JP2018128568A - Retardation film, production method of the same and display device using the same - Google Patents

Retardation film, production method of the same and display device using the same Download PDF

Info

Publication number
JP2018128568A
JP2018128568A JP2017021305A JP2017021305A JP2018128568A JP 2018128568 A JP2018128568 A JP 2018128568A JP 2017021305 A JP2017021305 A JP 2017021305A JP 2017021305 A JP2017021305 A JP 2017021305A JP 2018128568 A JP2018128568 A JP 2018128568A
Authority
JP
Japan
Prior art keywords
resin
birefringence
retardation film
film
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017021305A
Other languages
Japanese (ja)
Inventor
陽平 岡田
Yohei Okada
陽平 岡田
健太 今里
Kenta IMAZATO
健太 今里
利行 清水
Toshiyuki Shimizu
利行 清水
檜垣 裕二
Yuji Higaki
裕二 檜垣
山中 克浩
Katsuhiro Yamanaka
克浩 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2017021305A priority Critical patent/JP2018128568A/en
Priority to KR1020170164166A priority patent/KR20180092263A/en
Priority to CN201711293646.3A priority patent/CN108398738A/en
Publication of JP2018128568A publication Critical patent/JP2018128568A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/305General preparatory processes using carbonates and alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a retardation film produced by at least uniaxially orienting a laminate having stacked layers of a layer made of a resin having positive birefringence and a layer made of a resin having negative birefringence, the retardation film having approximately ideal wavelength dispersion characteristics in a wide range, a low photo-elastic constant, high developability of birefringence, good adhesiveness between the resin having positive birefringence and the resin having negative birefringence, and excellent flexibility and processability.SOLUTION: A retardation film and a production method of the film are provided: the retardation film has such characteristics that: a resin having positive birefringence comprises a repeating unit represented by formula (A) below by 30 mol% or more and 99 mol% or less based on all repeating units; a resin having negative birefringence comprises a styrene resin; a thickness ratio of the resins having positive birefringence and negative birefringence is 1:1 to 2:1; and a relationship between an in-plane retardation R450 at a wavelength of 450 nm and an in-plane retardation R550 at a wavelength of 550 nm satisfies a predetermined range.SELECTED DRAWING: None

Description

本発明は、正の複屈折を有する樹脂および負の複屈折を有する樹脂との積層体を少なくとも一軸方向に配向させた位相差フィルムであって、特定の波長分散を有し、光弾性定数が低く、屈曲性・加工性に優れた位相差フィルムおよびその製造方法並びにそれを用いた表示装置である。   The present invention is a retardation film in which a laminate of a resin having a positive birefringence and a resin having a negative birefringence is oriented at least in a uniaxial direction, has a specific wavelength dispersion, and has a photoelastic constant. A retardation film having low flexibility and excellent workability, a method for producing the same, and a display device using the same.

一般に光学フィルム、特に位相差フィルムは、液晶および有機EL表示装置等のディスプレイに用いられ、色補償、視野角拡大、反射防止などの機能を備える。位相差フィルムに要求される光学特性としては、広帯域に理想的に近い波長分散特性を有し、光弾性定数が低く、複屈折性の発現性が高い等が挙げられる。
近年、これらの表示装置において、フレキシブル化が提案されており、位相差フィルムにも光学的な性能と共に屈曲性が求められている。
In general, optical films, particularly retardation films, are used in displays such as liquid crystals and organic EL display devices, and have functions such as color compensation, viewing angle expansion, and antireflection. Optical properties required for the retardation film include a wavelength dispersion property ideally close to a wide band, a low photoelastic constant, and a high birefringence.
In recent years, these display devices have been proposed to be flexible, and retardation films are also required to have flexibility as well as optical performance.

位相差フィルムとしては、λ/4板、λ/2板が知られており、その材料としてはビスフェノールAを重縮合したポリカーボネートやポリエーテルサルフォン、ポリサルフォンなどの熱可塑性ポリマーが用いられている。これら材料のフィルムを延伸して得られたλ/4板、λ/2板は、短波長ほど位相差が大きくなるという性質がある。そのため、λ/4板、λ/2板として機能しうる波長が特定の波長に限られるという問題点があった。   As the retardation film, λ / 4 plate and λ / 2 plate are known, and thermoplastic polymers such as polycarbonate, polyethersulfone, polysulfone and the like obtained by polycondensation of bisphenol A are used as the material. The λ / 4 plate and λ / 2 plate obtained by stretching films of these materials have the property that the phase difference increases as the wavelength becomes shorter. For this reason, there is a problem that the wavelengths that can function as the λ / 4 plate and the λ / 2 plate are limited to specific wavelengths.

広帯域において波長を制御する方法として、位相差の波長依存性が異なる特定の2枚以上の複屈折性フィルムを特定の角度で積層して製造する方法が知られている。(例えば特許文献1〜4参照)これらの場合、位相差フィルムを複数枚用いるので、それらの角度を調整して貼り合わせる工程が必要であり、生産性に問題がある。また、貼合に伴う角度ズレや厚みの増大による性能低下も問題となる。   As a method for controlling the wavelength in a wide band, a method is known in which two or more specific birefringent films having different wavelength dependences of the retardation are laminated at a specific angle. (For example, refer to Patent Documents 1 to 4) In these cases, since a plurality of retardation films are used, a process of adjusting and bonding the angles is necessary, and there is a problem in productivity. Moreover, the performance fall by the angle shift | offset | difference accompanying a pasting or increase in thickness also becomes a problem.

近年、このような貼合わせの積層をせずに、広帯域化する方法として、正の配向複屈折性を有する樹脂と負の配向複屈折性を有する樹脂を共押出しして積層体を形成し、この積層体を同一方向に延伸することで、広帯域に理想的に近い波長分散特性を有する積層位相差板を製造する方法が知られている。(特許文献5参照)具体的に、正の複屈折を有する樹脂としてノルボルネン系樹脂を有する樹脂および負の複屈折を有する樹脂としてスチレン−無水マレイン酸系の樹脂を用いた場合が挙げられているが、密着性が劣るものであった。   In recent years, as a method of broadening the band without laminating such lamination, a laminate is formed by co-extrusion of a resin having positive orientation birefringence and a resin having negative orientation birefringence, There is known a method of manufacturing a laminated phase difference plate having a wavelength dispersion characteristic ideally close to a wide band by stretching the laminated body in the same direction. (See Patent Document 5) Specifically, there is a case where a resin having a norbornene resin as a resin having positive birefringence and a styrene-maleic anhydride resin as a resin having negative birefringence are used. However, adhesion was inferior.

また、正の屈折率異方性を有する高分子のモノマー単位と負の屈折率異方性を有する高分子のモノマー単位とからなる高分子フィルムを延伸することで、広帯域に理想的に近い波長分散特性を有する積層位相差板を製造する方法が知られている。(特許文献6参照)この場合、光学特性や機械特性などを兼ね備えたフィルムを作成するには、使用できるモノマー種が特殊でかつ限定されるため、光学特性や機械特性など各種物性をバランスよく兼ね備えたフィルムを作成することは困難であった。
さらに、これらの位相差フィルムは非常に脆く、取り扱いが困難であるうえ、フレキシブルディスプレイに要求される耐屈曲性を備えたものではなかった。
これまでに、正の複屈折を有する樹脂および負の複屈折を有する樹脂との積層体を少なくとも一軸方向に配向させた位相差フィルムにおいて、広帯域に理想的に近い波長分散特性を有し、光弾性定数が低く、複屈折の発現性が高く、屈曲性及び加工性に優れた位相差フィルムは、得られていない。
In addition, by stretching a polymer film composed of a polymer monomer unit having a positive refractive index anisotropy and a polymer monomer unit having a negative refractive index anisotropy, the wavelength is ideally close to a wide band. A method of manufacturing a laminated phase difference plate having dispersion characteristics is known. (See Patent Document 6) In this case, in order to create a film having optical properties and mechanical properties, the types of monomers that can be used are special and limited. Therefore, various physical properties such as optical properties and mechanical properties are well balanced. It was difficult to make a film.
Furthermore, these retardation films are very fragile, are difficult to handle, and do not have the bending resistance required for flexible displays.
So far, a retardation film in which a laminate of a resin having a positive birefringence and a resin having a negative birefringence is oriented at least in a uniaxial direction has a wavelength dispersion characteristic that is ideally close to a broadband, A retardation film having a low elastic constant, high birefringence, and excellent flexibility and workability has not been obtained.

特開平5−27118号公報JP-A-5-27118 特開平10−68816号公報JP-A-10-68816 特開平10−90521号公報JP-A-10-90521 特開平4−343303号公報JP-A-4-343303 特開2002−107542号公報JP 2002-107542 A 国際公開2000/026705号パンフレットInternational Publication No. 2000/026705 Pamphlet

本発明の目的は、正の複屈折を有する樹脂からなる層および負の複屈折を有する樹脂からなる層とを積層した積層体を少なくとも一軸方向に配向させた位相差フィルムにおいて、広帯域に理想的に近い波長分散特性を有し、光弾性定数が低く、複屈折の発現性が高く、屈曲性および加工性に優れた位相差フィルムを提供することにある。   It is an object of the present invention to provide a retardation film in which a laminate comprising a layer made of a resin having a positive birefringence and a layer made of a resin having a negative birefringence is oriented at least in a uniaxial direction, and is ideal for a wide band. An object of the present invention is to provide a retardation film having a wavelength dispersion characteristic close to, low photoelastic constant, high expression of birefringence, and excellent flexibility and workability.

本発明者らは、かかる目的を達成せんとして鋭意検討した結果、正の複屈折を有する樹脂からなる層および負の複屈折からなる層とを積層した積層体を少なくとも一軸方向に配向させた位相差フィルムにおいて、正の複屈折を有する樹脂として、イソソルビド、インマンニドおよびイソイディツド骨格を有するポリカーボネートで表される構成単位を特定量含み、負の複屈折を有する樹脂がスチレン系樹脂を含有する樹脂である位相差フィルムを用いることにより、広帯域に理想的に近い波長分散特性を有し、光弾性定数が低く、複屈折の発現性が高く、屈曲性及び加工性に優れることを見出し、本発明に到達した。   As a result of diligent investigations to achieve such an object, the present inventors have found that a laminate in which a layer made of a resin having a positive birefringence and a layer made of a negative birefringence are laminated at least in a uniaxial direction. In the phase difference film, as the resin having positive birefringence, a resin having a specific amount of a structural unit represented by polycarbonate having isosorbide, inmannide, and isoidid skeleton, and a resin having negative birefringence is a resin containing a styrene resin. By using a retardation film, it has been found that it has wavelength dispersion characteristics ideally close to a wide band, low photoelastic constant, high birefringence, excellent flexibility and workability, and has reached the present invention. did.

すなわち、本発明は、以下の構成要件により達成される。
1.正の複屈折を有する樹脂からなる層および負の複屈折を有する樹脂からなる層とを積層した積層体を少なくとも一軸方向に配向させた位相差フィルムであって、正の複屈折を有する樹脂が下記式(A)で表される繰り返し単位を、全繰り返し単位を基準として30モル%以上、99モル%以下含み、

Figure 2018128568
負の複屈折を有する樹脂が、スチレン系樹脂を含有する樹脂であって、正の複屈折を有する樹脂及び負の複屈折を有する樹脂の厚み比が1:1〜2:1であって、波長450nmにおける面内位相差値R450と波長550nmにおける面内位相差値R550の関係が下記式(1)を満たすことを特徴とする位相差フィルム。
0.60≦R450/R550≦0.95 ・・・(1) That is, the present invention is achieved by the following configuration requirements.
1. A retardation film obtained by orienting a laminate in which a layer made of a resin having positive birefringence and a layer made of a resin having negative birefringence are laminated at least in a uniaxial direction, wherein the resin having positive birefringence is The repeating unit represented by the following formula (A) contains 30 mol% or more and 99 mol% or less based on all repeating units,
Figure 2018128568
The resin having negative birefringence is a resin containing a styrenic resin, and the thickness ratio of the resin having positive birefringence and the resin having negative birefringence is 1: 1 to 2: 1, A retardation film, wherein a relationship between an in-plane retardation value R450 at a wavelength of 450 nm and an in-plane retardation value R550 at a wavelength of 550 nm satisfies the following formula (1).
0.60 ≦ R450 / R550 ≦ 0.95 (1)

2.正の複屈折を有する樹脂のガラス転移温度(Tg)が100℃以上、150℃以下であって、負の複屈折を有する樹脂のガラス転移温度(Tg)が100℃以上、150℃以下である前記1に記載の位相差フィルム。
3.負の複屈折を有する樹脂がスチレン−無水マレイン酸共重合樹脂である前記1または2に記載の位相差フィルム。
4.光弾性係数が30×10−12Pa−1以下である前記1〜3のいずれかに記載の位相差フィルム
5.位相差が135nm以上、155nm以下であって、厚みが20μm以上、70μm以下である前記1〜3のいずれかに記載の位相差フィルム。
6.正の複屈折を有する樹脂からなる層(A層)および負の複屈折を有する樹脂からなる層(B層)を溶融共押出成形により積層一体化した積層体を少なくとも一軸方向に延伸してなる位相差フィルムを製造する方法であって、正の複屈折を有する樹脂が下記式(A)で表される繰り返し単位を、全繰り返し単位を基準として30モル%以上、99モル%以下含み、

Figure 2018128568
負の複屈折を有する樹脂が、スチレン系樹脂を含有する樹脂であって、正の複屈折を有する樹脂及び負の複屈折を有する樹脂の厚み比が1:1〜2:1であって、波長450nmにおける面内位相差値R450と波長550nmにおける面内位相差値R550の関係が下記式(1)を満たすことを特徴とする位相差フィルムの製造方法。
0.60≦R450/R550≦0.95 ・・・(1)
7.前記1〜5のいずれかに記載の位相差フィルムを具備した液晶表示装置または有機EL表示装置。 2. The glass transition temperature (Tg) of the resin having positive birefringence is 100 ° C. or higher and 150 ° C. or lower, and the glass transition temperature (Tg) of the resin having negative birefringence is 100 ° C. or higher and 150 ° C. or lower. 2. The retardation film as described in 1 above.
3. 3. The retardation film as described in 1 or 2 above, wherein the resin having negative birefringence is a styrene-maleic anhydride copolymer resin.
4). 4. Retardation film in any one of said 1-3 whose photoelastic coefficient is 30 * 10 <-12> Pa < -1 > or less. 4. The retardation film according to any one of 1 to 3, wherein the retardation is 135 nm or more and 155 nm or less and the thickness is 20 μm or more and 70 μm or less.
6). A laminate in which a layer made of a resin having positive birefringence (A layer) and a layer made of a resin having negative birefringence (B layer) are laminated and integrated by melt coextrusion molding is stretched at least in a uniaxial direction. A method for producing a retardation film, wherein the resin having positive birefringence includes a repeating unit represented by the following formula (A), containing 30 mol% or more and 99 mol% or less based on all repeating units,
Figure 2018128568
The resin having negative birefringence is a resin containing a styrenic resin, and the thickness ratio of the resin having positive birefringence and the resin having negative birefringence is 1: 1 to 2: 1, A method for producing a retardation film, wherein a relationship between an in-plane retardation value R450 at a wavelength of 450 nm and an in-plane retardation value R550 at a wavelength of 550 nm satisfies the following formula (1).
0.60 ≦ R450 / R550 ≦ 0.95 (1)
7). The liquid crystal display device or organic electroluminescence display which comprised the retardation film in any one of said 1-5.

本発明の位相差フィルムは、正の複屈折を有する樹脂からなる層および負の複屈折を有する樹脂からなる層とを積層した積層体を少なくとも一軸方向に延伸してなる位相差フィルムにおいて、広帯域に理想的に近い波長分散特性を有し、光弾性定数が低く、複屈折の発現性が高く、屈曲性および加工性に優れる。   The retardation film of the present invention is a retardation film obtained by stretching a laminate comprising a layer made of a resin having positive birefringence and a layer made of a resin having negative birefringence at least in a uniaxial direction. Ideally close to chromatic dispersion, low photoelastic constant, high birefringence, and excellent flexibility and workability.

本発明の位相差フィルムは、正の複屈折を有する樹脂からなる層と負の複屈折を有する樹脂からなる層とを積層した積層体であって、以下でそれぞれを構成する各成分、それらの配合割合、調整方法等について、順次具体的に説明する。
なお、説明の便宜上、正の複屈折を有する樹脂からなる層をA層、負の複屈折を有する樹脂からなる層をB層、正の複屈折を有する樹脂を樹脂A、負の複屈折を有する樹脂を樹脂B称することがある。
The retardation film of the present invention is a laminate in which a layer made of a resin having a positive birefringence and a layer made of a resin having a negative birefringence are laminated, each component constituting each of the following, those components The blending ratio, adjustment method, etc. will be specifically described sequentially.
For convenience of explanation, the layer made of resin having positive birefringence is the A layer, the layer made of resin having negative birefringence is the B layer, the resin having positive birefringence is resin A, and the negative birefringence is made. The resin having this may be referred to as “resin B”.

<正の複屈折を有する樹脂>
本発明の位相差フィルムにおいて、正の複屈折を有する樹脂(樹脂A)とは、その樹脂から形成したフィルムを延伸したとき、延伸方向の屈折率が最大になるような樹脂を言い、正の複屈折を有する樹脂が下記式(A)で表される繰り返し単位を、全繰り返し単位を基準として30モル%以上、99モル%以下含有する樹脂である。
<Resin having positive birefringence>
In the retardation film of the present invention, the resin having a positive birefringence (resin A) refers to a resin that has a maximum refractive index in the stretching direction when a film formed from the resin is stretched. A resin having birefringence is a resin containing a repeating unit represented by the following formula (A) in an amount of 30 mol% to 99 mol% based on all repeating units.

Figure 2018128568
本発明の位相差フィルムにおいて、正の複屈折を有する具体的な樹脂としては、ポリカーボネート、ポリエステル、ポリエステルカーボネートが挙げられ、その中で、ポリカーボネートが好ましい。
Figure 2018128568
In the retardation film of the present invention, specific resins having positive birefringence include polycarbonate, polyester, and polyester carbonate, and among them, polycarbonate is preferable.

(繰り返し単位(A))
本発明の位相差フィルムにおける前記式(A)は、エーテル基を有する脂肪族ジオールから誘導されるものであり、バイオマス資源の中でエーテル結合を有するジオールで、耐熱性が高い材料であるものが好ましい。
前記式(A)は、立体異性体の関係にある下記式で表される繰り返し単位(A1)、(A2)および(A3)が例示される。
(Repeating unit (A))
The formula (A) in the retardation film of the present invention is derived from an aliphatic diol having an ether group, and is a diol having an ether bond in a biomass resource and having a high heat resistance. preferable.
Examples of the formula (A) include repeating units (A1), (A2) and (A3) represented by the following formulas having a stereoisomer relationship.

Figure 2018128568
Figure 2018128568

Figure 2018128568
Figure 2018128568

Figure 2018128568
これら(A1)〜(A3)は、糖質由来のエーテルジオールであり、自然界のバイオマスからも得られる物質で、再生可能資源と呼ばれるものの1つである。繰り返し単位(A1)、(A2)および(A3)は、それぞれイソソルビド、イソマンニドおよびイソイディッドと呼ばれる。イソソルビドは、でんぷんから得られるDーグルコースに水添した後、脱水を受けさせることにより得られる。その他のエーテルジオールについても、出発物質を除いて同様の反応により得られる。
Figure 2018128568
These (A1) to (A3) are carbohydrate-derived ether diols, which are substances obtained from natural biomass, and are one of so-called renewable resources. The repeating units (A1), (A2) and (A3) are called isosorbide, isomannide and isoid, respectively. Isosorbide is obtained by hydrogenating D-glucose obtained from starch and then dehydrating it. Other ether diols can be obtained by the same reaction except for the starting materials.

イソソルビド、イソマンニド、イソイディッドのなかでも特に、イソソルビド(1,4;3,6ージアンヒドローDーソルビトール)から誘導される繰り返し単位は、製造の容易さ、耐熱性に優れることから好ましい。   Among isosorbide, isomannide, and isoidide, a repeating unit derived from isosorbide (1,4; 3,6-dianhydro-D-sorbitol) is particularly preferable because of ease of production and heat resistance.

本発明の位相差フィルムに使用される正の複屈折を有する樹脂は、複屈折の発現性を高め、屈曲性および加工性を向上させる観点から、上記式(A)で表される構成単位(A)を含む。全繰り返し単位を基準として、繰り返し単位(A)の下限値は、30モル%以上であり、好ましくは40モル%以上であり、負の複屈折を有する樹脂との密着性の観点から、特に好ましくは45モル%以上である。   The resin having positive birefringence used in the retardation film of the present invention is a structural unit represented by the above formula (A) from the viewpoint of enhancing the expression of birefringence and improving the flexibility and workability ( A). Based on all repeating units, the lower limit of the repeating unit (A) is 30 mol% or more, preferably 40 mol% or more, and particularly preferable from the viewpoint of adhesion with a resin having negative birefringence. Is 45 mol% or more.

また、全繰り返し単位を基準として、繰り返し単位(A)の割合の上限値は、99モル%以下である。好ましくは、90モル%以下、より好ましくは、85モル%以下、さらに好ましくは、75モル%以下である。
全繰り返し単位を基準として、上記式(A)で表される繰り返し単位(A)が、下限より少ない場合は、屈曲性が十分得られない。
Moreover, the upper limit of the ratio of a repeating unit (A) is 99 mol% or less on the basis of all the repeating units. Preferably, it is 90 mol% or less, More preferably, it is 85 mol% or less, More preferably, it is 75 mol% or less.
When the number of repeating units (A) represented by the above formula (A) is less than the lower limit based on all repeating units, sufficient flexibility cannot be obtained.

また、全繰り返し単位を基準として、上記式(A)で表される繰り返し単位(A)が、上限より多い場合は、積層体の屈曲性、加工性および負の複屈折を有する樹脂との密着性が得られない。   In addition, when the number of repeating units (A) represented by the above formula (A) is larger than the upper limit on the basis of all repeating units, adhesion of the laminate with flexibility, workability, and negative birefringence resin Sex cannot be obtained.

(繰り返し単位(B))
本発明の位相差フィルムに使用される正の複屈折を有する樹脂は、上記繰り返し単位(A)を含み、さらにと繰り返し単位(B)を含むことが好ましく、特にそれらの共重合ポリカーボネート樹脂であることが好ましい。繰り返し単位(B)の好ましい一様態として、後述の繰り返し単位(B−1)または(B−2)が挙げられる。
(Repeating unit (B))
The resin having positive birefringence used for the retardation film of the present invention contains the above repeating unit (A), and preferably further contains the repeating unit (B), and is particularly a copolymer polycarbonate resin thereof. It is preferable. As a preferred embodiment of the repeating unit (B), the repeating unit (B-1) or (B-2) described later can be mentioned.

(繰り返し単位(B−1))
本発明の位相差フィルムに使用される樹脂の好ましい一態様として、上記繰り返し単位(A)と下記式で表される繰り返し単位(B−1)を含むことが好ましい。繰り返し単位(A)と繰り返し単位(B−1)との合計は全繰り返し単位中70モル%以上が好ましく、80モル%以上がより好ましく、90モル%以上がさらに好ましく、95モル%以上が特に好ましい。
(Repeating unit (B-1))
As a preferable embodiment of the resin used for the retardation film of the present invention, the resin preferably contains the above repeating unit (A) and a repeating unit (B-1) represented by the following formula. The total of the repeating unit (A) and the repeating unit (B-1) is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and particularly preferably 95 mol% or more in all repeating units. preferable.

Figure 2018128568
(式中、Wは、炭素数2〜30のアルキレン基または炭素数6〜30のシクロアルキレン基を示す。)
繰り返し単位(B−1)は、脂肪族ジオール化合物や脂環式ジオール化合物から誘導されるものである。前記脂肪族ジオール化合物は、直鎖脂肪族ジオール化合物が好ましい。好ましくは炭素原子数4〜24、より好ましくは炭素原子数6〜20、さらに好ましくは炭素原子数8〜12の直鎖脂肪族ジオール化合物が使用される。
Figure 2018128568
(In the formula, W represents an alkylene group having 2 to 30 carbon atoms or a cycloalkylene group having 6 to 30 carbon atoms.)
The repeating unit (B-1) is derived from an aliphatic diol compound or an alicyclic diol compound. The aliphatic diol compound is preferably a linear aliphatic diol compound. Preferably, a linear aliphatic diol compound having 4 to 24 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 8 to 12 carbon atoms is used.

前記脂環式ジオール化合物は、好ましくは炭素原子数6〜24、より好ましくは炭素原子数6〜20の脂環式ジオール化合物が使用される。
前記直鎖脂肪族ジオール化合物として、具体的には、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、2−エチル−1,6−ヘキサンジオール、2,2,4−トリメチル−1,6−ヘキサンジオール、1,10−デカンジオール、1,12−ドデカンジオール、水素化ジリノレイルグリコール,水素化ジオレイルグリコールなどが挙げられる。なかでも1,6−ヘキサンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,12−ドデカンジオールが好ましく、特に1,9−ノナンジオール、1,10−デカンジオール、1,12−ドデカンジオールが好ましい。これらの中で、1,9−ノナンジオールが最も好ましい。
The alicyclic diol compound is preferably an alicyclic diol compound having 6 to 24 carbon atoms, more preferably 6 to 20 carbon atoms.
Specific examples of the linear aliphatic diol compound include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1 , 7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 2-ethyl-1,6-hexanediol, 2,2,4-trimethyl-1,6-hexanediol, 1,10- Examples include decanediol, 1,12-dodecanediol, hydrogenated dilinoleyl glycol, hydrogenated dioleyl glycol, and the like. Of these, 1,6-hexanediol, 1,9-nonanediol, 1,10-decanediol, and 1,12-dodecanediol are preferable, and 1,9-nonanediol, 1,10-decanediol, 1,12 are particularly preferable. -Dodecanediol is preferred. Of these, 1,9-nonanediol is most preferred.

前記脂環式ジオール化合物は、具体的には、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、2−メチル−1,4−シクロヘキサンジオールなどのシクロヘキサンジオール類、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノールなどのシクロヘキサンジメタノール類、2,3−ノルボルナンジメタノール、2,5−ノルボルナンジメタノールなどのノルボルナンジメタノール類、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、1,3−アダマンタンジオール、2,2−アダマンタンジオール、デカリンジメタノール、2,2,4,4−テトラメチル−1,3−シクロブタンジオール及び3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカンなどが挙げられる。これらのうち、1,4−シクロヘキサンジメタノール、トリシクロデカンジメタノール、3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカンが好ましい。   Specific examples of the alicyclic diol compound include 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, and cyclohexanediols such as 2-methyl-1,4-cyclohexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, cyclohexanedimethanols such as 1,4-cyclohexanedimethanol, norbornanedimethanol such as 2,3-norbornanedimethanol, 2,5-norbornanedimethanol Tricyclodecane dimethanol, pentacyclopentadecane dimethanol, 1,3-adamantanediol, 2,2-adamantanediol, decalin dimethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 3 9- bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-spiro [5.5] undecane. Among these, 1,4-cyclohexanedimethanol, tricyclodecane dimethanol, 3,9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5. 5] Undecane is preferred.

これらの脂肪族ジオール化合物及び脂環式ジオール化合物は、1種もしくは2種類以上併用して用いても良い。また、本発明のポリカーボネート樹脂は上記繰り返し単位(A)と脂環式ジオール化合物もしくは脂肪族ジオール化合物をそれぞれ1種以上含むことが好ましい。   These aliphatic diol compounds and alicyclic diol compounds may be used alone or in combination of two or more. Moreover, it is preferable that the polycarbonate resin of this invention contains 1 or more types of the said repeating unit (A) and an alicyclic diol compound, or an aliphatic diol compound, respectively.

繰り返し単位(A)と繰り返し単位(B−1)の組み合わせとして、イソソルビドと3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、1,4−シクロヘキサンジメタノール、1,9−ノナンジオールの組み合わせが好ましく、イソソルビドと3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカンの組み合わせが密着性の観点からより好ましい。   As a combination of the repeating unit (A) and the repeating unit (B-1), isosorbide and 3,9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5 .5] A combination of undecane, 1,4-cyclohexanedimethanol and 1,9-nonanediol is preferred, and isosorbide and 3,9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8, A combination of 10-tetraoxaspiro [5.5] undecane is more preferable from the viewpoint of adhesion.

また、本発明の位相差フィルムで使用されるジオール類は、本発明の効果を損なわない範囲で芳香族ジオールを併用してもよい。芳香族ジヒドロキシ化合物としては、α,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼン(ビスフェノールM)、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、ビスフェノールA、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン(ビスフェノールC)、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン(ビスフェノールAF)、および1,1−ビス(4−ヒドロキシフェニル)デカンなどが挙げられる。   In addition, the diol used in the retardation film of the present invention may be used in combination with an aromatic diol as long as the effects of the present invention are not impaired. As aromatic dihydroxy compounds, α, α′-bis (4-hydroxyphenyl) -m-diisopropylbenzene (bisphenol M), 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,1- Bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfide, bisphenol A, 2 , 2-bis (4-hydroxy-3-methylphenyl) propane (bisphenol C), 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane (bisphenol AF) ) And 1,1-bis (4-hydroxyphenyl) decane.

(繰り返し単位(B−2))
本発明の位相差フィルムに使用される樹脂の好ましい一態様として、上記繰り返し単位(A)と下記式(B−2)で表される繰り返し単位(B−2)を含むことが好ましい。全繰り返し単位中、繰り返し単位(A)と繰り返し単位(B−2)との合計が80モル%以上であり、好ましくは90モル%以上であることが好ましく、特に共重合ポリカーボネート樹脂であることが好ましく挙げられる。
(Repeating unit (B-2))
As a preferable embodiment of the resin used in the retardation film of the present invention, it is preferable to include the repeating unit (A) and the repeating unit (B-2) represented by the following formula (B-2). Among all repeating units, the total of repeating units (A) and repeating units (B-2) is 80 mol% or more, preferably 90 mol% or more, particularly a copolymer polycarbonate resin. Preferably mentioned.

Figure 2018128568
(式中Xは、炭素数3〜20のアルキレン基または炭素数3〜20のシクロアルキレン基を表し、Rは炭素数1〜20のアルキル基または炭素数3〜20のシクロアルキル基を表し、mは1〜10の整数を示す。)
繰り返し単位(B−2)は、側鎖アルキル基または側鎖シクロアルキル基を有する脂肪族ジオールから誘導される単位である。
繰り返し単位(B−2)は、炭素数の合計が4〜12の範囲であることが好ましく、5〜10の範囲であることがより好ましい。かかる範囲であると、ポリカーボネート樹脂のHDT(荷重たわみ温度)が高く保持される。
Figure 2018128568
(In the formula, X represents an alkylene group having 3 to 20 carbon atoms or a cycloalkylene group having 3 to 20 carbon atoms, R represents an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms, m represents an integer of 1 to 10.)
The repeating unit (B-2) is a unit derived from an aliphatic diol having a side chain alkyl group or a side chain cycloalkyl group.
The repeating unit (B-2) preferably has a total carbon number in the range of 4 to 12, more preferably in the range of 5 to 10. Within such a range, the HDT (deflection temperature under load) of the polycarbonate resin is kept high.

(組成)
本発明の位相差フィルムに使用される正の複屈折を有する樹脂は、繰り返し単位(A)を30モル%以上、99モル%以下含むことが必要で、さらに繰り返し単位(B)を含むことが好ましい。それら繰り返し単位(A)と繰り返し単位(B)とのモル比(A)/(B)は30/70〜99/1である。好ましくは40/60〜96/4、より好ましくは50/50〜95/5の範囲である。
繰り返し単位(A)と繰り返し単位(B)とのモル比が、30/70〜99/1の範囲である場合は、耐熱性が高く、さらに溶融粘度が適当で成形性も良好となり、それに伴い、衝撃性に優れる。また、負の複屈折の樹脂からなる層と積層体とした場合、相間密着性に優れる。各繰り返し単位のモル比は、日本電子社製JNM−AL400のプロトンNMRにて測定し算出する。
(composition)
The resin having positive birefringence used for the retardation film of the present invention needs to contain 30 mol% or more and 99 mol% or less of the repeating unit (A), and may further contain the repeating unit (B). preferable. The molar ratio (A) / (B) between the repeating unit (A) and the repeating unit (B) is 30/70 to 99/1. Preferably it is the range of 40 / 60-96 / 4, More preferably, it is the range of 50 / 50-95 / 5.
When the molar ratio of the repeating unit (A) to the repeating unit (B) is in the range of 30/70 to 99/1, the heat resistance is high, the melt viscosity is appropriate, and the moldability is improved. Excellent impact. Moreover, when it is set as the layer and laminated body which consist of resin of negative birefringence, it is excellent in interphase adhesiveness. The molar ratio of each repeating unit is measured and calculated by proton NMR of JNM-AL400 manufactured by JEOL Ltd.

(正の複屈折を有する樹脂の製造方法)
本発明の位相差フィルムに使用される正の複屈折を有する樹脂は、それ自体公知の反応手段、例えば、ポリカーボネートの場合は、ジオール成分に炭酸ジエステルなどのカーボネート前駆物質を反応させる方法により製造できる。次にこれらの製造方法について基本的な手段を簡単に説明する。
(Method for producing resin having positive birefringence)
The resin having positive birefringence used in the retardation film of the present invention can be produced by a reaction means known per se, for example, in the case of polycarbonate, a method in which a carbonate precursor such as a carbonic acid diester is reacted with a diol component. . Next, basic means for these manufacturing methods will be briefly described.

カーボネート前駆物質として炭酸ジエステルを用いるエステル交換反応は、不活性ガス雰囲気下所定割合のジオール成分を炭酸ジエステルと加熱しながら撹拌して、生成するアルコールまたはフェノール類を留出させる方法により行われる。反応温度は生成するアルコールまたはフェノール類の沸点などにより異なるが、通常120〜300℃の範囲である。反応はその初期から減圧にして生成するアルコールまたはフェノール類を留出させながら反応を完結させる。また、必要に応じて末端停止剤、酸化防止剤等を加えてもよい。   The transesterification reaction using a carbonic acid diester as a carbonate precursor is carried out by a method in which a predetermined proportion of a diol component is stirred with a carbonic acid diester under heating in an inert gas atmosphere to distill the resulting alcohol or phenol. The reaction temperature varies depending on the boiling point of the alcohol or phenol produced, but is usually in the range of 120 to 300 ° C. The reaction is completed while distilling off the alcohol or phenol produced under reduced pressure from the beginning. Moreover, you may add a terminal stopper, antioxidant, etc. as needed.

前記エステル交換反応に使用される炭酸ジエステルとしては、置換されてもよい炭素数6〜12のアリール基、アラルキル基等のエステルが挙げられる。具体的には、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネートおよびm−クレジルカーボネート等が例示される。なかでもジフェニルカーボネートが特に好ましい。ジフェニルカーボネートの使用量は、ジヒドロキシ化合物の合計1モルに対して、
好ましくは0.97〜1.10モル、より好ましは1.00〜1.06モルである。
Examples of the carbonic acid diester used in the transesterification include esters such as an aryl group having 6 to 12 carbon atoms and an aralkyl group which may be substituted. Specific examples include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate and m-cresyl carbonate. Of these, diphenyl carbonate is particularly preferred. The amount of diphenyl carbonate used is 1 mol in total for the dihydroxy compound.
Preferably it is 0.97-1.10 mol, More preferably, it is 1.00-1.06 mol.

また溶融重合法においては重合速度を速めるために、重合触媒を用いることができ、かかる重合触媒としては、アルカリ金属化合物、アルカリ土類金属化合物、塩基性リン系化合物、金属化合物等が挙げられる。これらの中でも、重合触媒としては、アルカリ金属またはアルカリ土類金属が好ましい。アルカリ金属化合物の中で、水酸化ナトリウム及び炭酸水素ナトリウムが特に好ましい。また、アルカリ土類金属化合物のなかで、炭酸カルシウム及びステアリン酸バリウムが特に好ましい。   In the melt polymerization method, a polymerization catalyst can be used to increase the polymerization rate. Examples of the polymerization catalyst include alkali metal compounds, alkaline earth metal compounds, basic phosphorus compounds, metal compounds and the like. Among these, as a polymerization catalyst, an alkali metal or an alkaline earth metal is preferable. Of the alkali metal compounds, sodium hydroxide and sodium bicarbonate are particularly preferred. Of the alkaline earth metal compounds, calcium carbonate and barium stearate are particularly preferable.

これらの重合触媒の使用量は、ジオール成分1モルに対し好ましくは1×10−9〜1×10−2当量、好ましくは1×10−8〜1×10−5当量、より好ましくは1×10−7〜1×10−3当量の範囲で選ばれる。 The amount of these polymerization catalysts used is preferably 1 × 10 −9 to 1 × 10 −2 equivalent, preferably 1 × 10 −8 to 1 × 10 −5 equivalent, more preferably 1 × with respect to 1 mol of the diol component. It is selected in the range of 10 −7 to 1 × 10 −3 equivalents.

また、反応後期に触媒失活剤を添加することもできる。使用する触媒失活剤としては、公知の触媒失活剤が有効に使用されるが、この中でもスルホン酸のアンモニウム塩、ホスホニウム塩が好ましい。更にドデシルベンゼンスルホン酸テトラブチルホスホニウム塩等のドデシルベンゼンスルホン酸の塩類、パラトルエンスルホン酸テトラブチルアンモニウム塩等のパラトルエンスルホン酸の塩類が好ましい。またスルホン酸のエステルとして、ベンゼンスルホン酸メチル、ベンゼンスルホン酸エチル、ベンゼンスルホン酸ブチル、ベンゼンスルホン酸オクチル、ベンゼンスルホン酸フェニル、パラトルエンスルホン酸メチル、パラトルエンスルホン酸エチル、パラトルエンスルホン酸ブチル、パラトルエンスルホン酸オクチル、パラトルエンスルホン酸フェニル等が好ましく用いられる。
なかでも、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩が最も好ましく使用される。
In addition, a catalyst deactivator can be added at a later stage of the reaction. As the catalyst deactivator to be used, a known catalyst deactivator is effectively used. Among them, sulfonic acid ammonium salt and phosphonium salt are preferable. Furthermore, salts of dodecylbenzenesulfonic acid such as tetrabutylphosphonium salt of dodecylbenzenesulfonic acid and salts of paratoluenesulfonic acid such as tetrabutylammonium salt of paratoluenesulfonic acid are preferable. Further, as esters of sulfonic acid, methyl benzenesulfonate, ethyl benzenesulfonate, butyl benzenesulfonate, octyl benzenesulfonate, phenyl benzenesulfonate, methyl paratoluenesulfonate, ethyl paratoluenesulfonate, butyl paratoluenesulfonate, Octyl paratoluenesulfonate, phenyl paratoluenesulfonate and the like are preferably used.
Among these, dodecylbenzenesulfonic acid tetrabutylphosphonium salt is most preferably used.

これらの触媒失活剤の使用量はアルカリ金属化合物および/またはアルカリ土類金属化合物より選ばれた少なくとも1種の重合触媒を用いた場合、その触媒1モル当たり好ましくは0.5〜50モルの割合で、より好ましくは0.5〜10モルの割合で、更に好まし
くは0.8〜5モルの割合で使用することができる。
The amount of the catalyst deactivator used is preferably 0.5 to 50 mol per mol of the catalyst when at least one polymerization catalyst selected from alkali metal compounds and / or alkaline earth metal compounds is used. It can be used in a proportion, more preferably in a proportion of 0.5 to 10 mol, still more preferably in a proportion of 0.8 to 5 mol.

(比粘度:ηSP
本発明における樹脂Aの比粘度(ηSP)は、0.2〜0.5が好ましく、、0.22〜0.49がより好ましく、0.24〜0.48がさらに好ましい。樹脂の比粘度が、0.2より小さいと強度が低下し、他方0.5より大きいと成形性が悪化する。
本発明における樹脂Aの比粘度は、20℃で塩化メチレン100mlに樹脂0.7gを溶解した溶液からオストワルド粘度計を用いて求めた。
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
なお、具体的な比粘度の測定としては、例えばポリカーボネートの場合、次の要領で行うことができる。まず、ポリカーボネート樹脂をその20〜30倍重量の塩化メチレンに溶解し、可溶分をセライト濾過により採取した後、溶液を除去して十分に乾燥し、塩化メチレン可溶分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から20℃における比粘度を、オストワルド粘度計を用いて求める。
(Specific viscosity: η SP )
The specific viscosity (η SP ) of the resin A in the present invention is preferably 0.2 to 0.5, more preferably 0.22 to 0.49, and still more preferably 0.24 to 0.48. If the specific viscosity of the resin is less than 0.2, the strength decreases, and if it is greater than 0.5, the moldability deteriorates.
The specific viscosity of the resin A in the present invention was determined using an Ostwald viscometer from a solution obtained by dissolving 0.7 g of resin in 100 ml of methylene chloride at 20 ° C.
Specific viscosity (η SP ) = (t−t 0 ) / t 0
[T 0 is methylene chloride falling seconds, t is sample solution falling seconds]
For example, in the case of polycarbonate, the specific viscosity can be measured in the following manner. First, the polycarbonate resin is dissolved in 20 to 30 times the weight of methylene chloride, and the soluble component is collected by celite filtration, and then the solution is removed and dried sufficiently to obtain a solid component soluble in methylene chloride. Using a Ostwald viscometer, the specific viscosity at 20 ° C. is determined from a solution of 0.7 g of the solid dissolved in 100 ml of methylene chloride.

(ガラス転移温度:Tg)
本発明で使用される樹脂Aのガラス転移温度(Tg)は、好ましくは100〜150℃、より好ましくは105〜140℃、さらに好ましくは110〜135℃である。樹脂のガラス転移温度(Tg)が低いと、耐熱安定性に劣り、位相差値が経時変化して表示品位に影響を与える場合がある。また、樹脂のガラス転移温度(Tg)が高いと、溶融粘度が高くなり、加工性が低下し、フィルムにした際の外観に影響を与える場合がある。
また、正の複屈折を有する樹脂と負の複屈折を有する樹脂のガラス転移温度(Tg)の差は好ましくは20℃以下、より好ましくは15℃以下、さらに好ましくは10℃以下である。正の複屈折を有する樹脂と負の複屈折を有する樹脂のガラス転移温度(Tg)が20℃より大きいと、所望する位相差や波長分散特性を得ることが困難な場合がある。
(Glass transition temperature: Tg)
The glass transition temperature (Tg) of the resin A used in the present invention is preferably 100 to 150 ° C, more preferably 105 to 140 ° C, and still more preferably 110 to 135 ° C. When the glass transition temperature (Tg) of the resin is low, the heat resistance stability is inferior, and the retardation value may change over time and affect display quality. Moreover, when the glass transition temperature (Tg) of resin is high, melt viscosity will become high, workability will fall, and it may affect the external appearance at the time of using a film.
The difference in glass transition temperature (Tg) between the resin having positive birefringence and the resin having negative birefringence is preferably 20 ° C. or less, more preferably 15 ° C. or less, and further preferably 10 ° C. or less. If the glass transition temperature (Tg) of the resin having positive birefringence and the resin having negative birefringence is higher than 20 ° C., it may be difficult to obtain a desired phase difference and wavelength dispersion characteristics.

<負の複屈折を有する樹脂>
本発明の位相差フィルムにおいて、負の複屈折を有する樹脂(樹脂B)とは、負の複屈折を有する樹脂から形成したフィルムを延伸したとき、延伸方向と直交する方向の屈折率が最大になるような樹脂をいい、本発明ではスチレン系樹脂を含有する樹脂である。具体的には、スチレン・無水マレイン酸共重合体、スチレン・マレイミド共重合体、ニトリル系単位とスチレン系単位とを含む共重合体が挙げられる。スチレン系単位を構成するスチレン系化合物としては、スチレン、ビニルトルエン、メトキシスチレン、またはクロロスチレン、α−メチルスチレン等の非置換または置換スチレン系化合物が挙げられる。本発明において樹脂Bは、スチレン・無水マレイン酸共重合体が、特に好ましい。
本発明において樹脂Bは、複屈折の発現性を高め、正の複屈折を有する樹脂との密着性の観点から、スチレン系樹脂であり、スチレン系樹脂の割合は、負の複屈折を有する樹脂からなる層の重量を基準として、好ましくは50〜100重量%であり、より好ましくは70〜100重量%である。
B層中のスチレン系樹脂の含有量が、50重量%より少ない場合は、複屈折の発現性が十分得られず、位相差フィルムとした際に所望の位相差を得ることが困難となる。
<Resin having negative birefringence>
In the retardation film of the present invention, the resin having a negative birefringence (resin B) means that when a film formed from a resin having a negative birefringence is stretched, the refractive index in the direction orthogonal to the stretching direction is maximized. In the present invention, it is a resin containing a styrenic resin. Specific examples include styrene / maleic anhydride copolymers, styrene / maleimide copolymers, and copolymers containing nitrile units and styrene units. Examples of the styrenic compound constituting the styrenic unit include styrene, vinyltoluene, methoxystyrene, or unsubstituted or substituted styrenic compounds such as chlorostyrene and α-methylstyrene. In the present invention, the resin B is particularly preferably a styrene / maleic anhydride copolymer.
In the present invention, the resin B is a styrene-based resin from the viewpoint of improving the birefringence expression and the adhesiveness with the resin having a positive birefringence, and the ratio of the styrene resin is a resin having a negative birefringence. Preferably, it is 50 to 100% by weight, more preferably 70 to 100% by weight, based on the weight of the layer consisting of.
When the content of the styrenic resin in the B layer is less than 50% by weight, sufficient birefringence cannot be obtained, and it is difficult to obtain a desired retardation when the retardation film is obtained.

<位相差フィルム>
(位相差フィルムの層構成)
本発明の位相差フィルムの層構成は、正の複屈折を有する樹脂からなるA層と負の複屈折を有する樹脂からなるB層から構成され、表および裏の最外層は正の複屈折を有する樹脂であることが屈曲性の点から好ましい。
例えば、A1、A2、A3をそれぞれ樹脂Aからなる層とし、B1、B2をそれぞれ樹脂Bからなる層としたとき、2種3層の場合は、A1/B1/A2となり、2種5層の場合は、A1/B1/A2/B2/A3の層構成となり、(A1+A2)/B1、(A1+A2+A3)/(B1+B2)が後述の厚み比となることが好ましい。すなわち、それぞれの比に関して、正の複屈折の合計の厚みと負の複屈折の合計の比は、所望する波長分散特性により任意で選択可能であるが、1:1〜2:1であり、好ましくは、1.05:1〜1.8:1であり、より好ましくは、1.1:1〜1.6:1である。正の複屈折を有する樹脂層の厚みと負の複屈折を有する樹脂層の厚みの比がこの範囲にあると、広帯域に理想的に近い波長分散特性が得られる。
<Phase difference film>
(Layer structure of retardation film)
The layer structure of the retardation film of the present invention is composed of an A layer made of a resin having a positive birefringence and a B layer made of a resin having a negative birefringence, and the outermost layer on the front and back has a positive birefringence. It is preferable from the viewpoint of flexibility.
For example, when A1, A2, and A3 are layers made of resin A, and B1 and B2 are layers made of resin B, respectively, in the case of 2 types and 3 layers, it becomes A1 / B1 / A2 and 2 types and 5 layers. In this case, the layer configuration is A1 / B1 / A2 / B2 / A3, and (A1 + A2) / B1 and (A1 + A2 + A3) / (B1 + B2) preferably have a thickness ratio described later. That is, for each ratio, the ratio of the total thickness of the positive birefringence and the sum of the negative birefringence can be arbitrarily selected according to the desired wavelength dispersion characteristics, but is 1: 1 to 2: 1. Preferably, it is 1.05: 1 to 1.8: 1, more preferably 1.1: 1 to 1.6: 1. When the ratio of the thickness of the resin layer having positive birefringence to the thickness of the resin layer having negative birefringence is within this range, wavelength dispersion characteristics that are ideally close to a wide band can be obtained.

本発明の位相差フィルムの全体(A層の合計+B層の合計)の厚みは、好ましくは、20μm以上100μm以下であり、より好ましくは20μm以上70μm以下、さらに好ましくは20μm以上60μm以下、特に好ましくは20μm以上50μm以下である。厚みが100μmを越えると屈曲性が著しく悪化する。また、デバイスに組み込んだ際、デバイス全体の厚みが厚くなる。厚みが20μm未満の場合は延伸後に所望される位相差の発現が困難である。   The total thickness of the retardation film of the present invention (total of A layers + B layers) is preferably 20 μm to 100 μm, more preferably 20 μm to 70 μm, still more preferably 20 μm to 60 μm, particularly preferably. Is 20 μm or more and 50 μm or less. When the thickness exceeds 100 μm, the flexibility is remarkably deteriorated. Further, when incorporated in the device, the thickness of the entire device is increased. When the thickness is less than 20 μm, it is difficult to develop a desired phase difference after stretching.

<位相差フィルムの形成方法>
位相差フィルムの製造方法としては、溶融共押出成形によりA層とB層を積層一体化した積層体を少なくとも一軸方向に延伸する方法が好ましい。
共押出成形法は、正の複屈折を有する樹脂および負の複屈折を有する樹脂各層を溶融し、多層一体化させた樹脂をロールに密着させて成形を行う。具体的には、マルチマニホールドダイやフィードブロックダイから押出された積層シートを、回転中心軸が平行で同一平面上にある位置関係にあり、且つ接近して配置した3本の冷却ロールを用いて成形し、その後にある一対の引取りロールにて引き取る方法が好ましい。第1冷却ロール、及び第2冷却ロールは金属ロール、又は金属弾性ロールで構成してもよく、金属ロールと金属弾性ロールとを組み合わせて構成してもよい。
<Formation method of retardation film>
As a method for producing the retardation film, a method in which a laminate obtained by laminating and integrating the A layer and the B layer by melt coextrusion molding is preferably stretched at least in a uniaxial direction.
In the coextrusion molding method, a resin having a positive birefringence and a resin layer having a negative birefringence are melted and the multilayered resin is brought into close contact with a roll for molding. Specifically, a laminated sheet extruded from a multi-manifold die or a feed block die is used with three cooling rolls that are in a positional relationship where the rotation center axes are parallel and on the same plane and are arranged close to each other. A method of forming and then taking up with a pair of take-up rolls is preferable. A 1st cooling roll and a 2nd cooling roll may be comprised with a metal roll or a metal elastic roll, and may comprise it combining a metal roll and a metal elastic roll.

(延伸方法)
延伸方法は、テンター等を用いる横一軸延伸、あるいは縦一軸・横一軸を組み合わせた同時二軸延伸、逐次二軸延伸、斜め延伸等、公知の方法を用いることが出来る。
本発明の位相差フィルムを作成する方法に特に制限はないが、未延伸フィルムの両端をクリップで把持してテンターに導き、フィルムを所定温度で予熱後、加熱しながら延伸し、その後、加熱しながら弛緩する方法が好ましい。
本発明の位相差フィルムの延伸条件は特に限定されないが、以下の条件で実施することが好ましい。
(Stretching method)
As the stretching method, a known method such as lateral uniaxial stretching using a tenter or the like, simultaneous biaxial stretching in which longitudinal uniaxial and lateral uniaxial are combined, sequential biaxial stretching, oblique stretching, or the like can be used.
The method for producing the retardation film of the present invention is not particularly limited. However, both ends of the unstretched film are held with clips and guided to a tenter, the film is preheated at a predetermined temperature, stretched while being heated, and then heated. However, a method of relaxing is preferable.
Although the stretching conditions of the retardation film of the present invention are not particularly limited, it is preferably carried out under the following conditions.

フィルムを延伸する際の予熱温度は、樹脂Aもしくは樹脂Bの高い方のガラス転移温度をTgとしたとき、(Tg−5℃)以上(Tg+25℃)以下が好ましく、(Tg℃)以上(Tg+20℃)以下がより好ましく、(Tg+5℃)以上(Tg+15℃)以下がさらに好ましい。
フィルムを延伸する際の予熱温度が、(Tg+25℃)を超える場合は、所望する位相差の発現が困難である。また、(Tg−5℃)未満の場合は、所望する予熱の効果が得られず延伸時に破断する。
予熱温度は配向角の絶対値を調整するために適宜調整する。配向角の全幅方向の平均値を0°とするためには、予熱温度を延伸温度より5℃程度高くすることが好ましい。
The preheating temperature at the time of stretching the film is preferably (Tg−5 ° C.) or more and (Tg + 25 ° C.) or less, and (Tg ° C.) or more (Tg + 20), where Tg is the glass transition temperature of the higher resin A or resin B. ° C) or less, more preferably (Tg + 5 ° C) or more and (Tg + 15 ° C) or less.
When the preheating temperature at the time of stretching the film exceeds (Tg + 25 ° C.), it is difficult to develop a desired retardation. Moreover, when it is less than (Tg-5 degreeC), the effect of the desired preheating is not acquired but it fractures | ruptures at the time of extending | stretching.
The preheating temperature is appropriately adjusted in order to adjust the absolute value of the orientation angle. In order to set the average value of the orientation angles in the entire width direction to 0 °, it is preferable to increase the preheating temperature by about 5 ° C. from the stretching temperature.

フィルムを延伸する際の延伸温度は(Tg−10℃)以上(Tg+20℃)以下が好ましく、(Tg−5℃)以上(Tg+15℃)以下がより好ましく、(Tg℃)以上(Tg+10℃)以下がさらに好ましい。延伸温度が、(Tg+20℃)を超えると所望する位相差の発現が困難であり、延伸温度が、(Tg−10℃)未満の場合には延伸時に破断し易くなる。   The stretching temperature for stretching the film is preferably (Tg-10 ° C) or more and (Tg + 20 ° C) or less, more preferably (Tg-5 ° C) or more and (Tg + 15 ° C) or less, and (Tg ° C) or more (Tg + 10 ° C) or less. Is more preferable. When the stretching temperature exceeds (Tg + 20 ° C.), it is difficult to develop a desired phase difference. When the stretching temperature is less than (Tg−10 ° C.), the film tends to break during stretching.

フィルムを延伸する際の延伸倍率は、1.5倍以上5.0倍以下が好ましく、1.7倍以上4.0倍以下がより好ましく、2.0倍以上3.0倍以下がさらに好ましい。延伸倍率が、5.0倍を超えると延伸時に破断する。延伸倍率が、1.5倍未満の場合には所望とする位相差の発現が困難になり易い。   The stretching ratio when stretching the film is preferably 1.5 times or more and 5.0 times or less, more preferably 1.7 times or more and 4.0 times or less, and further preferably 2.0 times or more and 3.0 times or less. . If the draw ratio exceeds 5.0 times, it will break at the time of drawing. When the draw ratio is less than 1.5 times, it is difficult to develop a desired phase difference.

フィルムを延伸する際の延伸速度は延伸倍率を延伸に要する時間で除した値であり、1.5倍/分以上10.0倍/分以下が好ましく、2.0倍/分以上9.0倍/分以下がより好ましく、3.0倍/分以上8.0倍/分以下がさらに好ましい。延伸速度が、10.0倍/分を超える場合には延伸時に破断し易くなる。延伸速度が、1.5倍未満の場合には所望する位相差の発現が困難になり易い。
延伸工程に連続して行う弛緩処理を適当に行うことで、熱収縮率を所定の値以下とし、さらに熱収縮率および配向角のばらつきを制御することが可能である。
The stretching speed at the time of stretching the film is a value obtained by dividing the stretching ratio by the time required for stretching, and is preferably 1.5 times / min to 10.0 times / min, and more preferably 2.0 times / min to 9.0. The ratio is more preferably twice / min or less, and further preferably 3.0 times / min or more and 8.0 times / min or less. When the stretching speed exceeds 10.0 times / minute, the film tends to break during stretching. When the stretching speed is less than 1.5 times, it is difficult to develop a desired phase difference.
By appropriately performing the relaxation treatment continuously performed in the stretching step, it is possible to set the heat shrinkage rate to a predetermined value or less and to further control the variation in the heat shrinkage rate and the orientation angle.

延伸後に加熱しながら弛緩する際の弛緩温度は80℃以上(Tg+10℃)以下が好ましく、90℃以上(Tg+5℃)以下がより好ましく、100℃以上(Tg℃)以下がさらに好ましい。弛緩温度が、(Tg+10℃)を超えると延伸による分子鎖の配向が乱れ、所望する位相差が低下する。また、熱収縮率および配向角のばらつきが大きくなり易い。弛緩温度が、80℃未満の場合には所望する熱収縮率が得られ難い。また、残留する熱収縮応力によりフィルムが破断しやすくなる。   The relaxation temperature when relaxing while heating after stretching is preferably 80 ° C. or higher (Tg + 10 ° C.), more preferably 90 ° C. or higher (Tg + 5 ° C.) and even more preferably 100 ° C. or higher (Tg ° C.). When the relaxation temperature exceeds (Tg + 10 ° C.), the orientation of the molecular chain due to stretching is disturbed, and the desired phase difference is lowered. In addition, variations in the thermal shrinkage rate and the orientation angle are likely to increase. When the relaxation temperature is less than 80 ° C., it is difficult to obtain a desired heat shrinkage rate. Further, the film is easily broken by the remaining heat shrinkage stress.

延伸後に加熱しながら弛緩する際の弛緩率は、0.010以上0.070以下が好ましく、0.015以上0.060以下がより好ましく、0.020以上0.050以下がさらに好ましい。弛緩率が、0.070を超えるとテンター出口でフィルムのばたつきにより破断する。また、熱収縮率および配向角のばらつきが大きくなる。弛緩率が、0.010未満の場合には所望の熱収縮率が得られない。また、残留する熱収縮応力によりフィルムが破断しやすくなる。   The relaxation rate when relaxing while heating after stretching is preferably from 0.010 to 0.070, more preferably from 0.015 to 0.060, and even more preferably from 0.020 to 0.050. When the relaxation rate exceeds 0.070, the film breaks due to flapping of the film at the tenter exit. In addition, the variation of the heat shrinkage rate and the orientation angle is increased. When the relaxation rate is less than 0.010, a desired heat shrinkage rate cannot be obtained. Further, the film is easily broken by the remaining heat shrinkage stress.

延伸後に加熱しながら弛緩する際の弛緩速度は、弛緩率を弛緩に要する時間で除した値であり、0.005/分以上0.070/分以下が好ましく、0.007以上0.050以下がより好ましく、0.010以上0.040以下がさらに好ましい。弛緩速度が、0.070/分を超えると所望の熱収縮率が得られ難い。弛緩速度が、0.005/分未満の場合には、熱収縮率および配向角のばらつきが大きくなる。   The relaxation rate when relaxing while heating after stretching is a value obtained by dividing the relaxation rate by the time required for relaxation, preferably 0.005 / min or more and 0.070 / min or less, and 0.007 or more and 0.050 or less. Is more preferably 0.010 or more and 0.040 or less. When the relaxation rate exceeds 0.070 / min, it is difficult to obtain a desired heat shrinkage rate. When the relaxation rate is less than 0.005 / min, the thermal shrinkage rate and the orientation angle vary greatly.

<位相差フィルムの特性>
(複屈折)
本発明の位相差フィルムの複屈折は、0.001以上が好ましく、0.002以上がさらに好ましく、0.003以上がより好ましい。フィルムの複屈折が0.001未満の場合、フィルムの厚みを薄くすることが困難である。
<Characteristics of retardation film>
(Birefringence)
The birefringence of the retardation film of the present invention is preferably 0.001 or more, more preferably 0.002 or more, and more preferably 0.003 or more. When the birefringence of the film is less than 0.001, it is difficult to reduce the thickness of the film.

(光弾性定数)
本発明の位相素フィルムは、光弾性定数が、好ましくは、30×10−13Pa−1以下であり、より好ましくは、20×10−13Pa−1以下であり、さらに好ましくは、17×10−13Pa−1以下であり、よりさらに好ましくは、13×10−13Pa−1以下であり、最も好ましくは、10×10−13Pa−1以下である。
(Photoelastic constant)
The phase element film of the present invention preferably has a photoelastic constant of 30 × 10 −13 Pa −1 or less, more preferably 20 × 10 −13 Pa −1 or less, and even more preferably 17 ×. It is 10 −13 Pa −1 or less, more preferably 13 × 10 −13 Pa −1 or less, and most preferably 10 × 10 −13 Pa −1 or less.

(波長分散性)
本発明の位相差フィルムは、波長400〜800nmの可視光領域において、フィルム面内の位相差が短波長になるほど小さくなる逆波長分散性を示す。かかる位相差フィルムは、下記式(1)の条件を満たすことが必要である。
0.60 ≦ R(450)/R(550)≦0.95 (1)
好ましくは、下記式(1−1)の条件を満たすことが好ましい。
0.70≦R(450)/R(550)≦0.94 (1−1)
より好ましくは、下記式(1−2)の条件を満たすことが好ましい。
0.80≦R(450)/R(550)≦0.90 (1−2)
最も好ましくは、下記式(1−3)の条件を満たすことが好ましい。
0.83≦R(450)/R(550)≦0.87 (1−3)
ここで面内の位相差値Rとは下記式で定義されるものであり、フィルムに垂直方向に透過する光のX方向とそれと垂直のY方向との位相の遅れを現す特性である。
R=(n−n)×d
但し、nはフィルム面内の主延伸方向の屈折率であり、nはフィルム面内の主延伸方向と直交方向の屈折率であり、dはフィルムの厚みである。ここで、主延伸方向とは一軸延伸の場合には延伸方向、二軸延伸の場合にはより配向度があがるように延伸した方向を意味しており、化学構造的には高分子主鎖の配向方向を指す。
(Wavelength dispersion)
The retardation film of the present invention exhibits reverse wavelength dispersibility that becomes smaller as the retardation in the film plane becomes shorter in the visible light region having a wavelength of 400 to 800 nm. Such a retardation film needs to satisfy the condition of the following formula (1).
0.60 ≦ R (450) / R (550) ≦ 0.95 (1)
It is preferable that the condition of the following formula (1-1) is satisfied.
0.70 ≦ R (450) / R (550) ≦ 0.94 (1-1)
More preferably, the condition of the following formula (1-2) is preferably satisfied.
0.80 ≦ R (450) / R (550) ≦ 0.90 (1-2)
Most preferably, the condition of the following formula (1-3) is preferably satisfied.
0.83 ≦ R (450) / R (550) ≦ 0.87 (1-3)
Here, the in-plane retardation value R is defined by the following equation, and is a characteristic that expresses a phase delay between the X direction of light transmitted through the film in the vertical direction and the vertical Y direction.
R = (n x -n y) × d
Where nx is the refractive index in the main stretching direction in the film plane, ny is the refractive index in the direction perpendicular to the main stretching direction in the film plane, and d is the thickness of the film. Here, the main stretching direction means a stretching direction in the case of uniaxial stretching, and a direction in which the degree of orientation is increased in the case of biaxial stretching. Refers to the orientation direction.

(鉛筆硬度)
本発明の位相差フィルムで使用される樹脂は、鉛筆硬度が好ましくはHB以上である。耐傷性に優れるという点で、F以上がより好ましく、H以上がさらに好ましい。
(Pencil hardness)
The resin used in the retardation film of the present invention preferably has a pencil hardness of HB or higher. In terms of excellent scratch resistance, F or higher is more preferable, and H or higher is more preferable.

(屈曲性)
本発明の位相差フィルムの屈曲性は、破断までの屈曲回数が好ましくは4万回以上10万回未満であり、より好ましくは10万回以上である。破断までの屈曲回数が4万回以上10万回未満の場合、フレキシブルディスプレイに組み込んだ際の繰り返し屈曲耐久性に優れるため好ましい。
(Flexibility)
As for the flexibility of the retardation film of the present invention, the number of times of bending until breakage is preferably 40,000 times or more and less than 100,000 times, more preferably 100,000 times or more. It is preferable that the number of times of bending until breakage is 40,000 times or more and less than 100,000 times because it is excellent in repeated bending durability when incorporated in a flexible display.

(破断強度)
本発明の位相差フィルムの破断強度は、好ましくは140MPa以上である。破断強度が140MPa以上の場合、加工性が損なわれ難く好ましい。また、フレキシブルディスプレイに組み込んだ際の繰り返し屈曲耐久性に優れるため好ましい。
(Breaking strength)
The breaking strength of the retardation film of the present invention is preferably 140 MPa or more. When the breaking strength is 140 MPa or more, it is preferable that workability is hardly impaired. Moreover, since it is excellent in repeated bending durability at the time of incorporating in a flexible display, it is preferable.

(破断伸度)
本発明の位相差フィルムの破断伸度は、好ましくは30%以上である。破断伸度が30%以上の場合、同様の破断が発生しにくく好ましい。また、フレキシブルディスプレイに組み込んだ際の繰り返し屈曲耐久性に優れるため好ましい。
(Elongation at break)
The breaking elongation of the retardation film of the present invention is preferably 30% or more. When the elongation at break is 30% or more, it is preferable that the same breakage hardly occurs. Moreover, since it is excellent in repeated bending durability at the time of incorporating in a flexible display, it is preferable.

(密着性)
本発明の位相差フィルムは、後述の密着性評価をしたとき、剥離するが、界面の荒れが認められる程度が好ましく、剥離しないことがより好ましい。本評価にて容易に剥離が認められる場合、デバイスに組み込んだ際の衝撃試験等で剥離が発生する可能性があり好ましくない。
(Adhesion)
The retardation film of the present invention peels off when the adhesion evaluation described below is performed, but the degree to which roughening of the interface is recognized is preferable, and it is more preferable that the retardation film does not peel off. If peeling is easily observed in this evaluation, peeling may occur in an impact test or the like when incorporated in a device, which is not preferable.

(飽和吸水率)
本発明の位相差フィルムに使用される樹脂の飽和吸水率は、好ましくは3.3%以下であり、より好ましくは2.2%以下であり、さらに好ましくは2.0%以下である。飽和吸水率が、3.3%より高いと成形品において吸水による寸法変化や反りなど、種々の物性低下が顕著となり好ましくない。
(Saturated water absorption)
The saturated water absorption of the resin used for the retardation film of the present invention is preferably 3.3% or less, more preferably 2.2% or less, and further preferably 2.0% or less. When the saturated water absorption rate is higher than 3.3%, various physical properties such as dimensional change and warpage due to water absorption are remarkable in the molded product, which is not preferable.

また、本発明の位相差フィルムに使用される樹脂は、ガラス転移温度(Tg℃)と吸水率(Wa%)との関係が下記式(I)を満足することが好ましく、下記式(I−a)を満足することがより好ましい。下記式(I)を満足すると、耐熱性に優れ、且つ低吸水率の樹脂であるため、湿熱環境時の物性変化や変形を抑制でき好ましい。TW値の上限は特に限定されないけれども、10以下で充分である。
1.6 ≦ TW値 = Tg × 0.04 − Wa (I)
2.6 ≦ TW値 = Tg × 0.04 − Wa (I−a)
The resin used for the retardation film of the present invention preferably satisfies the following formula (I) in terms of the relationship between the glass transition temperature (Tg ° C.) and the water absorption (Wa%). It is more preferable to satisfy a). When the following formula (I) is satisfied, the resin is excellent in heat resistance and has a low water absorption rate, which is preferable because it can suppress changes in physical properties and deformation in a humid heat environment. The upper limit of the TW value is not particularly limited, but 10 or less is sufficient.
1.6 ≦ TW value = Tg × 0.04-Wa (I)
2.6 ≦ TW value = Tg × 0.04−Wa (I−a)

<位相差フィルム中の添加剤等>
本発明の位相差フィルムで使用される樹脂は、用途や必要に応じて熱安定剤、可塑剤、光安定剤、重合金属不活性化剤、難燃剤、滑剤、帯電防止剤、界面活性剤、抗菌剤、紫外線吸収剤、離型剤等の添加剤を配合することができる。
また、本発明の位相差フィルムで使用される樹脂は、本発明の効果を損なわない範囲で他の樹脂と併用してもよい。すなわち、前述の樹脂Aと樹脂Bは、樹脂組成物として用いても良い。
<Additives etc. in retardation film>
Resin used in the retardation film of the present invention is a heat stabilizer, plasticizer, light stabilizer, polymerized metal deactivator, flame retardant, lubricant, antistatic agent, surfactant, as required and necessary. Additives such as antibacterial agents, ultraviolet absorbers, mold release agents and the like can be blended.
In addition, the resin used in the retardation film of the present invention may be used in combination with other resins as long as the effects of the present invention are not impaired. That is, the above-mentioned resin A and resin B may be used as a resin composition.

以下、本発明の実施例を説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、実施例中「部」とは「重量部」を意味する。   Examples of the present invention will be described below, but the present invention is not limited to these examples. In the examples, “parts” means “parts by weight”.

<樹脂製造例1>
イソソルビド(以下ISSと略す)441部、1,9−ノナンジオール(以下NDと略す)66部、ジフェニルカーボネート(以下DPCと略す)750部、および触媒としてテトラメチルアンモニウムヒドロキシド0.8×10−2部と水酸化ナトリウム0.6×10−4部を窒素雰囲気下180℃に加熱し溶融させた。その後、30分かけて減圧度を13.4kPaに調整した。その後、60℃/hrの速度で240℃まで昇温を行い、10分間その温度で保持した後、1時間かけて減圧度を133Pa以下とした。合計6時間撹拌下で反応を行い、反応槽の底より窒素加圧下吐出し、水槽で冷却しながら、ペレタイザーでカットして樹脂Aとして共重合ポリカーボネート樹脂ペレットを得た。
<Resin production example 1>
441 parts of isosorbide (hereinafter abbreviated as ISS), 66 parts of 1,9-nonanediol (hereinafter abbreviated as ND), 750 parts of diphenyl carbonate (hereinafter abbreviated as DPC), and tetramethylammonium hydroxide 0.8 × 10 as a catalyst 2 parts and 0.6 × 10 −4 parts of sodium hydroxide were heated to 180 ° C. in a nitrogen atmosphere and melted. Thereafter, the degree of vacuum was adjusted to 13.4 kPa over 30 minutes. Thereafter, the temperature was raised to 240 ° C. at a rate of 60 ° C./hr and maintained at that temperature for 10 minutes, and then the degree of vacuum was set to 133 Pa or less over 1 hour. The reaction was carried out with stirring for a total of 6 hours, discharged from the bottom of the reaction tank under nitrogen pressure, and cut with a pelletizer while cooling in a water tank to obtain copolymer polycarbonate resin pellets as resin A.

<樹脂製造例2>
ISS366部、3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ(5.5)ウンデカン(以下SPGと略す)219部、ND33部を用いた他は、樹脂製造例1と全く同様の操作を行い、共重合ポリカーボネート樹脂を得た。
<Resin production example 2>
ISS 366 parts, 3,9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro (5.5) undecane (hereinafter abbreviated as SPG) 219 parts, ND 33 parts Except for the use, the same operation as in Resin Production Example 1 was performed to obtain a copolymer polycarbonate resin.

<樹脂製造例3>
ISS366部、SPG125部、ND83部を用いた他は、樹脂製造例1と全く同様の操作を行い、共重合ポリカーボネート樹脂を得た。
<Resin production example 3>
Except for using ISS 366 parts, SPG 125 parts, and ND 83 parts, the same operation as in Resin Production Example 1 was performed to obtain a copolymer polycarbonate resin.

<樹脂製造例4>
ISS250部、1,4−シクロヘキサンジメタノール(以下CHDMと略す)247部を用いた他は、樹脂製造例1と全く同様の操作を行い、共重合ポリカーボネート樹脂を得た。
<Resin production example 4>
Except for using 250 parts of ISS and 247 parts of 1,4-cyclohexanedimethanol (hereinafter abbreviated as CHDM), the same operation as in Resin Production Example 1 was performed to obtain a copolymer polycarbonate resin.

<樹脂製造例5>
ISS350部、CHDM149部を用いた他は、樹脂製造例1と全く同様の操作を行い、共重合ポリカーボネート樹脂を得た。
<Resin production example 5>
Except for using 350 parts of ISS and 149 parts of CHDM, the same operation as in Resin Production Example 1 was performed to obtain a copolymer polycarbonate resin.

<樹脂製造例6>
ISS502部を用いた他は、樹脂製造例1と全く同様の操作を行い、ポリカーボネート樹脂を得た。
<Resin production example 6>
Except for using ISS 502 parts, the same operation as in Resin Production Example 1 was performed to obtain a polycarbonate resin.

<樹脂製造例7>
ISS124部、SPG775部を用いた他は、樹脂製造例1と全く同様の操作を行い、ポリカーボネート樹脂を得た。
<Resin Production Example 7>
Except for using 124 parts of ISS and 775 parts of SPG, the same operation as in Resin Production Example 1 was performed to obtain a polycarbonate resin.

<樹脂製造例8>
9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン(以下BCFと略す)37.0部,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン(以下BPEFと略す)34.3部、SPG65.5部、DPC85.7部および触媒としてテトラメチルアンモニウムヒドロキシド3.6×10−3部と炭酸水素ナトリウム1.6×10−4部を窒素雰囲気下180℃に加熱し溶融させた。その後、30分かけて減圧度を13.4kPaに調整した。その後、20℃/hrの速度で260℃まで昇温を行い、10分間その温度で保持した後、1時間かけて減圧度を133Pa以下とした。合計6時間撹拌下で反応を行った。
反応終了後、触媒量の1.5倍モルのドデシルベンゼンスルホン酸テトラブチルホスホニウム塩を添加し、触媒を失活した後、反応槽の底より窒素加圧下吐出し、水槽で冷却しながら、ペレタイザーでカットして共重合ポリカーボネート樹脂ペレットを得た。
<Resin production example 8>
9,9-bis (4-hydroxy-3-methylphenyl) fluorene (hereinafter abbreviated as BCF) 37.0 parts, 9-bis [4- (2-hydroxyethoxy) phenyl] fluorene (hereinafter abbreviated as BPEF) 34. 3 parts, SPG 65.5 parts, DPC 85.7 parts and tetramethylammonium hydroxide 3.6 × 10 −3 parts and sodium hydrogen carbonate 1.6 × 10 −4 parts as a catalyst were heated to 180 ° C. in a nitrogen atmosphere and melted. I let you. Thereafter, the degree of vacuum was adjusted to 13.4 kPa over 30 minutes. Thereafter, the temperature was raised to 260 ° C. at a rate of 20 ° C./hr, held at that temperature for 10 minutes, and then the degree of vacuum was set to 133 Pa or less over 1 hour. The reaction was carried out under stirring for a total of 6 hours.
After completion of the reaction, 1.5 times mole of the catalyst amount of tetrabutylphosphonium salt of dodecylbenzene sulfonate was added to deactivate the catalyst, and then discharged from the bottom of the reaction tank under nitrogen pressure and cooled in a water tank while being pelletized. To obtain copolymer polycarbonate resin pellets.

<樹脂製造例9>
BCF51.9部、SPG77.5部を用いた他は、樹脂製造例8と全く同様の操作を行い、脂肪族芳香族ポリカーボネート共重合体を得た。
また、実施例において使用した樹脂及びフィルムの評価方法は以下のとおりである。
1.ポリマー組成比(NMR)
日本電子社製JNM−AL400のプロトンNMRにて測定し、ポリマー組成比を算出した。
2.光弾性定数
フィルムから長さ50mm、幅10mmの試験片を切り出し、日本分光(株)製 Spectroellipsometer M−220を使用し光弾性定数を測定した。
3.位相差、波長分散性
位相差フィルムから長さ50mm、幅50mmの試験片を切り出し、その中央部分を日本分光(株)製 Spectroellipsometer M−220を使用し波長550nmにおける位相差およびその波長分散性を測定した。
4.Tg(ガラス転移温度)
ティー・エイ・インスツルメント・ジャパン(株)製2910型DSCを使用し、試料15mgを用いて窒素50ml/min雰囲気下、昇温速度20℃/minにて測定した。
5.耐屈曲性および密着性
耐屈曲性はJIS P8115に記載のMIT試験機法に準じて測定した。その際、測定サンプルはフィルムの主配向軸方向(主たる延伸方向)が長手方向となるように、長さ110mm、幅10mmで裁断したものを用い、折り曲げ面の曲率半径は1mmに、また折り曲げの速度は毎分100回とした。折り曲げを繰り返し破断までの屈曲回数(耐折回数)を10回測定し、その平均値から以下の通り判定した。
「◎」:破断までの屈曲回数10万回以上
「○」:破断までの屈曲回数4万回以上10万回未満
「△」:破断までの屈曲回数3万回以上4万回未満
「×」:破断までの屈曲回数3万回未満
また、破断後のサンプルの破断した断面を目視にて確認し、層間の剥離について以下の通り判定した。
「◎」:剥離なし。
「○」:剥離するが、界面の荒れが認められる。
「×」:剥離し、界面に荒れが認められない。
6.機械強度
加工性はORIENTEC社製テンシロンRTC−1210Aを用いて、JIS K7127に準じてフィルムの主配向軸方向(主たる延伸方向)の破断強度および破断伸度を測定して以下の通り判定した。
「○」:破断強度140MPa以上かつ破断伸度30%以上
「△」:破断強度140MPa以上あるいは破断伸度30%以上のどちらかを満たすこと
「×」:破断強度140MPa未満かつ破断伸度30%未満
破断強度および破断伸度は幅10mm、長さ200mmのサンプルを温度23℃、湿度65%RHの環境下において、チャック間距離100mm、引張速度5mm/minで伸長し、試験片の破断時の伸び量および破断に要した荷重の測定結果より算出した。
<Resin production example 9>
Except for using 51.9 parts of BCF and 77.5 parts of SPG, the same operation as in Resin Production Example 8 was performed to obtain an aliphatic aromatic polycarbonate copolymer.
Moreover, the evaluation method of the resin and film used in the Example is as follows.
1. Polymer composition ratio (NMR)
Measurement was performed by proton NMR of JNM-AL400 manufactured by JEOL Ltd., and the polymer composition ratio was calculated.
2. Photoelastic constant A test piece having a length of 50 mm and a width of 10 mm was cut out from the film, and the photoelastic constant was measured using Spectroellipometer M-220 manufactured by JASCO Corporation.
3. Retardation and wavelength dispersibility A test piece having a length of 50 mm and a width of 50 mm is cut out from the retardation film, and the central part thereof is measured using a Spectroellipometer M-220 manufactured by JASCO Corporation. It was measured.
4). Tg (glass transition temperature)
A 2910 type DSC manufactured by TA Instruments Japan Co., Ltd. was used, and 15 mg of the sample was measured in a 50 ml / min nitrogen atmosphere at a heating rate of 20 ° C./min.
5). Flexibility and adhesion Flex resistance was measured according to the MIT tester method described in JIS P8115. At that time, the measurement sample was cut with a length of 110 mm and a width of 10 mm so that the main orientation axis direction (main stretching direction) of the film was the longitudinal direction, the bending surface had a radius of curvature of 1 mm, and The speed was 100 times per minute. The number of times of bending until the break was repeated (number of folding times) was measured 10 times, and the average value was determined as follows.
“◎”: 100,000 times or more until the break “○”: 40,000 times or more until the break and less than 100,000 “△”: The number of times until the break is 30,000 or more and less than 40,000 “×” : Less than 30,000 times of bending until rupture Further, the fractured cross section of the sample after the rupture was visually confirmed, and delamination was determined as follows.
“◎”: No peeling.
“◯”: peeling, but rough interface is observed.
"X": It peels and a rough surface is not recognized.
6). Mechanical strength Workability was determined as follows by measuring the breaking strength and breaking elongation in the main orientation axis direction (main stretching direction) of the film according to JIS K7127 using Tensilon RTC-1210A manufactured by ORIENTEC.
“◯”: breaking strength of 140 MPa or more and breaking elongation of 30% or more “Δ”: satisfying either breaking strength of 140 MPa or more or breaking elongation of 30% or more “x”: breaking strength of less than 140 MPa and breaking elongation of 30% Less than 10 mm width and 200 mm length of sample at a temperature of 23 ° C. and a humidity of 65% RH, with a distance between chucks of 100 mm and a tensile speed of 5 mm / min. It calculated from the measurement result of the amount of elongation and the load required for the fracture.

[実施例1]
樹脂Aとして製造例1で作成した樹脂、樹脂Bとして、スチレン・無水マレイン酸共重合体「ダイラーク D332」(ノバケミカル社製、Tg=131℃)を用いて、層A及び層Bの厚み比が1.3:1であって、未延伸フィルムの厚みが135μmである積層体を作成し、予熱温度135℃、延伸温度130℃、延伸倍率3.0倍で横延伸し、位相差フィルムを得た。
なお、厚み方向に見たとき、層A、層B、層Aがこの順で0.65:1:0.65の厚み比となるように積層されている。
なお積層体は、以下の方法に従い、作製した。
第1、第2押出機A、B、ダイ、及び第1〜第3ロール、また一対の引取りロールを順次配置し、2種3層分配、すなわち、第1の層、第2の層、第3の層(A1/B1/A2)のフィードブロックを正の複屈折を有する樹脂が表層側になるように配置した。
[Example 1]
Using the resin prepared in Production Example 1 as the resin A and the resin B as the styrene / maleic anhydride copolymer “Dylark D332” (Nova Chemical Co., Tg = 131 ° C.), the thickness ratio of the layer A and the layer B Is 1.3: 1, and a laminate having an unstretched film thickness of 135 μm is prepared, and the film is horizontally stretched at a preheating temperature of 135 ° C., a stretching temperature of 130 ° C., and a stretching ratio of 3.0 times. Obtained.
When viewed in the thickness direction, layer A, layer B, and layer A are laminated in this order so as to have a thickness ratio of 0.65: 1: 0.65.
The laminate was produced according to the following method.
The first and second extruders A and B, the die, and the first to third rolls and the pair of take-up rolls are sequentially arranged, and two types and three layers are distributed, that is, the first layer, the second layer, The feed block of the third layer (A1 / B1 / A2) was arranged so that the resin having positive birefringence is on the surface layer side.

正の複屈折を有する樹脂はスクリュー径40mmの単軸押出機で、また負の複屈折を有する樹脂はスクリュー径30mmの単軸押出機でそれぞれ溶融させ、フィードブロック法にて3層に積層させ、設定温度250℃のダイを介して押出し、第1ロールと第2ロールで圧延し、第3ロールにて冷却させながら樹脂積層体を成形し、一対の引取りロールにより引取り樹脂積層体を作製した。なお、第1冷却ロールの表面温度は100℃、第2冷却ロールの表面温度90℃、第3冷却ロールの表面温度は120℃であった。これらの温度は、各冷却ロールの表面温度を実測した値である。   Resin having positive birefringence is melted by a single screw extruder having a screw diameter of 40 mm, and resin having negative birefringence is melted by a single screw extruder having a screw diameter of 30 mm and laminated in three layers by a feed block method. The resin laminate is extruded through a die having a set temperature of 250 ° C., rolled with the first roll and the second roll, cooled with the third roll, and the take-up resin laminate is formed with a pair of take-up rolls. Produced. In addition, the surface temperature of the 1st cooling roll was 100 degreeC, the surface temperature of the 2nd cooling roll was 90 degreeC, and the surface temperature of the 3rd cooling roll was 120 degreeC. These temperatures are values obtained by actually measuring the surface temperature of each cooling roll.

[実施例2]
正の複屈折を有する樹脂及び負の複屈折を有する樹脂の比が0.6:1:0.6であって、未延伸フィルムの厚みが180μmであること以外は実施例1と同様の条件で位相差フィルムを得た。
[Example 2]
The same conditions as in Example 1 except that the ratio of the resin having positive birefringence and the resin having negative birefringence is 0.6: 1: 0.6, and the thickness of the unstretched film is 180 μm. A retardation film was obtained.

[実施例3]
正の複屈折を有する樹脂及び負の複屈折を有する樹脂の比が0.75:1:0.75であって、未延伸フィルムの厚みが105μmであること以外は実施例1と同様の条件で位相差フィルムを得た。
[Example 3]
The same conditions as in Example 1 except that the ratio of the resin having positive birefringence and the resin having negative birefringence is 0.75: 1: 0.75, and the thickness of the unstretched film is 105 μm. A retardation film was obtained.

[実施例4]
正の複屈折を有する樹脂として製造例2で作成した樹脂を用いること以外は実施例1と同様の条件で位相差フィルムを得た。
[Example 4]
A retardation film was obtained under the same conditions as in Example 1 except that the resin prepared in Production Example 2 was used as the resin having positive birefringence.

[実施例5]
正の複屈折を有する樹脂として製造例3で作成した樹脂を用いて、予熱温度125℃、延伸温度を120℃とすること以外は実施例1と同様の条件で位相差フィルムを得た。
[Example 5]
Using the resin prepared in Production Example 3 as a resin having positive birefringence, a retardation film was obtained under the same conditions as in Example 1 except that the preheating temperature was 125 ° C. and the stretching temperature was 120 ° C.

[実施例6]
正の複屈折を有する樹脂として製造例4で作成した樹脂を用いること以外は実施例1と同様の条件で位相差フィルムを得た。
[Example 6]
A retardation film was obtained under the same conditions as in Example 1 except that the resin prepared in Production Example 4 was used as the resin having positive birefringence.

[実施例7]
正の複屈折を有する樹脂として製造例5で作成した樹脂を用いて、延伸温度を120℃とすること以外は実施例1と同様の条件で位相差フィルムを得た。
[Example 7]
A retardation film was obtained under the same conditions as in Example 1 except that the resin prepared in Production Example 5 was used as a resin having positive birefringence and the stretching temperature was 120 ° C.

[実施例8]
2種5層分配、すなわち、第1の層、第2の層、第3の層、第4の層、第5の層(A1/B1/A2/B2/A3)のフィードブロックを用いること以外は実施例1と同様の条件で位相差フィルムを得た。
なお、厚み方向に見たとき、層A、層B、層A、層B、層Aがこの順で0.43:0.5:0.43:0.5:0.43の厚み比(樹脂A:樹脂B=1.3:1)となるように積層されている。
[Example 8]
Other than using two types of five-layer distribution, that is, using a feed block of the first layer, the second layer, the third layer, the fourth layer, and the fifth layer (A1 / B1 / A2 / B2 / A3) Obtained a retardation film under the same conditions as in Example 1.
When viewed in the thickness direction, the layer A, the layer B, the layer A, the layer B, and the layer A have a thickness ratio of 0.43: 0.5: 0.43: 0.5: 0.43 in this order ( The resin A is laminated so that the resin B = 1.3: 1).

[比較例1]
ポリシクロオレフィン樹脂である商品名ARTON(JSR社製)および、スチレン・無水マレイン酸共重合体「ダイラーク D332」(ノバケミカル社製、Tg=131℃)を用いて、正の複屈折を有する樹脂及び負の複屈折を有する樹脂の比が1.8:1であって、未延伸フィルムの厚みが240μmである樹脂積層体を作成し、予熱温度135℃、延伸温度130℃、延伸倍率3.0倍で横延伸し、それ以外は、実施例1と同様の条件で位相差フィルムを得た。
[Comparative Example 1]
Resin having positive birefringence using a trade name ARTON (manufactured by JSR) which is a polycycloolefin resin and a styrene / maleic anhydride copolymer “DAILARK D332” (manufactured by Nova Chemical Co., Tg = 131 ° C.) And a resin laminate having a ratio of a resin having negative birefringence of 1.8: 1 and an unstretched film thickness of 240 μm, a preheating temperature of 135 ° C., a stretching temperature of 130 ° C., and a stretching ratio of 3. A phase difference film was obtained under the same conditions as in Example 1 except that the film was stretched transversely at 0 times.

[比較例2]
正の複屈折を有する樹脂としてZEONOR(日本ゼオン社製)を用いること以外は比較例1と同様の条件で位相差フィルムを得た。
[Comparative Example 2]
A retardation film was obtained under the same conditions as in Comparative Example 1 except that ZEONOR (manufactured by Nippon Zeon Co., Ltd.) was used as the resin having positive birefringence.

[比較例3]
正の複屈折を有する樹脂として製造例6で作成した樹脂を用いて、予熱温度を185℃、延伸温度を180℃とすること以外は実施例2と同様の条件で位相差フィルムを得た。
[Comparative Example 3]
Using the resin prepared in Production Example 6 as a resin having positive birefringence, a retardation film was obtained under the same conditions as in Example 2 except that the preheating temperature was 185 ° C. and the stretching temperature was 180 ° C.

[比較例4]
製造例8で作成した樹脂用いて、未延伸フィルムの厚みが165μmである樹脂フィルムを作成し、予熱温度145℃、延伸温度140℃、延伸倍率3.0倍で横延伸し、位相差フィルムを得た。
[Comparative Example 4]
Using the resin prepared in Production Example 8, a resin film having an unstretched film thickness of 165 μm is prepared, and the film is horizontally stretched at a preheating temperature of 145 ° C., a stretching temperature of 140 ° C., and a stretching ratio of 3.0 times. Obtained.

[比較例5]
製造例9で作成した樹脂用いて、未延伸フィルムの厚みが165μmである樹脂フィルムを作成し、予熱温度145℃、延伸温度140℃、延伸倍率3.0倍で横延伸し、位相差フィルムを得た。
なお未延伸フィルムは、以下の方法に従い作製した。
スクリュー径40mmの単軸押出機で溶融させ、設定温度250℃のダイを介して押出し、第1ロールと第2ロールで圧延し、第3ロールにて冷却させながら樹脂フィルムを成形し、一対の引取りロールにより引取り未延伸フィルムを作製した。なお、第1冷却ロールの表面温度は100℃、第2冷却ロールの表面温度90℃、第3冷却ロールの表面温度は120℃であった。これらの温度は、各冷却ロールの表面温度を実測した値である。
[Comparative Example 5]
Using the resin prepared in Production Example 9, a resin film having an unstretched film thickness of 165 μm is prepared, and the film is horizontally stretched at a preheating temperature of 145 ° C., a stretching temperature of 140 ° C., and a stretching ratio of 3.0 times. Obtained.
The unstretched film was produced according to the following method.
Melting with a single screw extruder with a screw diameter of 40 mm, extruding through a die with a set temperature of 250 ° C., rolling with a first roll and a second roll, forming a resin film while cooling with a third roll, A take-up unstretched film was produced by a take-up roll. In addition, the surface temperature of the 1st cooling roll was 100 degreeC, the surface temperature of the 2nd cooling roll was 90 degreeC, and the surface temperature of the 3rd cooling roll was 120 degreeC. These temperatures are values obtained by actually measuring the surface temperature of each cooling roll.

[比較例6]
正の複屈折を有する樹脂として製造例7で作成した樹脂を用いること以外は比較例7と同様の条件で位相差フィルムを得た。
[Comparative Example 6]
A retardation film was obtained under the same conditions as in Comparative Example 7, except that the resin prepared in Production Example 7 was used as the resin having positive birefringence.

Figure 2018128568
Figure 2018128568

Figure 2018128568
Figure 2018128568

表2の比較例1または、比較例2より正の複屈折を有する樹脂として、ノルボルネン系の樹脂を用いた場合は、複屈折の発現性、屈曲性、加工性、積層体を屈曲性試験した時の密着性に劣る。
また、表2の比較例3より、正の複屈折を有する樹脂として、イソソルビドのみを用いた場合も屈曲性、加工性、積層体を屈曲性試験した時の密着性に劣る。
When a norbornene-based resin was used as a resin having positive birefringence from Comparative Example 1 or Comparative Example 2 in Table 2, birefringence development, flexibility, workability, and a laminate were tested for flexibility. Poor adhesion at time.
Further, from Comparative Example 3 in Table 2, when only isosorbide is used as the resin having positive birefringence, the flexibility, workability, and adhesion when the laminate is subjected to a flexibility test are also poor.

本発明の正の複屈折を有する樹脂からなる層および負の複屈折を有する樹脂からなる層とを積層した積層体を少なくとも一軸方向に配向させた位相差フィルムは、広帯域に理想的に近い波長分散特性を有し、光弾性定数が低く、複屈折の発現性が高く、正の複屈折を有する樹脂および負の複屈折を有する樹脂の密着性が良好であって、屈曲性および加工性に優れるので、液晶や有機ELディスプレイ等の位相差フィルムとして極めて有用である。特に、フレキシブルな表示装置として例えば、カーナビ等の車載ディスプレイ、テレビ、スマートフォン、タブレット端末、デジタルサイネージなどとして好適に使用することができる。   The retardation film obtained by orienting at least uniaxially the laminate obtained by laminating the layer made of the resin having positive birefringence and the layer made of the resin having negative birefringence according to the present invention has a wavelength ideally close to a wide band. It has dispersion characteristics, low photoelastic constant, high expression of birefringence, good adhesion of resin having positive birefringence and resin having negative birefringence, and has flexibility and workability. Since it is excellent, it is extremely useful as a retardation film for liquid crystals, organic EL displays and the like. In particular, as a flexible display device, for example, it can be suitably used as an in-vehicle display such as a car navigation system, a television, a smartphone, a tablet terminal, a digital signage, or the like.

Claims (7)

正の複屈折を有する樹脂からなる層および負の複屈折を有する樹脂からなる層とを積層した積層体を少なくとも一軸方向に配向させた位相差フィルムであって、正の複屈折を有する樹脂が下記式(A)で表される繰り返し単位を、全繰り返し単位を基準として30モル%以上、99モル%以下含み、
Figure 2018128568
負の複屈折を有する樹脂が、スチレン系樹脂を含有する樹脂であって、正の複屈折を有する樹脂及び負の複屈折を有する樹脂の厚み比が1:1〜2:1であって、波長450nmにおける面内位相差値R450と波長550nmにおける面内位相差値R550の関係が下記式(1)を満たすことを特徴とする位相差フィルム。
0.60≦R450/R550≦0.95 ・・・(1)
A retardation film obtained by orienting a laminate in which a layer made of a resin having positive birefringence and a layer made of a resin having negative birefringence are laminated at least in a uniaxial direction, wherein the resin having positive birefringence is The repeating unit represented by the following formula (A) contains 30 mol% or more and 99 mol% or less based on all repeating units,
Figure 2018128568
The resin having negative birefringence is a resin containing a styrenic resin, and the thickness ratio of the resin having positive birefringence and the resin having negative birefringence is 1: 1 to 2: 1, A retardation film, wherein a relationship between an in-plane retardation value R450 at a wavelength of 450 nm and an in-plane retardation value R550 at a wavelength of 550 nm satisfies the following formula (1).
0.60 ≦ R450 / R550 ≦ 0.95 (1)
正の複屈折を有する樹脂のガラス転移温度(Tg)が100℃以上、150℃以下であって、負の複屈折を有する樹脂のガラス転移温度(Tg)が100℃以上、150℃以下である請求項1に記載の位相差フィルム。   The glass transition temperature (Tg) of the resin having positive birefringence is 100 ° C. or higher and 150 ° C. or lower, and the glass transition temperature (Tg) of the resin having negative birefringence is 100 ° C. or higher and 150 ° C. or lower. The retardation film according to claim 1. 負の複屈折を有する樹脂がスチレン−無水マレイン酸共重合樹脂である請求項1または2に記載の位相差フィルム。   The retardation film according to claim 1, wherein the resin having negative birefringence is a styrene-maleic anhydride copolymer resin. 光弾性係数が30×10−12Pa−1以下である請求項1〜3のいずれかに記載の位相差フィルム。 The retardation film according to claim 1, which has a photoelastic coefficient of 30 × 10 −12 Pa −1 or less. 位相差が135nm以上、155nm以下であって、厚みが20μm以上、70μm以下である請求項1〜3のいずれかに記載の位相差フィルム。   The retardation film according to any one of claims 1 to 3, wherein the retardation is 135 nm or more and 155 nm or less and the thickness is 20 µm or more and 70 µm or less. 正の複屈折を有する樹脂からなる層(A層)および負の複屈折を有する樹脂からなる層(B層)を溶融共押出成形により積層一体化した積層体を少なくとも一軸方向に延伸してなる位相差フィルムを製造する方法であって、正の複屈折を有する樹脂が下記式(A)で表される繰り返し単位を、全繰り返し単位を基準として30モル%以上、99モル%以下含み、
Figure 2018128568
負の複屈折を有する樹脂が、スチレン系樹脂を含有する樹脂であって、正の複屈折を有する樹脂及び負の複屈折を有する樹脂の厚み比が1:1〜2:1であって、波長450nmにおける面内位相差値R450と波長550nmにおける面内位相差値R550の関係が下記式(1)を満たすことを特徴とする位相差フィルムの製造方法。
0.60≦R450/R550≦0.95 ・・・(1)
A laminate in which a layer made of a resin having positive birefringence (A layer) and a layer made of a resin having negative birefringence (B layer) are laminated and integrated by melt coextrusion molding is stretched at least in a uniaxial direction. A method for producing a retardation film, wherein the resin having positive birefringence includes a repeating unit represented by the following formula (A), containing 30 mol% or more and 99 mol% or less based on all repeating units,
Figure 2018128568
The resin having negative birefringence is a resin containing a styrenic resin, and the thickness ratio of the resin having positive birefringence and the resin having negative birefringence is 1: 1 to 2: 1, A method for producing a retardation film, wherein a relationship between an in-plane retardation value R450 at a wavelength of 450 nm and an in-plane retardation value R550 at a wavelength of 550 nm satisfies the following formula (1).
0.60 ≦ R450 / R550 ≦ 0.95 (1)
請求項1〜5のいずれかに記載の位相差フィルムを具備した液晶表示装置または有機EL表示装置。
A liquid crystal display device or an organic EL display device comprising the retardation film according to claim 1.
JP2017021305A 2017-02-08 2017-02-08 Retardation film, production method of the same and display device using the same Pending JP2018128568A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017021305A JP2018128568A (en) 2017-02-08 2017-02-08 Retardation film, production method of the same and display device using the same
KR1020170164166A KR20180092263A (en) 2017-02-08 2017-12-01 Retardation film, process for producing the same, and display device using the same
CN201711293646.3A CN108398738A (en) 2017-02-08 2017-12-08 Phase difference film and its manufacturing method and the display device for using the phase difference film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017021305A JP2018128568A (en) 2017-02-08 2017-02-08 Retardation film, production method of the same and display device using the same

Publications (1)

Publication Number Publication Date
JP2018128568A true JP2018128568A (en) 2018-08-16

Family

ID=63093604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017021305A Pending JP2018128568A (en) 2017-02-08 2017-02-08 Retardation film, production method of the same and display device using the same

Country Status (3)

Country Link
JP (1) JP2018128568A (en)
KR (1) KR20180092263A (en)
CN (1) CN108398738A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070729A1 (en) * 2020-09-30 2022-04-07 日本ゼオン株式会社 Phase difference film and production method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111708252A (en) * 2020-06-10 2020-09-25 浙江福斯特新材料研究院有限公司 Photosensitive frame covering film for flexible folding screen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3165175B2 (en) 1991-05-20 2001-05-14 日東電工株式会社 Polarizing plate and liquid crystal display
JPH0527118A (en) 1991-07-17 1993-02-05 Nitto Denko Corp Phase difference plate and circular polarizing plate
JPH1090521A (en) 1996-07-24 1998-04-10 Sumitomo Chem Co Ltd Laminated phase difference plate which rotates polarization axis and projection type liquid crystal display device using the same
JPH1068816A (en) 1996-08-29 1998-03-10 Sharp Corp Phase difference plate and circularly polarizing plate
KR20000026705A (en) 1998-10-22 2000-05-15 서평원 Method for recovering cell boundary in atm swithching system
JP4171168B2 (en) 2000-10-03 2008-10-22 富士フイルム株式会社 Production method of retardation plate
CN104017200A (en) * 2009-11-17 2014-09-03 三菱化学株式会社 Polycarbonate resin and transparent film comprising same
US10649123B2 (en) * 2014-07-31 2020-05-12 Mitsubishi Gas Chemical Company, Inc. Optical film, multilayer optical film including same, and method for producing optical film
JP6729550B2 (en) * 2015-03-03 2020-07-22 日本ゼオン株式会社 Retardation plate and method for manufacturing retardation plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070729A1 (en) * 2020-09-30 2022-04-07 日本ゼオン株式会社 Phase difference film and production method thereof
KR20230077724A (en) 2020-09-30 2023-06-01 니폰 제온 가부시키가이샤 Retardation film and its manufacturing method

Also Published As

Publication number Publication date
KR20180092263A (en) 2018-08-17
CN108398738A (en) 2018-08-14

Similar Documents

Publication Publication Date Title
EP2468501B1 (en) Molded article with decorative sheet
JP5587617B2 (en) Polycarbonate resin and film with low photoelastic constant
KR20090045937A (en) Polycarbonate resin and optical film using the same
US9850344B2 (en) Polycarbonate resin and optical film
US9709702B2 (en) Special polycarbonate polarizing eyewear
KR20110106841A (en) Optical films
CN112262178B (en) Polycarbonate resin composition, molded article, and laminate
CN106489085B (en) Phase difference film, circularly polarizing plate, and image display device
KR20180113522A (en) Optical laminate and image display device using the optical laminate
JP6219734B2 (en) Polycarbonate resin and optical film
JP2018128568A (en) Retardation film, production method of the same and display device using the same
TWI523889B (en) Polycarbonate resin and molded articles
JP2010230832A (en) Optical film
JP2022122202A (en) Biaxially oriented film, and laminate film
JP2013047000A (en) Film laminate, film roll, and method for producing film roll
JP6640465B2 (en) Polycarbonate resin and optical film
JP6475046B2 (en) Thermoplastic resin film
JP2011079897A (en) Polycarbonate resin with low photoelastic constant, and optical film
JP5583987B2 (en) Polycarbonate resin and optical film with low photoelastic constant
JP6544187B2 (en) Laminate and front panel for display
JP2020090677A (en) Polycarbonate resin and optical film
JP6578723B2 (en) Laminated film and polarizing plate protective film obtained therefrom
JP5580017B2 (en) Polycarbonate resin and optical film with low photoelastic constant
JP2011079898A (en) Polycarbonate resin with low photoelastic constant, and optical film
JP2016053603A (en) Manufacturing method for laminated thermoplastic resin film, and polarizing plate protection film obtained therefrom