JP2018129991A - Method of manufacturing stator for rotary electric machine - Google Patents

Method of manufacturing stator for rotary electric machine Download PDF

Info

Publication number
JP2018129991A
JP2018129991A JP2017023359A JP2017023359A JP2018129991A JP 2018129991 A JP2018129991 A JP 2018129991A JP 2017023359 A JP2017023359 A JP 2017023359A JP 2017023359 A JP2017023359 A JP 2017023359A JP 2018129991 A JP2018129991 A JP 2018129991A
Authority
JP
Japan
Prior art keywords
stator core
coil winding
coil
stator
insulating paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017023359A
Other languages
Japanese (ja)
Other versions
JP6699581B2 (en
Inventor
大祐 岡本
Daisuke Okamoto
大祐 岡本
瑞樹 坂本
Mizuki Sakamoto
瑞樹 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017023359A priority Critical patent/JP6699581B2/en
Publication of JP2018129991A publication Critical patent/JP2018129991A/en
Application granted granted Critical
Publication of JP6699581B2 publication Critical patent/JP6699581B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enhance an adhesive force of a foam adhesive part of insulation paper to coil winding to be higher than that to a stator core.SOLUTION: Heating is performed so that a temperature rise rate of coil winding 11 becomes lower than that of a stator core 20. An expansion ratio of a first portion 31 of a foam adhesive part 30a that is adjacent to the coil winding 11, is set to be lower than that of a second portion 32 of the foam adhesive part 30a that is adjacent to the stator core 20.SELECTED DRAWING: Figure 7

Description

本発明は、回転電機用ステータの製造方法に関する。   The present invention relates to a method for manufacturing a stator for a rotating electrical machine.

従来から回転電機用ステータに関し、特にステータコアとコイル巻線との絶縁構造の改良に関する発明が知られている(下記特許文献1を参照)。   2. Description of the Related Art Conventionally, an invention relating to a stator for a rotating electrical machine, particularly an improvement of an insulation structure between a stator core and a coil winding is known (see Patent Document 1 below).

特許文献1は、スロットを有するステータコアと、前記スロット内に挿入配置されるコイル巻線と、前記スロット内において前記ステータコアと前記コイル巻線とを電気的に絶縁する絶縁紙と、を備える回転電機用ステータであって、以下の特徴を有するものを開示している。   Patent Document 1 discloses a rotating electrical machine including a stator core having a slot, a coil winding inserted and disposed in the slot, and an insulating paper that electrically insulates the stator core and the coil winding in the slot. A stator for a motor having the following characteristics is disclosed.

特許文献1に開示された回転電機用ステータは、前記スロットの軸方向両端部に対応する前記絶縁紙の部分に、発泡接着部が設けられている。この発泡接着部は、前記ステータコアへの前記絶縁紙および前記コイル巻線の組付け後の加熱によって生じる膨張および粘着性によって、前記コイル巻線を前記ステータコアに接着固定するものである(同文献、請求項1等を参照)。   In the stator for a rotating electrical machine disclosed in Patent Document 1, a foamed adhesive portion is provided in the portion of the insulating paper corresponding to both axial end portions of the slot. The foamed adhesive portion is for fixing the coil winding to the stator core by expansion and adhesion caused by heating after assembling the insulating paper and the coil winding to the stator core (the same document, (See claim 1).

この特許文献1の回転電機用ステータによれば、ステータコアにコイル巻線および絶縁紙を組み付けた後の加熱により絶縁紙の端部領域に設けられた発泡接着部が膨張しかつ粘着性を発現することによって、スロットの軸方向端部においてコイル巻線がステータコアに接着固定される(同文献、第0007段落等を参照)。   According to the stator for a rotating electrical machine disclosed in Patent Document 1, the foamed adhesive portion provided in the end region of the insulating paper expands and develops stickiness by heating after the coil winding and the insulating paper are assembled to the stator core. As a result, the coil winding is bonded and fixed to the stator core at the axial end of the slot (see the same document, paragraph 0007, etc.).

特開2016−52226号公報JP, 2006-52226, A

一般に、回転電機用ステータのコイル巻線の表面は、たとえばステータコアにコイル巻線を挿入するときの摩擦の低減を目的として、粗度が低い平滑面とされ、潤滑油が塗布される。そのため、従来の回転電機用ステータにおいて、ステータコアにコイル巻線を接着固定する発泡接着部は、コイル巻線に対する接着力が、ステータコアに対する接着力よりも低下しやすい。   In general, the surface of a coil winding of a stator for a rotating electrical machine is a smooth surface having a low roughness and coated with lubricating oil for the purpose of reducing friction when the coil winding is inserted into a stator core, for example. Therefore, in the conventional stator for a rotating electrical machine, the adhesive force for the coil winding of the foamed adhesive portion that adheres and fixes the coil winding to the stator core is likely to be lower than the adhesive force for the stator core.

また、従来の回転電機用ステータでは、ステータコアにコイル巻線および絶縁紙を組み付けた後の加熱により、発泡接着部を膨張させて粘着性を発現させる。しかし、コイル巻線の熱容量はステータコアの熱容量よりも小さいため、コイル巻線の温度はステータコアの温度よりも上昇しやすく、発泡接着部のコイル巻線に隣接する部分の発泡倍率が、発泡接着部のステータコアに隣接する部分の発泡倍率よりも高くなりやすい。発泡接着部の接着力は、発泡倍率が高くなると低下するため、発泡接着部のコイル巻線に対する接着力が、発泡接着部のステータコアに対する接着力よりも低下するおそれがある。   Further, in a conventional stator for a rotating electrical machine, the foamed adhesive part is expanded by heating after the coil winding and the insulating paper are assembled to the stator core, thereby expressing the adhesiveness. However, since the heat capacity of the coil winding is smaller than the heat capacity of the stator core, the temperature of the coil winding is likely to rise higher than the temperature of the stator core. It tends to be higher than the expansion ratio of the portion adjacent to the stator core. Since the adhesive force of the foamed adhesive portion decreases as the expansion ratio increases, the adhesive force of the foamed adhesive portion to the coil winding may be lower than the adhesive force of the foamed adhesive portion to the stator core.

本発明は、前記課題に鑑みてなされたものであり、コイル巻線に対する絶縁紙の発泡接着部の接着力を、ステータコアに対する絶縁紙の発泡接着部の接着力よりも高くすることができる目的とする回転電機用ステータの製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and has the object of making the adhesive force of the foamed adhesive portion of the insulating paper to the coil winding higher than the adhesive force of the foamed adhesive portion of the insulating paper to the stator core. An object of the present invention is to provide a method for manufacturing a stator for a rotating electrical machine.

前記目的を達成すべく、本発明の回転電機用ステータの製造方法は、両面に発泡接着部を有する絶縁紙を介在させてステータコアのスロットにコイル巻線を挿入するコイル挿入工程と、該コイル挿入工程の後の前記発泡接着部の加熱によって生じる膨張および粘着性によって前記ステータコアに前記コイル巻線を接着するコイル接着工程と、を有する回転電機用ステータの製造方法であって、前記コイル接着工程において、前記コイル巻線の昇温速度が前記ステータコアの昇温速度よりも遅くなるように加熱し、前記コイル巻線に隣接する前記発泡接着部の第1部分の発泡倍率を、前記ステータコアに隣接する前記発泡接着部の第2部分の発泡倍率よりも低くすることを特徴とする。   In order to achieve the above object, a method for manufacturing a stator for a rotating electrical machine according to the present invention includes a coil insertion step of inserting a coil winding into a slot of a stator core with insulating paper having foamed adhesive portions on both sides, and the coil insertion. A coil bonding step of bonding the coil winding to the stator core by expansion and stickiness caused by heating of the foam bonding portion after the step, wherein the coil bonding step includes: The coil winding is heated so that the heating rate of the coil winding is slower than the heating rate of the stator core, and the foaming magnification of the first portion of the foamed adhesive portion adjacent to the coil winding is adjacent to the stator core. The expansion ratio is lower than the expansion ratio of the second portion of the foamed adhesive portion.

本発明の回転電機用ステータの製造方法は、コイル挿入工程において、ステータコアのスロットにコイル巻線を挿入するときに、ステータコアとコイル巻線との間に絶縁紙を介在させる。この絶縁紙は、両面に発泡接着部を有している。絶縁紙の両面の発泡接着部は、加熱により熔融および発泡して膨張するとともに粘着性を発現する。   In the method for manufacturing a stator for a rotating electrical machine according to the present invention, when a coil winding is inserted into a slot of the stator core in the coil insertion step, an insulating paper is interposed between the stator core and the coil winding. This insulating paper has foamed adhesive portions on both sides. The foamed adhesive portions on both sides of the insulating paper expand by melting and foaming by heating and exhibit adhesiveness.

絶縁紙の両面に設けられた発泡接着部は、たとえば、絶縁紙を挟んで第1部分と第2部分の二層に分かれている。そのため、ステータコアとコイル巻線との間に絶縁紙を介在させると、たとえば、絶縁紙の一方の面に設けられた発泡接着部の第1部分がコイル巻線に隣接し、絶縁紙の他方の面に設けられた発泡接着部の第2部分がステータコアに隣接した状態になる。   The foamed adhesive portions provided on both surfaces of the insulating paper are divided into two layers, for example, a first portion and a second portion with the insulating paper interposed therebetween. Therefore, when insulating paper is interposed between the stator core and the coil winding, for example, the first portion of the foamed adhesive portion provided on one surface of the insulating paper is adjacent to the coil winding and the other of the insulating paper is The 2nd part of the foaming adhesion part provided in the surface will be in the state adjacent to the stator core.

また、本発明の回転電機用ステータの製造方法は、コイル挿入工程後のコイル接着工程において、ステータコアとコイル巻線を加熱することで、これらの間に介在させた絶縁紙の両面の発泡接着部を加熱する。これにより、発泡接着部を溶融させて膨張および粘着性を生じさせ、その後、発泡接着部の温度を低下させて固化させることで、絶縁紙とその両面の発泡接着部を介して、コイル巻線がステータコアに接着されて固定される。ここで、発泡接着部の接着力は、発泡接着部の発泡倍率が上昇すると低下し、発泡接着部の発泡倍率が低下すると上昇する傾向がある。   Further, in the method for manufacturing a stator for a rotating electrical machine according to the present invention, in the coil bonding process after the coil insertion process, the stator core and the coil winding are heated so that the foamed bonded portions on both sides of the insulating paper interposed between them. Heat. As a result, the foamed adhesive part is melted to cause expansion and tackiness, and then the temperature of the foamed adhesive part is lowered and solidified, thereby allowing the coil winding to pass through the insulating paper and the foamed adhesive part on both sides thereof. Is bonded and fixed to the stator core. Here, the adhesive strength of the foamed adhesive part tends to decrease when the foaming ratio of the foamed adhesive part increases, and increases when the foaming ratio of the foamed adhesive part decreases.

そのため、本発明の回転電機用ステータの製造方法は、コイル接着工程において、コイル巻線の昇温速度がステータコアの昇温速度よりも遅くなるように加熱する。これにより、コイル巻線に隣接する発泡接着部の第1部分の昇温速度が、ステータコアに隣接する発泡接着部の第2部分の昇温速度よりも遅くなり、第1部分の発泡倍率を第2部分の発泡倍率よりも低くすることができる。これにより、コイル巻線に対する発泡接着部の第1部分の接着力を、ステータコアに対する発泡接着部の第2部分の接着力よりも高くすることができる。   Therefore, in the method for manufacturing a stator for a rotating electrical machine according to the present invention, in the coil bonding step, heating is performed so that the temperature increase rate of the coil winding is slower than the temperature increase rate of the stator core. As a result, the temperature increase rate of the first part of the foamed adhesive part adjacent to the coil winding is slower than the temperature increase rate of the second part of the foamed adhesive part adjacent to the stator core, and the foaming ratio of the first part is reduced to the first. It can be made lower than the expansion ratio of two parts. Thereby, the adhesive force of the 1st part of the foaming adhesion part with respect to coil winding can be made higher than the adhesive force of the 2nd part of the foaming adhesion part with respect to a stator core.

以上説明したように、本発明の回転電機用ステータの製造方法では、コイル接着工程において、コイル巻線の昇温速度がステータコアの昇温速度がよりも遅くなるように加熱する。これにより、コイル巻線に隣接する発泡接着部の第1部分の発泡倍率を、ステータコアに隣接する発泡接着部の第2部分の発泡倍率よりも低くすることができる。したがって、本発明の回転電機用ステータの製造方法によれば、コイル巻線に対する絶縁紙の発泡接着部の接着力を、ステータコアに対する絶縁紙の発泡接着部の接着力よりも高くすることができる。   As described above, in the method for manufacturing a stator for a rotating electrical machine according to the present invention, in the coil bonding step, heating is performed so that the temperature increase rate of the coil winding is slower than the temperature increase rate of the stator core. Thereby, the foaming ratio of the 1st part of the foaming adhesion part adjacent to a coil winding can be made lower than the foaming ratio of the 2nd part of the foaming adhesion part adjacent to a stator core. Therefore, according to the method for manufacturing a stator for a rotating electrical machine of the present invention, the adhesive force of the foamed adhesive portion of the insulating paper to the coil winding can be made higher than the adhesive force of the foamed adhesive portion of the insulating paper to the stator core.

本発明の実施形態に係る回転電機用ステータの製造方法のフロー図。The flowchart of the manufacturing method of the stator for rotary electric machines which concerns on embodiment of this invention. 図1に示すコイル接着工程の概略図。Schematic of the coil bonding process shown in FIG. 図2に示すコイルとステータコアの断面拡大図。The cross-sectional enlarged view of the coil and stator core which are shown in FIG. 図3に示すコイルとステータコアの断面拡大図。FIG. 4 is an enlarged cross-sectional view of a coil and a stator core shown in FIG. 3. 図4に示すコイルとステータコアとの間に介在された絶縁紙の断面拡大図。FIG. 5 is an enlarged cross-sectional view of insulating paper interposed between a coil and a stator core shown in FIG. 4. コイル接着工程におけるコイル巻線とステータコアの昇温速度を示すグラフ。The graph which shows the temperature increase rate of a coil winding and a stator core in a coil adhesion | attachment process. コイル接着工程の終了後の絶縁紙の図5に対応する拡大断面図。The expanded sectional view corresponding to Drawing 5 of insulating paper after the end of a coil adhesion process. 従来の製造方法におけるコイル巻線とステータコアの昇温速度を示すグラフ。The graph which shows the temperature increase rate of the coil winding and the stator core in the conventional manufacturing method. 従来の製造方法における絶縁紙の加熱後の拡大断面図。The expanded sectional view after the heating of the insulating paper in the conventional manufacturing method.

以下、図面を参照して本発明の回転電機用ステータの製造方法の実施の形態の一例を説明する。   Hereinafter, an example of an embodiment of a method for manufacturing a stator for a rotating electrical machine according to the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態に係る回転電機用ステータの製造方法S100のフロー図である。図2は、図1に示すコイル挿入工程S1後のコイル接着工程S2の概略図である。図3は、図2に示すコイル10とステータコア20の模式的な断面拡大図である。図4は、図3に示すコイル10とステータコア20の断面拡大図である。図5は、図4に示すコイル10とステータコア20との間に介在された絶縁紙30の模式的な断面拡大図である。   FIG. 1 is a flowchart of a manufacturing method S100 for a stator for a rotating electrical machine according to an embodiment of the present invention. FIG. 2 is a schematic diagram of the coil bonding step S2 after the coil insertion step S1 shown in FIG. FIG. 3 is a schematic enlarged cross-sectional view of the coil 10 and the stator core 20 shown in FIG. 4 is an enlarged cross-sectional view of the coil 10 and the stator core 20 shown in FIG. FIG. 5 is a schematic enlarged cross-sectional view of the insulating paper 30 interposed between the coil 10 and the stator core 20 shown in FIG.

本実施形態の回転電機用ステータの製造方法S100は、ステータコア20のスロット21にコイル巻線11を挿入するコイル挿入工程S1と、ステータコア20にコイル巻線11を接着するコイル接着工程S2と、を有している。本実施形態の製造方法S100は、図1に示す工程の他に、たとえばステータコア20の製造工程やコイル10の製造工程などの他の工程を含むことができる。なお、図1に示す以外の工程は、従来の回転電機用ステータの製造方法と同様の工程を採用することができるため、ここでは説明を省略する。   A manufacturing method S100 for a rotating electrical machine stator according to the present embodiment includes a coil insertion step S1 for inserting the coil winding 11 into the slot 21 of the stator core 20 and a coil bonding step S2 for bonding the coil winding 11 to the stator core 20. Have. The manufacturing method S100 of the present embodiment can include other processes such as a manufacturing process of the stator core 20 and a manufacturing process of the coil 10 in addition to the processes shown in FIG. The steps other than those shown in FIG. 1 can be the same as the conventional method for manufacturing a stator for a rotating electrical machine, and thus the description thereof is omitted here.

コイル挿入工程S1は、図4に示すように、絶縁紙30を介在させてステータコア20のスロット21にコイル巻線11を挿入する工程である。このコイル挿入工程S1により、図3に示すように、コイル巻線11がステータコア20のスロット21に挿入され、図4に示すように、ステータコア20とコイル巻線11との間に絶縁紙30が介在された状態になる。ここで、コイル巻線11の表面は、たとえばステータコア20にコイル巻線11を挿入するときの摩擦の低減を目的として、粗度が低い平滑面とされ、潤滑油が塗布される。   The coil insertion step S1 is a step of inserting the coil winding 11 into the slot 21 of the stator core 20 with the insulating paper 30 interposed as shown in FIG. By this coil insertion step S1, the coil winding 11 is inserted into the slot 21 of the stator core 20 as shown in FIG. 3, and the insulating paper 30 is inserted between the stator core 20 and the coil winding 11 as shown in FIG. Intervene. Here, the surface of the coil winding 11 is a smooth surface having a low roughness for the purpose of reducing friction when the coil winding 11 is inserted into the stator core 20, for example, and is coated with lubricating oil.

図3および図4では図示を省略するが、ステータコア20とコイル巻線11との間に介在される絶縁紙30は、図5に示すように、両面に発泡接着部30aを有している。絶縁紙30は、たとえば、絶縁性樹脂からなるシート材またはフィルム材で構成することができる。絶縁紙30の両面の発泡接着部30aは、加熱により熔融および発泡して膨張するとともに粘着性を発現する。   Although not shown in FIGS. 3 and 4, the insulating paper 30 interposed between the stator core 20 and the coil winding 11 has foamed adhesive portions 30 a on both sides as shown in FIG. 5. The insulating paper 30 can be composed of, for example, a sheet material or a film material made of an insulating resin. The foaming adhesive portions 30a on both sides of the insulating paper 30 expand by melting and foaming by heating and exhibit adhesiveness.

発泡接着部30aは、絶縁紙30を構成する樹脂製シート材の表面に、たとえばエポキシ系発泡樹脂材料などの加熱により発泡膨張するとともに粘着性を発現する材料を塗布することによって形成することができる。また、このような発泡性および粘着性を発現する樹脂材料によって形成されたシート材を絶縁紙30に接合または一体化させて発泡接着部30aを形成してもよい。   The foamed adhesive portion 30a can be formed by applying a material that expands and expands when heated, such as an epoxy-based foamed resin material, to the surface of the resin sheet material constituting the insulating paper 30. . Alternatively, the foamed adhesive portion 30a may be formed by bonding or integrating a sheet material formed of a resin material exhibiting such foamability and adhesiveness to the insulating paper 30.

絶縁紙30の両面に設けられた発泡接着部30aは、たとえば、絶縁紙30を挟んで第1部分31と第2部分32の二層に分かれている。そのため、ステータコア20とコイル巻線11との間に絶縁紙30を介在させると、たとえば、絶縁紙30の一方の面に設けられた発泡接着部30aの第1部分31がコイル巻線11に隣接し、絶縁紙30の他方の面に設けられた発泡接着部30aの第2部分32がステータコア20に隣接した状態になる。ここで、発泡接着部30aの第1部分31と第2部分32は、異なる成分、性質および特性を有してもよいが、本実施形態では、発泡接着部30aの第1部分31と第2部分32は、同一の成分、性質および特性を有している。コイル挿入工程S1の終了後は、図1に示すように、コイル接着工程S2が行われる。   The foamed adhesive portions 30a provided on both surfaces of the insulating paper 30 are divided into two layers, for example, a first portion 31 and a second portion 32 with the insulating paper 30 interposed therebetween. Therefore, when the insulating paper 30 is interposed between the stator core 20 and the coil winding 11, for example, the first portion 31 of the foamed adhesive portion 30 a provided on one surface of the insulating paper 30 is adjacent to the coil winding 11. Then, the second portion 32 of the foamed adhesive portion 30 a provided on the other surface of the insulating paper 30 is in a state adjacent to the stator core 20. Here, the first portion 31 and the second portion 32 of the foamed adhesive portion 30a may have different components, properties, and characteristics, but in the present embodiment, the first portion 31 and the second portion 32 of the foamed adhesive portion 30a. Portion 32 has the same components, properties and characteristics. After completion of the coil insertion step S1, a coil bonding step S2 is performed as shown in FIG.

コイル接着工程S2は、コイル挿入工程S1後に絶縁紙30の両面の発泡接着部30aの加熱によって生じる膨張および粘着性によって、ステータコア20にコイル巻線11を接着する工程である。コイル接着工程S2では、ステータコア20とコイル巻線11を加熱することで、これらの間に介在させた絶縁紙30の両面の発泡接着部30aを加熱する。より具体的には、図2に示すように、たとえばステータコア20の周囲に配置した誘導加熱用のコイルCに交流電流を流すことで、ステータコア20を外部から誘導加熱するとともに、電源に接続された配線Lを介してコイル巻線11に通電することでコイル巻線11の電気抵抗によってコイル巻線11を加熱する。   The coil bonding step S2 is a step in which the coil winding 11 is bonded to the stator core 20 by expansion and tackiness generated by heating the foamed bonding portions 30a on both sides of the insulating paper 30 after the coil insertion step S1. In the coil bonding step S2, by heating the stator core 20 and the coil winding 11, the foamed bonding portions 30a on both sides of the insulating paper 30 interposed therebetween are heated. More specifically, as shown in FIG. 2, for example, by passing an alternating current through a coil C for induction heating arranged around the stator core 20, the stator core 20 is induction-heated from the outside and connected to a power source. By energizing the coil winding 11 via the wiring L, the coil winding 11 is heated by the electric resistance of the coil winding 11.

そして、昇温させたステータコア20とコイル巻線11によって発泡接着部30aを加熱し、発泡接着部30aを溶融させて膨張および粘着性を生じさせる。その後、ステータコア20とコイル巻線11の加熱を中止し、発泡接着部30aの温度を低下させて固化させることで、絶縁紙30とその両面の発泡接着部30aを介して、コイル巻線11がステータコア20に接着されて固定される。ここで、発泡接着部30aの接着力は、発泡接着部30aの発泡倍率が上昇すると低下し、発泡接着部30aの発泡倍率が低下すると上昇する傾向がある。また、コイル巻線11の熱容量はステータコア20の熱容量よりも小さく、コイル巻線11は直接の通電による加熱と誘電加熱用のコイルCによる誘電加熱によって二重に加熱されるため、コイル巻線11の温度はステータコア20の温度よりも上昇しやすい。   And the foaming adhesion part 30a is heated with the stator core 20 and the coil winding 11 which were heated up, and the foaming adhesion part 30a is melted, and expansion | swelling and adhesiveness are produced. Thereafter, heating of the stator core 20 and the coil winding 11 is stopped, and the temperature of the foamed adhesive portion 30a is lowered and solidified, so that the coil winding 11 is made to pass through the insulating paper 30 and the foamed adhesive portions 30a on both sides thereof. The stator core 20 is bonded and fixed. Here, the adhesive force of the foam adhesive part 30a tends to decrease when the foaming ratio of the foam adhesive part 30a increases, and increases when the foaming ratio of the foam adhesive part 30a decreases. The coil winding 11 has a heat capacity smaller than that of the stator core 20, and the coil winding 11 is doubly heated by heating by direct energization and dielectric heating by the coil C for dielectric heating. Is more likely to rise than the temperature of the stator core 20.

図8は、従来の回転電機用ステータの製造方法におけるステータコアとコイル巻線との昇温速度の一例を示すグラフである。図8において、横軸は時間[s]、縦軸は温度[℃]であり、実線はコイル巻線の加熱時間と温度を表し、破線はステータコアの加熱時間と温度を表している。図9は、従来の回転電機用ステータにおいて、両面に発泡接着部930aを有する絶縁紙930を介してコイル巻線911がステータコア920に接合された状態を示す図5に対応する拡大断面図である。   FIG. 8 is a graph showing an example of the temperature increase rate of the stator core and the coil winding in the conventional method for manufacturing a stator for a rotating electrical machine. In FIG. 8, the horizontal axis represents time [s], the vertical axis represents temperature [° C.], the solid line represents the heating time and temperature of the coil winding, and the broken line represents the heating time and temperature of the stator core. FIG. 9 is an enlarged cross-sectional view corresponding to FIG. 5 showing a state in which the coil winding 911 is joined to the stator core 920 via the insulating paper 930 having the foamed adhesive portions 930a on both surfaces in the conventional rotating electrical machine stator. .

前述のように、コイル巻線911の熱容量は、ステータコア920の熱容量よりも小さい。そのため、コイル巻線911の温度は、図8に示すように、たとえば100[s]に満たない約90[s]程度の時間で、約25[℃]から約160[℃]まで、約135[℃]程度昇温している。すなわち、コイル巻線911の昇温速度は、約1.5[℃/s]程度である。一方、ステータコア920の温度は、図8に示すように、たとえば、約90[s]程度の時間で、約25[℃]から約95[℃]程度までの約70[℃]程度の昇温に留まっている。このステータコア920の昇温速度は、コイル巻線911の昇温速度よりも低い約0.78[℃/s]になっている。   As described above, the heat capacity of the coil winding 911 is smaller than the heat capacity of the stator core 920. Therefore, as shown in FIG. 8, the temperature of the coil winding 911 is about 135 from about 25 [° C.] to about 160 [° C.] in about 90 [s] less than 100 [s], for example. The temperature has risen by about [° C]. That is, the heating rate of the coil winding 911 is about 1.5 [° C./s]. On the other hand, as shown in FIG. 8, the temperature of the stator core 920 is increased by about 70 [° C.] from about 25 [° C.] to about 95 [° C.] in about 90 [s], for example. Stay on. The temperature increase rate of the stator core 920 is about 0.78 [° C./s], which is lower than the temperature increase rate of the coil winding 911.

従来の回転電機用ステータの製造方法では、前述のように、コイル巻線911の昇温速度がステータコア920の昇温速度よりも速くなり、短時間でコイル巻線911の温度がステータコア920の温度よりも高温になる。すると、発泡接着部930aのコイル巻線911に隣接する部分の温度が、発泡接着部930aのステータコア920に隣接する部分の温度よりも高くなる。そして、発泡接着部930aに含まれる発泡ビーズが発泡してコイル巻線911とステータコア920との間の空隙を埋めながら、コイル巻線911とステータコア920とを接着する。このとき、発泡接着部930aのコイル巻線911に隣接する部分の発泡倍率が、発泡接着部30aのステータコア920に隣接する部分の発泡倍率よりも高くなることが考えられる。   In the conventional method for manufacturing a stator for a rotating electrical machine, as described above, the temperature increase rate of the coil winding 911 is faster than the temperature increase rate of the stator core 920, and the temperature of the coil winding 911 is reduced to the temperature of the stator core 920 in a short time. It becomes hotter than. Then, the temperature of the portion adjacent to the coil winding 911 of the foam adhesive portion 930a becomes higher than the temperature of the portion adjacent to the stator core 920 of the foam adhesive portion 930a. The coil winding 911 and the stator core 920 are bonded to each other while the foam beads contained in the foam bonding portion 930a are foamed to fill the gap between the coil winding 911 and the stator core 920. At this time, it is conceivable that the foaming magnification of the portion adjacent to the coil winding 911 of the foamed adhesive portion 930a is higher than the foaming magnification of the portion adjacent to the stator core 920 of the foamed adhesive portion 30a.

従来の回転電機用ステータにおいて、発泡接着部930aのコイル巻線911に隣接する部分の発泡倍率がステータコア920に隣接する部分の発泡倍率よりも高くなると、発泡接着部930aのコイル巻線911に隣接する部分の密度および強度がステータコア920に隣接する部分の密度および強度よりも低下する。この場合、発泡倍率が高くなった発泡接着部930aのコイル巻線911に隣接する部分におけるコイル巻線911に対する接着力が、発泡接着部930aのステータコア920に隣接する部分におけるステータコア920に対する接着力よりも低下するおそれがある。   In the conventional stator for a rotating electrical machine, when the expansion ratio of the portion adjacent to the coil winding 911 of the foamed adhesive portion 930a is higher than the expansion ratio of the portion adjacent to the stator core 920, adjacent to the coil winding 911 of the foamed adhesive portion 930a. The density and strength of the portion to be reduced are lower than the density and strength of the portion adjacent to the stator core 920. In this case, the adhesive force with respect to the coil winding 911 in the portion adjacent to the coil winding 911 of the foamed adhesive portion 930a having a higher expansion ratio is greater than the adhesive force with respect to the stator core 920 in the portion adjacent to the stator core 920 of the foamed adhesive portion 930a. May also decrease.

さらに、前述のように、コイル巻線911の表面は、たとえばステータコア920にコイル巻線911を挿入するときの摩擦の低減を目的として、粗度が低い平滑面とされ、潤滑油が塗布される。そのため、従来の回転電機用ステータにおいて、ステータコア920にコイル巻線911を接着固定する発泡接着部930aは、コイル巻線911に対する接着力が、ステータコア920に対する接着力よりも低下しやすい。このような従来の回転電機用ステータにおける課題を解決するために、本実施形態の回転電機用ステータの製造方法S100は、コイル挿入工程S1後のコイル接着工程S2に特徴を有している。   Furthermore, as described above, the surface of the coil winding 911 is a smooth surface with a low roughness for the purpose of reducing friction when the coil winding 911 is inserted into the stator core 920, for example, and is coated with lubricating oil. . For this reason, in the conventional stator for a rotating electrical machine, the foamed adhesive portion 930 a that adheres and fixes the coil winding 911 to the stator core 920 is more likely to have a lower adhesive force to the coil winding 911 than an adhesive force to the stator core 920. In order to solve such a problem in the conventional stator for a rotating electrical machine, the manufacturing method S100 for a stator for a rotating electrical machine of the present embodiment is characterized by a coil bonding process S2 after the coil insertion process S1.

より具体的には、本実施形態の回転電機用ステータの製造方法S100は、両面に発泡接着部30aを有する絶縁紙30を介在させてステータコア20のスロット21にコイル巻線11を挿入するコイル挿入工程S1を有する点では、従来の製造方法と共通している。また、本製造方法S100は、コイル接着工程S2において、発泡接着部30aの加熱によって生じる膨張および粘着性によってステータコア20にコイル巻線11を接着する点では、従来の製造方法と共通している。   More specifically, in the stator manufacturing method S100 of the present embodiment, the coil insertion in which the coil winding 11 is inserted into the slot 21 of the stator core 20 with the insulating paper 30 having the foamed adhesive portions 30a on both sides is interposed. In the point which has process S1, it is common with the conventional manufacturing method. Further, the present manufacturing method S100 is common to the conventional manufacturing method in that the coil winding 11 is bonded to the stator core 20 by the expansion and tackiness caused by heating of the foam bonding part 30a in the coil bonding step S2.

しかし、本製造方法S100は、コイル接着工程S2において、コイル巻線11の昇温速度がステータコア20の昇温速度よりも遅くなるようにステータコア20をたとえば外部から誘導加熱する点で、従来の製造方法と異なっている。さらに、本製造方法は、コイル接着工程S2において、コイル巻線11に隣接する発泡接着部30aの第1部分31の発泡倍率を、ステータコア20に隣接する発泡接着部30aの第2部分32の発泡倍率よりも低くする点で、従来の製造方法と異なっている。   However, this manufacturing method S100 is a conventional manufacturing method in that, in the coil bonding step S2, the stator core 20 is induction-heated from the outside, for example, so that the temperature increase rate of the coil winding 11 is slower than the temperature increase rate of the stator core 20. It is different from the method. Further, in this manufacturing method, in the coil bonding step S <b> 2, the expansion ratio of the first portion 31 of the foam bonding portion 30 a adjacent to the coil winding 11 is set to the foaming ratio of the second portion 32 of the foam bonding portion 30 a adjacent to the stator core 20. It differs from the conventional manufacturing method in that it is lower than the magnification.

図6は、図1に示す本製造方法S100のコイル接着工程S2におけるコイル巻線11とステータコア20の昇温速度の一例を示すグラフである。本製造方法は、コイル接着工程S2において、コイル巻線11の昇温速度がステータコア20の昇温速度よりも遅くなるように、ステータコア20を加熱する点に特徴を有している。たとえば、図2に示すように、ステータコア20の周囲に配置した誘導加熱用のコイルCに流す電流の値と、コイル巻線11に流す電流の値を制御する。より具体的には、たとえば、誘導加熱用のコイルCに流す電流の値を従来よりも増加させ、コイル巻線11に流す電流の値を従来よりも低下させる。   FIG. 6 is a graph showing an example of the temperature increase rate of the coil winding 11 and the stator core 20 in the coil bonding step S2 of the manufacturing method S100 shown in FIG. This manufacturing method is characterized in that the stator core 20 is heated so that the temperature increase rate of the coil winding 11 is slower than the temperature increase rate of the stator core 20 in the coil bonding step S2. For example, as shown in FIG. 2, the value of the current passed through the induction heating coil C arranged around the stator core 20 and the value of the current passed through the coil winding 11 are controlled. More specifically, for example, the value of the current flowing through the coil C for induction heating is increased from the conventional value, and the value of the current flowing through the coil winding 11 is decreased from the conventional value.

これにより、本製造方法において、図6に示すコイル巻線11の昇温速度は、図8に示す従来の製造方法におけるコイル巻線911の昇温速度と比較して低下している。より詳細には、コイル巻線11の温度は、たとえば約90[s]程度の時間で、約25[℃]から約125[℃]まで、約100[℃]程度昇温しているが、この昇温後の温度は、従来のコイル巻線911の温度よりも約35[℃]程度低下している。すなわち、コイル巻線11の昇温速度は、約1.1[℃/s]になり、従来のコイル巻線911の昇温速度よりも約0.4[℃/s]程度低下している。   Thereby, in this manufacturing method, the temperature increase rate of the coil winding 11 shown in FIG. 6 is lower than the temperature increase rate of the coil winding 911 in the conventional manufacturing method shown in FIG. More specifically, the temperature of the coil winding 11 is increased by about 100 [° C.] from about 25 [° C.] to about 125 [° C.] in about 90 [s], for example. The temperature after this temperature rise is about 35 [° C.] lower than the temperature of the conventional coil winding 911. That is, the temperature increase rate of the coil winding 11 is about 1.1 [° C./s], which is about 0.4 [° C./s] lower than the temperature increase rate of the conventional coil winding 911. .

また、本製造方法S100において、図6に示すステータコア20の昇温速度は、図8に示す従来の製造方法におけるステータコア920の昇温速度と比較して増加している。より詳細には、ステータコア20の温度は、たとえば約90[s]程度の時間で、約25[℃]から約140[℃]まで、約115[℃]程度昇温しているが、この昇温後の温度は、従来よりも約40[℃]程度上昇している。すなわち、ステータコア20の昇温速度は、約1.28[℃/s]になり、従来のステータコア920の昇温速度よりも約0.5[℃/s]程度増加し、コイル接着工程S2におけるコイル巻線11の昇温速度よりも約0.18[℃/s]程度増加している。   Further, in the present manufacturing method S100, the temperature increase rate of the stator core 20 shown in FIG. 6 is increased compared to the temperature increase rate of the stator core 920 in the conventional manufacturing method shown in FIG. More specifically, the temperature of the stator core 20 is increased by about 115 [° C.] from about 25 [° C.] to about 140 [° C.] in about 90 [s], for example. The temperature after the warming is about 40 [° C.] higher than the conventional temperature. That is, the temperature increase rate of the stator core 20 is about 1.28 [° C./s], which is about 0.5 [° C./s] higher than the temperature increase rate of the conventional stator core 920, and in the coil bonding step S2. The temperature rise rate of the coil winding 11 is increased by about 0.18 [° C./s].

すなわち、本実施形態の回転電機用ステータの製造方法S100では、コイル巻線11の昇温速度をステータコア20の昇温速度よりも遅くすることで、コイル巻線11の温度をステータコア20の温度よりも低温にすることができる。これにより、コイル巻線11に隣接する発泡接着部30aの第1部分31の温度を、ステータコア20に隣接する発泡接着部30aの第2部分32の温度よりも低くすることができ、第1部分31の発泡倍率を第2部分32の発泡倍率よりも低くすることができる。   That is, in the manufacturing method S100 of the stator for a rotating electrical machine of the present embodiment, the temperature of the coil winding 11 is made lower than the temperature of the stator core 20 by making the temperature increase rate of the coil winding 11 slower than the temperature increase rate of the stator core 20. Can also be lowered. Thereby, the temperature of the 1st part 31 of the foaming adhesion part 30a adjacent to the coil winding 11 can be made lower than the temperature of the 2nd part 32 of the foaming adhesion part 30a adjacent to the stator core 20, and the 1st part The expansion ratio of 31 can be made lower than the expansion ratio of the second portion 32.

このように、絶縁紙30の両面の発泡接着部30aは、コイル巻線11およびステータコア20によって加熱されることで、熔融および発泡して膨張するとともに、粘着性を発現する。その後、発泡接着部30aの温度を低下させて凝固または固化させることで、絶縁紙30とその両面の発泡接着部30aを介して、コイル巻線11がステータコア20に接着されて固定される。ここで、発泡接着部30aの接着力は、発泡接着部30aの発泡倍率が上昇すると低下し、発泡接着部30aの発泡倍率が低下すると上昇する傾向がある。   As described above, the foamed adhesive portions 30a on both sides of the insulating paper 30 are heated by the coil winding 11 and the stator core 20, so that they expand by being melted and foamed, and exhibit adhesiveness. Then, the coil winding 11 is bonded and fixed to the stator core 20 via the insulating paper 30 and the foam adhesive portions 30a on both sides thereof by lowering the temperature of the foam adhesive portion 30a to solidify or solidify. Here, the adhesive force of the foam adhesive part 30a tends to decrease when the foaming ratio of the foam adhesive part 30a increases, and increases when the foaming ratio of the foam adhesive part 30a decreases.

そこで、本実施形態の回転電機用ステータの製造方法S100は、前述のように、コイル接着工程S2において、コイル巻線11の昇温速度がステータコア20の昇温速度よりも遅くなるように加熱する。これにより、第1部分31の発泡倍率を第2部分32の発泡倍率よりも低くすることができる。したがって、コイル巻線11に対する発泡接着部30aの第1部分31の接着力を、ステータコア20に対する発泡接着部30aの第2部分32の接着力よりも高くすることができる。   Therefore, as described above, the stator manufacturing method S100 of the present embodiment heats the coil winding 11 so that the temperature increase rate of the coil winding 11 is slower than the temperature increase rate of the stator core 20 in the coil bonding step S2. . Thereby, the expansion ratio of the first part 31 can be made lower than the expansion ratio of the second part 32. Therefore, the adhesive force of the first portion 31 of the foamed adhesive portion 30 a to the coil winding 11 can be made higher than the adhesive force of the second portion 32 of the foamed adhesive portion 30 a to the stator core 20.

以上説明したように、実施形態の回転電機用ステータの製造方法S100では、コイル巻線11に対する絶縁紙30の発泡接着部30aの接着力を、ステータコア20に対する絶縁紙30の発泡接着部30aの接着力よりも高くすることができる。したがって、たとえば、ステータコア20にコイル巻線11を挿入するときの摩擦の低減を目的として、コイル巻線11の表面が平滑面とされ、潤滑油が塗布されている場合でも、絶縁紙30の発泡接着部30aのコイル巻線11に対する接着力をステータコア20に対する接着力と同等以上にすることができる。   As described above, in the manufacturing method S100 for a stator for a rotating electrical machine according to the embodiment, the adhesive force of the foamed adhesive portion 30a of the insulating paper 30 to the coil winding 11 is used to bond the foamed adhesive portion 30a of the insulating paper 30 to the stator core 20. Can be higher than power. Therefore, for example, for the purpose of reducing friction when the coil winding 11 is inserted into the stator core 20, even when the surface of the coil winding 11 is a smooth surface and the lubricating oil is applied, the foaming of the insulating paper 30 is performed. The adhesive force of the adhesive portion 30a to the coil winding 11 can be made equal to or higher than the adhesive force to the stator core 20.

以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

11 コイル巻線、20 ステータコア、21 スロット、30 絶縁紙、31 第1部分、30a 発泡接着部、32 第2部分、S1 コイル挿入工程、S2 コイル接着工程、S100 回転電機用ステータの製造方法 DESCRIPTION OF SYMBOLS 11 Coil winding, 20 Stator core, 21 Slot, 30 Insulating paper, 31 1st part, 30a Foam adhesion part, 32 2nd part, S1 coil insertion process, S2 coil adhesion process, S100 Manufacturing method of stator for rotary electric machine

Claims (1)

両面に発泡接着部を有する絶縁紙を介在させてステータコアのスロットにコイル巻線を挿入するコイル挿入工程と、該コイル挿入工程の後の前記発泡接着部の加熱によって生じる膨張および粘着性によって前記ステータコアに前記コイル巻線を接着するコイル接着工程と、を有する回転電機用ステータの製造方法であって、
前記コイル接着工程において、前記コイル巻線の昇温速度が前記ステータコアの昇温速度よりも遅くなるように加熱し、前記コイル巻線に隣接する前記発泡接着部の第1部分の発泡倍率を、前記ステータコアに隣接する前記発泡接着部の第2部分の発泡倍率よりも低くすることを特徴とする回転電機用ステータの製造方法。
A coil insertion step of inserting a coil winding into a slot of the stator core with insulating paper having foam adhesive portions on both sides, and the stator core due to expansion and stickiness caused by heating of the foam adhesive portion after the coil insertion step A method of manufacturing a stator for a rotating electrical machine, comprising: a coil bonding step of bonding the coil winding to
In the coil bonding step, the coil winding is heated so that the temperature increase rate of the coil winding is slower than the temperature increase rate of the stator core, and the foaming magnification of the first portion of the foam bonding portion adjacent to the coil winding is A method for manufacturing a stator for a rotating electrical machine, wherein the foaming ratio of the second portion of the foamed adhesive portion adjacent to the stator core is lower.
JP2017023359A 2017-02-10 2017-02-10 Method for manufacturing stator for rotating electric machine Expired - Fee Related JP6699581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017023359A JP6699581B2 (en) 2017-02-10 2017-02-10 Method for manufacturing stator for rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017023359A JP6699581B2 (en) 2017-02-10 2017-02-10 Method for manufacturing stator for rotating electric machine

Publications (2)

Publication Number Publication Date
JP2018129991A true JP2018129991A (en) 2018-08-16
JP6699581B2 JP6699581B2 (en) 2020-05-27

Family

ID=63174580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017023359A Expired - Fee Related JP6699581B2 (en) 2017-02-10 2017-02-10 Method for manufacturing stator for rotating electric machine

Country Status (1)

Country Link
JP (1) JP6699581B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224557A (en) * 2019-04-22 2019-09-10 横店集团英洛华电气有限公司 Stator core applies antirust oil equipment
US11784545B2 (en) 2019-10-16 2023-10-10 Denso Corporation Method of manufacturing stator for rotating electric machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239322A (en) * 2011-05-12 2012-12-06 Toyota Motor Corp Rotary electric machine
JP2016052226A (en) * 2014-09-02 2016-04-11 トヨタ自動車株式会社 Stator for rotary electric machine
JP2018064419A (en) * 2016-10-14 2018-04-19 本田技研工業株式会社 Stator of dynamo-electric machine and manufacturing method of stator of dynamo-electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239322A (en) * 2011-05-12 2012-12-06 Toyota Motor Corp Rotary electric machine
JP2016052226A (en) * 2014-09-02 2016-04-11 トヨタ自動車株式会社 Stator for rotary electric machine
JP2018064419A (en) * 2016-10-14 2018-04-19 本田技研工業株式会社 Stator of dynamo-electric machine and manufacturing method of stator of dynamo-electric machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224557A (en) * 2019-04-22 2019-09-10 横店集团英洛华电气有限公司 Stator core applies antirust oil equipment
US11784545B2 (en) 2019-10-16 2023-10-10 Denso Corporation Method of manufacturing stator for rotating electric machine

Also Published As

Publication number Publication date
JP6699581B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP6685878B2 (en) Rotating electric machine and method of manufacturing rotating electric machine
JP7040428B2 (en) Stator
JP4661261B2 (en) Rotor structure of rotating electrical machine
JP5718854B2 (en) Inflatable sheet for rotating electrical machine, stator for rotating electrical machine using the expanded sheet for rotating electrical machine, and method for manufacturing stator for rotating electrical machine
US20180159395A1 (en) Insulating material for coil
US11171551B2 (en) Rotor having an insert
JP2016127629A (en) Rotary electric machine stator, and manufacturing method thereof
JP6459083B2 (en) Insulating member, stator of rotating electric machine, rotating electric machine, and method for manufacturing stator of rotating electric machine
JP6699581B2 (en) Method for manufacturing stator for rotating electric machine
EP2321889A1 (en) Apparatus and manufacturing process for an electrical machine
JP2011205834A (en) Method for manufacturing stator
JP2018107921A (en) Stator of rotary electric machine
JP6249781B2 (en) Rotating electric machine stator
JP2021065056A (en) Stator manufacturing apparatus and stator manufacturing method
JP2013031252A (en) Concentrated winding stator and manufacturing method of the same
JP7025224B2 (en) Rotating machine stator
JP2008271661A (en) Stator, its manufacturing method and motor
JPH09308158A (en) Low-voltage rotary machine stator insulating coil
JP2020028140A (en) Armature, and manufacturing method of armature
JP2020036457A (en) Armature manufacturing method
JP2017209004A (en) Generator stator bar having irregular profile strip and process for manufacturing generator stator bar
JP2024004255A (en) Stator of rotary electric machine
JP7402761B2 (en) Manufacturing method of stator of rotating electric machine
JP2018160955A (en) Rotary electric machine coil, and manufacturing method of rotary electric machine coil
JP2020048277A (en) Manufacturing method of armature, and armature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R151 Written notification of patent or utility model registration

Ref document number: 6699581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees