second melting tank 77e ... Second injection ejector.

本発明は、粉末活性炭注入設備及び粉末活性炭注入方法に関するものである。   The present invention relates to a powdered activated carbon injection facility and a powdered activated carbon injection method.

近年では、通常の浄水処理では十分に対応できない臭気物質やトリハロメタン生成物質、陰イオン界面活性剤、アンモニア態窒素などを処理するために、いわゆる高度浄水処理が採用されている。高度浄水処理としては、オゾン処理法、活性炭処理法及び生物処理方法等があり、被処理水の状況によってこれらの処理方法が単独又はいくつか組み合わされて用いられている。   In recent years, so-called advanced water purification treatment has been adopted to treat odorous substances, trihalomethane-forming substances, anionic surfactants, ammonia nitrogen, and the like that cannot be adequately handled by ordinary water purification treatment. The advanced water purification treatment includes an ozone treatment method, an activated carbon treatment method, a biological treatment method, and the like, and these treatment methods are used alone or in combination according to the condition of the water to be treated.

このうち、活性炭処理法には、浄水場の急速ろ過池の上流側又は下流側に、粒状活性炭層によるろ過を行う活性炭ろ過池を設けるものの他、図1〜図3に示すように、活性炭ろ過池を設けず、着水井6又はその上流の導水路5において原水RWに粉末活性炭DC、WCを注入(添加)するものが知られている。図示例は、より詳細には、導水路5を経て着水井(又は原水槽)6に供給された河川水などの原水(被処理水)RWを、凝集剤等を添加混合するための混和池1、フロックを形成するためのフロック形成池2、フロックを沈殿させるための沈殿池3、及び砂層等で水をろ過するろ過池4を経て浄化する一般的な浄水形態を基本として、原水RWの混和池1への供給に先立ち、粉末活性炭注入設備10により着水井6又はその上流の導水路5等の注入点で原水RWに粉末活性炭DC、WCを添加するようにしたものである。   Among these, in the activated carbon treatment method, as shown in FIG. 1 to FIG. 3, the activated carbon filter basin is provided with an activated carbon filter basin that performs filtration with a granular activated carbon layer on the upstream side or downstream side of the rapid filter basin of the water purification plant. In this case, the activated carbon DC and WC are injected (added) into the raw water RW in the landing well 6 or the water conduit 5 upstream thereof. More specifically, the illustrated example is a mixing pond for adding raw water (treated water) RW such as river water supplied to the landing well (or raw water tank) 6 through the water conduit 5 and adding a flocculant or the like. 1. Based on a general water purification form purifying through a floc formation pond 2 for forming flocs, a sedimentation basin 3 for precipitating flocs, and a filtration basin 4 for filtering water with a sand layer or the like, the raw water RW Prior to supply to the mixing basin 1, powdered activated carbon DC and WC are added to the raw water RW at the injection point of the landing well 6 or the water conduit 5 upstream thereof by the powdered activated carbon injection facility 10.

粉末活性炭注入設備(粉末活性炭添加設備ともいわれる)の例としては、図1及び図2に示すような乾燥状態のドライ粉末活性炭を利用する設備10と、図3示すような水分を含有するウエット粉末活性炭WCを利用する設備20とが知られている。   Examples of powder activated carbon injection equipment (also called powder activated carbon addition equipment) include equipment 10 using dry powder activated carbon in a dry state as shown in FIGS. 1 and 2, and wet powder containing moisture as shown in FIG. A facility 20 using activated carbon WC is known.

ウエット粉末活性炭注入設備20は、フレコンバッグ(フレキシブルコンテナバッグ)FBで搬入されるウエット粉末活性炭WCを作業員がクレーンを操作して攪拌機付の溶解槽21に投入し、溶解槽21内で給水SWと混合して所定濃度の活性炭のスラリーを製造し、このスラリーを注入ポンプ22により注入点に供給して原水RWに混合するものである。この場合、スラリーの製造がバッチ式となるため、通常、溶解槽21は複数設置され、スラリーの製造が終了した溶解槽21から注入を行いつつ、他の溶解槽21では次の注入に備えてスラリーの製造を行うことになる。また、常に規定量のフレコンバッグFBを使用し、かつ規定量の給水SWと混合することにより、溶解槽21内に規定濃度のスラリーを製造し、注入ポンプ22の供給流量を変化させることにより、原水RWに対する活性炭注入量を制御することができる。   In the wet powder activated carbon injection facility 20, an operator operates a crane to put wet powder activated carbon WC carried in a flexible container bag (flexible container bag) FB into a dissolution tank 21 with a stirrer, and supplies water in the dissolution tank 21. To produce a slurry of activated carbon having a predetermined concentration, and this slurry is supplied to the injection point by the injection pump 22 and mixed with the raw water RW. In this case, since the slurry is manufactured batchwise, normally, a plurality of dissolution tanks 21 are installed, and the other dissolution tanks 21 prepare for the next injection while injecting from the dissolution tanks 21 where the manufacture of the slurry is completed. A slurry will be produced. In addition, by always using a specified amount of flexible container bag FB and mixing with a specified amount of water supply SW, a slurry having a specified concentration is produced in the dissolution tank 21, and by changing the supply flow rate of the injection pump 22, The amount of activated carbon injected into the raw water RW can be controlled.

ウエット粉末活性炭注入設備20は、ドライ粉末活性炭注入設備10と比較して、設備が簡素で、設備建設費が比較的安価となる利点があるものの、フレコンバッグFBを移動し溶解槽21へ投入する作業のための作業員が必要であり、全自動化が困難であるという問題点の他、フレコンバッグFBによる活性炭溶解のため、活性炭注入量の精度が低くならざるを得ない、といった問題点も有している。   The wet powder activated carbon injection facility 20 has the advantage that the facility is simple and the construction cost is relatively low compared with the dry powder activated carbon injection facility 10, but the flexible container bag FB is moved and put into the dissolution tank 21. In addition to the problem that a worker is required for the work and it is difficult to fully automate, there is a problem that the accuracy of the activated carbon injection has to be lowered because the activated carbon is dissolved by the flexible container bag FB. doing.

一般に活性炭注入設備では、ランニングコスト低減のため、原水の水質変化に応じて活性炭注入量を変化させ、活性炭使用量を必要最小限にすることが行われている。しかし、原水の水質変化に対して細かく対応するためには、人員作業を必須とし活性炭注入量の精度が低いウエット粉末活性炭方式では限界があり、この観点ではドライ粉末活性炭方式が優位である。   In general, in an activated carbon injection facility, in order to reduce running costs, the activated carbon injection amount is changed according to changes in the quality of raw water to minimize the amount of activated carbon used. However, in order to respond finely to changes in the water quality of raw water, there is a limit in the wet powder activated carbon method in which manpower is indispensable and the accuracy of the activated carbon injection amount is low, and in this respect, the dry powder activated carbon method is superior.

ドライ粉末活性炭注入設備10は、図1及び図2に示すように、ジェットパック車JC等で搬入される乾燥状態のドライ粉末活性炭(原料炭)DCを、活性炭貯留槽11に貯留しておき、この活性炭貯留槽11のドライ粉末活性炭DCを、供給量可変の供給部12〜14、18を介して攪拌機付の溶解槽15に定量供給し、溶解槽15内で、場内給水SWから流量一定で別途供給される溶解水と混合して所定濃度の活性炭のスラリーを連続的に製造し、溶解槽15から一定流量でオーバーフローするスラリーを、エジェクタ17により場内給水SWからポンプ16により流量一定で別途供給される駆動水とともに、注入点に供給して原水RWに添加するものである。エジェクタ17の代わりにポンプを用いて溶解槽15からのスラリーを注入点に供給するものもある。なお、図1の符号19は溶解槽15へ溶解水を定流量で供給するための流量調整弁を示している。また、図1に示す設備例では、供給部12〜14が、活性炭貯留槽11の排出口に設けられた振動排出機12と、この振動排出機12により排出されるドライ粉末活性炭DCを所定の切り出し量で切り出すロータリーバルブ13と、このロータリーバルブ13により切り出されたドライ粉末活性炭DCを溶解槽15に定量供給する供給量可変の粉末定量供給機14とから主に構成されており、かつ粉末定量供給機14として、計量槽減量制御方式(フィードバック制御)のものが採用されている。この計量槽減量制御方式の粉末定量供給機14とは、ドライ粉末活性炭DCを一時的に貯留して計量するための計量槽と、この計量槽の重量を計測するロードセルと、計量槽内のドライ粉末活性炭DCを所定の容積で切り出す切り出し供給部とを備え、ロードセルによる計量槽の減量を排出量とみなして、排出量が一定となるように切り出し速度(回転式の切り出し機構の場合は回転数)を可変制御するものである。計量槽減量制御方式の粉末定量供給機の例としては、粉研パウテックス社の粉体用定量供給機「フンケンオートフィーダー」等を挙げることができる。   As shown in FIGS. 1 and 2, the dry powder activated carbon injection facility 10 stores dry powder activated carbon (raw carbon) DC that is carried in a jet pack car JC or the like in an activated carbon storage tank 11, The dry powder activated carbon DC of the activated carbon storage tank 11 is quantitatively supplied to the dissolution tank 15 with a stirrer via the supply units 12 to 14 and 18 with variable supply amounts, and the flow rate is constant from the in-situ water supply SW in the dissolution tank 15. A slurry of activated carbon having a predetermined concentration is continuously produced by mixing with dissolved water supplied separately, and slurry that overflows from the dissolution tank 15 at a constant flow rate is separately supplied from the in-site water supply SW by the pump 16 at a constant flow rate by the ejector 17. It is supplied to the injection point together with the driving water to be added to the raw water RW. In some cases, a slurry is supplied from the dissolution tank 15 to the injection point using a pump instead of the ejector 17. In addition, the code | symbol 19 of FIG. 1 has shown the flow regulating valve for supplying dissolved water to the dissolution tank 15 by constant flow. In addition, in the example of equipment shown in FIG. 1, the supply units 12 to 14 are provided with the vibration discharger 12 provided at the discharge port of the activated carbon storage tank 11 and the dry powder activated carbon DC discharged by the vibration discharger 12. It is mainly composed of a rotary valve 13 that cuts out with a cut-out amount, and a powder feed quantity variable supply device 14 that feeds dry powder activated carbon DC cut out by the rotary valve 13 into a dissolution tank 15 in a variable quantity, and the powder quantity is determined. As the feeder 14, a measuring tank reduction control method (feedback control) is adopted. This metering tank weight reduction control type powder quantification feeder 14 includes a metering tank for temporarily storing and metering dry powder activated carbon DC, a load cell for measuring the weight of the metering tank, and a dry cell in the metering tank. A cutting supply unit that cuts powdered activated carbon DC at a predetermined volume, considering the reduction of the measuring tank by the load cell as the discharge amount, and the cutting speed so that the discharge amount is constant (in the case of a rotary cutting mechanism, the number of rotations) ) Is variably controlled. As an example of the powder quantification feeder of the measuring tank weight loss control system, there can be mentioned a powder quantification feeder “Funken Auto Feeder”, etc., produced by Gakken Powtex.

一方、図2に示す設備例では、供給部18が、活性炭貯留槽11に貯留されているドライ粉末活性炭DCを所定の切り出し量で切り出して溶解槽15に供給する供給量可変の粉末定量供給機18のみから主に構成されており、かつ粉末定量供給機18として切り出し重量制御方式のものが採用されている。この切り出し重量制御方式の粉末定量供給機18とは、ドライ粉末活性炭DCを所定の容積に切り出す切り出し部と、切り出した所定容積のドライ粉末活性炭DCの重量を計測する重量計側部とを備え、重量計測結果及び切り出し速度(回転式の切り出し機構の場合は回転数)に基づいてドライ粉末活性炭DCの実供給量を算出し、この実供給量が設定供給量となるように切り出し速度を可変制御するものである。切り出し重量制御方式の粉末定量供給機18の例としては、大盛工業社のロードセル内蔵型定量供給機「セルインチェッカー」を挙げることができる。前述の計量槽減量制御方式の粉末定量供給機14は、小供給量時(時間あたりの切り出し量が小さい時)に外乱影響(風や人の歩行による振動)供給精度誤差が大きくなり易いのに対して、切り出し重量制御方式の粉末定量供給機18は、外乱影響を受けないため、供給精度が高く、外乱対策費用が削減可能であるとともに、計量槽減量制御方式における振動排出機12、ロータリーバルブ13及び粉末定量供給機14の計量槽が不要となるため、設備費低減及び設備設置高さの抑制の点では優位なものである。   On the other hand, in the facility example shown in FIG. 2, the supply unit 18 supplies a variable amount of powder to the dry powder activated carbon DC stored in the activated carbon storage tank 11 with a predetermined cutout amount and supplies it to the dissolution tank 15. It is mainly composed of only 18 and a cut-out weight control type is adopted as the powder fixed quantity feeder 18. The cut-out weight control type powder quantitative supply machine 18 includes a cut-out unit that cuts dry powder activated carbon DC into a predetermined volume, and a weighing scale side unit that measures the weight of the cut-out predetermined volume of dry powder activated carbon DC, The actual supply amount of dry powder activated carbon DC is calculated based on the weight measurement result and the cutting speed (rotation speed in the case of a rotary cutting mechanism), and the cutting speed is variably controlled so that this actual supply amount becomes the set supply amount. To do. As an example of the cut-out weight control type powder quantitative supply device 18, there can be mentioned a cell supply checker “cell in checker” built in a load cell. The above-mentioned metering-quantity feeder 14 of the weighing tank reduction control method is likely to have a large supply accuracy error due to disturbance effects (vibrations caused by wind and human walking) when the supply amount is small (when the cut-out amount per hour is small). On the other hand, the cut-out weight control type powder quantitative supply machine 18 is not affected by disturbances, so that the supply accuracy is high and the disturbance countermeasure cost can be reduced, and the vibration ejector 12 and rotary valve in the weighing tank weight reduction control type. 13 and the metering tank of the powder fixed amount supply device 14 are unnecessary, which is advantageous in terms of reducing the equipment cost and suppressing the equipment installation height.

図1、2に示す設備例10は、ウエット粉末活性炭注入設備と比べて全自動化が容易であり、溶解槽15への活性炭供給は定量供給機14、18によって行われるため活性炭注入量の精度が高く、また、注入量変更の応答性が早いため、より細かな制御に向いており、緊急時の対応にも向いている等の優位性がある。   The facility example 10 shown in FIGS. 1 and 2 is easier to fully automate than the wet powder activated carbon injection facility, and since the activated carbon supply to the dissolution tank 15 is performed by the quantitative feeders 14 and 18, the accuracy of the activated carbon injection amount is high. It is high, and the responsiveness of changing the injection amount is fast, so that it is suitable for finer control and is suitable for emergency response.

粉末活性炭注入においては、吸着性能の向上、及びそれによる活性炭消費量の低減等を目的として、D50が0.01〜10μm程度の微細な活性炭を用いることが知られており、また、原料となる粉末活性炭(以下、原料炭ともいう)を、オンサイト、つまり浄水場で粉砕機により粉砕して微細な粉砕活性炭としてから注入することも知られている(特許文献1〜4参照)。   In powder activated carbon injection, it is known to use fine activated carbon having a D50 of about 0.01 to 10 μm for the purpose of improving adsorption performance and reducing activated carbon consumption, thereby becoming a raw material. It is also known that powdered activated carbon (hereinafter also referred to as raw coal) is injected on-site, that is, after being pulverized by a pulverizer at a water purification plant into fine pulverized activated carbon (see Patent Documents 1 to 4).

しかしながら、従来のオンサイト粉砕による活性炭注入は、粉砕機から排出される粉砕活性炭をそのまま注入するものであったため、粉砕機の設置スペースの確保や基本設備との連動の確保が困難である等により、既存の浄水設備に適用することが困難であるという問題点を有していた。   However, the conventional activated carbon injection by on-site pulverization involves injecting the pulverized activated carbon discharged from the pulverizer as it is, and it is difficult to ensure the installation space of the pulverizer and the interlocking with the basic equipment. However, it was difficult to apply to existing water purification equipment.

特開平10−309567号公報JP-A-10-309567 特許4468895号公報Japanese Patent No. 4468895 特開2013−233486号公報JP2013-233486A 特開2016−036803号公報Japanese Patent Laid-Open No. 2006-036803

そこで、本発明の主たる課題は、既存浄水設備に対する適用が容易な粉末活性炭注入技術を提供すること等にある。   Then, the main subject of this invention is providing the powder activated carbon injection | pouring technique with easy application with respect to the existing water purification plant.

<第1の態様>
浄水場に設置された粉砕機により粉末状の原料炭を粉砕して粉砕活性炭を製造し、この粉砕活性炭を浄水処理に対して供給する、粉末活性炭注入設備において、
活性炭の貯留槽と、
前記貯留槽に貯留されている活性炭を、前記粉砕機に対して供給する被粉砕品供給路と、
前記粉砕機で粉砕された粉砕活性炭を前記貯留槽に返送する粉砕品返送路とを含み、
前記貯留槽に貯留されている活性炭を、前記浄水処理に対して供給する構成とした、
ことを特徴とする粉末活性炭注入設備。
<First aspect>
In the powdered activated carbon injection facility, which pulverized activated carbon is manufactured by pulverizing powdered raw coal with a pulverizer installed in the water purification plant, and this pulverized activated carbon is supplied to the water purification treatment,
An activated carbon reservoir,
The pulverized product supply path for supplying the activated carbon stored in the storage tank to the pulverizer,
Including a pulverized product return path for returning the pulverized activated carbon pulverized by the pulverizer to the storage tank;
The activated carbon stored in the storage tank is configured to supply the purified water treatment.
Powder activated carbon injection equipment characterized by that.

(作用効果)
本態様のように、貯留槽から浄水処理に対して供給する経路に粉砕機を介在させるのではなく、活性炭が貯留槽及び粉砕機を循環する循環経路を構成し、循環する活性炭に対して粉砕を繰り返し行いうる構成とし、貯留槽から浄水処理に対して粉砕活性炭を供給する構成を採用したことにより、粉砕機を貯留槽や浄水処理に対する供給系統から分離して設置することができるため、粉砕機の設置スペースの確保及び基本設備との連動の確保が容易となり、既存設備への適用が容易となる。また、粉砕を繰り返し行うことができるため、原料炭の粒度と粉砕活性炭の目標粒度との差が大きくても目標粒度の粉砕活性炭を製造し、注入することが可能となる。本態様は、活性炭の貯留槽を一槽のみ備える既存設備に、貯留槽の増設を行わずにオンサイト粉砕を追加する場合に好適なものである。特に、粉砕の循環系統を構成する貯留槽から粉砕活性炭を浄水処理に対して供給する構成としたため、粉砕と注入とを繰り返し行うだけでなく、必要に応じて同時に行うことも可能である。
(Function and effect)
Instead of interposing a pulverizer in the path for supplying water to the water purification treatment from the storage tank as in this embodiment, the activated carbon constitutes a circulation path for circulating the storage tank and the pulverizer, and pulverizes the circulating activated carbon. By adopting a configuration in which the pulverized activated carbon is supplied from the storage tank to the water purification treatment, the crusher can be installed separately from the supply system for the storage tank and the water purification treatment. It will be easy to secure the installation space of the machine and interlock with the basic equipment, and it will be easy to apply to existing equipment. Further, since the pulverization can be repeated, even if the difference between the particle size of the raw coal and the target particle size of the pulverized activated carbon is large, the pulverized activated carbon having the target particle size can be manufactured and injected. This aspect is suitable for the case where on-site pulverization is added to an existing facility having only one activated carbon storage tank without adding the storage tank. In particular, since the pulverized activated carbon is supplied to the water purification process from the storage tank constituting the pulverization circulation system, not only the pulverization and the injection are repeated, but also simultaneously as necessary.

<第2の態様>
前記粉砕活性炭と、別途流量一定で供給される溶解水とを混合して所定濃度の活性炭のスラリーを連続的に製造する溶解槽を有し、
前記貯留槽に貯留されている活性炭を、前記溶解槽に対して連続的に定量供給する注入品定量供給機を有し、
前記溶解槽で連続的に製造されるスラリーを、前記浄水処理に対して供給する構成とし、
前記被粉砕品供給路又は粉砕品返送路に、活性炭の粒度代表値を計測する粒度計測装置を有し、
前記粒度計測装置により計測される粒度代表値の増減に応じて、前記注入品定量供給機の供給量を増減する制御装置を有する、
第1の態様の粉末活性炭注入設備。
<Second aspect>
Having a dissolution tank for continuously producing a slurry of activated carbon having a predetermined concentration by mixing the pulverized activated carbon and separately dissolved water supplied at a constant flow rate;
Having an injectable product quantitative supply machine for continuously supplying the activated carbon stored in the storage tank to the dissolution tank;
The slurry continuously produced in the dissolution tank is configured to supply to the water purification treatment,
In the pulverized product supply path or pulverized product return path, it has a particle size measuring device for measuring the representative particle size of activated carbon,
In accordance with the increase or decrease of the particle size representative value measured by the particle size measuring device, it has a control device that increases or decreases the supply amount of the infusion product quantitative supply machine,
The powdered activated carbon injection equipment of a 1st aspect.

(作用効果)
前述のように、第1の態様は、目標粒度までの粉砕が終了する前に注入が必要となったときには、粉砕と注入とを同時に行うことができる。しかし、その場合、粉砕が不十分な状態での注入となるため、目標粒度の粉砕活性炭を注入する場合と比較して吸着性能が低下する。換言すると、粉砕活性炭の注入量が不足する。よって、本第2の態様のように、粒度計測装置により計測される粒度代表値の増減に応じて、注入品定量供給機の供給量を増減する制御装置を設け、目標粒度の粉砕活性炭を注入したときと同等の吸着性能が得られるように、粉砕活性炭の注入量を補正することは望ましい。
(Function and effect)
As described above, according to the first aspect, when injection is necessary before pulverization to the target particle size is completed, pulverization and injection can be performed simultaneously. However, in that case, since the injection is performed in a state where the pulverization is insufficient, the adsorption performance is reduced as compared with the case where the pulverized activated carbon having the target particle size is injected. In other words, the amount of pulverized activated carbon injected is insufficient. Therefore, as in the case of the second aspect, a control device is provided for increasing or decreasing the supply amount of the infusion product quantitative supply machine according to the increase or decrease of the representative particle size measured by the particle size measuring device, and the pulverized activated carbon having the target particle size is injected. It is desirable to correct the injection amount of the pulverized activated carbon so that the same adsorption performance as that obtained can be obtained.

<第3の態様>
前記被粉砕品供給路における、前記貯留槽から前記粉砕機に向かう経路の一部又は全部、並びに前記粉砕品返送路の一部又は全部が、空気輸送により活性炭を移送するものである、第1又は2の態様の粉末活性炭注入設備。
<Third Aspect>
Part or all of the path from the storage tank to the pulverizer and part or all of the pulverized product return path in the pulverized product supply path transfer activated carbon by pneumatic transportation. Or the powdered activated carbon injection | pouring equipment of 2 aspect.

(作用効果)
本態様のように、空気輸送により活性炭を移送することにより、粉砕機を貯留槽や浄水処理に対する供給系統から遠くに離して設置することができるため好ましい。
(Function and effect)
Since the activated carbon is transferred by pneumatic transportation as in this embodiment, the pulverizer can be installed far away from the supply system for the storage tank and the water purification treatment, which is preferable.

<第4の態様>
浄水場に設置された粉砕機により粉末状の原料炭を粉砕して粉砕活性炭を製造し、この粉砕活性炭を浄水処理に対して供給する、粉末活性炭注入設備において、
被粉砕活性炭を貯留する被粉砕品貯留槽と、
目標粒度に粉砕した粉砕活性炭を貯留する注入品貯留槽と、
前記被粉砕品貯留槽に貯留されている被粉砕活性炭を、前記粉砕機に対して供給する被粉砕品供給路と、
前記粉砕機で粉砕された粉砕活性炭を、前記被粉砕品貯留槽又は前記注入品貯留槽に対して選択的に返送する粉砕品返送路とを含み、
前記注入品貯留槽に貯留された粉砕活性炭を、前記浄水処理に対して供給する構成とした、
ことを特徴とする粉末活性炭注入設備。
<Fourth aspect>
In the powdered activated carbon injection facility, which pulverized activated carbon is manufactured by pulverizing powdered raw coal with a pulverizer installed in the water purification plant, and this pulverized activated carbon is supplied to the water purification treatment,
To-be-ground product storage tank for storing to-be-ground activated carbon,
An infusion storage tank for storing pulverized activated carbon pulverized to a target particle size;
A pulverized product supply path for supplying the pulverized activated carbon stored in the pulverized product storage tank to the pulverizer,
The pulverized activated carbon pulverized by the pulverizer includes a pulverized product return path for selectively returning the pulverized activated carbon storage tank or the injected product storage tank,
The pulverized activated carbon stored in the infusion product storage tank is configured to supply the purified water treatment.
Powder activated carbon injection equipment characterized by that.

(作用効果)
本態様のように、貯留槽から浄水処理に対して供給する経路に粉砕機を介在させるのではなく、活性炭が被粉砕品貯留槽及び粉砕機を循環する循環経路を構成し、循環する活性炭に対して粉砕を繰り返し行いうる構成とし、目標粒度まで粉砕した粉砕活性炭については注入品貯留槽に貯留し、この注入品貯留槽から浄水処理に対して粉砕活性炭を供給しうる構成を採用したことにより、粉砕機を貯留槽や浄水処理に対する供給系統から分離して設置することができるため、粉砕機の設置スペースの確保及び基本設備との連動の確保が容易となり、既存設備への適用が容易となる。また、粉砕を繰り返し行うことができるため、原料炭の粒度と粉砕活性炭の目標粒度との差が大きくても目標粒度の粉砕活性炭を製造し、注入することが可能となる。本態様は、活性炭の貯留槽を一槽のみ備える既存設備(貯留槽増設が必要)、又は貯留槽を複数備える既存設備に、オンサイト粉砕を追加する場合に好適なものである。特に、被粉砕品貯留槽と注入品貯留槽とを個別に備え、粉砕系統と注入系統とが独立しているため、粉砕と注入とを同時に行うことも可能であり、かつ注入量が粉砕処理量を超えない限り、目標粒度の粉砕活性炭を実質連続的に製造して注入することができるため、注入品の不足や吸着性能の低下が発生しにくい。
(Function and effect)
Instead of interposing a pulverizer in the path for supplying water to the water purification treatment from the storage tank as in this aspect, the activated carbon constitutes a circulation path for circulating the article storage tank and the pulverizer, and the circulated activated carbon By adopting a configuration in which pulverized activated carbon pulverized to the target particle size is stored in the injected product storage tank and pulverized activated carbon can be supplied to the water purification treatment from this injected product storage tank. Since the crusher can be installed separately from the storage system for the storage tank and water purification treatment, it is easy to secure the installation space of the crusher and interlock with the basic equipment, making it easy to apply to existing equipment. Become. Further, since the pulverization can be repeated, even if the difference between the particle size of the raw coal and the target particle size of the pulverized activated carbon is large, the pulverized activated carbon having the target particle size can be manufactured and injected. This aspect is suitable when adding on-site crushing to an existing facility having only one activated carbon storage tank (an additional storage tank is required) or an existing facility having a plurality of storage tanks. In particular, since the pulverized product storage tank and the injected product storage tank are provided separately, and the pulverization system and the injection system are independent, pulverization and injection can be performed simultaneously, and the injection amount is pulverized. As long as the amount is not exceeded, the pulverized activated carbon having the target particle size can be manufactured and injected substantially continuously, so that the shortage of injection products and the reduction in adsorption performance are unlikely to occur.

<第5の態様>
前記被粉砕品供給路の一部又は全部、並びに前記粉砕品返送路の一部又は全部が、空気輸送により活性炭を移送するものである、第4の態様の粉末活性炭注入設備。
<Fifth aspect>
The powder activated carbon injection facility according to the fourth aspect, wherein a part or all of the pulverized product supply path and a part or all of the pulverized product return path transfer activated carbon by pneumatic transportation.

(作用効果)
本態様のように、空気輸送により活性炭を移送することにより、粉砕機を貯留槽や浄水処理に対する供給系統から遠くに離して設置することができるため好ましい。
(Function and effect)
Since the activated carbon is transferred by pneumatic transportation as in this embodiment, the pulverizer can be installed far away from the supply system for the storage tank and the water purification treatment, which is preferable.

<第6の態様>
浄水場に設置された粉砕機により粉末状の原料炭を粉砕して粉砕活性炭を製造し、この粉砕活性炭を浄水処理に対して供給する、粉末活性炭注入設備において、
活性炭を貯留する第1貯留槽と、
前記第1貯留槽に貯留されている活性炭を前記粉砕機に対して供給する、第1被粉砕品供給路と、
活性炭を貯留する第2貯留槽と、
前記第2貯留槽に貯留されている活性炭を前記粉砕機に対して供給する、第2被粉砕品供給路と、
前記粉砕機で粉砕された粉砕活性炭を、前記第1貯留槽又は第2貯留槽に対して選択的に返送する粉砕品返送路とを含み、
前記第1貯留槽に貯留されている活性炭、又は前記第2貯留槽に貯留されている活性炭を、選択的に前記浄水処理に対して供給する構成とした、
ことを特徴とする粉末活性炭注入設備。
<Sixth aspect>
In the powdered activated carbon injection facility, which pulverized activated carbon is manufactured by pulverizing powdered raw coal with a pulverizer installed in the water purification plant, and this pulverized activated carbon is supplied to the water purification treatment,
A first storage tank for storing activated carbon;
A first pulverized product supply path for supplying the activated carbon stored in the first storage tank to the pulverizer;
A second storage tank for storing activated carbon;
A second pulverized product supply path for supplying activated carbon stored in the second storage tank to the pulverizer;
Pulverized activated carbon pulverized by the pulverizer, including a pulverized product return path for selectively returning the pulverized activated carbon to the first storage tank or the second storage tank,
Activated carbon stored in the first storage tank, or activated carbon stored in the second storage tank is configured to selectively supply the purified water treatment.
Powder activated carbon injection equipment characterized by that.

(作用効果)
本態様のように、貯留槽から浄水処理に対して供給する経路に粉砕機を介在させるのではなく、活性炭が第1貯留槽及び粉砕機を循環する循環経路と、活性炭が第2貯留槽及び粉砕機を循環する循環経路とを構成し、それぞれ循環する活性炭に対して粉砕を繰り返し行いうる構成とし、浄水処理に対して第1貯留槽又は第2貯留槽から選択的に粉砕活性炭を供給する構成を採用したことにより、粉砕機を貯留槽や浄水処理に対する供給系統から分離して設置することができるため、粉砕機の設置スペースの確保及び基本設備との連動の確保が容易となり、既存設備への適用が容易となる。また、粉砕を繰り返し行うことができるため、原料炭の粒度と粉砕活性炭の目標粒度との差が大きくても目標粒度の粉砕活性炭を製造し、注入することが可能となる。本態様は、活性炭の貯留槽を一槽のみ備える既存設備(貯留槽増設が必要)、又は貯留槽を複数備える既存設備に、オンサイト粉砕を追加する場合に好適なものである。特に、粉砕のための活性炭の循環経路を2系統独立して備えるため、一方を粉砕に利用し、他方を注入に利用することにより、粉砕と注入とを同時に行うことも可能であり、かつ注入量が粉砕処理量を超えない限り、目標粒度の粉砕活性炭を実質連続的に製造して注入することができるため、注入品の不足や吸着性能の低下が発生しにくい。さらに、粉砕のための活性炭の循環経路は2系統必要であるが、粉砕機は1台で済むため、機器構成の割に設置スペースは小さくて済むという利点もある。
(Function and effect)
As in this embodiment, the pulverizer is not interposed in the path for supplying water from the storage tank to the water purification treatment, but the circulation path through which the activated carbon circulates the first storage tank and the pulverizer, and the activated carbon is the second storage tank and A circulation path that circulates through the pulverizer, and a configuration in which pulverization can be repeatedly performed on each activated carbon, and the pulverized activated carbon is selectively supplied from the first storage tank or the second storage tank to the water purification treatment. By adopting the configuration, the crusher can be installed separately from the storage system for the storage tank and water purification treatment, so it is easy to secure the installation space of the crusher and interlock with the basic equipment. Application to is easy. Further, since the pulverization can be repeated, even if the difference between the particle size of the raw coal and the target particle size of the pulverized activated carbon is large, the pulverized activated carbon having the target particle size can be manufactured and injected. This aspect is suitable when adding on-site crushing to an existing facility having only one activated carbon storage tank (an additional storage tank is required) or an existing facility having a plurality of storage tanks. In particular, since two systems of activated carbon circulation paths for pulverization are provided independently, pulverization and injection can be performed simultaneously by using one for pulverization and the other for injection. As long as the amount does not exceed the pulverization amount, pulverized activated carbon having the target particle size can be manufactured and injected substantially continuously, so that the shortage of injection products and the reduction in adsorption performance are unlikely to occur. Furthermore, although two circulation paths of activated carbon for pulverization are required, since only one pulverizer is required, there is an advantage that a small installation space is required for the equipment configuration.

<第7の態様>
前記第1被粉砕品供給路の一部又は全部、前記第被粉砕品2供給路の一部又は全部、並びに前記粉砕品返送路の一部又は全部が、空気輸送により活性炭を移送するものである、第6の態様の粉末活性炭注入設備。
<Seventh aspect>
Part or all of the first pulverized product supply path, part or all of the first pulverized product 2 supply path, and part or all of the pulverized product return path transfer activated carbon by pneumatic transportation. A powdered activated carbon injection facility according to a sixth aspect.

(作用効果)
本態様のように、空気輸送により活性炭を移送することにより、粉砕機を貯留槽や浄水処理に対する供給系統から遠くに離して設置することができるため好ましい。
(Function and effect)
Since the activated carbon is transferred by pneumatic transportation as in this embodiment, the pulverizer can be installed far away from the supply system for the storage tank and the water purification treatment, which is preferable.

<第8の態様>
浄水場に設置された粉砕機により粉末状の原料炭を粉砕して粉砕活性炭を製造し、この粉砕活性炭を浄水処理に対して供給する、粉末活性炭注入方法において、
活性炭の貯留槽に貯留されている活性炭を、前記粉砕機に対して供給し、
前記粉砕機で粉砕された粉砕活性炭を前記貯留槽に返送し、
前記貯留槽に貯留されている活性炭を、前記浄水処理に対して供給する、
ことを特徴とする粉末活性炭注入方法。
<Eighth aspect>
In the powdered activated carbon injection method, pulverized activated carbon is produced by pulverizing powdered raw coal with a pulverizer installed in a water purification plant, and this pulverized activated carbon is supplied to the water purification treatment.
Supplying activated carbon stored in an activated carbon storage tank to the pulverizer;
Return the pulverized activated carbon crushed by the pulverizer to the storage tank,
Supplying activated carbon stored in the storage tank to the water purification treatment,
A method for injecting powdered activated carbon.

(作用効果)
第1の態様と同様の作用効果が奏せられる。
(Function and effect)
The same effects as those of the first aspect can be achieved.

<第9の態様>
浄水場に設置された粉砕機により粉末状の原料炭を粉砕して粉砕活性炭を製造し、この粉砕活性炭を浄水処理に対して供給する、粉末活性炭注入方法において、
被粉砕活性炭を貯留する被粉砕品貯留槽に貯留されている被粉砕活性炭を、前記粉砕機に対して供給し、
前記粉砕機で粉砕された目標粒度に達しない粉砕活性炭を、前記被粉砕品貯留槽に対して返送し、
前記粉砕機で粉砕された目標粒度に達した粉砕活性炭を、注入品貯留槽に対して供給し、
前記注入品貯留槽に貯留された粉砕活性炭を、前記浄水処理に対して供給する、
ことを特徴とする粉末活性炭注入方法。
<Ninth aspect>
In the powdered activated carbon injection method, pulverized activated carbon is produced by pulverizing powdered raw coal with a pulverizer installed in a water purification plant, and this pulverized activated carbon is supplied to the water purification treatment.
Supplying activated carbon to be crushed stored in a pulverized product storage tank for storing activated carbon to be crushed, to the pulverizer;
The pulverized activated carbon that does not reach the target particle size pulverized by the pulverizer is returned to the pulverized product storage tank,
Supplying the pulverized activated carbon that has reached the target particle size pulverized by the pulverizer, to the injection storage tank,
Supply the pulverized activated carbon stored in the infusion product storage tank to the water purification treatment,
A method for injecting powdered activated carbon.

(作用効果)
第4の態様と同様の作用効果が奏せられる。
<第10の態様>
浄水場に設置された粉砕機により粉末状の原料炭を粉砕して粉砕活性炭を製造し、この粉砕活性炭を浄水処理に対して供給する、粉末活性炭注入方法において、
第1貯留槽及び第2貯留槽のいずれか一方の貯留槽に貯留されている活性炭を、選択的に前記粉砕機に対して供給するとともに、
前記粉砕機で粉砕された粉砕活性炭を前記一方の貯留槽に返送し、
前記第1貯留槽及び第2貯留槽のいずれか他方の貯留槽に貯留されている活性炭を、選択的に前記浄水処理に対して供給する、
ことを特徴とする粉末活性炭注入方法。
(Function and effect)
The same effect as the 4th mode is produced.
<Tenth aspect>
In the powdered activated carbon injection method, pulverized activated carbon is produced by pulverizing powdered raw coal with a pulverizer installed in a water purification plant, and this pulverized activated carbon is supplied to the water purification treatment.
While selectively supplying activated carbon stored in one of the first storage tank and the second storage tank to the pulverizer,
Return the pulverized activated carbon crushed by the pulverizer to the one storage tank,
Selectively supplying activated carbon stored in the other storage tank of the first storage tank and the second storage tank to the water purification treatment;
A method for injecting powdered activated carbon.

(作用効果)
第6の態様と同様の作用効果が奏せられる。
(Function and effect)
The same effects as the sixth aspect are achieved.

以上のとおり、本発明によれば、既存浄水設備に対する適用が容易な粉末活性炭注入技術となる、等の利点がもたらされる。   As described above, according to the present invention, there are advantages such as a powdered activated carbon injection technique that can be easily applied to existing water purification facilities.

従来のドライ粉末活性炭利用浄水処理設備のフロー図である。It is a flowchart of the conventional dry powder activated carbon utilization water purification processing equipment. 従来のドライ粉末活性炭利用浄水処理設備のフロー図である。It is a flowchart of the conventional dry powder activated carbon utilization water purification processing equipment. 従来のウエット粉末活性炭利用浄水処理設備のフロー図である。It is a flowchart of the conventional water purification equipment using wet powder activated carbon. オンサイト粉砕工程のフロー図である。It is a flowchart of an on-site grinding | pulverization process. D50比と粉砕エネルギーとの関係を示すグラフである。It is a graph which shows the relationship between D50 ratio and grinding | pulverization energy. 例1のドライ粉末活性炭注入設備のフロー図である。It is a flowchart of the dry powder activated carbon injection equipment of Example 1. 粉砕運転のフローチャートである。It is a flowchart of a grinding | pulverization driving | operation. 注入運転のフローチャートである。It is a flowchart of injection | pouring driving | operation. 例2のドライ粉末活性炭注入設備のフロー図である。6 is a flowchart of the dry powder activated carbon injection facility of Example 2. FIG. 例3のドライ粉末活性炭注入設備のフロー図である。6 is a flowchart of the dry powder activated carbon injection facility of Example 3. FIG.

以下、本発明の一実施形態について添付図面を参照しながら詳説する。
<粉砕制御の例>
図4は、原料炭の粒度変化に関係なく、安定した粒度の粉砕活性炭を製造するためのオンサイト粉砕工程を概略的に示している。原料炭等の被粉砕活性炭C1が粉砕機30に供給され、粉砕機30で粉砕された粉砕活性炭C2は浄水処理に対して直接的又は間接的に供給するほか、再び被粉砕活性炭C1として粉砕機30に返送し、循環粉砕してもよい。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
<Example of grinding control>
FIG. 4 schematically shows an on-site pulverization process for producing pulverized activated carbon having a stable particle size regardless of changes in the particle size of the raw coal. The activated carbon C1 to be crushed, such as raw coal, is supplied to the pulverizer 30, and the pulverized activated carbon C2 pulverized by the pulverizer 30 is supplied directly or indirectly to the water purification treatment, and again as the pulverized activated carbon C1. It may be returned to 30 and circulated and ground.

粉砕機30としては、連続的に粉砕を行うものであるとともに、粉砕前後の活性炭の粒度代表値の比と、単位処理量の粉砕に要する粉砕エネルギーとの間に相関を有するものを用いる。このような粉砕機30としては、湿式粉砕機を用いることもできるが、安定的にシャープな粒度分布が得られにくいため、一回の粉砕処理によりシャープな粒度分布が得られる点で、乾式ビーズミル、ジェットミル等の乾式粉砕機が好ましく、中でも乾式ビーズミルが特に好ましい。   As the pulverizer 30, a pulverizer that continuously pulverizes and that has a correlation between the ratio of the representative particle size of the activated carbon before and after pulverization and the pulverization energy required for pulverizing the unit processing amount is used. As such a pulverizer 30, a wet pulverizer can be used. However, since it is difficult to stably obtain a sharp particle size distribution, it is possible to obtain a sharp particle size distribution by a single pulverization process. A dry pulverizer such as a jet mill is preferable, and a dry bead mill is particularly preferable.

図5は、乾式ビーズミルにおける、粉砕前活性炭のD50に対する粉砕後活性炭のD50の比と、単位処理量の粉砕に要する粉砕エネルギーとの関係を実験により求めたものである。粉砕前後の活性炭の粒度代表値の比と、単位処理量の粉砕に要する粉砕エネルギーとの間に良好な相関があることが分かる。   FIG. 5 shows the relationship between the ratio of the D50 of the activated carbon after pulverization to the D50 of the activated carbon before pulverization in the dry bead mill and the pulverization energy required for pulverizing the unit throughput. It can be seen that there is a good correlation between the ratio of the representative particle size of the activated carbon before and after pulverization and the pulverization energy required for pulverizing the unit throughput.

粒度代表値としては、D50(中央値。周知のように、粒度分布における累積体積分布の小径側から累積50%に相当する粒径を意味し、一般に平均粒径ともいわれている。粒径はレーザー回折散乱法により測定される粒径を意味する。)が好適であるが、最頻値、算術平均値(個数平均、長さ平均、面積平均、又は体積平均)の他、D10やD90とすることもできる。   The particle size representative value is D50 (median value. As is well known, it means a particle size corresponding to 50% cumulative from the smaller diameter side of the cumulative volume distribution in the particle size distribution, and is generally referred to as an average particle size. (Meaning the particle size measured by the laser diffraction scattering method) is preferable, but in addition to the mode value and the arithmetic average value (number average, length average, area average, or volume average), D10 and D90 You can also

また、粉砕機30に対する被粉砕活性炭C1の供給は、連続的な定量供給を行うことができる粉砕機用定量供給機31によりなされる。粉砕機用定量供給機31としては、前述の計量槽減量制御方式や、切り出し重量制御方式のもの等、公知のものを特に限定なく用いることができる。粉砕機用定量供給機31は、粉砕機30に装備されていてもよく、粉砕機30とは別に備え付けてもよい。   Further, the activated carbon C1 to be crushed to the pulverizer 30 is supplied by a pulverizer quantitative supply device 31 that can perform continuous quantitative supply. As the pulverizer constant supply device 31, known ones such as the above-described measuring tank weight reduction control method and the cut-out weight control method can be used without particular limitation. The pulverizer quantitative supply device 31 may be provided in the pulverizer 30 or may be provided separately from the pulverizer 30.

特徴的には、被粉砕活性炭C1の粒度代表値を計測する粒度計測装置32を設けるとともに、目標粒度代表値(目標とする注入品の粒度代表値)に対する、粒度計測装置32により計測される被粉砕活性炭C1の粒度代表値の比と、前述の相関とに基づき粉砕エネルギー適正値を求め、この粉砕エネルギー適正値で粉砕を行うように粉砕機30の駆動源の駆動制御を行う制御装置33を設ける。被粉砕活性炭C1が乾燥粉末である場合、粒度計測装置32としては、市販のインライン乾式粒度センサー(粒度分布測定装置)を用いることができ、制御装置33としては、シーケンスコントローラ等の公知の制御装置33を用いることができる。   Characteristically, a particle size measuring device 32 that measures the particle size representative value of the activated carbon C1 to be crushed is provided, and the target particle size measured by the particle size measuring device 32 with respect to the target particle size representative value (the target particle size representative value). Based on the ratio of the representative particle size of the pulverized activated carbon C1 and the above-described correlation, an appropriate pulverization energy value is obtained, and a control device 33 that performs drive control of the drive source of the pulverizer 30 so as to perform pulverization with the appropriate pulverization energy value is provided. Provide. When the activated carbon C1 to be crushed is a dry powder, a commercially available in-line dry particle size sensor (particle size distribution measuring device) can be used as the particle size measuring device 32, and a known control device such as a sequence controller can be used as the control device 33. 33 can be used.

粉砕エネルギー適正値となるように粉砕機30の駆動源の駆動制御を行うには、その時点における現実の粉砕機30の粉砕エネルギー実測値を求め、その差が無くなるように、例えば駆動源がモータの場合、モータの回転速度の増減を行う。粉砕エネルギー実測値は、粉砕機30が電動の場合、粉砕機30の消費電力(瞬時値)を、粉砕機用定量供給機31の単位時間あたりの供給質量で除した値であり、粉砕処理する活性炭の単位質量あたりの消費電力量に相当する。粉砕機用定量供給機31の単位時間あたりの供給質量は固定とするほか、粉砕機用定量供給機31に計測機能がある場合には、その計測結果を用いることもできる。   In order to perform drive control of the drive source of the pulverizer 30 so that the pulverization energy is appropriate, the actual pulverization energy measurement value of the pulverizer 30 at that time is obtained, and the drive source is, for example, a motor so that the difference is eliminated. In this case, the rotational speed of the motor is increased or decreased. When the pulverizer 30 is electrically powered, the actual pulverization energy value is a value obtained by dividing the power consumption (instantaneous value) of the pulverizer 30 by the supply mass per unit time of the pulverizer constant supply device 31. Corresponds to the power consumption per unit mass of activated carbon. The supply mass per unit time of the pulverizer quantitative feeder 31 is fixed, and when the pulverizer quantitative feeder 31 has a measurement function, the measurement result can be used.

このような制御装置33による制御によって、原料炭の粒度が変化しても、目標粒度の粉砕活性炭を安定製造し、注入することができ、活性炭の過剰又は不十分な使用を防止できる。粒度計測装置32による計測及び粉砕機30の駆動制御は、適宜の時間を空けて間欠的に行っても、また連続的に行ってもよい。   By such control by the control device 33, even if the particle size of the raw coal changes, pulverized activated carbon having the target particle size can be stably produced and injected, and excessive or insufficient use of activated carbon can be prevented. The measurement by the particle size measuring device 32 and the drive control of the pulverizer 30 may be performed intermittently with an appropriate time interval or continuously.

<活性炭注入設備の例1>
図6は、ドライ粉末活性炭注入設備40を示している。この設備40は、活性炭の貯留槽41と、貯留槽41に貯留されている活性炭を被粉砕活性炭として粉砕機30に対して供給する被粉砕品供給路42と、粉砕機30で粉砕された粉砕活性炭を貯留槽41に戻す粉砕品返送路43と、貯留槽41に貯留されている活性炭を、浄水処理の注入点APに対して供給可能としたものである。
<Example 1 of activated carbon injection equipment>
FIG. 6 shows a dry powder activated carbon injection facility 40. The equipment 40 includes an activated carbon storage tank 41, a pulverized product supply path 42 that supplies activated carbon stored in the storage tank 41 as pulverized activated carbon to the pulverizer 30, and pulverized by the pulverizer 30. The pulverized product return path 43 for returning the activated carbon to the storage tank 41 and the activated carbon stored in the storage tank 41 can be supplied to the injection point AP of the water purification treatment.

図示形態についてより詳細に説明すると、貯留槽41には、ジェットパック車JC等で搬入される乾燥状態の粉末原料炭が原料炭供給配管41iを介して供給され、貯留される。貯留槽41内に貯留された原料炭は、ダンパー41d及び貯留槽ロータリーバルブ41rを介して切り出され、分配定量供給機44に供給されるようになっている。分配定量供給機44は、2系統への分配供給(いずれか一方への選択的供給を含む)が可能であり、かつ各系統へ定量供給が可能なものである。図示形態では、ホッパ44hとこのホッパ44h内の活性炭を独立的に定量切り出しする第1定量供給部44a及び第2定量供給部44bを有するものである。被粉砕品供給路42における第1定量供給部44aから粉砕機までの部分は、図示形態では空気輸送設備により構成されている。すなわち、第1定量供給部44aにより供給される活性炭は供給用ロータリーバルブ45rを介して供給用エジェクタ45eに供給され、供給用送風機45fから供給される空気により、粉砕機30の付近に設置された受け槽45tに供給され、一時的に貯留された後、粉砕機用定量供給機31により切り出され、粉砕機30に定量供給されるようになっている。   If it demonstrates in detail about the form of illustration, in the storage tank 41, the dry powder raw coal carried in by the jet pack car JC etc. will be supplied via the raw coal supply piping 41i, and will be stored. The raw coal stored in the storage tank 41 is cut out via the damper 41d and the storage tank rotary valve 41r and supplied to the distribution fixed quantity supply unit 44. The distribution quantitative supply unit 44 can distribute and supply two systems (including selective supply to either one) and can supply a fixed quantity to each system. In the illustrated embodiment, a hopper 44h and a first fixed supply unit 44a and a second fixed supply unit 44b for independently and quantitatively cutting the activated carbon in the hopper 44h are provided. The part from the 1st fixed supply part 44a to the grinder in the to-be-ground product supply path 42 is comprised by the pneumatic transport equipment in the illustration form. That is, the activated carbon supplied from the first fixed supply unit 44a is supplied to the supply ejector 45e via the supply rotary valve 45r, and is installed near the crusher 30 by the air supplied from the supply blower 45f. After being supplied to the receiving tank 45t and temporarily stored, it is cut out by the pulverizer quantitative supply device 31 and supplied to the pulverizer 30 in a fixed amount.

図示形態では、粉砕機30から活性炭貯留槽41に至る粉砕品返送路43も空気輸送設備により構成されている。すなわち、粉砕機30により粉砕された粉砕活性炭は、粉砕機30からホッパ46hに供給された後、返送用ロータリーバルブ46rにより切り出されて返送用エジェクタ46eに供給され、返送用送風機46fから供給される空気により、返送配管46pを介して貯留槽41に返送される。なお、本設備例40の返送配管46pは、原料炭供給配管41iに合流しており、合流点よりも上流側にそれぞれ開閉弁v1,v2が設けられ、この開閉弁v1,v2を選択的に開閉することにより、貯留槽41に対する原料炭の供給と粉砕活性炭の返送とを選択できるようになっている。   In the illustrated embodiment, the pulverized product return path 43 from the pulverizer 30 to the activated carbon storage tank 41 is also constituted by pneumatic transportation equipment. That is, the pulverized activated carbon pulverized by the pulverizer 30 is supplied from the pulverizer 30 to the hopper 46h, then cut out by the return rotary valve 46r, supplied to the return ejector 46e, and supplied from the return blower 46f. The air is returned to the storage tank 41 via the return pipe 46p. The return pipe 46p of the present facility example 40 is joined to the raw coal supply pipe 41i, and on-off valves v1 and v2 are provided on the upstream side of the junction point, and the on-off valves v1 and v2 are selectively connected. By opening and closing, supply of raw coal to the storage tank 41 and return of pulverized activated carbon can be selected.

分配定量供給機44の第2定量供給部44bにより切り出される活性炭は、攪拌機付の溶解槽47に定量供給され、場内給水SWから注入ポンプ47pにより流量一定で別途供給される溶解水と溶解槽47内で混合されて所定濃度の活性炭のスラリーが連続的に製造され、溶解槽47から一定流量でオーバーフローするスラリーが注入エジェクタ47eに供給され、場内給水SWから注入ポンプ47pにより流量一定で別途供給される駆動水とともに注入点APに供給されるようになっている。注入エジェクタ47eの代わりにポンプを用いて溶解槽47からのスラリーを注入点APに供給する等、貯留槽41に貯留されている活性炭を浄水処理に対して供給する方法は特に限定されるものではない。   The activated carbon cut out by the second fixed amount supply unit 44b of the distribution fixed amount supply unit 44 is supplied in a fixed amount to a dissolution tank 47 with a stirrer, and dissolved water and dissolution tank 47 separately supplied at a constant flow rate from the in-situ water supply SW by an injection pump 47p. A slurry of activated carbon having a predetermined concentration is continuously produced by mixing in the reactor, and a slurry that overflows from the dissolution tank 47 at a constant flow rate is supplied to the injection ejector 47e, and is separately supplied from the on-site water supply SW at a constant flow rate by the injection pump 47p. It is supplied to the injection point AP together with the driving water. A method of supplying activated carbon stored in the storage tank 41 to the water purification process, such as supplying slurry from the dissolution tank 47 to the injection point AP using a pump instead of the injection ejector 47e, is not particularly limited. Absent.

貯留槽41及び受け槽45tは、図示形態のように空気抜きのためのバグフィルタbg及び活性炭冷却のための冷却エアパージpgを備えていることが好ましい。   The storage tank 41 and the receiving tank 45t are preferably provided with a bag filter bg for venting air and a cooling air purge pg for cooling activated carbon as shown in the figure.

粉砕機30を分配定量供給機44の付近に設置できる場合や、貯留槽41の付近に設置できる場合には、被粉砕品供給路42及び粉砕品返送路43の少なくとも一方について、空気輸送設備を省略して直接的に接続したり、他の機械的移送設備を用いたりすることができる。例えば、粉砕機30を分配定量供給機44の付近に設置できる場合、被粉砕品供給路42における空気輸送設備(供給用ロータリーバルブ45rから受け槽45tまで)及び粉砕機用定量供給機31を省略し、第1定量供給部44aから粉砕機30に直接供給する(換言すると第1定量供給部44aが粉砕機用定量供給機31を兼ねる)構成となっていてもよい。   In the case where the pulverizer 30 can be installed in the vicinity of the dispensing fixed quantity supply device 44 or in the vicinity of the storage tank 41, the pneumatic transportation facility is provided for at least one of the pulverized product supply path 42 and the pulverized product return path 43. It can be omitted and connected directly, or other mechanical transfer equipment can be used. For example, when the pulverizer 30 can be installed in the vicinity of the distribution quantitative supply device 44, the pneumatic transportation equipment (from the supply rotary valve 45r to the receiving tank 45t) and the pulverizer quantitative supply device 31 in the pulverized product supply path 42 are omitted. The first constant supply unit 44a may supply the pulverizer 30 directly (in other words, the first constant supply unit 44a may also serve as the pulverizer fixed supply unit 31).

また、図示形態では前述の粉砕機駆動制御を行うために、粒度計測装置32が被粉砕品供給路42に設けられており、その測定結果が制御装置33に送信されるようになっている。また点線で示されるように、制御装置33に対しては、粉砕機30から消費電力が送信され、また必要に応じて粉砕機用定量供給機31から供給量(単位時間当たりの供給質量)が送信されるようになっており、制御装置33から粉砕機30に対しては粉砕駆動源の制御信号が送信されるようになっている。   In the illustrated embodiment, the particle size measuring device 32 is provided in the pulverized product supply path 42 in order to perform the above-described pulverizer drive control, and the measurement result is transmitted to the control device 33. As indicated by the dotted line, power is transmitted from the pulverizer 30 to the control device 33, and the supply amount (supply mass per unit time) is supplied from the pulverizer quantitative supply device 31 as necessary. The control device 33 transmits a control signal for the pulverization drive source to the pulverizer 30.

図7及び図8は、以上に述べた活性炭注入設備40の運転フローの一例を示している。いま、貯留槽41に原料炭が貯留されている初期状態から粉砕運転を開始すると、返送用空気輸送設備(返送用ファン45f、返送用ロータリーバルブ45r)、粉砕設備(粉砕機30、粉砕機用定量供給機31)がこの順に運転を開始するが、これらの運転は受け槽45tの貯留レベルが所定のローレベル(LL)以下であると停止するが、ローレベルでない限り継続される。受け槽45tの貯留レベルは受け槽45tの重量をロードセルにより計測する等、公知の計測装置により計測することができる。   7 and 8 show an example of an operation flow of the activated carbon injection facility 40 described above. Now, when the crushing operation is started from the initial state where the raw coal is stored in the storage tank 41, the return air transport equipment (return fan 45f, the return rotary valve 45r), the crush equipment (for the crusher 30 and the crusher) The fixed amount feeder 31) starts operation in this order. These operations are stopped when the storage level of the receiving tank 45t is equal to or lower than a predetermined low level (LL), but are continued unless the storage level is low. The storage level of the receiving tank 45t can be measured by a known measuring device such as measuring the weight of the receiving tank 45t with a load cell.

一方、粉砕運転の開始に伴い、受け槽45tの貯留レベルがLL以下であると、貯留槽ロータリーバルブ41r、供給用空気輸送設備(供給用ファン45f、供給用ロータリーバルブ45r)、及び第1定量供給部44aが運転を開始し、これらの運転は受け槽45tの貯留レベルが所定のハイレベル(HL)以上になると停止するが、ハイレベルにならない限り継続される。受け槽45tの貯留レベルがLLを超えると、前述のように粉砕設備及び返送用空気輸送設備が運転を開始し、貯留槽41から切り出される活性炭が第1定量供給部44a、供給用空気輸送設備を介して受け槽45tに順次供給されるとともに、受け槽45tから粉砕機30に供給され、粉砕機30から排出される粉砕活性炭が返送用空気設備により貯留槽41に返送される。   On the other hand, with the start of the pulverization operation, if the storage level of the receiving tank 45t is LL or less, the storage tank rotary valve 41r, the supply air transport equipment (supply fan 45f, supply rotary valve 45r), and the first fixed amount The supply unit 44a starts operation, and these operations are stopped when the storage level of the receiving tank 45t becomes equal to or higher than a predetermined high level (HL), but are continued as long as the level does not become high level. When the storage level of the receiving tank 45t exceeds LL, as described above, the pulverization facility and the return air transport facility start operation, and the activated carbon cut out from the storage tank 41 is the first fixed supply unit 44a, the supply air transport facility. Are sequentially supplied to the receiving tank 45t, and supplied to the pulverizer 30 from the receiving tank 45t, and the pulverized activated carbon discharged from the pulverizer 30 is returned to the storage tank 41 by the return air facility.

他方、前述の粉砕駆動制御を行うには、粉砕運転の開始に伴い、制御装置33により第1定量供給部44aが運転中であるか否かを監視し、第1定量供給部44aが運転中であるときには粒度計測装置32による計測を行うとともに、現実の粉砕機30の粉砕エネルギー実測値を求め、この粉砕エネルギー実測値が粉砕エネルギー適正値となるように粉砕機30の駆動源の駆動制御を行う(駆動源がモータの場合、モータの回転速度の増減を行う)。なお、運転初期には、粉砕エネルギー適正値を求めることができないため、初期設定値や前回運転時の粉砕エネルギー適正値となるように、粉砕機30の駆動源の駆動制御を行う。   On the other hand, in order to perform the above-described pulverization drive control, the controller 33 monitors whether or not the first fixed amount supply unit 44a is in operation with the start of the pulverization operation, and the first fixed amount supply unit 44a is in operation. Is measured by the particle size measuring device 32, and the actual pulverization energy measurement value of the pulverizer 30 is obtained, and the drive control of the drive source of the pulverizer 30 is performed so that the actual pulverization energy measurement value becomes the appropriate pulverization energy value. (If the drive source is a motor, increase or decrease the rotational speed of the motor). In addition, since an appropriate value of pulverization energy cannot be obtained at the initial stage of operation, drive control of the drive source of the pulverizer 30 is performed so that the initial setting value and the appropriate value of pulverization energy at the previous operation are obtained.

粒度計測装置32により計測される被粉砕活性炭の粒度代表値が、目標粒度代表値になるまで、粉砕運転は継続される。粒度計測装置32により計測される被粉砕活性炭の粒度代表値が、目標粒度代表値になると粉砕運転は停止される。この時には、貯留槽41に目標粒度代表値の粉砕活性炭が貯留されていることになる。   The grinding operation is continued until the particle size representative value of the activated carbon to be crushed measured by the particle size measuring device 32 becomes the target particle size representative value. When the particle size representative value of the activated carbon to be crushed measured by the particle size measuring device 32 reaches the target particle size representative value, the pulverization operation is stopped. At this time, the pulverized activated carbon having the target particle size representative value is stored in the storage tank 41.

浄水処理において活性炭注入を行うときには、図8に示すように、注入ポンプ46pの運転を開始し、溶解水を溶解槽47に、及び駆動水を注入エジェクタ47eにそれぞれ供給するとともに、貯留槽ロータリーバルブ41r及び第2定量供給部44bの運転を開始し、貯留槽41に貯留された粉砕活性炭が切り出され、溶解槽47に対して定量供給される。溶解槽47では所定濃度の活性炭スラリーが製造され、この活性炭スラリーが注入点に供給される。   When the activated carbon is injected in the water purification treatment, as shown in FIG. 8, the operation of the injection pump 46p is started, the dissolved water is supplied to the dissolution tank 47, and the driving water is supplied to the injection ejector 47e. The operation of 41r and the second constant supply unit 44b is started, and the pulverized activated carbon stored in the storage tank 41 is cut out and supplied to the dissolution tank 47 in a fixed amount. In the dissolution tank 47, activated carbon slurry having a predetermined concentration is produced, and this activated carbon slurry is supplied to the injection point.

本設備40のように、貯留槽41から浄水処理に対して供給する経路に粉砕機30を介在させるのではなく、活性炭が貯留槽41及び粉砕機30を循環する循環経路を構成し、循環する活性炭に対して粉砕を繰り返し行いうる構成とし、貯留槽41から浄水処理に対して粉砕活性炭を供給する構成を採用すると、粉砕機30を貯留槽41や浄水処理に対する供給系統から分離して設置することができるため、粉砕機30の設置スペースの確保及び基本設備との連動の確保が容易となり、既存設備への適用が容易となる。特に、本例のように、空気輸送により活性炭を移送することにより、粉砕機30を貯留槽41や浄水処理に対する供給系統から遠くに離して設置することができるため好ましい。また、粉砕を繰り返し行うことができるため、原料炭の粒度と粉砕活性炭の目標粒度との差が大きくても目標粒度の粉砕活性炭を製造し、注入することが可能となる。本設備40は、活性炭の貯留槽を一槽のみ備える既存設備に、貯留槽の増設を行わずにオンサイト粉砕を追加する場合に好適なものである。特に、粉砕の循環系統を構成する貯留槽41から粉砕活性炭を浄水処理に対して供給する構成とすると、粉砕と注入とを繰り返し行うだけでなく、必要に応じて同時に行うことも可能である。   Rather than interposing the pulverizer 30 in the path for supplying water to the water purification process from the storage tank 41 as in the present equipment 40, a circulation path through which the activated carbon circulates the storage tank 41 and the pulverizer 30 is configured and circulated. When the activated carbon is configured to be repeatedly pulverized and the configuration in which the pulverized activated carbon is supplied from the storage tank 41 to the purified water treatment, the pulverizer 30 is installed separately from the storage tank 41 and the supply system for the purified water treatment. Therefore, it is easy to secure the installation space of the pulverizer 30 and the interlocking with the basic equipment, and the application to the existing equipment becomes easy. In particular, as in this example, it is preferable to transfer activated carbon by pneumatic transportation because the pulverizer 30 can be installed far away from the storage system 41 and the supply system for water purification treatment. Further, since the pulverization can be repeated, even if the difference between the particle size of the raw coal and the target particle size of the pulverized activated carbon is large, the pulverized activated carbon having the target particle size can be manufactured and injected. This facility 40 is suitable for the case where on-site pulverization is added to an existing facility having only one activated carbon storage tank without adding a storage tank. In particular, when the pulverized activated carbon is supplied from the storage tank 41 constituting the pulverization circulation system to the water purification treatment, not only the pulverization and the injection are repeated, but also simultaneously as necessary.

他方、本活性炭注入設備40は、目標粒度までの粉砕が終了する前に注入が必要となったときには、粉砕と注入とを同時に行うことができる。しかし、その場合、粉砕が不十分な状態での注入となるため、目標粒度の粉砕活性炭を注入する場合と比較して吸着性能が低下する。換言すると、粉砕活性炭の注入量が不足する。そこで、粒度計測装置32により計測される粒度代表値の増減に応じて、制御装置33により第2定量供給部44aの供給量を増減するようにし、目標粒度の粉砕活性炭を注入したときと同等の吸着性能が得られるように、粉砕活性炭の注入量を補正することが望ましい。   On the other hand, the activated carbon injection facility 40 can perform the pulverization and the injection simultaneously when the injection is required before the pulverization to the target particle size is completed. However, in that case, since the injection is performed in a state where the pulverization is insufficient, the adsorption performance is reduced as compared with the case where the pulverized activated carbon having the target particle size is injected. In other words, the amount of pulverized activated carbon injected is insufficient. Therefore, according to the increase / decrease of the representative particle size measured by the particle size measuring device 32, the control device 33 increases / decreases the supply amount of the second constant supply unit 44a, which is equivalent to the case where the pulverized activated carbon having the target particle size is injected. It is desirable to correct the injection amount of the pulverized activated carbon so that the adsorption performance can be obtained.

このような制御は、例えば図8に示すフローのようにして行うことができる。すなわち、注入運転の開始に伴い、制御装置33により第1定量供給部44aが運転中であるか否かを監視し、第1定量供給部44aが運転中であるときには粉砕運転中であるため、補正必要注入量を算出し、その算出結果と第2定量供給部44bの供給量との差が無くなるように、第2定量供給部44bの供給量を増減する。第1定量供給部44aが運転中でない場合には、予め定めた基準注入量(目標D50の粉砕活性炭を用いる場合の必要注入量)と第2定量供給部44bの供給量との差が無くなるように、第2定量供給部44bの供給量を増減する。   Such control can be performed, for example, according to the flow shown in FIG. That is, with the start of the injection operation, the controller 33 monitors whether or not the first fixed amount supply unit 44a is in operation, and when the first fixed amount supply unit 44a is in operation, the crushing operation is in progress. The correction required injection amount is calculated, and the supply amount of the second fixed amount supply unit 44b is increased or decreased so that the difference between the calculation result and the supply amount of the second fixed amount supply unit 44b is eliminated. When the first constant supply unit 44a is not in operation, there is no difference between the predetermined reference injection amount (necessary injection amount when the pulverized activated carbon of the target D50 is used) and the supply amount of the second constant supply unit 44b. In addition, the supply amount of the second constant supply unit 44b is increased or decreased.

補正必要注入量は適宜求めればよいが、例えば以下のようにして求めることができる。すなわちいま、粒度代表値をD50とし、被粉砕活性炭が原料炭から目標までどの程度粉砕が進行しているかを、原料炭のD50に等しい粒径の粉末と、目標とするD50に等しい粒径の粉末との混合比率で表すと次式のようになる。
(混合比率 X)
被粉砕活性炭D50 = 目標D50 × X% + 初期原料炭D50 × (100 − X%)
また、初期原料炭の吸着性能を1としたときの、目標D50まで粉砕した粉砕活性炭の吸着性能を吸着性能係数αとすると、性能倍率は次式で表される。ここで、吸着性能係数αは、所定の吸着対象物質に対する初期原料炭及び粉砕活性炭の吸着性能試験を実施し、この試験により得られる粉砕活性炭の吸着性能値を初期原料炭の吸着性能値を1としたときの比で表したものである。吸着性能係数αを求める場合、初期原料炭及び粉砕活性炭の両者について同一の吸着性能試験を行う限り、吸着対象物質の種類及び試験方法は特に限定されるものではないが、水道施設に用いる活性炭の性能指標として一般的な吸着性能値(例えば2−MIB価、フェノール価、ABS価、メチレンブルー脱色力)を用いることが好ましい。これらの吸着性能値を求めるための試験方法は独自の方式でも、規格化された方式でもよい。後者の例としては、水道用粉末活性炭に関する日本水道協会規格であるJWWA K113:2005に記載されている試験方法を例示することができる。なお、2−MIB価のように、値が小さいものほど性能が高い吸着性能値の場合、逆数を吸着性能値として吸着性能係数αを算出する。
(性能倍率)
性能倍率 = α × X% + 1.0 ×(100 − X%)
したがって、性能倍率を加味して補正した補正後注入量は次式により算出することができる。
(補正後注入量 Y)
Y = 基準注入量 ÷ 性能倍率
The correction required injection amount may be determined as appropriate, but can be determined as follows, for example. That is, the particle size representative value is D50, and the degree of pulverization of the activated carbon to be crushed from the raw coal to the target is determined by the powder having a particle size equal to the D50 of the raw coal and the particle size equal to the target D50. When expressed in a mixing ratio with the powder, the following formula is obtained.
(Mixing ratio X)
Activated carbon D50 = target D50 x X% + initial coking coal D50 x (100-X%)
Further, assuming that the adsorption performance of the pulverized activated carbon pulverized to the target D50 when the adsorption performance of the initial raw coal is 1, the performance magnification is expressed by the following equation. Here, the adsorption performance coefficient α is obtained by conducting an adsorption performance test of the initial raw coal and pulverized activated carbon with respect to a predetermined adsorption target substance. It is expressed as a ratio. When obtaining the adsorption performance coefficient α, as long as the same adsorption performance test is performed on both the initial raw coal and the pulverized activated carbon, the type and test method of the adsorption target substance are not particularly limited. It is preferable to use a general adsorption performance value (for example, 2-MIB value, phenol value, ABS value, methylene blue decolorizing power) as a performance index. The test method for obtaining these adsorption performance values may be an original method or a standardized method. As an example of the latter, the test method described in JWWA K113: 2005 which is the Japan Water Works Association standard regarding the powder activated carbon for water supply can be illustrated. When the adsorption performance value is such that the smaller the value is, such as the 2-MIB value, the adsorption performance coefficient α is calculated with the reciprocal as the adsorption performance value.
(Performance magnification)
Performance magnification = α × X% + 1.0 × (100 – X%)
Therefore, the corrected injection amount corrected with the performance magnification taken into account can be calculated by the following equation.
(Injection amount Y after correction)
Y = reference injection amount ÷ performance magnification

本設備40において、粉砕機30としては、一回の粉砕処理によりシャープな粒度分布が得られる点で、乾式ビーズミル、ジェットミル等の乾式粉砕機が好ましく、中でも乾式ビーズミルが特に好ましい。また、粉砕機用定量供給機31を含め、各種定量供給機及び定量供給部としては、前述の計量槽減量制御方式や、切り出し重量制御方式のもの等、公知のものを特に限定なく用いることができる。   In this equipment 40, as the pulverizer 30, a dry pulverizer such as a dry bead mill and a jet mill is preferable, and among them, a dry bead mill is particularly preferable in that a sharp particle size distribution can be obtained by a single pulverization treatment. In addition, as various quantitative feeders and quantitative feeders including the pulverizer quantitative feeder 31, known ones such as the above-described measuring tank weight loss control method and the cut-out weight control method can be used without particular limitation. it can.

<活性炭注入設備の例2>
図9は、別のドライ粉末活性炭注入設備50を示している。この設備50は、被粉砕活性炭を貯留する被粉砕品貯留槽51と、目標粒度に粉砕した粉砕活性炭を貯留する注入品貯留槽54と、被粉砕品貯留槽51に貯留されている被粉砕活性炭を、粉砕機30に対して供給する被粉砕品供給路52と、粉砕機30で粉砕された粉砕活性炭を、被粉砕品貯留槽51又は注入品貯留槽54に対して選択的に返送する粉砕品返送路53とを含み、注入品貯留槽54に貯留された粉砕活性炭を、浄水処理に対して供給する構成としたものである。
<Example 2 of activated carbon injection equipment>
FIG. 9 shows another dry powder activated carbon injection facility 50. The equipment 50 includes a pulverized product storage tank 51 for storing pulverized activated carbon, an injection product storage tank 54 for storing pulverized activated carbon pulverized to a target particle size, and a pulverized activated carbon stored in the pulverized product storage tank 51. The pulverized activated carbon pulverized by the pulverizer 30 and the pulverized activated carbon pulverized by the pulverizer 30 are selectively returned to the pulverized product storage tank 51 or the injected product storage tank 54. The pulverized activated carbon stored in the injected product storage tank 54 is supplied to the purified water treatment including the product return path 53.

図示形態についてより詳細に説明すると、被粉砕品貯留槽51には、ジェットパック車JC等で搬入される乾燥状態の粉末原料炭が原料炭供給配管51iを介して供給され、貯留される。図示形態では、注入品貯留槽54に対しても、ジェットパック車JC等で搬入される乾燥状態の粉末原料炭が原料炭供給配管54iを介して供給できるようになっているが、被粉砕品貯留槽51のみに原料炭を供給する構成としてもよい。被粉砕品貯留槽51内に貯留された原料炭は、ダンパー51d及び供給用ロータリーバルブ55rを介して切り出されて供給用エジェクタ55eに供給され、供給用送風機55fから供給される空気により、粉砕機30の付近に設置された受け槽55tに供給され、一時的に貯留された後、粉砕機用定量供給機31により切り出され、粉砕機30に定量供給されるようになっている。   The illustrated embodiment will be described in more detail. In the pulverized product storage tank 51, dry powder raw coal fed by a jet pack car JC or the like is supplied and stored via the raw coal supply pipe 51i. In the illustrated embodiment, the dry powder raw coal fed by the jet pack vehicle JC or the like can be supplied to the injected product storage tank 54 via the raw coal supply pipe 54i. It is good also as a structure which supplies raw coal only to the storage tank 51. FIG. Coking coal stored in the pulverized product storage tank 51 is cut out via a damper 51d and a supply rotary valve 55r, supplied to a supply ejector 55e, and pulverized by air supplied from a supply blower 55f. After being supplied to a receiving tank 55t installed in the vicinity of 30 and temporarily stored, it is cut out by the pulverizer quantitative supply device 31 and supplied to the pulverizer 30 in a fixed amount.

図示形態では、粉砕機30から被粉砕品貯留槽51及び注入品貯留槽54に至る粉砕品返送路53も空気輸送設備により構成されている。すなわち、粉砕機30から排出される粉砕活性炭は、ホッパ56hに供給された後、返送用ロータリーバルブ56rにより切り出されて返送用エジェクタ56eに供給され、返送用送風機56fから供給される空気により、返送配管56pを介して被粉砕品貯留槽51又は注入品貯留槽54に対して選択的に返送される。本設備50の返送配管56pは、エジェクタ側の共通部分と、この共通部分からか2路に分岐して、その一方が被粉砕品貯留槽51に及び他方が注入品貯留槽54に接続された部分とを有し、分岐点より下流側にそれぞれ開閉弁v2が設けられ、この開閉弁v2を選択的に開閉することにより、被粉砕品貯留槽51及び注入品貯留槽54のいずれか一方にのみ選択供給できるようになっている。また、本設備例50の返送配管56pは、原料炭供給配管51i,54iに合流しており、合流点よりも上流側にそれぞれ開閉弁v1,v2が設けられ、この開閉弁v1,v2を選択的に開閉することにより、貯留槽51,54に対する原料炭の供給と粉砕活性炭の返送とを選択できるようになっている。   In the illustrated embodiment, the pulverized product return path 53 extending from the pulverizer 30 to the pulverized product storage tank 51 and the injected product storage tank 54 is also constituted by pneumatic transportation equipment. That is, the pulverized activated carbon discharged from the pulverizer 30 is supplied to the hopper 56h, then cut out by the return rotary valve 56r, supplied to the return ejector 56e, and returned by the air supplied from the return blower 56f. It is selectively returned to the pulverized product storage tank 51 or the injected product storage tank 54 via the pipe 56p. The return pipe 56p of the present facility 50 branches from the common part on the ejector side to the two paths from this common part, one of which is connected to the pulverized product storage tank 51 and the other connected to the injected product storage tank 54. And an opening / closing valve v2 is provided on the downstream side of the branch point. By selectively opening / closing the opening / closing valve v2, either the crushed product storage tank 51 or the injected product storage tank 54 is provided. It can only be selected and supplied. In addition, the return pipe 56p of this facility example 50 is joined to the raw coal supply pipes 51i and 54i, and on-off valves v1 and v2 are provided on the upstream side from the junction point, and the on-off valves v1 and v2 are selected. By opening and closing automatically, supply of raw coal to the storage tanks 51 and 54 and return of pulverized activated carbon can be selected.

注入品貯留槽51内に貯留された粉砕活性炭は、ダンパー54d及び注入品ロータリーバルブ54rを介して切り出されて注入用定量供給機54fに供給され、この注入用定量供給機54fにより切り出される活性炭は、攪拌機付の溶解槽57に定量供給され、溶解槽57内で、場内給水SWから流量一定で別途供給される溶解水と混合されて所定濃度の活性炭のスラリーが連続的に製造され、溶解槽57から注入ポンプ57pにより一定流量でオーバーフローするスラリーが注入エジェクタ57eに供給され、場内給水SWから注入ポンプ57pにより流量一定で別途供給される駆動水とともに注入点APに供給されるようになっている。注入エジェクタ57eの代わりにポンプを用いて溶解槽57からのスラリーを注入点APに供給する等、注入品貯留槽54に貯留されている活性炭を浄水処理に対して供給する方法は特に限定されるものではない。   The pulverized activated carbon stored in the infusion product storage tank 51 is cut out via the damper 54d and the infusion product rotary valve 54r and supplied to the injecting quantitative feeder 54f, and the activated carbon to be cut out by the injecting quantitative feeder 54f is A fixed amount of activated carbon slurry is continuously supplied to the dissolution tank 57 with a stirrer and mixed with the dissolution water separately supplied at a constant flow rate from the on-site feed water SW in the dissolution tank 57. The slurry that overflows at a constant flow rate from 57 to the injection ejector 57e is supplied to the injection ejector 57e, and is supplied to the injection point AP together with the drive water supplied separately at a constant flow rate from the in-situ water supply SW by the injection pump 57p. . A method for supplying activated carbon stored in the injection storage tank 54 to the purified water treatment such as supplying slurry from the dissolution tank 57 to the injection point AP using a pump instead of the injection ejector 57e is particularly limited. It is not a thing.

粉砕機30を被粉砕品貯留槽51の付近に設置できる場合には、被粉砕品供給路52及び粉砕品供給路53の少なくとも一方について、空気輸送設備を省略して直接的に接続したり、他の機械的移送設備を用いたりすることができる。例えば、被粉砕品供給路52における空気輸送設備(供給用エジェクタ55eから受け槽55tまで)を省略し、被粉砕品貯留槽51から切り出される活性炭を粉砕機用定量供給機31に直接供給し、粉砕機30に供給する構成とすることもできる。   When the pulverizer 30 can be installed in the vicinity of the pulverized product storage tank 51, at least one of the pulverized product supply path 52 and the pulverized product supply path 53 may be directly connected by omitting the air transportation facility, Other mechanical transfer equipment can be used. For example, the pneumatic transportation equipment (from the supply ejector 55e to the receiving tank 55t) in the pulverized product supply path 52 is omitted, and the activated carbon cut out from the pulverized product storage tank 51 is directly supplied to the pulverizer quantitative supply device 31; It can also be set as the structure supplied to the grinder 30. FIG.

また、図示形態では前述の粉砕機30駆動制御を行うために、粒度計測装置32が被粉砕品供給路52に設けられており、その測定結果が制御装置33に送信されるようになっている。また点線で示されるように、制御装置33に対しては、粉砕機30から消費電力が送信され、また必要に応じて粉砕機用定量供給機31から供給量(単位時間当たりの供給質量)が送信されるようになっており、制御装置33から粉砕機30に対しては粉砕駆動源の制御信号が送信されるようになっている。   In the illustrated embodiment, the particle size measuring device 32 is provided in the pulverized product supply path 52 in order to perform the above-described drive control of the pulverizer 30, and the measurement result is transmitted to the control device 33. . As indicated by the dotted line, power is transmitted from the pulverizer 30 to the control device 33, and the supply amount (supply mass per unit time) is supplied from the pulverizer quantitative supply device 31 as necessary. The control device 33 transmits a control signal for the pulverization drive source to the pulverizer 30.

以上に述べた活性炭注入設備は、次のように運転することができる。すなわちいま、被粉砕品貯留槽51に原料炭が貯留されている初期状態から粉砕運転を開始すると、返送用空気輸送設備(返送用ファン56f、返送用ロータリーバルブ56r)、粉砕設備(粉砕機3、粉砕機用定量供給機31)がこの順に運転を開始するが、これらの運転は受け槽55tの貯留レベルが所定のローレベル(LL)以下であると停止するが、ローレベルでない限り継続される。   The activated carbon injection facility described above can be operated as follows. That is, when the pulverization operation is started from the initial state where the raw coal is stored in the pulverized product storage tank 51, the return air transport facility (return fan 56f, the return rotary valve 56r), the pulverization facility (pulverizer 3). The pulverizer quantitative feeder 31) starts operation in this order. These operations are stopped when the storage level of the receiving tank 55t is equal to or lower than a predetermined low level (LL), but are continued unless the storage level is low. The

一方、粉砕運転の開始に伴い、受け槽55tの貯留レベルがLL以下であると、供給用空気輸送設備(供給用ファン55f、供給用ロータリーバルブ55r)が運転を開始し、これらの運転は受け槽55tの貯留レベルが所定のハイレベル(HL)以上になると停止するが、ハイレベルにならない限り継続される。受け槽55tの貯留レベルがLLを超えると、前述のように粉砕設備及び返送用空気輸送設備が運転を開始し、被粉砕品貯留槽51から切り出される活性炭が供給用空気輸送設備を介して受け槽55tに順次供給されるとともに、受け槽55tから粉砕機30に供給され、粉砕機から排出される粉砕活性炭が返送用空気設備により被粉砕品貯留槽51に返送される。   On the other hand, when the storage level of the receiving tank 55t is LL or less with the start of the pulverization operation, the supply air transport equipment (supply fan 55f, supply rotary valve 55r) starts operation, and these operations are received. When the storage level of the tank 55t becomes equal to or higher than a predetermined high level (HL), the tank 55t is stopped. When the storage level of the receiving tank 55t exceeds LL, as described above, the pulverization facility and the return air transport facility start operation, and the activated carbon cut out from the pulverized product storage tank 51 is received via the supply air transport facility. While being sequentially supplied to the tank 55t, the pulverized activated carbon supplied from the receiving tank 55t to the pulverizer 30 and discharged from the pulverizer is returned to the pulverized product storage tank 51 by the return air equipment.

粒度計測装置32により計測される被粉砕活性炭の粒度代表値が、目標粒度代表値になるまで、粉砕運転は継続される。粒度計測装置32により計測される被粉砕活性炭の粒度代表値が、目標粒度代表値(又は1回の粉砕で目標粒度代表値に達する所定の粒度代表値)になったならば、返送配管56pの開閉弁v2を切り替えて、粉砕機30から排出される粉砕活性炭が返送用空気設備により注入品貯留槽54に返送される。この結果、注入品貯留槽54には目標粒度代表値の粉砕活性炭が貯留されることになる。   The grinding operation is continued until the particle size representative value of the activated carbon to be crushed measured by the particle size measuring device 32 becomes the target particle size representative value. When the representative particle size of the activated carbon measured by the particle size measuring device 32 reaches the target particle size representative value (or the predetermined particle size representative value that reaches the target particle size representative value in one pulverization), the return pipe 56p By switching the on-off valve v2, the pulverized activated carbon discharged from the pulverizer 30 is returned to the injected product storage tank 54 by the return air equipment. As a result, the pulverized activated carbon having the target particle size representative value is stored in the injected product storage tank 54.

浄水処理において活性炭注入を行うときには、注入ポンプ56pの運転を開始し、溶解水を溶解槽57に、及び駆動水を注入エジェクタ57eにそれぞれ供給するとともに、注入品ロータリーバルブ54r及び注入用定量供給機54fの運転を開始し、注入品貯留槽54に貯留された粉砕活性炭が切り出され、溶解槽57に対して定量供給される。溶解槽57では所定濃度の活性炭スラリーが製造され、この活性炭スラリーが注入点APに供給される。   When the activated carbon is injected in the water purification treatment, the operation of the injection pump 56p is started, the dissolved water is supplied to the dissolution tank 57, and the driving water is supplied to the injection ejector 57e, and the injection product rotary valve 54r and the injection quantitative feeder The operation of 54 f is started, and the pulverized activated carbon stored in the injected product storage tank 54 is cut out and supplied to the dissolution tank 57 in a fixed amount. In the dissolution tank 57, activated carbon slurry having a predetermined concentration is manufactured, and this activated carbon slurry is supplied to the injection point AP.

本設備50のように、注入品貯留槽54から浄水処理に対して供給する経路に粉砕機30を介在させるのではなく、活性炭が被粉砕品貯留槽51及び粉砕機30を循環する循環経路を構成し、循環する活性炭に対して粉砕を繰り返し行いうる構成とし、目標粒度まで粉砕した粉砕活性炭については注入品貯留槽54に貯留し、この注入品貯留槽54から浄水処理に対して粉砕活性炭を供給する構成を採用したことにより、粉砕機30を貯留槽51,54や浄水処理に対する供給系統から分離して設置することができるため、粉砕機30の設置スペースの確保及び基本設備との連動の確保が容易となり、既存設備への適用が容易となる。特に、本例のように、空気輸送により活性炭を移送することにより、粉砕機30を貯留槽51,54や浄水処理に対する供給系統から遠くに離して設置することができるため好ましい。また、粉砕を繰り返し行うことができるため、原料炭の粒度と粉砕活性炭の目標粒度との差が大きくても目標粒度の粉砕活性炭を製造し、注入することが可能となる。本設備50は、活性炭の貯留槽を一槽のみ備える既存設備(貯留槽増設が必要)、又は貯留槽を複数備える既存設備に、オンサイト粉砕を追加する場合に好適なものである。特に、被粉砕品貯留槽51と注入品貯留槽54とを個別に備え、粉砕系統と注入系統とが独立しているため、粉砕と注入とを同時に行うことも可能であり、かつ注入量が粉砕処理量を超えない限り、目標粒度の粉砕活性炭を実質連続的に製造して注入することができるため、注入品の不足や吸着性能の低下が発生しにくい。   Instead of interposing the pulverizer 30 in the path for supplying the purified water from the injected product storage tank 54 as in the present facility 50, a circulation path through which the activated carbon circulates the pulverized product storage tank 51 and the pulverizer 30 is provided. The pulverized activated carbon pulverized to the target particle size is stored in the injected product storage tank 54, and the pulverized activated carbon is supplied from the injected product storage tank 54 to the purified water treatment. By adopting the supply configuration, the crusher 30 can be installed separately from the supply systems for the storage tanks 51 and 54 and the water purification treatment, so that the installation space for the crusher 30 can be secured and linked with the basic equipment. Securement becomes easy, and application to existing facilities becomes easy. In particular, as in this example, it is preferable to transfer activated carbon by pneumatic transportation because the pulverizer 30 can be installed far away from the storage tanks 51 and 54 and the supply system for water purification treatment. Further, since the pulverization can be repeated, even if the difference between the particle size of the raw coal and the target particle size of the pulverized activated carbon is large, the pulverized activated carbon having the target particle size can be manufactured and injected. This facility 50 is suitable for the case where on-site grinding is added to an existing facility including only one activated carbon storage tank (an additional storage tank is required) or an existing facility including a plurality of storage tanks. In particular, since the pulverized product storage tank 51 and the injected product storage tank 54 are provided separately, and the pulverization system and the injection system are independent, pulverization and injection can be performed simultaneously, and the injection amount can be reduced. As long as the pulverization amount is not exceeded, the pulverized activated carbon having the target particle size can be manufactured and injected substantially continuously, so that the shortage of injected products and the reduction in adsorption performance are unlikely to occur.

本例2の設備50においても、例1の設備40と同様に、粉砕エネルギー実測値及び粉砕エネルギー適正値に基づく粉砕駆動制御を行うことができる。また、本例2の設備においても、粉砕と浄水処理に対する活性炭注入を同時に行うことができ、その際に、前述の注入量補正を行うこともできる。その他、例2の基本構成の範囲内において、例1と同様の変更が可能である。また、例1と同様の構成については、同じ符号を用いているため、あえて説明を省略する。   In the facility 50 of the second example, similarly to the facility 40 of the first example, the pulverization drive control based on the measured pulverization energy value and the appropriate pulverization energy value can be performed. Moreover, also in the installation of this Example 2, activated carbon injection | pouring with respect to a grinding | pulverization and a water purification process can be performed simultaneously, and the above-mentioned injection | pouring amount correction | amendment can also be performed in that case. In addition, within the scope of the basic configuration of Example 2, the same changes as in Example 1 can be made. In addition, since the same reference numerals are used for the same configurations as in Example 1, the description thereof is omitted.

<活性炭注入設備の例3>
図10は、例1の設備とほぼ同様の設備を2並列とし、粉砕設備及び空気輸送設備の大部分を共通利用とした、別のドライ粉末活性炭注入設備60を示している。すなわち、この設備60は、活性炭を貯留する第1貯留槽61と、第1貯留槽61に貯留されている活性炭を粉砕機30に対して供給する、第1被粉砕品供給路62と、活性炭を貯留する第2貯留槽70と、第2貯留槽70に貯留されている活性炭を粉砕機30に対して供給する、第2被粉砕品供給路72と、粉砕機30で粉砕された粉砕活性炭を、第1貯留槽61又は第2貯留槽72に対して選択的に返送する粉砕品返送路63とを含み、第1貯留槽61に貯留されている活性炭、又は第2貯留槽71に貯留されている活性炭を、選択的に浄水処理に対して供給する構成としたものである。
<Example 3 of activated carbon injection equipment>
FIG. 10 shows another dry powder activated carbon injection facility 60 in which almost the same facilities as those of Example 1 are arranged in parallel, and most of the pulverization facility and the air transportation facility are used in common. That is, the facility 60 includes a first storage tank 61 that stores activated carbon, a first pulverized product supply path 62 that supplies the activated carbon stored in the first storage tank 61 to the pulverizer 30, and activated carbon. A second storage tank 70 that stores the activated carbon, a second pulverized product supply path 72 that supplies the activated carbon stored in the second storage tank 70 to the pulverizer 30, and pulverized activated carbon pulverized by the pulverizer 30 The activated carbon stored in the first storage tank 61 or the second storage tank 71 is stored in the first storage tank 61 or the second storage tank 72. The activated carbon used is selectively supplied to the water purification treatment.

図示形態についてより詳細に説明すると、第1貯留槽61には、ジェットパック車JC等で搬入される乾燥状態の粉末原料炭が原料炭供給配管61iを介して供給され、貯留される。第1貯留槽61内に貯留された活性炭は、ダンパー61d及び第1貯留槽ロータリーバルブ61rを介して切り出され、第1貯留槽定量供給機61fを介して第1切替機64に供給されるようになっている。第1切替機64は、2系統への供給の切り替えが可能なものであれば特に限定されるものではない。図示形態の第1切替機64は、ケーシングにおけるスクリュー軸の長手方向一端側に供給ホッパ64hを備え、他端側に間隔を空けて注入系排出口64a及び粉砕系排出口64bを備え、他端側に向かって上りこう配で移送を行うスクリューフィーダであり、各排出口64a,64bの出側に開閉弁v3,v4を設け、この開閉弁v3,v4を選択的に開閉することにより、供給系統を切り替えできるようになっている。第1被粉砕品供給路62における第1切替機64の粉砕系排出口64bから粉砕機30までの部分は、図示形態では空気輸送設備により構成されている。すなわち、粉砕系排出口64bから排出される活性炭は第1供給ホッパ65hに供給され、この第1供給ホッパ65h内の活性炭が第1供給ロータリーバルブ65rにより切り出されて第1供給用エジェクタ65eに供給され、供給用送風機65fから供給される空気により、粉砕機30の付近に設置された受け槽65tに供給され、一時的に貯留された後、粉砕機用定量供給機31により切り出され、粉砕機30に定量供給されるようになっている。一方、注入系排出口64aから排出される活性炭は、攪拌機付の第1溶解槽67に定量供給され、第1溶解槽67内で、場内給水SWから注入ポンプ67pにより流量一定で別途供給される溶解水と混合されて所定濃度の活性炭のスラリーが連続的に製造され、第1溶解槽67から一定流量でオーバーフローするスラリーが第1注入エジェクタ67eに供給され、場内給水SWから注入ポンプ67pにより流量一定で別途供給される駆動水とともに注入点APに供給されるようになっている。   If it demonstrates in detail about the form of illustration, in the 1st storage tank 61, the dry powder raw coal carried in by the jet pack car JC etc. will be supplied via the raw coal supply piping 61i, and will be stored. The activated carbon stored in the first storage tank 61 is cut out via the damper 61d and the first storage tank rotary valve 61r, and supplied to the first switching machine 64 through the first storage tank quantitative supply device 61f. It has become. The first switching machine 64 is not particularly limited as long as the supply to the two systems can be switched. The illustrated first switching machine 64 includes a supply hopper 64h on one end side in the longitudinal direction of the screw shaft in the casing, and includes an injection system discharge port 64a and a pulverization system discharge port 64b at intervals on the other end side. A screw feeder that moves in an upward gradient toward the side, and is provided with on-off valves v3 and v4 on the outlet side of the respective discharge ports 64a and 64b, and selectively opens and closes the on-off valves v3 and v4. Can be switched. The part from the crushing system discharge port 64b of the 1st switching machine 64 in the 1st to-be-ground product supply path 62 to the crusher 30 is comprised by the pneumatic transport equipment in the illustration form. That is, the activated carbon discharged from the crushing system discharge port 64b is supplied to the first supply hopper 65h, and the activated carbon in the first supply hopper 65h is cut out by the first supply rotary valve 65r and supplied to the first supply ejector 65e. Then, the air supplied from the supply blower 65f is supplied to the receiving tank 65t installed in the vicinity of the pulverizer 30 and temporarily stored, and then cut out by the pulverizer quantitative supply device 31 to be pulverized. 30 is supplied in a fixed amount. On the other hand, the activated carbon discharged from the injection system discharge port 64a is quantitatively supplied to the first dissolution tank 67 with a stirrer, and is separately supplied from the in-situ water supply SW to the first dissolution tank 67 at a constant flow rate by the injection pump 67p. A slurry of activated carbon having a predetermined concentration is continuously produced by mixing with dissolved water, and a slurry overflowing at a constant flow rate from the first dissolution tank 67 is supplied to the first injection ejector 67e, and the flow rate is supplied from the in-situ water supply SW to the injection pump 67p. It is supplied to the injection point AP together with a constant and separately supplied drive water.

第2貯留槽側も同様である。すなわち第2貯留槽71には、ジェットパック車JC等で搬入される乾燥状態の粉末原料炭が原料炭供給配管71iを介して供給され、貯留される。第2貯留槽71内に貯留された活性炭は、ダンパー71d及び第2貯留槽ロータリーバルブ71rを介して切り出され、第2貯留槽定量供給機71fを介して第2切替機74に供給されるようになっている。第2切替機74は、2系統への供給の切り替えが可能なものであれば特に限定されるものではない。図示形態の第2切替機74は、ケーシングにおけるスクリュー軸の長手方向一端側に供給ホッパ74hを備え、他端側に間隔を空けて注入系排出口74a及び粉砕系排出口74bを備え、他端側に向かって上りこう配で移送を行うスクリューフィーダであり、各排出口74a,74bの出側に開閉弁v3,v4を設け、この開閉弁v3,v4を選択的に開閉することにより、供給系統を切り替えできるようになっている。第2被粉砕品供給路72における第2切替機74の粉砕系排出口74bから粉砕機30までの部分は、図示形態では空気輸送設備により構成されている。すなわち、粉砕系排出口74bから排出される活性炭は第2供給ホッパ75hに供給され、この第2供給ホッパ75h内の活性炭が第2供給ロータリーバルブ75rにより切り出されて第2供給用エジェクタ75eに供給され、供給用送風機65fから供給される空気により、粉砕機30の付近に設置された受け槽65tに供給され、一時的に貯留された後、粉砕機用定量供給機31により切り出され、粉砕機30に定量供給されるようになっている。一方、注入系排出口74aから排出される活性炭は、攪拌機付の第2溶解槽77に定量供給され、第2溶解槽77内で、場内給水SWから注入ポンプ67pにより流量一定で別途供給される溶解水と混合されて所定濃度の活性炭のスラリーが連続的に製造され、第2溶解槽77から一定流量でオーバーフローするスラリーが第2注入エジェクタ77eに供給され、場内給水SWから注入ポンプ67pにより流量一定で別途供給される駆動水とともに注入点APに供給されるようになっている。なお、図示形態では、第1溶解槽67及び第1注入エジェクタ67eに対する注入ポンプと、第2溶解槽77及び第2注入エジェクタ77eに対する注入ポンプとを共通的に利用するために、単一の注入ポンプ67pの送り出し側の配管を分岐するとともに、分岐点の下流側にそれぞれ開閉弁v5,v6を設け、この開閉弁v5,v6の切り替えにより、いずれか一方の溶解槽及び注入エジェクタに対する溶解水及び駆動水の供給を選択できるようになっている。   The same applies to the second storage tank side. That is, in the second storage tank 71, the dry powder raw coal carried in the jet pack car JC or the like is supplied and stored through the raw coal supply pipe 71i. The activated carbon stored in the second storage tank 71 is cut out via the damper 71d and the second storage tank rotary valve 71r, and supplied to the second switch 74 through the second storage tank quantitative supply unit 71f. It has become. The second switching machine 74 is not particularly limited as long as the supply to the two systems can be switched. The illustrated second switching machine 74 includes a supply hopper 74h on one end side in the longitudinal direction of the screw shaft in the casing, and includes an injection system discharge port 74a and a pulverization system discharge port 74b with a gap on the other end side. A screw feeder that moves in an upward gradient toward the side, and is provided with on-off valves v3 and v4 on the outlet side of the respective discharge ports 74a and 74b, and selectively opens and closes the on-off valves v3 and v4. Can be switched. The part from the crushing system discharge port 74b of the 2nd switching machine 74 in the 2nd to-be-ground product supply path 72 to the grinder 30 is comprised by the pneumatic transport equipment in the illustration form. That is, the activated carbon discharged from the crushing system outlet 74b is supplied to the second supply hopper 75h, and the activated carbon in the second supply hopper 75h is cut out by the second supply rotary valve 75r and supplied to the second supply ejector 75e. Then, the air supplied from the supply blower 65f is supplied to the receiving tank 65t installed in the vicinity of the pulverizer 30 and temporarily stored, and then cut out by the pulverizer quantitative supply device 31 to be pulverized. 30 is supplied in a fixed amount. On the other hand, the activated carbon discharged from the injection system discharge port 74a is quantitatively supplied to the second dissolution tank 77 with a stirrer, and is separately supplied from the in-situ water supply SW to the constant flow rate by the injection pump 67p in the second dissolution tank 77. A slurry of activated carbon having a predetermined concentration is continuously produced by mixing with dissolved water, and a slurry overflowing at a constant flow rate from the second dissolution tank 77 is supplied to the second injection ejector 77e, and the flow rate is supplied from the in-situ water supply SW to the injection pump 67p. It is supplied to the injection point AP together with a constant and separately supplied drive water. In the illustrated embodiment, a single injection is used to commonly use the injection pump for the first dissolution tank 67 and the first injection ejector 67e and the injection pump for the second dissolution tank 77 and the second injection ejector 77e. The piping on the delivery side of the pump 67p is branched, and on-off valves v5 and v6 are provided on the downstream side of the branch point. By switching the on-off valves v5 and v6, the dissolved water for one of the dissolution tanks and the injection ejector The drive water supply can be selected.

図示形態では、粉砕機30から第1貯留槽61及び第2貯留槽71に至る粉砕品返送路63も空気輸送設備により構成されている。すなわち、粉砕機30から排出される粉砕活性炭は、ホッパ66hに供給された後、返送用ロータリーバルブ66rにより切り出されて返送用エジェクタ66eに供給され、返送用送風機66fから供給される空気により、返送配管66pを介して第1貯留槽61又は第2貯留槽71に選択的に返送される。本設備60の返送配管66pは、エジェクタ側の共通部分と、この共通部分からか2路に分岐して、その一方が第1貯留槽61に及び他方が第2貯留槽71に接続された部分とを有し、分岐点より下流側にそれぞれ開閉弁v2が設けられ、この開閉弁v2を選択的に開閉することにより、第1貯留槽61及び第2貯留槽71のいずれか一方にのみ選択供給できるようになっている。また、本設備例60の返送配管66pは、原料炭供給配管61i,71iに合流しており、合流点よりも上流側にそれぞれ開閉弁v1,v2が設けられ、この開閉弁v1,v2を選択的に開閉することにより、第1貯留槽61及び第2貯留槽71に対する原料炭の供給と粉砕活性炭の返送とを選択できるようになっている。   In the illustrated form, the pulverized product return path 63 extending from the pulverizer 30 to the first storage tank 61 and the second storage tank 71 is also constituted by pneumatic transportation equipment. That is, the pulverized activated carbon discharged from the pulverizer 30 is supplied to the hopper 66h, cut out by the return rotary valve 66r, supplied to the return ejector 66e, and returned by the air supplied from the return blower 66f. It is selectively returned to the first storage tank 61 or the second storage tank 71 via the pipe 66p. The return pipe 66p of the present facility 60 is a common part on the ejector side and a part branched from this common part into two paths, one of which is connected to the first storage tank 61 and the other is connected to the second storage tank 71. And an open / close valve v2 is provided on the downstream side of the branch point. By selectively opening and closing the open / close valve v2, only one of the first storage tank 61 and the second storage tank 71 is selected. It can be supplied. Further, the return pipe 66p of the present facility example 60 is joined to the raw coal supply pipes 61i and 71i, and on-off valves v1 and v2 are provided on the upstream side from the junction point, and the on-off valves v1 and v2 are selected. By opening and closing automatically, the supply of raw coal to the first storage tank 61 and the second storage tank 71 and the return of the pulverized activated carbon can be selected.

粉砕機30を第1切替機64及び第2切替機74の少なくとも一方の付近に設置できる場合や、第1貯留槽61及び第2貯留槽71の少なくとも一方の付近に設置できる場合には、粉砕機30と付近の設備との間については空気輸送設備を省略して直接的に接続したり、他の機械的移送設備を用いたりすることができる。   When the crusher 30 can be installed in the vicinity of at least one of the first switching machine 64 and the second switching machine 74, or when it can be installed in the vicinity of at least one of the first storage tank 61 and the second storage tank 71, crushing Between the machine 30 and nearby equipment, the pneumatic transportation equipment can be omitted and directly connected, or other mechanical transfer equipment can be used.

また、図示形態では前述の粉砕機駆動制御を行うために、第1被粉砕品供給路62及び第2被粉砕品供給路72が途中で一つの配管に合流されるとともに、この合流点よりも下流側の共通配管に粒度計測装置32が設けられており、その測定結果が制御装置33に送信されるようになっている。また点線で示されるように、制御装置33に対しては、粉砕機30から消費電力が送信され、また必要に応じて粉砕機用定量供給機31から供給量(単位時間当たりの供給質量)が送信されるようになっており、制御装置33から粉砕機30に対しては粉砕駆動源の制御信号が送信されるようになっている。   In the illustrated embodiment, in order to perform the above-described pulverizer drive control, the first pulverized product supply path 62 and the second pulverized product supply path 72 are joined to one pipe on the way, and more than this joining point. A particle size measuring device 32 is provided in the common pipe on the downstream side, and the measurement result is transmitted to the control device 33. As indicated by the dotted line, power is transmitted from the pulverizer 30 to the control device 33, and the supply amount (supply mass per unit time) is supplied from the pulverizer quantitative supply device 31 as necessary. The control device 33 transmits a control signal for the pulverization drive source to the pulverizer 30.

以上に述べた活性炭注入設備60は、次のように活性炭が第1貯留槽61及び粉砕機30を循環する循環経路と、活性炭が第2貯留槽71及び粉砕機30を循環する循環経路とを交互に粉砕に利用し、粉砕の終了した貯留槽の粉砕活性炭を注入に利用することができる。例えばいま、第1貯留槽61に原料炭が貯留されている初期状態から粉砕運転を開始すると、返送用空気輸送設備(返送用ファン66f、返送用ロータリーバルブ66r)、粉砕設備(粉砕機30、粉砕機用定量供給機31)がこの順に運転を開始するが、これらの運転は受け槽65tの貯留レベルが所定のローレベル(LL)以下であると停止するが、ローレベルでない限り継続される。   The activated carbon injection facility 60 described above has a circulation path in which activated carbon circulates in the first storage tank 61 and the pulverizer 30 and a circulation path in which activated carbon circulates in the second storage tank 71 and the pulverizer 30 as follows. By alternately using for pulverization, pulverized activated carbon in the storage tank after pulverization can be used for injection. For example, when the pulverization operation is started from the initial state where the raw coal is stored in the first storage tank 61, the return air transport facility (return fan 66f, return rotary valve 66r), pulverization facility (pulverizer 30, The pulverizer quantitative feeder 31) starts operation in this order. These operations are stopped when the storage level of the receiving tank 65t is equal to or lower than a predetermined low level (LL), but are continued unless the storage level is low. .

一方、粉砕運転の開始に伴い、受け槽65tの貯留レベルがLL以下であると、第1貯留槽ロータリーバルブ61r、第1貯留槽定量供給機61f、第1切替機64、及び供給用空気輸送設備(供給用ファン65f、供給用ロータリーバルブ65r)が運転を開始し、第1切替機64が粉砕系排出口64bに排出するよう開閉弁v3が開、開閉弁v4が閉となる。これらの運転は受け槽65tの貯留レベルが所定のハイレベル(HL)以上になると停止するが、ハイレベルにならない限り継続される。受け槽65tの貯留レベルがローレベルを超えると、前述のように粉砕設備及び返送用空気輸送設備が運転を開始し、第1貯留槽61から切り出される活性炭が供給用空気輸送設備を介して受け槽65tに順次供給されるとともに、受け槽65tから粉砕機30に供給され、粉砕機30から排出される粉砕活性炭が返送用空気設備により第1貯留槽61に返送される。粒度計測装置32により計測される被粉砕活性炭の粒度代表値が、目標粒度代表値になるまで、粉砕運転は継続される。この結果、第1貯留槽61には目標粒度代表値の粉砕活性炭が貯留されることになる。   On the other hand, when the storage level of the receiving tank 65t is LL or less with the start of the pulverization operation, the first storage tank rotary valve 61r, the first storage tank quantitative supply device 61f, the first switching device 64, and the supply pneumatic transport The equipment (supply fan 65f, supply rotary valve 65r) starts operation, and the on-off valve v3 is opened and the on-off valve v4 is closed so that the first switching machine 64 discharges to the crushing system discharge port 64b. These operations are stopped when the storage level of the receiving tank 65t becomes equal to or higher than a predetermined high level (HL), but are continued as long as the level does not become high. When the storage level of the receiving tank 65t exceeds the low level, as described above, the pulverization facility and the return air transport facility start operation, and the activated carbon cut out from the first storage tank 61 is received via the supply air transport facility. While being sequentially supplied to the tank 65t, the pulverized activated carbon supplied from the receiving tank 65t to the pulverizer 30 and discharged from the pulverizer 30 is returned to the first storage tank 61 by the return air facility. The grinding operation is continued until the particle size representative value of the activated carbon to be crushed measured by the particle size measuring device 32 becomes the target particle size representative value. As a result, the first storage tank 61 stores the pulverized activated carbon having the target particle size representative value.

次いで第2貯留槽71に原料炭が供給されるか、又は予め第2貯留槽71に原料炭が貯留されている場合、第1貯留槽61の場合と同様に、第2貯留槽71と粉砕機30との間で活性炭を循環粉砕する。すなわち、返送用空気輸送設備(返送用ファン66f、返送用ロータリーバルブ66r)、粉砕設備(粉砕機30、粉砕機用定量供給機31)がこの順に運転を開始するが、これらの運転は受け槽65tの貯留レベルが所定のローレベル(LL)以下であると停止するが、ローレベルでない限り継続される。粉砕運転の開始に伴い、受け槽65tの貯留レベルがLL以下であると、第2貯留槽ロータリーバルブ71r、第2貯留槽定量供給機71f、第2切替機74、及び供給用空気輸送設備(供給用ファン65f、供給用ロータリーバルブ75r)が運転を開始し、第2切替機74が粉砕系排出口74bに排出するよう開閉弁v3が開、開閉弁v4が閉となる。これらの運転は受け槽65tの貯留レベルが所定のハイレベル(HL)以上になると停止するが、ハイレベルにならない限り継続される。受け槽65tの貯留レベルがローレベルを超えると、前述のように粉砕設備及び返送用空気輸送設備が運転を開始し、第2貯留槽71から切り出される活性炭が供給用空気輸送設備を介して受け槽65tに順次供給されるとともに、受け槽65tから粉砕機30に供給され、粉砕機30から排出される粉砕活性炭が返送用空気設備により第2貯留槽71に返送される。粒度計測装置32により計測される被粉砕活性炭の粒度代表値が、目標粒度代表値になるまで、粉砕運転は継続される。この結果、第2貯留槽71には目標粒度代表値の粉砕活性炭が貯留されることになる。   Next, when the raw coal is supplied to the second storage tank 71, or when the raw coal is stored in the second storage tank 71 in advance, as in the case of the first storage tank 61, the second storage tank 71 and pulverization are performed. The activated carbon is circulated and pulverized with the machine 30. That is, the return pneumatic transport equipment (return fan 66f, return rotary valve 66r) and the grinding equipment (grinding machine 30, fixed quantity feeder for grinding machine 31) start operation in this order. If the storage level of 65t is equal to or lower than a predetermined low level (LL), the operation stops, but continues unless the storage level is low. With the start of the pulverization operation, when the storage level of the receiving tank 65t is LL or less, the second storage tank rotary valve 71r, the second storage tank fixed amount supply device 71f, the second switching device 74, and the supply air transport facility ( The supply fan 65f and the supply rotary valve 75r) start operation, and the on-off valve v3 is opened and the on-off valve v4 is closed so that the second switching device 74 discharges to the crushing system discharge port 74b. These operations are stopped when the storage level of the receiving tank 65t becomes equal to or higher than a predetermined high level (HL), but are continued as long as the level does not become high. When the storage level of the receiving tank 65t exceeds the low level, as described above, the pulverization facility and the return air transport facility start operation, and the activated carbon cut out from the second storage tank 71 is received via the supply air transport facility. While being sequentially supplied to the tank 65t, the pulverized activated carbon supplied from the receiving tank 65t to the pulverizer 30 and discharged from the pulverizer 30 is returned to the second storage tank 71 by the return air facility. The grinding operation is continued until the particle size representative value of the activated carbon to be crushed measured by the particle size measuring device 32 becomes the target particle size representative value. As a result, the second storage tank 71 stores the pulverized activated carbon having the target particle size representative value.

他方、浄水処理において活性炭注入を行うときには、第1貯留槽61及び第2貯留槽71のうち、目標粒度代表値まで粉砕した活性炭を貯留するいずれか一方の貯留槽から注入を行う。例えばいま、第1貯留槽61に目標粒度代表値まで粉砕した活性炭が貯留されており、第2貯留槽71と粉砕機30との間で循環粉砕を行っているとすると、第1溶解槽67につながる注入ポンプ67pの運転を開始し、開閉弁v5を開、開閉弁v6を閉として、溶解水を第1溶解槽67に、及び駆動水を第1注入エジェクタ67eにそれぞれ供給するとともに、第1貯留槽ロータリーバルブ61r、第1貯留槽定量供給機61f、及び第1切替機64の運転を開始し、第1切替機64が注入系排出口64aに排出するよう開閉弁v3を閉、開閉弁v4を開に切り替える。これにより、第1貯留槽61内に貯留された粉砕活性炭が切り出され、第1溶解槽67に対して定量供給される。第1溶解槽67では所定濃度の活性炭スラリーが製造され、この活性炭スラリーが注入点APに供給される。   On the other hand, when the activated carbon is injected in the water purification treatment, the injection is performed from any one of the first storage tank 61 and the second storage tank 71 that stores the activated carbon pulverized to the target particle size representative value. For example, if activated carbon pulverized to the target particle size representative value is stored in the first storage tank 61 and circulation pulverization is performed between the second storage tank 71 and the pulverizer 30, the first dissolution tank 67 is now stored. The operation of the infusion pump 67p leading to is started, the on-off valve v5 is opened, the on-off valve v6 is closed, dissolved water is supplied to the first dissolving tank 67, and driving water is supplied to the first injecting ejector 67e. The operation of the first storage tank rotary valve 61r, the first storage tank quantitative supply device 61f, and the first switching device 64 is started, and the on-off valve v3 is closed and opened so that the first switching device 64 discharges to the injection system discharge port 64a. Switch valve v4 to open. Thereby, the pulverized activated carbon stored in the first storage tank 61 is cut out and supplied to the first dissolution tank 67 in a fixed amount. In the first dissolution tank 67, activated carbon slurry having a predetermined concentration is manufactured, and this activated carbon slurry is supplied to the injection point AP.

第1貯留槽61の粉砕活性炭を使いきったならば、第1切替機64が粉砕系排出口に排出するよう開閉弁v3,v4を切り替え、第1貯留槽61側を粉砕運転に切り替える。また、この時点で、第2貯留槽71に目標粒度代表値まで粉砕した活性炭が貯留されており、注入を継続する場合には、開閉弁v5を閉、開閉弁v6を開に切り替えて、溶解水を第2溶解槽77に、及び駆動水を第2注入エジェクタ77eにそれぞれ供給するとともに、第2貯留槽ロータリーバルブ71r、第2貯留槽定量供給機71f、及び第2切替機74の運転を開始し、第2切替機74が注入系排出口74aに排出するよう開閉弁v3,v4を切り替える。これにより、第2貯留槽71内に貯留された粉砕活性炭が切り出され、第2溶解槽77に対して定量供給される。第2溶解槽77では所定濃度の活性炭スラリーが製造され、この活性炭スラリーが注入点に供給される。   When the pulverized activated carbon in the first storage tank 61 has been used up, the on-off valves v3 and v4 are switched so that the first switching machine 64 discharges to the pulverization system outlet, and the first storage tank 61 side is switched to the pulverization operation. At this time, the activated carbon pulverized to the target particle size representative value is stored in the second storage tank 71, and when the injection is continued, the on-off valve v5 is closed and the on-off valve v6 is switched to open and dissolved. While supplying water to the 2nd dissolution tank 77 and driving water to the 2nd injection ejector 77e, operation of the 2nd storage tank rotary valve 71r, the 2nd storage tank fixed quantity supply machine 71f, and the 2nd change machine 74 is carried out, respectively. The on-off valves v3 and v4 are switched so that the second switching device 74 discharges to the injection system discharge port 74a. Thereby, the pulverized activated carbon stored in the second storage tank 71 is cut out and supplied to the second dissolution tank 77 in a fixed amount. In the second dissolution tank 77, activated carbon slurry having a predetermined concentration is produced, and this activated carbon slurry is supplied to the injection point.

これら第1貯留槽61及び第2貯留槽71の粉砕・注入の切り替えは、注入使用中の貯留槽に十分に活性炭が残っている注入途中や、機器故障時、機器保守時等、任意の時点で行ってもよい。   The pulverization / injection switching of the first storage tank 61 and the second storage tank 71 can be performed at any time such as during the injection in which activated carbon remains sufficiently in the storage tank in use, at the time of equipment failure, during equipment maintenance, etc. You may go on.

本設備60のように、貯留槽から浄水処理に対して供給する経路に粉砕機を介在させるのではなく、活性炭が第1貯留槽61及び粉砕機30を循環する循環経路と、活性炭が第2貯留槽71及び粉砕機30を循環する循環経路とを構成し、それぞれ循環する活性炭に対して粉砕を繰り返し行いうる構成とし、浄水処理に対して第1貯留槽61又は第2貯留槽71から選択的に粉砕活性炭を供給する構成を採用したことにより、粉砕機30を第1貯留槽61及び第2貯留槽71や浄水処理に対する供給系統から分離して設置することができるため、粉砕機30の設置スペースの確保及び基本設備との連動の確保が容易となり、既存設備への適用が容易となる。また、粉砕を繰り返し行うことができるため、原料炭の粒度と粉砕活性炭の目標粒度との差が大きくても目標粒度の粉砕活性炭を製造し、注入することが可能となる。本設備60は、活性炭の貯留槽を一槽のみ備える既存設備(貯留槽増設が必要)、又は貯留槽を複数備える既存設備に、オンサイト粉砕を追加する場合に好適なものである。特に、粉砕のための活性炭の循環経路を2系統独立して備えるため、一方を粉砕に利用し、他方を注入に利用することにより、粉砕と注入とを同時に行うことも可能であり、かつ注入量が粉砕処理量を超えない限り、目標粒度の粉砕活性炭を実質連続的に製造して注入することができるため、注入品の不足や吸着性能の低下が発生しにくい。さらに、粉砕のための活性炭の循環経路のそれぞれに粉砕設備(粉砕機30、粉砕機用定量供給機31)等を個別に設けることもできるが、本設備60では粉砕機30は1台で済むため、機器構成の割には設置スペースは小さくて済むという利点もある。   Rather than interposing a pulverizer in the path for supplying water from the storage tank to the water purification treatment as in the present facility 60, the activated carbon circulates through the first storage tank 61 and the pulverizer 30, and the activated carbon is the second. The storage tank 71 and a circulation path that circulates through the pulverizer 30 are configured, and the pulverization can be repeatedly performed on each of the circulating activated carbon, and the water purification process is selected from the first storage tank 61 or the second storage tank 71. Since the pulverized activated carbon is supplied, the pulverizer 30 can be installed separately from the supply system for the first storage tank 61 and the second storage tank 71 and the water purification process. It is easy to secure the installation space and interlock with the basic equipment, making it easy to apply to existing equipment. Further, since the pulverization can be repeated, even if the difference between the particle size of the raw coal and the target particle size of the pulverized activated carbon is large, the pulverized activated carbon having the target particle size can be manufactured and injected. This facility 60 is suitable when adding on-site crushing to an existing facility having only one activated carbon storage tank (an additional storage tank is required) or an existing facility having a plurality of storage tanks. In particular, since two systems of activated carbon circulation paths for pulverization are provided independently, pulverization and injection can be performed simultaneously by using one for pulverization and the other for injection. As long as the amount does not exceed the pulverization amount, pulverized activated carbon having the target particle size can be manufactured and injected substantially continuously, so that the shortage of injection products and the reduction in adsorption performance are unlikely to occur. Furthermore, a pulverization facility (a pulverizer 30 and a pulverizer quantitative supply device 31) and the like can be individually provided in each of the circulation paths of the activated carbon for pulverization, but in this facility 60, only one pulverizer 30 is sufficient. Therefore, there is an advantage that the installation space is small for the device configuration.

本例3の設備60においても、例1の設備と同様に、粉砕エネルギー実測値及び粉砕エネルギー適正値に基づく粉砕駆動制御を行うことができる。また、本例の設備においても、粉砕と浄水処理に対する活性炭注入を同時に行うことができ、その際に、前述の注入量補正を行うこともできる。その他、例3の基本構成の範囲内において、例1と同様の変更が可能である。また、例1と同様の構成については、同じ符号を用いているため、あえて説明を省略する。 In the facility 60 of the third example, similarly to the facility of the first example, pulverization drive control based on the measured pulverization energy value and the appropriate pulverization energy value can be performed. Moreover, also in the installation of this Example 3 , activated carbon injection | pouring with respect to a grinding | pulverization and a water purification process can be performed simultaneously, and the above-mentioned injection | pouring amount correction | amendment can also be performed in that case. In addition, within the scope of the basic configuration of Example 3, the same changes as in Example 1 can be made. In addition, since the same reference numerals are used for the same configurations as in Example 1, the description thereof is omitted.

<その他>
・上記実施形態は、循環粉砕が可能となっているが、循環せずに一回の粉砕のみで目標粒度に達するのであれば循環粉砕しなくてもよい。
・上記実施形態は、ドライ粉末活性炭注入設備への適用例であるが、本発明は、ウエット粉末活性炭注入設備に適用することもできる。
<Others>
In the above embodiment, circulation pulverization is possible, but circulation pulverization is not necessary if the target particle size is reached by only one pulverization without circulation.
-Although the said embodiment is an application example to dry powder activated carbon injection equipment, this invention can also be applied to wet powder activated carbon injection equipment.

本発明は、河川水、各種工業用水等の被処理水を活性炭により浄化するのに利用される。   The present invention is used to purify water to be treated such as river water and various industrial water with activated carbon.

AP…注入点、C1…被粉砕活性炭、C2…粉砕活性炭、CW…処理済み水、DC…ドライ粉末活性炭、RW…原水、SW…給水、SW…場内給水、WC…ウエット粉末活性炭、bg…バグフィルタ、pg…冷却エアパージ、v1,v2…開閉弁、v3,v4…開閉弁、v5,v6…開閉弁、 1…混和池、2…フロック形成池、3…沈殿池、4…ろ過池、10…ドライ粉末活性炭注入設備、11…活性炭貯留槽、12…振動排出機、13…ロータリーバルブ、14,18…粉末定量供給機、15…溶解槽、16…ポンプ、17…エジェクタ、20…ウエット粉末活性炭注入設備、21…溶解槽、22…注入ポンプ、30…粉砕機、31…粉砕機用定量供給機、32…粒度計測装置、33…制御装置、41…貯留槽、41d…ダンパー、41i…原料炭供給配管、41r…貯留槽ロータリーバルブ、42…被粉砕品供給路、43…粉砕品返送路、44…分配定量供給機、44a…第1定量供給部、44b…第2定量供給部、44h…ホッパ、45e…供給用エジェクタ、45f…供給用送風機、45r…供給用ロータリーバルブ、45t…受け槽、46e…返送用エジェクタ、46f…返送用送風機、46h…ホッパ、46p…返送配管、46r…返送用ロータリーバルブ、47…溶解槽、47e…注入エジェクタ、47p…注入ポンプ、50…ドライ粉末活性炭注入設備、51…被粉砕品貯留槽、51d…ダンパー、51i…原料炭供給配管、52…被粉砕品供給路、53…粉砕品返送路、54…注入品貯留槽、54d…ダンパー、54f…注入用定量供給機、54r…注入品ロータリーバルブ、55e…供給用エジェクタ、55f…供給用送風機、55r…供給用ロータリーバルブ、55t…受け槽、56e…返送用エジェクタ、56f…返送用送風機、56h…ホッパ、56p…返送配管、56r…返送用ロータリーバルブ、57…溶解槽、57e…注入エジェクタ、57p…注入ポンプ、60…ドライ粉末活性炭注入設備、61…第1貯留槽、61d…ダンパー、61f…第1貯留槽定量供給機、61i…原料炭供給配管、61r…第1貯留槽ロータリーバルブ、62…第1被粉砕品供給路、63…粉砕品返送路、64…第1切替機、64a…注入系排出口、64b…粉砕系排出口、64h…供給ホッパ、65e…第1供給用エジェクタ、65f…供給用送風機、65h…第1供給ホッパ、65r…第1供給ロータリーバルブ、65t…受け槽、66e…返送用エジェクタ、66h…ホッパ、66p…返送配管、66r…返送用ロータリーバルブ、67…第1溶解槽、67e…第1注入エジェクタ、67p…注入ポンプ、70…第2貯留槽、71d…ダンパー、71f…第2貯留槽定量供給機、71i…原料炭供給配管、71r…第2貯留槽ロータリーバルブ、72…第2被粉砕品供給路、74…第2切替機、74a…注入系排出口、74b…粉砕系排出口、74h…供給ホッパ、75e…第2供給用エジェクタ、75h…第2供給ホッパ、75r…第2供給ロータリーバルブ、77…第2溶解槽、77e…第2注入エジェクタ。   AP: injection point, C1: activated carbon to be pulverized, C2: pulverized activated carbon, CW: treated water, DC: dry powder activated carbon, RW: raw water, SW: water supply, SW: in-site water supply, WC: wet powder activated carbon, bg: bug Filter, pg ... Cooling air purge, v1, v2 ... Open / close valve, v3, v4 ... Open / close valve, v5, v6 ... Open / close valve, 1 ... Mixing pond, 2 ... Flock formation pond, 3 ... Sedimentation basin, 4 ... Filtration basin, 10 DESCRIPTION OF SYMBOLS ... Dry powder activated carbon injection equipment, 11 ... Activated carbon storage tank, 12 ... Vibration ejector, 13 ... Rotary valve, 14, 18 ... Powder fixed quantity supply machine, 15 ... Dissolution tank, 16 ... Pump, 17 ... Ejector, 20 ... Wet powder Activated carbon injection equipment, 21 ... dissolution tank, 22 ... injection pump, 30 ... pulverizer, 31 ... quantitative supply device for pulverizer, 32 ... particle size measuring device, 33 ... control device, 41 ... storage tank, 41d ... damper, 41 ... coking coal supply pipe, 41r ... storage tank rotary valve, 42 ... crushed product supply path, 43 ... crushed product return path, 44 ... distributed metering feeder, 44a ... first metering supply unit, 44b ... second metering supply unit 44h ... Hopper, 45e ... Ejector for supply, 45f ... Blower for supply, 45r ... Rotary valve for supply, 45t ... Receiving tank, 46e ... Ejector for return, 46f ... Blower for return, 46h ... Hopper, 46p ... Return pipe, 46r ... Rotary valve for return, 47 ... Dissolution tank, 47e ... Injection ejector, 47p ... Injection pump, 50 ... Dry powder activated carbon injection equipment, 51 ... Shattered article storage tank, 51d ... Damper, 51i ... Coal supply pipe, 52 ... pulverized product supply path, 53 ... pulverized product return path, 54 ... injection product storage tank, 54d ... damper, 54f ... injection quantitative meter, 54r ... injection product low Tally valve, 55e ... ejector for supply, 55f ... blower for supply, 55r ... rotary valve for supply, 55t ... receiving tank, 56e ... ejector for return, 56f ... blower for return, 56h ... hopper, 56p ... return pipe, 56r ... Rotary valve for return, 57 ... Dissolution tank, 57e ... Injection ejector, 57p ... Injection pump, 60 ... Dry powder activated carbon injection equipment, 61 ... First storage tank, 61d ... Damper, 61f ... First storage tank quantitative supply machine, 61i ... coking coal supply pipe, 61r ... first storage tank rotary valve, 62 ... first pulverized product supply path, 63 ... crushed product return path, 64 ... first switching machine, 64a ... injection system discharge port, 64b ... pulverization system Discharge port, 64h ... supply hopper, 65e ... first supply ejector, 65f ... supply blower, 65h ... first supply hopper, 65r ... first supply rotor -Valve, 65t ... receiving tank, 66e ... return ejector, 66h ... hopper, 66p ... return pipe, 66r ... return rotary valve, 67 ... first dissolution tank, 67e ... first injection ejector, 67p ... injection pump, 70 ... 2nd storage tank, 71d ... damper, 71f ... 2nd storage tank fixed quantity feeder, 71i ... coking coal supply pipe, 71r ... 2nd storage tank rotary valve, 72 ... 2nd to-be-ground product supply path, 74 ... 2nd switching 74a ... injection system discharge port, 74b ... grinding system discharge port, 74h ... feed hopper, 75e ... second supply ejector, 75h ... second supply hopper, 75r ... second supply rotary valve, 77 ... second melting tank 77e ... Second injection ejector.

Claims (10)

浄水場に設置された粉砕機により粉末状の原料炭を粉砕して粉砕活性炭を製造し、この粉砕活性炭を浄水処理に対して供給する、粉末活性炭注入設備において、
活性炭の貯留槽と、
前記貯留槽に貯留されている活性炭を、前記粉砕機に対して供給する被粉砕品供給路と、
前記粉砕機で粉砕された粉砕活性炭を前記貯留槽に返送する粉砕品返送路とを含み、
前記貯留槽に貯留されている活性炭を、前記浄水処理に対して供給する構成とした、
ことを特徴とする粉末活性炭注入設備。
In the powdered activated carbon injection facility, which pulverized activated carbon is manufactured by pulverizing powdered raw coal with a pulverizer installed in the water purification plant, and this pulverized activated carbon is supplied to the water purification treatment,
An activated carbon reservoir,
The pulverized product supply path for supplying the activated carbon stored in the storage tank to the pulverizer,
Including a pulverized product return path for returning the pulverized activated carbon pulverized by the pulverizer to the storage tank;
The activated carbon stored in the storage tank is configured to supply the purified water treatment.
Powder activated carbon injection equipment characterized by that.
前記粉砕活性炭と、別途流量一定で供給される溶解水とを混合して所定濃度の活性炭のスラリーを連続的に製造する溶解槽を有し、
前記貯留槽に貯留されている活性炭を、前記溶解槽に対して連続的に定量供給する注入品定量供給機を有し、
前記溶解槽で連続的に製造されるスラリーを、前記浄水処理に対して供給する構成とし、
前記被粉砕品供給路又は粉砕品返送路に、活性炭の粒度代表値を計測する粒度計測装置を有し、
前記粒度計測装置により計測される粒度代表値の増減に応じて、前記注入品定量供給機の供給量を増減する制御装置を有する、
請求項1記載の粉末活性炭注入設備。
Having a dissolution tank for continuously producing a slurry of activated carbon having a predetermined concentration by mixing the pulverized activated carbon and separately dissolved water supplied at a constant flow rate;
Having an injectable product quantitative supply machine for continuously supplying the activated carbon stored in the storage tank to the dissolution tank;
The slurry continuously produced in the dissolution tank is configured to supply to the water purification treatment,
In the pulverized product supply path or pulverized product return path, it has a particle size measuring device for measuring the representative particle size of activated carbon,
In accordance with the increase or decrease of the particle size representative value measured by the particle size measuring device, it has a control device that increases or decreases the supply amount of the infusion product quantitative supply machine,
The powdered activated carbon injection facility according to claim 1.
前記被粉砕品供給路における、前記貯留槽から前記粉砕機に向かう経路の一部又は全部、並びに前記粉砕品返送路の一部又は全部が、空気輸送により活性炭を移送するものである、請求項1又は2記載の粉末活性炭注入設備。   A part or all of a path from the storage tank to the pulverizer and a part or all of the pulverized product return path in the pulverized product supply path transfer activated carbon by pneumatic transportation. The powdered activated carbon injection facility according to 1 or 2. 浄水場に設置された粉砕機により粉末状の原料炭を粉砕して粉砕活性炭を製造し、この粉砕活性炭を浄水処理に対して供給する、粉末活性炭注入設備において、
被粉砕活性炭を貯留する被粉砕品貯留槽と、
目標粒度に粉砕した粉砕活性炭を貯留する注入品貯留槽と、
前記被粉砕品貯留槽に貯留されている被粉砕活性炭を、前記粉砕機に対して供給する被粉砕品供給路と、
前記粉砕機で粉砕された粉砕活性炭を、前記被粉砕品貯留槽又は前記注入品貯留槽に対して選択的に返送する粉砕品返送路とを含み、
前記注入品貯留槽に貯留された粉砕活性炭を、前記浄水処理に対して供給する構成とした、
ことを特徴とする粉末活性炭注入設備。
In the powdered activated carbon injection facility, which pulverized activated carbon is manufactured by pulverizing powdered raw coal with a pulverizer installed in the water purification plant, and this pulverized activated carbon is supplied to the water purification treatment,
To-be-ground product storage tank for storing to-be-ground activated carbon,
An infusion storage tank for storing pulverized activated carbon pulverized to a target particle size;
A pulverized product supply path for supplying the pulverized activated carbon stored in the pulverized product storage tank to the pulverizer,
The pulverized activated carbon pulverized by the pulverizer includes a pulverized product return path for selectively returning the pulverized activated carbon storage tank or the injected product storage tank,
The pulverized activated carbon stored in the infusion product storage tank is configured to supply the purified water treatment.
Powder activated carbon injection equipment characterized by that.
前記被粉砕品供給路の一部又は全部、並びに前記粉砕品返送路の一部又は全部が、空気輸送により活性炭を移送するものである、請求項4記載の粉末活性炭注入設備。   5. The powdered activated carbon injection facility according to claim 4, wherein a part or all of the pulverized product supply path and a part or all of the pulverized product return path transport activated carbon by pneumatic transportation. 浄水場に設置された粉砕機により粉末状の原料炭を粉砕して粉砕活性炭を製造し、この粉砕活性炭を浄水処理に対して供給する、粉末活性炭注入設備において、
活性炭を貯留する第1貯留槽と、
前記第1貯留槽に貯留されている活性炭を前記粉砕機に対して供給する、第1被粉砕品供給路と、
活性炭を貯留する第2貯留槽と、
前記第2貯留槽に貯留されている活性炭を前記粉砕機に対して供給する、第2被粉砕品供給路と、
前記粉砕機で粉砕された粉砕活性炭を、前記第1貯留槽又は第2貯留槽に対して選択的に返送する粉砕品返送路とを含み、
前記第1貯留槽に貯留されている活性炭、又は前記第2貯留槽に貯留されている活性炭を、選択的に前記浄水処理に対して供給する構成とした、
ことを特徴とする粉末活性炭注入設備。
In the powdered activated carbon injection facility, which pulverized activated carbon is manufactured by pulverizing powdered raw coal with a pulverizer installed in the water purification plant, and this pulverized activated carbon is supplied to the water purification treatment,
A first storage tank for storing activated carbon;
A first pulverized product supply path for supplying the activated carbon stored in the first storage tank to the pulverizer;
A second storage tank for storing activated carbon;
A second pulverized product supply path for supplying activated carbon stored in the second storage tank to the pulverizer;
Pulverized activated carbon pulverized by the pulverizer, including a pulverized product return path for selectively returning the pulverized activated carbon to the first storage tank or the second storage tank,
Activated carbon stored in the first storage tank, or activated carbon stored in the second storage tank is configured to selectively supply the purified water treatment.
Powder activated carbon injection equipment characterized by that.
前記第1被粉砕品供給路の一部又は全部、前記第2被粉砕品供給路の一部又は全部、並びに前記粉砕品返送路の一部又は全部が、空気輸送により活性炭を移送するものである、請求項6記載の粉末活性炭注入設備。   Part or all of the first pulverized product supply path, part or all of the second pulverized product supply path, and part or all of the pulverized product return path transfer activated carbon by pneumatic transportation. The powdered activated carbon injection facility according to claim 6. 浄水場に設置された粉砕機により粉末状の原料炭を粉砕して粉砕活性炭を製造し、この粉砕活性炭を浄水処理に対して供給する、粉末活性炭注入方法において、
活性炭の貯留槽貯留槽に貯留されている活性炭を、前記粉砕機に対して供給し、
前記粉砕機で粉砕された粉砕活性炭を前記貯留槽に返送し、
前記貯留槽に貯留されている活性炭を、前記浄水処理に対して供給する、
ことを特徴とする粉末活性炭注入方法。
In the powdered activated carbon injection method, pulverized activated carbon is produced by pulverizing powdered raw coal with a pulverizer installed in a water purification plant, and this pulverized activated carbon is supplied to the water purification treatment.
Activated carbon stored in an activated carbon storage tank is supplied to the pulverizer,
Return the pulverized activated carbon crushed by the pulverizer to the storage tank,
Supplying activated carbon stored in the storage tank to the water purification treatment,
A method for injecting powdered activated carbon.
浄水場に設置された粉砕機により粉末状の原料炭を粉砕して粉砕活性炭を製造し、この粉砕活性炭を浄水処理に対して供給する、粉末活性炭注入方法において、
被粉砕活性炭を貯留する被粉砕品貯留槽に貯留されている被粉砕活性炭を、前記粉砕機に対して供給し、
前記粉砕機で粉砕された目標粒度に達しない粉砕活性炭を、前記被粉砕品貯留槽に対して返送し、
前記粉砕機で粉砕された目標粒度に達した粉砕活性炭を、注入品貯留槽に対して供給し、
前記注入品貯留槽に貯留された粉砕活性炭を、前記浄水処理に対して供給する、
ことを特徴とする粉末活性炭注入方法。
In the powdered activated carbon injection method, pulverized activated carbon is produced by pulverizing powdered raw coal with a pulverizer installed in a water purification plant, and this pulverized activated carbon is supplied to the water purification treatment.
Supplying activated carbon to be crushed stored in a pulverized product storage tank for storing activated carbon to be crushed, to the pulverizer;
The pulverized activated carbon that does not reach the target particle size pulverized by the pulverizer is returned to the pulverized product storage tank,
Supplying the pulverized activated carbon that has reached the target particle size pulverized by the pulverizer, to the injection storage tank,
Supply the pulverized activated carbon stored in the infusion product storage tank to the water purification treatment,
A method for injecting powdered activated carbon.
浄水場に設置された粉砕機により粉末状の原料炭を粉砕して粉砕活性炭を製造し、この粉砕活性炭を浄水処理に対して供給する、粉末活性炭注入方法において、
第1貯留槽及び第2貯留槽のいずれか一方の貯留槽に貯留されている活性炭を、選択的に前記粉砕機に対して供給するとともに、
前記粉砕機で粉砕された粉砕活性炭を前記一方の貯留槽に返送し、
前記第1貯留槽及び第2貯留槽のいずれか他方の貯留槽に貯留されている活性炭を、選択的に前記浄水処理に対して供給する、
ことを特徴とする粉末活性炭注入方法。
In the powdered activated carbon injection method, pulverized activated carbon is produced by pulverizing powdered raw coal with a pulverizer installed in a water purification plant, and this pulverized activated carbon is supplied to the water purification treatment.
While selectively supplying activated carbon stored in one of the first storage tank and the second storage tank to the pulverizer,
Return the pulverized activated carbon crushed by the pulverizer to the one storage tank,
Selectively supplying activated carbon stored in the other storage tank of the first storage tank and the second storage tank to the water purification treatment;
A method for injecting powdered activated carbon.
JP2017025416A 2017-02-14 2017-02-14 Powdered activated carbon injection equipment and powdered activated carbon injection method Expired - Fee Related JP6401807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017025416A JP6401807B2 (en) 2017-02-14 2017-02-14 Powdered activated carbon injection equipment and powdered activated carbon injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017025416A JP6401807B2 (en) 2017-02-14 2017-02-14 Powdered activated carbon injection equipment and powdered activated carbon injection method

Publications (2)

Publication Number Publication Date
JP2018130665A true JP2018130665A (en) 2018-08-23
JP6401807B2 JP6401807B2 (en) 2018-10-10

Family

ID=63249224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017025416A Expired - Fee Related JP6401807B2 (en) 2017-02-14 2017-02-14 Powdered activated carbon injection equipment and powdered activated carbon injection method

Country Status (1)

Country Link
JP (1) JP6401807B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109482330A (en) * 2018-11-02 2019-03-19 北矿智云科技(北京)有限公司 A kind of total level weighing apparatus control method and device of SABC ore grinding
JP6491373B1 (en) * 2018-02-16 2019-03-27 メタウォーター株式会社 Water treatment device with adsorbent and water treatment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295153A (en) * 1985-10-18 1987-05-01 川崎重工業株式会社 Operation controller of vertical mill
JPH057788A (en) * 1991-06-28 1993-01-19 Ube Ind Ltd Vertical crushing machine
JPH0557206A (en) * 1991-09-03 1993-03-09 Ube Ind Ltd Vertical crusher
JP2016036803A (en) * 2014-08-11 2016-03-22 月島機械株式会社 Dry activated carbon powder injection equipment and dry activated carbon powder injection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295153A (en) * 1985-10-18 1987-05-01 川崎重工業株式会社 Operation controller of vertical mill
JPH057788A (en) * 1991-06-28 1993-01-19 Ube Ind Ltd Vertical crushing machine
JPH0557206A (en) * 1991-09-03 1993-03-09 Ube Ind Ltd Vertical crusher
JP2016036803A (en) * 2014-08-11 2016-03-22 月島機械株式会社 Dry activated carbon powder injection equipment and dry activated carbon powder injection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6491373B1 (en) * 2018-02-16 2019-03-27 メタウォーター株式会社 Water treatment device with adsorbent and water treatment method
JP2019141753A (en) * 2018-02-16 2019-08-29 メタウォーター株式会社 Water treatment apparatus and water treatment method using adsorbent
CN109482330A (en) * 2018-11-02 2019-03-19 北矿智云科技(北京)有限公司 A kind of total level weighing apparatus control method and device of SABC ore grinding

Also Published As

Publication number Publication date
JP6401807B2 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
JP5910973B2 (en) Dry powder activated carbon injection equipment and dry powder activated carbon injection
US9505008B2 (en) Method for operating an agitator bead mill and agitator bead mill therefor
JP6401807B2 (en) Powdered activated carbon injection equipment and powdered activated carbon injection method
CN110788125B (en) Be used for prosthetic solidification stabilization system of soil
CN110624636A (en) Evaporate and press aerated concrete block waste recovery device
CN102950055A (en) Wet grinding manufacturing method and device of calcium carbonate size
JP6348620B1 (en) Powdered activated carbon injection equipment and powdered activated carbon injection method
KR101237302B1 (en) raw material crush and gyro screener apparatus
KR101315843B1 (en) Grinding system for a middle viscosity material and high viscosity material
CN202909806U (en) Wet grinding equipment for calcium carbonate slurry
CN209476441U (en) A kind of feeding device of nano grinder system
KR200303104Y1 (en) Apparatus for casting an activated charcoal with high water content rate
CN214819984U (en) Natural asphalt production line
CN206000493U (en) Mud disposal system based on separation of solid and liquid
CN209440536U (en) A kind of transport of aggregate divides storage device
CN203497768U (en) Separant storing and spraying device for rubber smashing machine
CN206853502U (en) The automatic material-dispensing system of powdery paints
KR200455951Y1 (en) A device for throwing powder into water of a filtration plant
KR101337182B1 (en) A device for throwing powder into water of a filtration plant
CN104495252A (en) Discharging valve with function of dispersing materials
JP6491373B1 (en) Water treatment device with adsorbent and water treatment method
CN214107290U (en) Cement hard lump material crushing and deslagging device
CN103482376B (en) A kind of waste grinding machine interleaving agent stores spraying device
CN214636728U (en) Automatic refractory material weighing auxiliary device with good fluidity
KR200175438Y1 (en) A device for throwing active carbon into water of a filtration plant

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180907

R150 Certificate of patent or registration of utility model

Ref document number: 6401807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees