JP2018128408A - Antibody aggregate formation prediction method - Google Patents

Antibody aggregate formation prediction method Download PDF

Info

Publication number
JP2018128408A
JP2018128408A JP2017022882A JP2017022882A JP2018128408A JP 2018128408 A JP2018128408 A JP 2018128408A JP 2017022882 A JP2017022882 A JP 2017022882A JP 2017022882 A JP2017022882 A JP 2017022882A JP 2018128408 A JP2018128408 A JP 2018128408A
Authority
JP
Japan
Prior art keywords
antibody
denatured
oligopeptide
carrier
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017022882A
Other languages
Japanese (ja)
Inventor
奈都子 木津
Natsuko KIZU
奈都子 木津
大江 正剛
Masatake Oe
正剛 大江
真也 本田
Masaya Honda
真也 本田
孝光 宮房
Takamitsu Miyafusa
孝光 宮房
渡邊 秀樹
Hideki Watanabe
秀樹 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tosoh Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Tosoh Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017022882A priority Critical patent/JP2018128408A/en
Publication of JP2018128408A publication Critical patent/JP2018128408A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for predicting formation of an antibody aggregate.SOLUTION: To solve the problem by a method including: (1) a process of bringing an oligopeptide bound carrier including an amino acid sequence of seq id no: 1 and recognizing a modified antibody, a specimen including the antibody to be detected, and an index antibody in which an index substance is directly or indirectly bonded to the antibody, into contacted with one another to form a composite in which the oligopeptide bound carrier, the modified antibody, and the index antibody are reacted; (2) a process of measuring an amount of the modified antibody in the specimen by detecting the index substance in the composite formed in the process (1); and (3) a process of predicting the formation of the aggregate of the antibody to be detected in the specimen, based on the amount of the modified antibody measured in the process (2).SELECTED DRAWING: Figure 12

Description

本発明は、抗体の凝集体形成を予測する方法に関する。   The present invention relates to a method for predicting antibody aggregate formation.

医薬品用途で用いる抗体は、通常当該抗体を発現可能な細胞を培養後、得られた培養液を遠心分離、濾過、カラムクロマトグラフィー等の精製操作を行ない、製造する。その際、得られた抗体の中には、製造時のストレス等により変性を受けることで生じる、当該抗体の凝集体が含まれている場合がある。抗体凝集体は免疫原性を有するおそれがある(非特許文献1)ため、特に医薬品用途で用いる場合、当該凝集体を精度よく検出する必要がある。また、製剤化した後の保存状態で凝集体が形成されることもあり、凝集体の形成の予測が求められている。抗体凝集体の形成メカニズムの一つとして、まず、部分的に立体構造が崩れたモノマーが形成され、それが核となり抗体凝集体が形成されると報告されている(非特許文献2及び3)。そのため、抗体凝集体形成の原因となる部分的に立体構造が崩れた抗体を検出することで、抗体凝集体の形成を予測することができると考えられる。   Antibodies used for pharmaceutical applications are usually produced by culturing cells capable of expressing the antibody, and then subjecting the obtained culture solution to purification operations such as centrifugation, filtration, and column chromatography. In that case, the obtained antibody may contain an aggregate of the antibody that is generated by being denatured due to stress during production. Since antibody aggregates may have immunogenicity (Non-patent Document 1), it is necessary to detect the aggregates with high precision, particularly when used for pharmaceutical applications. In addition, aggregates may be formed in the storage state after preparation, and there is a demand for prediction of aggregate formation. As one of the formation mechanisms of antibody aggregates, it is first reported that a monomer having a partially broken three-dimensional structure is formed, and this serves as a nucleus to form an antibody aggregate (Non-patent Documents 2 and 3). . Therefore, it is considered that the formation of an antibody aggregate can be predicted by detecting an antibody having a partially broken three-dimensional structure that causes the formation of an antibody aggregate.

部分的に立体構造が崩れた抗体を検出する方法としては、抗体の高次構造の精密な解析手法、即ちX線結晶構造解析やNMRを用いた方法が知られているが、これらの方法は非常に手間のかかる方法であり、製造時の純度管理等、迅速・簡便な測定が求められる用途には不向きである。近年、ストレス等により変性を受けた抗体を、その分子量を問わず、特異的に認識する分子が報告されている(特許文献1から3、並びに非特許文献4及び5)。しかしながら、これら文献に記載の前記分子を用いた変性抗体測定法は表面プラズモン共鳴を利用した方法であり、当該方法を実施するにはBiacore(GEヘルスケア製)等の高価な専用装置を必要とする。   As a method for detecting an antibody having a partially broken three-dimensional structure, a precise analysis method of the higher order structure of the antibody, that is, a method using X-ray crystal structure analysis or NMR is known. This method is very time-consuming and is not suitable for applications that require quick and simple measurement, such as purity control during production. In recent years, molecules that specifically recognize antibodies denatured by stress or the like regardless of their molecular weight have been reported (Patent Documents 1 to 3, and Non-Patent Documents 4 and 5). However, the denatured antibody measurement method using the molecule described in these documents is a method using surface plasmon resonance, and an expensive dedicated device such as Biacore (manufactured by GE Healthcare) is required to perform the method. To do.

国際公開2014/103203号International Publication No. 2014/103203 国際公開2014/115229号International Publication No. 2014/115229 国際公開2008/054030号International Publication 2008/054030

S.K.Singh,J.Pharm.Sci.,100,354−387,2011S. K. Singh, J .; Pharm. Sci. , 100, 354-387, 2011 C.J.Roberts,Trends Biotechnol.,32,372−380,2014C. J. et al. Roberts, Trends Biotechnol. , 32, 372-380, 2014 C.J.Roberts,Curr.Opin.Biotechnol.,30,211−217,2014C. J. et al. Roberts, Curr. Opin. Biotechnol. , 30, 211-217, 2014 H.Watanabe等,J.Biol.Chem.,289,3394−3404,2014H. Watanabe et al. Biol. Chem. , 289, 3394-3404, 2014 H.Watanabe等,Anal.Chem.,88,10095−10101,2016H. Watanabe et al., Anal. Chem. , 88, 10095-10101, 2016

本発明は、前記従来技術の有する課題に鑑みてなされたものであり、製造時のストレス等で変性した抗体を測定することで、凝集体の形成を迅速かつ簡便に予測可能な方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and provides a method capable of quickly and easily predicting the formation of aggregates by measuring an antibody that has been denatured due to stress during production. For the purpose.

本発明者らは、前記目的を達成すべく鋭意研究を重ねた結果、変性をもたらすストレスを抗体に与え続けると当該抗体の凝集体が形成することから、配列番号1に記載のアミノ酸配列を含み変性した抗体を認識するオリゴペプチドが担体に結合しているオリゴペプチド結合担体と、被検抗体を認識する抗体に直接又は間接に標識物質が結合している標識抗体とを用いて、変性した抗体の量を測定することで、迅速かつ簡便に、被検抗体の凝集体形成が予測できることを見出した。また、かかる抗体の凝集体形成を予測する方法において、前記担体への非特異的吸着を抑制する上でコラーゲンペプチドが有用であることを見出した。さらに、前記担体として疎水性の高いプレート又は磁性ビーズが好適に用いられることも明らかにした。
また、かかる方法によれば、前記変性をもたらすストレスの種類に関わらず、抗体の凝集体形成を予測でき、特に既存のタンパク質物性解析装置では予測できない、加熱処理、凍結融解処理、又は撹拌処理によって生じる抗体の凝集体形成予測を、精度高く実施できることを見出した。
As a result of intensive studies to achieve the above object, the inventors of the present invention formed an aggregate of the antibody when stressed to cause denaturation was continuously applied to the antibody. Modified antibody using an oligopeptide-binding carrier in which an oligopeptide that recognizes a denatured antibody is bound to a carrier, and a labeled antibody in which a labeling substance is bound directly or indirectly to an antibody that recognizes a test antibody It was found that the aggregate formation of the test antibody can be predicted quickly and easily by measuring the amount of the antibody. Further, it has been found that a collagen peptide is useful in suppressing nonspecific adsorption to the carrier in a method for predicting the formation of an antibody aggregate. Furthermore, it has also been clarified that highly hydrophobic plates or magnetic beads are preferably used as the carrier.
In addition, according to such a method, regardless of the type of stress that causes the denaturation, antibody aggregate formation can be predicted, and in particular, by heat treatment, freeze-thaw treatment, or stirring treatment, which cannot be predicted with existing protein property analyzers. It was found that the formation of aggregates of the resulting antibody can be performed with high accuracy.

すなわち本発明の第一の態様は、 以下の(1)から(3)の工程を含む、抗体の凝集体の形成を予測する方法である。
(1)配列番号1に記載のアミノ酸配列を含み変性した抗体を認識するオリゴペプチドが担体に結合しているオリゴペプチド結合担体と、
被検抗体を含む試料と、
被検抗体を認識する抗体に標識物質が直接又は間接に結合している標識抗体と
を接触させることにより、オリゴペプチド結合担体と変性した抗体と標識抗体とが反応した複合体を形成させる工程、
(2)工程(1)で形成した複合体中の標識物質を検出することにより、前記試料中の変性した抗体の量を測定する工程、
(3)工程(2)において測定した変性した抗体の量に基づき、前記試料中の被検抗体の凝集体の形成を予測する工程
また本発明の第二の態様は、まずオリゴペプチド結合担体と被検抗体を含む試料とを接触させ、次いで標識抗体と接触させる、前記第一の態様に記載の方法である。
That is, the first aspect of the present invention is a method for predicting the formation of antibody aggregates, which comprises the following steps (1) to (3).
(1) an oligopeptide-binding carrier in which an oligopeptide that recognizes a denatured antibody comprising the amino acid sequence of SEQ ID NO: 1 is bound to a carrier;
A sample containing the test antibody;
A step of forming a complex in which an oligopeptide-binding carrier, a denatured antibody, and a labeled antibody react by contacting a labeled antibody in which a labeled substance is bound directly or indirectly to an antibody that recognizes a test antibody;
(2) a step of measuring the amount of denatured antibody in the sample by detecting the labeling substance in the complex formed in step (1),
(3) A step of predicting the formation of an aggregate of the test antibody in the sample based on the amount of the denatured antibody measured in the step (2). The method according to the first aspect, in which a sample containing a test antibody is contacted and then contacted with a labeled antibody.

また本発明の第三の態様は、前記オリゴペプチド結合担体が、さらにコラーゲンペプチドによりブロッキングされてなる担体である、前記第一又は第二の態様に記載の方法である。   The third aspect of the present invention is the method according to the first or second aspect, wherein the oligopeptide-binding carrier is a carrier further blocked with a collagen peptide.

また本発明の第四の態様は、担体が疎水性の高いプレートである、前記第一から第三いずれかの態様に記載の方法である。   The fourth aspect of the present invention is the method according to any one of the first to third aspects, wherein the carrier is a highly hydrophobic plate.

また本発明の第五の態様は、担体が磁性ビーズである、前記第一から第三いずれかの態様に記載の方法である。   A fifth aspect of the present invention is the method according to any one of the first to third aspects, wherein the carrier is a magnetic bead.

また本発明の第六の態様は、配列番号1に記載のアミノ酸配列を含み変性した抗体を認識するオリゴペプチドが担体に結合しているオリゴペプチド結合担体と、
被検抗体を認識する抗体に直接又は間接に標識物質が結合している標識抗体と
を含む、抗体の凝集体形成を予測するためのキットである。
According to a sixth aspect of the present invention, there is provided an oligopeptide-binding carrier in which an oligopeptide that recognizes a denatured antibody containing the amino acid sequence of SEQ ID NO: 1 is bound to a carrier;
A kit for predicting the formation of antibody aggregates, comprising a labeled antibody in which a labeling substance is bound directly or indirectly to an antibody recognizing a test antibody.

本発明の抗体の凝集体形成を予測する方法は、製造時のストレス(例えば、酸、アルカリ、加熱、凍結融解、撹拌)等により変性を受けた抗体の凝集体形成予測を迅速・簡便に実施することができる。また本発明の方法によれば、Biacore(GEヘルスケア製)等の高価な専用装置を必要とせず、比較的安価に、変性した抗体の凝集体形成予測ができる。   The method for predicting antibody aggregate formation according to the present invention is a method for quickly and easily predicting aggregate formation of an antibody that has been denatured due to stress (eg, acid, alkali, heating, freeze-thawing, stirring) during production. can do. Further, according to the method of the present invention, aggregate formation of denatured antibodies can be predicted relatively inexpensively without requiring an expensive dedicated device such as Biacore (manufactured by GE Healthcare).

実施例1の結果を示した図である。FIG. 6 is a diagram showing the results of Example 1. 実施例2の結果において、1%(w/v)コラーゲンペプチドをブロッキング剤として用いたときの結果を示した図である。In the result of Example 2, it is the figure which showed the result when 1% (w / v) collagen peptide was used as a blocking agent. 実施例2の結果において、2%(w/v)スキムミルクをブロッキング剤として用いたときの結果を示した図である。In the result of Example 2, it is the figure which showed the result when 2% (w / v) skim milk was used as a blocking agent. 実施例2の結果において、100mMエタノールアミンをブロッキング剤として用いたときの結果を示した図である。In the result of Example 2, it is the figure which showed the result when 100 mM ethanolamine is used as a blocking agent. 実施例2の結果において、0.5%(w/v)BSAをブロッキング剤として用いたときの結果を示した図である。In the result of Example 2, it is the figure which showed the result when 0.5% (w / v) BSA is used as a blocking agent. 実施例3の結果を示した図である。It is the figure which showed the result of Example 3. 実施例4の結果を示した図である。It is the figure which showed the result of Example 4. 実施例5の結果のうち、酸処理又はアルカリ処理したヒト抗体を対象とし、本発明で用いる変性ヒト抗体測定法にて当該抗体の安定性を評価した結果を示した図である。It is the figure which showed the result of having evaluated the stability of the said antibody by the modified | denatured human antibody measuring method used by this invention for the human antibody which carried out acid treatment or alkali treatment among the results of Example 5. FIG. 実施例5の結果のうち、酸処理又はアルカリ処理したヒト抗体を対象とし、市販の装置にて当該抗体の安定性を評価した結果を示した図である。It is the figure which showed the result of having evaluated the stability of the said antibody with the commercially available apparatus for the human antibody which carried out the acid process or the alkali process among the results of Example 5. FIG. 実施例5の結果のうち、加熱処理、凍結融解処理又は撹拌処理したヒト抗体を対象とし、本発明で用いる変性ヒト抗体測定法にて当該抗体の安定性を評価した結果を示した図である。It is the figure which showed the result of having evaluated the stability of the said antibody in the modified | denatured human antibody measuring method used by this invention for the human antibody which carried out heat processing, the freeze-thaw process, or the stirring process among the results of Example 5. . 実施例5の結果のうち、加熱処理、凍結融解処理又は撹拌処理したヒト抗体を対象とし、市販の装置にて当該抗体の安定性を評価した結果を示した図である。It is the figure which showed the result of having evaluated the stability of the said antibody with the commercially available apparatus for the human antibody which carried out heat processing, the freeze-thaw process, or the stirring process among the results of Example 5. FIG. 実施例6の結果を示した図であり、加熱処理したヒト抗体を対象とし、本発明の方法にて測定した結果を示した図である。It is the figure which showed the result of Example 6, and was the figure which showed the result measured with the method of this invention for the heat-treated human antibody. 実施例6の結果を示した図であり、加熱したヒト抗体を対象とし、市販の細胞計数装置にて当該抗体の凝集体量を測定した結果を示した図である。It is the figure which showed the result of Example 6, and was the figure which showed the result of having measured the amount of the aggregates of the said antibody with the commercially available cell counting device aiming at the heated human antibody. 実施例6の結果を示した図であり、加熱したヒト抗体を対象とし、市販のバイオ医薬品凝集性評価システムにて当該抗体の凝集体量を測定した結果を示した図である。It is the figure which showed the result of Example 6, and was the figure which showed the result of having measured the amount of the aggregates of the said antibody with the commercially available biopharmaceutical aggregation evaluation system for the heated human antibody.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明における抗体の凝集体形成を予測する方法は、以下の(1)(2)に示す工程を含む方法により、変性した抗体の量を測定し、その量に基づき、抗体の凝集体形成を予測する方法である。
(1)配列番号1に記載のアミノ酸配列を含み変性した抗体を認識するオリゴペプチドが担体に結合しているオリゴペプチド結合担体と、
被検抗体を含む試料と、
被検抗体を認識する抗体に標識物質が直接又は間接に結合している標識抗体と
を接触させることにより、オリゴペプチド結合担体と変性した抗体と標識抗体とが反応した複合体を形成させる工程、
(2)工程(1)で形成した複合体中の標識物質を検出することにより、前記試料中の変性した抗体の量を測定する工程。
The method for predicting antibody aggregate formation in the present invention measures the amount of denatured antibody by a method comprising the steps shown in the following (1) and (2), and based on the amount, antibody aggregate formation is determined. It is a method of prediction.
(1) an oligopeptide-binding carrier in which an oligopeptide that recognizes a denatured antibody comprising the amino acid sequence of SEQ ID NO: 1 is bound to a carrier;
A sample containing the test antibody;
A step of forming a complex in which an oligopeptide-binding carrier, a denatured antibody, and a labeled antibody react by contacting a labeled antibody in which a labeled substance is bound directly or indirectly to an antibody that recognizes a test antibody;
(2) A step of measuring the amount of the denatured antibody in the sample by detecting the labeling substance in the complex formed in the step (1).

本発明において、変性した抗体とは、酸、アルカリ、加熱、凍結融解、撹拌等によるストレスで抗体の全構造又は一部構造が変化したものをいう。その抗体の由来には特に限定はなく、例えばヒト、マウス、ラット、ウサギ等に由来する抗体があげられ、特にヒトに由来する抗体が好ましい。なおその抗体の種類に特に限定はなく、一例としてIgG1、IgG2、IgG3、IgG4があげられる。また、その抗体は、完全な形の抗体の他、抗体のFc領域を有する限り、他の動物に由来する抗体(例えば、ヒト抗体、マウス抗体、ラット抗体、ウサギ抗体)に由来する配列(CDR等)を含むキメラ抗体、ヒト化抗体であってもよい。さらに、その抗体は、モノクローナル抗体であってもよく、ポリクローナル抗体であってもよい。また、本発明の方法に供する試料としては、変性、未変性の如何を問わず、前記被検抗体を含むものであれば特に制限はなく、通常、抗体を含む溶液であり、特にヒト抗体を含むものが好ましい。また、その溶液としても、変性した抗体と下記オリゴペプチドとの結合を阻害しない限り、特に制限はない。   In the present invention, a denatured antibody refers to an antibody whose entire structure or partial structure has been changed by stress due to acid, alkali, heating, freeze-thawing, stirring, or the like. The origin of the antibody is not particularly limited, and examples thereof include antibodies derived from humans, mice, rats, rabbits, etc., and antibodies derived from humans are particularly preferable. The type of the antibody is not particularly limited, and examples thereof include IgG1, IgG2, IgG3, and IgG4. Moreover, as long as the antibody has the Fc region of the antibody in addition to the complete antibody, a sequence (CDR) derived from an antibody derived from another animal (for example, human antibody, mouse antibody, rat antibody, rabbit antibody). Etc.) and a humanized antibody. Further, the antibody may be a monoclonal antibody or a polyclonal antibody. The sample used for the method of the present invention is not particularly limited as long as it contains the test antibody, regardless of whether it is denatured or undenatured, and is usually a solution containing an antibody, particularly a human antibody. The inclusion is preferred. The solution is not particularly limited as long as it does not inhibit the binding between the modified antibody and the following oligopeptide.

本発明において、変性した抗体を認識するオリゴペプチドは、配列番号1に記載のアミノ酸配列を少なくとも含んでいればよく、配列番号1に記載のアミノ酸配列のみからなるものを用いてもよいし、配列番号1のアミノ酸配列のN末端又はC末端に後述の担体と結合させるためのリンカーペプチドといった数アミノ酸残基から数十アミノ残基を付加したオリゴペプチドを用いてもよい。本発明に用いられる変性した抗体を認識するオリゴペプチドの長さとしては、変性した抗体を認識する限り特に制限はないが、通常50から25アミノ酸であり、好ましくは40から25アミノ酸であり、より好ましくは30から25アミノ酸であり、特に好ましくは25アミノ酸(配列番号1に記載のアミノ酸配列のみからなる)である。また、オリゴペプチドは、通常天然アミノ酸がペプチド結合により連結されて構成されるものであるが、本発明において非天然型のアミノ酸を含むものであってもよく、また修飾が施されているものであってもよい。   In the present invention, the oligopeptide recognizing the denatured antibody only needs to contain at least the amino acid sequence described in SEQ ID NO: 1, and may consist of only the amino acid sequence described in SEQ ID NO: 1, An oligopeptide in which several amino acid residues to several tens of amino acid residues are added to the N-terminal or C-terminal of the amino acid sequence of No. 1 such as a linker peptide for binding to the carrier described later may be used. The length of the oligopeptide that recognizes the denatured antibody used in the present invention is not particularly limited as long as it recognizes the denatured antibody, but is usually 50 to 25 amino acids, preferably 40 to 25 amino acids, more Preferably it is 30 to 25 amino acids, and particularly preferably 25 amino acids (consisting only of the amino acid sequence described in SEQ ID NO: 1). In addition, the oligopeptide is usually composed of natural amino acids linked by peptide bonds. However, in the present invention, it may contain a non-natural amino acid and is modified. There may be.

本発明において、配列番号1に記載のアミノ酸配列を含むオリゴペプチドを固定化させる担体に特に限定はなく、例えば、プレート(複数の凹部が形成されたプレート(ウェルプレート、マイクロプレート等)も含む)、ビーズ、ゲルが挙げられる。また、担体の材料としては、プラスチック(例えば、ポリスチレン等のスチレン系樹脂、ポリ塩化ビニル等のビニル系重合体、ポリメチル(メタ)アクリレート等のアクリル系樹脂、ポリエチレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂、ポリカーボネート樹脂)、金属(金、銀、アルミ、ステンレス等)、酸化物(ガラス、シリカ、アルミナ、チタニア、ジルコニア、インジウムスズ酸化物(ITO)等)、寒天が挙げられる。   In the present invention, there is no particular limitation on the carrier on which the oligopeptide comprising the amino acid sequence shown in SEQ ID NO: 1 is immobilized. For example, a plate (including a plate having a plurality of recesses (well plate, microplate, etc.)) , Beads and gels. Examples of the carrier material include plastics (for example, styrene resins such as polystyrene, vinyl polymers such as polyvinyl chloride, acrylic resins such as polymethyl (meth) acrylate, polyolefin resins such as polyethylene, polyethylene terephthalate, etc. Polyester resin, polycarbonate resin), metal (gold, silver, aluminum, stainless steel, etc.), oxide (glass, silica, alumina, titania, zirconia, indium tin oxide (ITO), etc.), and agar.

本発明における担体としては、より具体的に、ELISA(Enzyme−Linked Immuno Sorbent Assay)法で用いられるウェルプレートや、ガラスビーズ、磁性ビーズ、金属粒子、シリカビーズ、ジルコニアビーズ、セルロースゲル、アガロースゲル、TOYOPEARL(登録商標、親水性ビニル系重合体にヘキシル基、ブチル基、フェニル基又はオリゴエチレングリコール基を導入したポリマー等、東ソー製)等のポリマーゲルが挙げられる。   As the carrier in the present invention, more specifically, well plates used in ELISA (Enzyme-Linked Immuno Sorbent Assay) method, glass beads, magnetic beads, metal particles, silica beads, zirconia beads, cellulose gel, agarose gel, Examples include polymer gels such as TOYOPEARL (registered trademark, a polymer in which a hexyl group, a butyl group, a phenyl group, or an oligoethylene glycol group is introduced into a hydrophilic vinyl polymer, manufactured by Tosoh Corporation).

なお、担体としてウェルプレート等のプレートを用いる場合、疎水性の高いプレートを用いると非特異吸着がより抑えられる(変性した抗体に対する結合能が低いという)点で好ましい。ここで、「疎水性が高い」とは、通常水接触角度が60度以上であり、好ましくは70度以上、より好ましくは80度以上、さらに好ましくは85度以上、特に好ましくは90度以上である(なお、水接触角度とは、大気中、室温における水滴に対する静的接触角度のことを意味する)。また、本発明におけるプレートの好ましい一例として、ポリソープ(登録商標)処理が施されたポリスチレン製プレート(PolySorpプレート、Thermo Scientific製)が挙げられる(特開2014−224710号公報によれば、PolySorpプレートの水接触角は88.1度である)。   When a plate such as a well plate is used as the carrier, it is preferable to use a highly hydrophobic plate because nonspecific adsorption can be further suppressed (the binding ability to the denatured antibody is low). Here, “highly hydrophobic” usually means that the water contact angle is 60 degrees or more, preferably 70 degrees or more, more preferably 80 degrees or more, still more preferably 85 degrees or more, and particularly preferably 90 degrees or more. There is (the water contact angle means a static contact angle with respect to a water droplet at room temperature in the atmosphere). Further, as a preferred example of the plate in the present invention, a polystyrene plate (PolySorp plate, manufactured by Thermo Scientific) treated with polysoap (registered trademark) can be cited (according to Japanese Patent Application Laid-Open No. 2014-224710) The water contact angle is 88.1 degrees).

また、本発明の方法をより簡単かつ迅速に実施すべく、AIA−600IIやAIA−CL2400(いずれも東ソー製)等の自動酵素免疫測定装置を用いる場合、担体として磁性ビーズが好適に用いられる。   In order to carry out the method of the present invention more easily and quickly, when using an automatic enzyme immunoassay device such as AIA-600II or AIA-CL2400 (both manufactured by Tosoh Corporation), magnetic beads are preferably used as the carrier.

本発明で用いるオリゴペプチドを結合した担体(オリゴペプチド結合担体)は、前記オリゴペプチドを前述した担体に化学的又は物理的に固定化することで得られる。本発明にかかるオリゴペプチドの前記担体への固定化方法としては特に制限はなく、例えば、物理吸着、静電的相互作用、疎水的相互作用、架橋剤等を利用する方法が挙げられる。本発明にかかるオリゴペプチドの固定化時の濃度は、担体の材質、形状、固定化の方法等に合わせて適宜調整すればよく、例えば、5から50μg/mLの濃度が挙げられ、好ましくは10から40μg/mLである。   The carrier to which the oligopeptide used in the present invention is bound (oligopeptide binding carrier) can be obtained by chemically or physically immobilizing the oligopeptide on the above-mentioned carrier. The method for immobilizing the oligopeptide according to the present invention on the carrier is not particularly limited, and examples thereof include a method using physical adsorption, electrostatic interaction, hydrophobic interaction, a crosslinking agent and the like. The concentration at the time of immobilization of the oligopeptide according to the present invention may be appropriately adjusted according to the material, shape, immobilization method and the like of the carrier. For example, the concentration is 5 to 50 μg / mL, preferably 10 To 40 μg / mL.

また、オリゴペプチド固定化後の担体に対しブロッキング剤によるブロッキング操作を行なうと、非特異吸着が抑えられ、測定時のバックグラウンドも抑えられるため、好ましい。特に、後述の実施例2に示す通り、コラーゲンペプチドをブロッキング剤として用いると、測定時のバックグラウンドがより抑えられる点で好ましい。コラーゲン以外にも、糖タンパク質を含有するブロッキング剤、Super Block TM (TBS) Blocking Buffer (Thermo Fisher社製)等がブロッキング剤として使用できる。 Further, it is preferable to perform a blocking operation with a blocking agent on the carrier after oligopeptide immobilization, because nonspecific adsorption can be suppressed and the background during measurement can also be suppressed. In particular, as shown in Example 2 described later, it is preferable to use a collagen peptide as a blocking agent because the background during measurement can be further suppressed. Besides collagen, a blocking agent containing glycoprotein, Super Block (TBS) Blocking Buffer (manufactured by Thermo Fisher), etc. can be used as the blocking agent.

コラーゲンペプチドは、コラーゲンを加水分解して得られるものであれば、その由来(例えば、ブタ、ウシ、魚)に特に制限はない。なお加水分解の程度にも特に制限はなく、常法に従い、例えばコラーゲンをパパイン、ペプシン又はトリプシンといったタンパク質加水分解酵素の共存下、例えば50℃で180分間加熱等すればよい。また、その重量平均分子量についても特に制限はないが、通常2000から10000、好ましくは3000から5000である。さらに、コラーゲンペプチドの使用量としては、溶液状態において好ましくは0.5から10重量%、より好ましくは1から5重量%である。また、コラーゲンペプチドを溶解させるための液としても特に制限はなく、各種緩衝液(例えば、pH8から10の緩衝液(炭酸緩衝液、リン酸緩衝食塩水(PBS)等))を利用し、ブロッキング剤として調製することができる。   The collagen peptide is not particularly limited in its origin (for example, pig, cow, fish) as long as it is obtained by hydrolyzing collagen. The degree of hydrolysis is not particularly limited. For example, collagen may be heated, for example, at 50 ° C. for 180 minutes in the presence of a protein hydrolase such as papain, pepsin or trypsin. The weight average molecular weight is not particularly limited, but is usually 2000 to 10,000, preferably 3000 to 5000. Further, the amount of collagen peptide used is preferably 0.5 to 10% by weight, more preferably 1 to 5% by weight in the solution state. In addition, there is no particular limitation on the solution for dissolving the collagen peptide, and various buffer solutions (for example, pH 8 to 10 buffer solutions (carbonate buffer solution, phosphate buffered saline (PBS), etc.)) are used for blocking. It can be prepared as an agent.

本発明において、配列番号1に記載のアミノ酸配列を含み変性した抗体を認識するオリゴペプチドが担体に結合しているオリゴペプチド結合担体と、被検抗体を含む試料と、被検抗体を認識する抗体に標識物質が直接又は間接に結合している標識抗体との接触の順序には特に限定はない。すべて同時に接触させてもよく、またオリゴペプチド結合担体と、被検抗体を含む試料とを先に接触させてもよい。また被検抗体を含む試料と標識抗体とを先に接触させてもよい。好ましくは、オリゴペプチド結合担体と、被検抗体を含む試料とを先に接触させ、次いで標識抗体を接触させるものである。以下、その方法に沿って説明する。   In the present invention, an oligopeptide-binding carrier in which an oligopeptide that recognizes a denatured antibody containing the amino acid sequence shown in SEQ ID NO: 1 is bound to a carrier, a sample containing the test antibody, and an antibody that recognizes the test antibody The order of contact with the labeled antibody in which the labeling substance is bound directly or indirectly is not particularly limited. All may be contacted simultaneously, or the oligopeptide-binding carrier and the sample containing the test antibody may be contacted first. Further, the sample containing the test antibody and the labeled antibody may be contacted first. Preferably, the oligopeptide binding carrier and the sample containing the test antibody are first contacted, and then the labeled antibody is contacted. Hereinafter, it demonstrates along the method.

オリゴペプチド結合担体と被検抗体を含む試料とを接触させる際の条件としては、上述のオリゴペプチドと当該試料中の変性した抗体が結合できる条件であればよく、通常、0から45℃の温度下での接触であり、好ましくは4から37℃の温度下であり、より好ましくは25℃から37℃の温度下での接触である。また、接触させる時間としても特に制限はなく、オリゴペプチド結合担体の種類、試料中の抗体の濃度等により、適宜調整され得るが、通常5分から6時間であり、好ましくは10分から2時間、より好ましくは20分から1時間である。   The conditions for contacting the oligopeptide-binding carrier with the sample containing the test antibody may be any conditions that allow the above-described oligopeptide and the denatured antibody in the sample to bind to each other, and usually a temperature of 0 to 45 ° C. Contact at a lower temperature, preferably at a temperature of 4 to 37 ° C., more preferably at a temperature of 25 ° C. to 37 ° C. Further, the contacting time is not particularly limited and may be appropriately adjusted depending on the kind of the oligopeptide binding carrier, the concentration of the antibody in the sample, etc., but is usually 5 minutes to 6 hours, preferably 10 minutes to 2 hours, Preferably it is 20 minutes to 1 hour.

また、この接触後、オリゴペプチドに結合できなかった抗体等を除去するため、本発明の方法においては洗浄工程を設けてもよい。その洗浄に用いられる洗浄液としては、オリゴペプチドと変性した抗体との結合を阻害せず、担体等に非特異的に吸着した抗体を洗浄できるものであればよく、例えば、緩衝液(pH6から8)、より具体的には、トリス緩衝液、リン酸緩衝液、HEPES緩衝液が挙げられる。また、これらの緩衝液においては、塩類、界面活性化剤、タンパク質、糖、アミノ酸などの双性イオン化合物等を適宜含有していてもよい。また、市販の免疫反応用試薬キットに含まれる洗浄液(例えば、Eテスト「TOSOH」II洗浄液、東ソー製)も好適に用いられる。   In addition, a washing step may be provided in the method of the present invention in order to remove the antibody that could not be bound to the oligopeptide after this contact. The washing solution used for the washing may be any washing solution that does not inhibit the binding between the oligopeptide and the denatured antibody and can wash the antibody non-specifically adsorbed on the carrier, for example, a buffer solution (pH 6 to 8). More specifically, a Tris buffer solution, a phosphate buffer solution, and a HEPES buffer solution may be mentioned. In addition, these buffers may appropriately contain salts, surfactants, zwitterionic compounds such as proteins, sugars, amino acids, and the like. In addition, a cleaning liquid (for example, E test “TOSOH” II cleaning liquid, manufactured by Tosoh Corporation) included in a commercially available reagent kit for immune reaction is also preferably used.

次に、上記接触を経て形成された複合体と、被検抗体を認識する抗体に標識物質が結合している標識抗体とを接触させることにより、オリゴペプチド結合担体と変性した抗体と標識抗体とからなる複合体を形成させる。   Next, by contacting the complex formed through the above contact with a labeled antibody in which a labeling substance is bound to an antibody that recognizes the test antibody, the oligopeptide binding carrier, the denatured antibody, and the labeled antibody A complex consisting of is formed.

この工程において用いられる被検抗体を認識する抗体としては、当該抗体を認識し得る抗体であればよく、アイソタイプ(IgG、IgM、IgE等)、形態(Fab、Fv、scFv、ダイアボディー)について特に制限はない。   The antibody that recognizes the test antibody used in this step may be any antibody that can recognize the antibody, and particularly about isotype (IgG, IgM, IgE, etc.) and form (Fab, Fv, scFv, diabody). There is no limit.

本発明で用いる被検抗体を認識する抗体に直接又は間接に結合する標識物質は、抗原抗体反応を利用した測定の分野で通常用いられる物質の中から適宜選択すればよく、一例として、フルオレセイン等の蛍光物質や、アルカリホスファターゼ等の酵素、放射性物質があげられる。   The labeling substance that binds directly or indirectly to the antibody recognizing the test antibody used in the present invention may be appropriately selected from substances usually used in the field of measurement using antigen-antibody reaction. For example, fluorescein and the like Fluorescent substances, enzymes such as alkaline phosphatase, and radioactive substances.

また、被検抗体を認識する抗体と標識物質との結合は、後述の当該物質の検出における簡便さから、通常リンカー(例えば、NHSエステル、マレイミド)等を介した架橋反応により行われるが、標識物質を結合させた二次抗体を用いて行うこともできる。ここで、二次抗体とは、被検抗体を認識する抗体に特異的な結合性を示す抗体である。そして、この特異的な結合性を利用することにより、当該二次抗体を介し、被検抗体を認識する抗体に標識物質を間接的に結合させることができる。また、この標識物質が結合された二次抗体を用いる場合には、オリゴペプチド結合担体及び変性した抗体と複合体を形成した後に、当該二次抗体を介して被検抗体を認識する抗体に標識物質を結合させてもよい。   In addition, the binding between the antibody recognizing the test antibody and the labeling substance is usually performed by a cross-linking reaction via a linker (for example, NHS ester, maleimide) or the like for the convenience of detection of the substance described later. It can also be performed using a secondary antibody to which a substance is bound. Here, the secondary antibody is an antibody that exhibits specific binding to an antibody that recognizes the test antibody. Then, by utilizing this specific binding property, the labeling substance can be indirectly bound to the antibody recognizing the test antibody via the secondary antibody. When a secondary antibody to which this labeling substance is bound is used, a complex is formed with the oligopeptide binding carrier and the denatured antibody, and then the antibody that recognizes the test antibody is labeled via the secondary antibody. Substances may be bound.

また、この方法において、オリゴペプチド結合担体及び変性した抗体からなる複合体と、前述の標識抗体とを接触させる際の条件としては、これらが結合できる条件であればよく、通常、0から40℃の温度下での接触であり、好ましくは4から37℃の温度下であり、より好ましくは25から37℃の温度下での接触である。また、接触させる時間としても特に制限はなく、前記複合体及び標識抗体の濃度等により、適宜調整され得るが、通常5分から6時間であり、好ましくは10分から2時間、より好ましくは20分から1時間である。さらに、この接触後においても、前記複合体に結合できなかった標識抗体等を除去するため、洗浄工程を設けてもよく、その工程においても上述の洗浄液が好適に用いられる。   In this method, the condition for contacting the complex consisting of the oligopeptide-binding carrier and the denatured antibody with the labeled antibody described above may be any condition that allows them to bind, and usually 0 to 40 ° C. The contact is preferably performed at a temperature of 4 to 37 ° C, more preferably a contact at a temperature of 25 to 37 ° C. Further, the contacting time is not particularly limited and may be appropriately adjusted depending on the concentration of the complex and the labeled antibody, but is usually 5 minutes to 6 hours, preferably 10 minutes to 2 hours, more preferably 20 minutes to 1 It's time. Further, even after this contact, a washing step may be provided in order to remove the labeled antibody that could not be bound to the complex, and the above-mentioned washing solution is also preferably used in that step.

次に、本発明の方法においては、上記接触を経て形成された複合体中の標識物質を検出することにより、試料中の変性した抗体の量を測定する。   Next, in the method of the present invention, the amount of denatured antibody in the sample is measured by detecting the labeling substance in the complex formed through the contact.

本発明において標識物質の検出とは、標識物質に由来した信号の検出を意味し、その検出は、当該技術分野の公知の方法にしたがって行なうことができる。例えば、標識物質として蛍光物質を用いる場合には、それが発する蛍光をプレートリーダー等を用いて検出及び定量することができる。また、標識物質として酵素を用いる場合には、当該酵素の作用によって分解して発色、発光等する基質を添加することにより、その発色、発光等をプレートリーダー等を用いて検出及び定量することができる。また、標識物質として放射性物質を用いる場合には、当該物質の発する放射線量をシンチレーションカウンター等により検出及び定量することができる。   In the present invention, detection of a labeling substance means detection of a signal derived from the labeling substance, and the detection can be performed according to a known method in the art. For example, when a fluorescent substance is used as the labeling substance, the fluorescence emitted from the fluorescent substance can be detected and quantified using a plate reader or the like. In addition, when an enzyme is used as a labeling substance, it is possible to detect and quantify the coloration, luminescence, etc. using a plate reader or the like by adding a substrate that decomposes by the action of the enzyme to develop coloration, luminescence, etc. it can. When a radioactive substance is used as the labeling substance, the radiation dose emitted from the substance can be detected and quantified using a scintillation counter or the like.

本発明においては、後述の実施例に示す通り、このようにして検出される標識物質に由来した信号の強度(吸光度、蛍光強度等)と、試料中の変性した抗体の量とは、高い相関性を示す。そのため、濃度既知の変性した抗体を含む標準試料を用いて本発明の方法を実施し、被検抗体を含む試料を用いて得られる測定値との間の相関データを取得し、当該相関データに基づき当該被検試料に存在する変性した抗体の量を測定(定量)することができる。なお相関データとは、例えば検量線である。   In the present invention, as shown in Examples described later, the signal intensity (absorbance, fluorescence intensity, etc.) derived from the labeling substance thus detected and the amount of denatured antibody in the sample are highly correlated. Showing gender. For this reason, the method of the present invention is carried out using a standard sample containing a denatured antibody with a known concentration, and correlation data with a measurement value obtained using a sample containing a test antibody is obtained. Based on this, the amount of denatured antibody present in the test sample can be measured (quantified). The correlation data is, for example, a calibration curve.

上述の通り、本発明で用いる変性抗体測定法では、試料中の変性した抗体の量に基づき、前記標識物質に由来した信号(発光、蛍光等)が変化する。したがって、当該信号に基づき、抗体の凝集体形成を予測できる。前述した方法で測定した変性抗体の量に基づき予測する方法に特に制限はなく、例えば、前記工程(2)において変性した抗体が有意に検出されなければ、試料中の抗体の安定性は極めて高いと評価でき、凝集体は形成しないと予測できる。また、被検抗体を含む試料を用いて得られる測定値を、それと同濃度の変性した抗体のみを含む試料を用いて同様に測定して得られた測定値と比較して、通常30%以下、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下(例えば、4%以下、3%以下、2%以下、1%以下)であれば、試料中の抗体は安定性が高いと評価でき、凝集体は形成しないと予測できる。また、後述の実施例に示す通り、ストレス(加熱)を与える前と比較して、ストレスを与えた後の測定値が有意に変わらなければ、試料中の抗体のストレスに対する安定性は極めて高く凝集体は形成しないと予測できる。   As described above, in the denatured antibody measurement method used in the present invention, the signal (luminescence, fluorescence, etc.) derived from the labeling substance changes based on the amount of denatured antibody in the sample. Therefore, antibody aggregate formation can be predicted based on the signal. There is no particular limitation on the prediction method based on the amount of the denatured antibody measured by the method described above. For example, if the denatured antibody is not detected significantly in the step (2), the stability of the antibody in the sample is extremely high. It can be estimated that no aggregate is formed. In addition, the measurement value obtained using the sample containing the test antibody is usually 30% or less compared to the measurement value obtained by measuring in the same manner using a sample containing only the denatured antibody at the same concentration. The antibody in the sample is stable if it is preferably 20% or less, more preferably 10% or less, and even more preferably 5% or less (eg, 4% or less, 3% or less, 2% or less, 1% or less). Can be evaluated as high, and it can be predicted that aggregates will not be formed. In addition, as shown in the examples described later, if the measured value after applying stress is not significantly different from that before applying stress (heating), the stability of the antibody in the sample against stress is extremely high. It can be predicted that no aggregate will form.

以下、実施例に基づき、本発明を詳細に説明するが、本発明はこれら実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited by these Examples.

(実施例1) 変性ヒト抗体測定(その1)
(1)本実施例においては、ヒト抗体として抗CD20抗体を用いた。そして、10mg/mLの抗CD20抗体溶液をリン酸緩衝液(pH7.4)で1mg/mLに希釈したものを100mM グリシン緩衝液(pH2.0)で一晩透析することで、変性したヒト抗体を含む溶液(以下、「変性ヒト抗体溶液」とも称する)を調製した。
Example 1 Denatured Human Antibody Measurement (Part 1)
(1) In this example, an anti-CD20 antibody was used as a human antibody. A 10 mg / mL anti-CD20 antibody solution diluted to 1 mg / mL with a phosphate buffer (pH 7.4) is dialyzed overnight with a 100 mM glycine buffer (pH 2.0), thereby denatured human antibodies. (Hereinafter also referred to as “denatured human antibody solution”).

(2)(1)で調製した変性ヒト抗体溶液と、配列番号1に記載のアミノ酸配列からなるポリペプチド(以下、2A1と表記)との反応性を、以下に示すELISA法を用いて測定した。なお、2A1は、有機合成化学の手法により調製した。
(2−1)4%(v/v)グルタルアルデヒドを96穴マイクロプレート(PolySorpプレート(Thermo Scientific製)に300μL/wellで塗布し、37℃で2時間放置後、2A1を2μg/wellで添加し、37℃で2時間放置することで、前記ポリペプチドを前記ウェルへ固定化した。
(2−2)1%(w/v)コラーゲンペプチド(魚鱗又は魚皮由来のコラーゲン又はゼラチンの加水分解産物、重量平均分子量:3000から5000のコラーゲンペプチド、製品名:イクオスHDL、新田ゼラチン製)を含む炭酸緩衝液(pH9.6)を300μL/wellで添加し、37℃で2時間放置することで、ブロッキング処理を行なった。
(2) The reactivity of the modified human antibody solution prepared in (1) with a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 1 (hereinafter referred to as 2A1) was measured using the ELISA method shown below. . 2A1 was prepared by a method of organic synthetic chemistry.
(2-1) 4% (v / v) glutaraldehyde was applied to a 96-well microplate (PolySorp plate (Thermo Scientific)) at 300 μL / well, allowed to stand at 37 ° C. for 2 hours, and 2A1 was added at 2 μg / well. The polypeptide was immobilized on the well by allowing it to stand at 37 ° C. for 2 hours.
(2-2) 1% (w / v) collagen peptide (fish scale or fish skin-derived collagen or gelatin hydrolyzate, weight average molecular weight: 3000 to 5000 collagen peptide, product name: Ikuos HDL, manufactured by Nitta Gelatin ) Containing carbonate buffer (pH 9.6) was added at 300 μL / well and allowed to stand at 37 ° C. for 2 hours for blocking treatment.

(2−3)洗浄緩衝液A(0.05%(w/v)のTween 20、150mMのNaClを含む20mM Tris−HCl緩衝液(pH7.4))で洗浄後、(1)で調製した変性ヒト抗体溶液を各ウェルに添加し、25℃で1時間反応させた。
(2−4)反応終了後、洗浄緩衝液Aで洗浄し、PBS−T(Phosphate Buffered Saline−Tween 20)で10ng/mLに希釈したアルカリ性ホスファターゼ標識抗ヒトIgG抗体(ジャクソンイムノリサーチ製)を100μL/wellで添加した。
(2−5)25℃で1時間反応させ、洗浄緩衝液Aで洗浄後、Phosphatase Substrate(KPL製)を50μL/wellで添加し、25℃で30分反応させた。
(2−6)APStop Solution(KPL製)を50μL/wellで添加して発色反応を止めた後、マイクロプレートリーダー(Tecan製)で595nmの吸光度を測定した。
(2-3) Washing buffer A (0.05% (w / v) Tween 20, 20 mM Tris-HCl buffer (pH 7.4) containing 150 mM NaCl) was prepared in (1). The denatured human antibody solution was added to each well and reacted at 25 ° C. for 1 hour.
(2-4) After completion of the reaction, 100 μL of alkaline phosphatase-labeled anti-human IgG antibody (manufactured by Jackson ImmunoResearch) washed with washing buffer A and diluted to 10 ng / mL with PBS-T (Phosphate Buffered Saline-Tween 20) / Well.
(2-5) The mixture was reacted at 25 ° C. for 1 hour, washed with washing buffer A, Phosphatase Substrate (manufactured by KPL) was added at 50 μL / well, and the mixture was reacted at 25 ° C. for 30 minutes.
(2-6) AStop Solution (manufactured by KPL) was added at 50 μL / well to stop the color reaction, and then the absorbance at 595 nm was measured with a microplate reader (manufactured by Tecan).

(3)比較対象として(1)の操作を行なわない未変性のヒト抗体溶液について、(2)と同様な方法のELISA法で測定した。種々の濃度の変性/未変性ヒト抗体溶液を添加したときの吸光度(595nm)測定結果を図1に示す。図中、白三角は未変性ヒト抗体溶液の結果であり、黒丸が変性ヒト抗体溶液の結果である。溶液中に含まれる変性ヒト抗体の濃度が上昇すると、吸光度も上昇していることから、本実施例の方法により、溶液中に含まれる変性ヒト抗体の濃度に基づく測定ができることがわかる。また未変性ヒト抗体溶液を測定した結果、濃度に関係なくほぼ一定の吸光度を示したことから、本実施例の方法は変性ヒト抗体を特異的に測定できることがわかる。   (3) As a comparison target, an unmodified human antibody solution not subjected to the operation of (1) was measured by an ELISA method similar to (2). FIG. 1 shows the results of absorbance (595 nm) measurement when various concentrations of denatured / native human antibody solutions were added. In the figure, the white triangle is the result of the native human antibody solution, and the black circle is the result of the modified human antibody solution. As the concentration of the denatured human antibody contained in the solution increases, the absorbance also increases. Therefore, it can be seen that the method of this example allows measurement based on the concentration of the denatured human antibody contained in the solution. Moreover, as a result of measuring the native human antibody solution, it showed an almost constant absorbance regardless of the concentration, indicating that the method of this Example can specifically measure the modified human antibody.

(実施例2) ブロッキング剤の検討
実施例1(2−1)のプレートとして、2A1を固定化したプレート又は2A1を固定化しないプレートを、実施例1(2−2)のブロッキング処理で用いるブロッキング剤として、2%(w/v)スキムミルク(製品名:Skim Milk、Difco Laboratories製)、100mMエタノールアミン(製品名:2−エタノールアミン、和光純薬工業株式会社製)又は0.5%(w/v)BSA(ウシ血清アルブミン、製品名:Bovine Serum Albumin、Sigma−Aldrich製)を、それぞれ用いた他は、実施例1と同様な方法で種々の濃度の変性ヒト抗体溶液を測定した。
(Example 2) Examination of blocking agent As a plate of Example 1 (2-1), a plate in which 2A1 is immobilized or a plate in which 2A1 is not immobilized is used in the blocking treatment of Example 1 (2-2). As an agent, 2% (w / v) skim milk (product name: Skim Milk, manufactured by Difco Laboratories), 100 mM ethanolamine (product name: 2-ethanolamine, manufactured by Wako Pure Chemical Industries, Ltd.) or 0.5% (w / V) Modified human antibody solutions at various concentrations were measured in the same manner as in Example 1 except that BSA (bovine serum albumin, product name: Bovine Serum Albumin, manufactured by Sigma-Aldrich) was used.

結果を図2から図5に示す。これら図面において、黒棒は2A1をウェルに固定化したときの、白棒は2A1をウェルに固定化しなかったときの、それぞれの結果を示す。コラーゲンペプチドをブロッキング剤として用いたときは、プレートへの2A1の固定化により吸光度が有意に上昇し、かつ変性ヒト抗体の濃度により吸光度が変化した(図2)。一方、スキムミルク、エタノールアミン、BSAをブロッキング剤として用いたときは、2A1の固定化による吸光度の有意な上昇は確認できなかった(図3から図5)。このことから、2A1を結合した担体を調製する際、用いるブロッキング剤としては、コラーゲンペプチドが好ましいことがわかる。   The results are shown in FIGS. In these drawings, the black bar indicates the result when 2A1 is immobilized on the well, and the white bar indicates the result when 2A1 is not immobilized on the well. When collagen peptide was used as a blocking agent, the absorbance increased significantly due to the immobilization of 2A1 on the plate, and the absorbance varied depending on the concentration of the denatured human antibody (FIG. 2). On the other hand, when skim milk, ethanolamine, or BSA was used as a blocking agent, no significant increase in absorbance due to immobilization of 2A1 could be confirmed (FIGS. 3 to 5). From this, it can be seen that a collagen peptide is preferable as a blocking agent to be used when preparing a carrier to which 2A1 is bound.

(実施例3) 固相の検討(その1)
実施例1(2−1)のプレートとして、2A1を固定化しない、PolySorpプレート、MediSorpプレート、MaxiSorpプレート、及びMultiSorpプレート(いずれもThermo Scientific製)を用いた他は、実施例1と同様な方法で種々の濃度の変性ヒト抗体溶液を測定し、プレートへの抗体の非特異吸着について分析した。得られた結果を図6に示す。図中、黒ひし形がPolySorpプレートを、白四角がMediSorpプレートを、白三角がMaxiSorpプレートを、黒丸がMultiSorpプレートを、それぞれ用いたときの結果を示す。なお各プレートの疎水性は、高いものから低いものに向かって、PolySorp、MediSorp、MaxiSorp、MultiSorpの順である。
(Example 3) Examination of solid phase (part 1)
The same method as in Example 1 except that a PolySorp plate, MediSorp plate, MaxiSorp plate, and MultiSorp plate (all manufactured by Thermo Scientific) that do not immobilize 2A1 were used as the plate of Example 1 (2-1). Were used to measure various concentrations of denatured human antibody solutions and analyzed for non-specific adsorption of antibodies to the plate. The obtained result is shown in FIG. In the figure, the black rhombus indicates the PolySorp plate, the white square indicates the MediSorp plate, the white triangle indicates the MaxiSorp plate, and the black circle indicates the result when the MultiSorp plate is used. The hydrophobicity of each plate is in the order of PolySorp, MediSorp, MaxiSorp, and MultiSorp from the highest to the lowest.

(実施例4) 固相の検討(その2)
実施例1(2−2)のブロッキング処理を行なわなかった他は、実施例3と同様な方法で種々の濃度の変性ヒト抗体溶液を測定し、プレートへの抗体の非特異吸着について分析した。得られた結果を図7に示す。図中、黒ひし形がPolySorpプレートを、白四角がMediSorpプレートを、白三角がMaxiSorpプレートを、黒丸がMultiSorpプレートを、それぞれ用いたときの結果を示す。
(Example 4) Examination of solid phase (part 2)
Except that the blocking treatment of Example 1 (2-2) was not performed, various concentrations of denatured human antibody solutions were measured in the same manner as in Example 3 and analyzed for nonspecific adsorption of antibodies to the plate. The obtained results are shown in FIG. In the figure, the black rhombus indicates the PolySorp plate, the white square indicates the MediSorp plate, the white triangle indicates the MaxiSorp plate, and the black circle indicates the result when the MultiSorp plate is used.

図7に示した結果から明らかな通り、プレートの疎水性が高いほど(高いものから低いものに向かって、PolySorp、MediSorp、MaxiSorp、MultiSorpの順である)、変性ヒト抗体溶液を添加したときの吸光度の上昇が抑えられていることがわかる。このことから、2A1を結合する担体としてプレートを用いる場合、非特異吸着の低い、疎水性の高いプレートが好ましいことがわかる。また、図6に示した結果から明らかな通り、コラーゲンペプチドでブロッキング処理することで、ブロッキング処理を行なわないとき(図7)と比較し、変性ヒト抗体溶液を添加したときの吸光度の上昇がさらに抑えられていることがわかる。特に疎水性の高いプレートであるPolySorpプレートを用いたときは、変性ヒト抗体濃度が高い溶液(10μg/mL)を添加しても吸光度の上昇を十分に抑制されていることも明らかになった。   As is clear from the results shown in FIG. 7, the higher the hydrophobicity of the plate (from higher to lower, in order of PolySorp, MediSorp, MaxiSorp, MultiSorp), when the modified human antibody solution was added It can be seen that the increase in absorbance is suppressed. This shows that when a plate is used as a carrier for binding 2A1, a plate with low nonspecific adsorption and high hydrophobicity is preferable. Further, as is clear from the results shown in FIG. 6, the increase in absorbance when the denatured human antibody solution was added was further increased by blocking with the collagen peptide as compared with the case where the blocking treatment was not performed (FIG. 7). You can see that it is suppressed. In particular, when a PolySorp plate, which is a highly hydrophobic plate, was used, it was also found that the increase in absorbance was sufficiently suppressed even when a solution having a high concentration of denatured human antibody (10 μg / mL) was added.

(実施例5) 変性ヒト抗体測定(その2)
(1)実施例1(1)の変性ヒト抗体溶液の調製を下記(a)から(e)のいずれかの条件で処理して調製した他は、実施例1と同様な方法で変性ヒト抗体溶液を測定した。
(a)酸処理/アルカリ処理
10mg/mLのヒトモノクローナル抗体溶液をグリシン緩衝液(pH2、pH3)、クエン酸緩衝液(pH4、pH5)、リン酸緩衝液(pH6、pH7、pH7.4)、Tris−HCl緩衝液(pH8)又は炭酸緩衝液(pH10)で希釈して調製した0.5mg/mLのヒトモノクローナル抗体溶液100μLを37℃で一晩放置することで処理した。
(b)加熱処理
0.5mg/mLのヒトモノクローナル抗体溶液100μLを4℃、25℃、37℃又は50℃で一晩放置することで処理した。
(c)凍結融解処理
0.5mg/mLのヒトモノクローナル抗体溶液100μLを凍結(凍結温度:−30℃又は液体窒素(−196℃))し37℃で融解させる操作を10回行なうことで処理した。
(d)撹拌処理、スターラー
0.5mg/mLのヒトモノクローナル抗体溶液600μLをスターラーを用い25℃で一晩撹拌することで処理した。
(e)撹拌処理、振とう器
0.5mg/mLのヒトモノクローナル抗体溶液300μLを振とう器を用い25℃で一晩振とうすることで処理した。
(Example 5) Denatured human antibody measurement (2)
(1) A modified human antibody solution prepared in the same manner as in Example 1, except that the modified human antibody solution of Example 1 (1) was prepared under the conditions (a) to (e) below. The solution was measured.
(A) Acid-treated / alkali-treated 10 mg / mL human monoclonal antibody solution prepared from glycine buffer (pH 2, pH 3), citrate buffer (pH 4, pH 5), phosphate buffer (pH 6, pH 7, pH 7.4), Treatment was performed by allowing 100 μL of a 0.5 mg / mL human monoclonal antibody solution prepared by diluting with Tris-HCl buffer (pH 8) or carbonate buffer (pH 10) to stand at 37 ° C. overnight.
(B) Heat treatment 100 μL of 0.5 mg / mL human monoclonal antibody solution was treated by leaving it overnight at 4 ° C., 25 ° C., 37 ° C. or 50 ° C.
(C) Freezing and thawing treatment 100 μL of a 0.5 mg / mL human monoclonal antibody solution was frozen (freezing temperature: −30 ° C. or liquid nitrogen (−196 ° C.)) and thawed at 37 ° C. for 10 times. .
(D) Stirring treatment, stirrer 600 μL of 0.5 mg / mL human monoclonal antibody solution was treated by stirring overnight at 25 ° C. using a stirrer.
(E) Stirring treatment and shaker The treatment was performed by shaking 300 μL of a 0.5 mg / mL human monoclonal antibody solution at 25 ° C. overnight using a shaker.

(2)比較対象として、(1)で調製した変性ヒト抗体溶液を市販のタンパク質物性解析装置(Optim2、Avacta製)に供し、変性開始温度を測定した。結果を図8〜11に示す。なお本発明で用いた変性ヒト抗体測定法での測定結果(図8及び図10)は、吸光度が低い(すなわち変性ヒト抗体量が低い)ほどタンパク質(抗体)の安定性が高いことを示す。一方、市販の装置(Optim2)での測定結果(図9及び図11)は、変性開始温度が高いほどタンパク質(抗体)の安定性が高いことを示す。   (2) As a comparison object, the modified human antibody solution prepared in (1) was subjected to a commercially available protein physical property analyzer (Optim2, manufactured by Avacta), and the denaturation start temperature was measured. The results are shown in FIGS. In addition, the measurement result (FIG. 8 and FIG. 10) by the modified | denatured human antibody measuring method used by this invention shows that the stability of protein (antibody) is so high that a light absorbency is low (namely, the amount of denatured human antibodies is low). On the other hand, the measurement results (FIGS. 9 and 11) using a commercially available apparatus (Optim2) indicate that the higher the denaturation start temperature, the higher the stability of the protein (antibody).

ヒト抗体を酸処理又はアルカリ処理した場合(図8及び9)、本発明で用いた変性ヒト抗体測定方法と市販の装置を用いた方法、ともに前記処理によりヒト抗体の安定性が低下している。このことから、本発明で用いる変性ヒト抗体測定法と市販の装置を用いた方法との間に相関性があることがわかる。一方、ヒト抗体を加熱処理、凍結融解処理、又は撹拌処理した場合、市販の装置を用いた方法では変性開始温度の変化がほとんどなかった(図11)が、本発明で用いる変性ヒト抗体測定法では50℃での加熱、凍結融解(−30℃)、凍結融解(液体窒素)、及びスターラーでの撹拌により変性ヒト抗体量が有意に上昇(すなわちヒト抗体の安定性が低下)した(図10)。このことから、本発明で用いる変性ヒト抗体測定法は、市販の装置による変性開始温度測定法と比較し、変性ヒト抗体量(すなわちヒト抗体の安定性低下)をより精度高く測定することができることが明らかになった。   When a human antibody is acid-treated or alkali-treated (FIGS. 8 and 9), both the modified human antibody measurement method used in the present invention and the method using a commercially available apparatus both reduce the stability of the human antibody. . This shows that there is a correlation between the modified human antibody measurement method used in the present invention and a method using a commercially available apparatus. On the other hand, when the human antibody was heat-treated, freeze-thawed, or stirred, there was almost no change in the denaturation start temperature in the method using a commercially available apparatus (FIG. 11), but the denatured human antibody measurement method used in the present invention. Then, the amount of denatured human antibody significantly increased (ie, the stability of the human antibody decreased) by heating at 50 ° C., freeze-thawing (−30 ° C.), freeze-thawing (liquid nitrogen), and stirring with a stirrer (FIG. 10). ). From this, the modified human antibody measurement method used in the present invention can measure the amount of denatured human antibody (that is, decreased stability of human antibody) with higher accuracy than the method of measuring denaturation start temperature using a commercially available device. Became clear.

(実施例6) 本発明の方法を用いた抗体凝集体形成の予測
(1)実施例1(1)の変性ヒト抗体溶液の調製を、0.5mg/mLのヒトモノクローナル抗体溶液2000μLを4℃又は50℃で一晩放置することで処理して調製した他は、実施例1と同様な方法で変性ヒト抗体溶液を測定した。
(2)比較対象として、(1)と同様にして、但し処理時間を1〜25日として調製した変性ヒト抗体溶液を市販の細胞計数装置(コールターカウンターZシリーズ、ベックマン・コールター製)に供し、抗体凝集体に相当する3μmから10μmの粒子数を処理時間1日から25日まで継時的に測定した。
(3)さらに比較対象として、(1)と同様にして、但し処理時間を1〜21日として調製した変性ヒト抗体溶液を市販のバイオ医薬品凝集性評価システム(Aggregates Sizer、島津製作所製)に供し、抗体凝集体に相当する0.04μmから20μmの粒子濃度を処理時間1日から21日まで継時的に測定した。
(Example 6) Prediction of antibody aggregate formation using the method of the present invention (1) Preparation of the modified human antibody solution of Example 1 (1) was conducted at 4 ° C using 2000 µL of a 0.5 mg / mL human monoclonal antibody solution. Alternatively, the modified human antibody solution was measured in the same manner as in Example 1 except that it was prepared by allowing it to stand at 50 ° C. overnight.
(2) As a comparison object, the modified human antibody solution prepared in the same manner as (1) except that the treatment time was 1 to 25 days was subjected to a commercially available cell counter (Coulter Counter Z series, manufactured by Beckman Coulter), The number of particles from 3 μm to 10 μm corresponding to the antibody aggregate was measured over time from the treatment time of 1 day to 25 days.
(3) Further, as a comparison target, the modified human antibody solution prepared in the same manner as (1) except that the treatment time was 1 to 21 days was subjected to a commercially available biopharmaceutical aggregation system (Aggregates Sizer, manufactured by Shimadzu Corporation). The particle concentration of 0.04 μm to 20 μm corresponding to the antibody aggregate was measured over time from the treatment time of 1 to 21 days.

結果を図12〜14に示す。図12は本発明の方法を用いて、処理抗体を測定した結果である。図13は市販の細胞計数装置を用いて、処理抗体を測定した結果である。図14は市販のバイオ医薬品凝集性評価システムを用いて、処理抗体を測定した結果である。本発明の方法では処理を1晩行なった段階で4℃と50℃で測定値に差が見られ、変性ヒト抗体を確認することができ、その結果、凝集体の形成を予測することができた(図12)。一方、市販の細胞計測装置及びバイオ医薬品凝集性評価システムで4℃と50℃で測定値に差が見られたのは処理10日以降であった(図13及び図14)。このことから、本発明の方法は従来の装置を用いた方法と比較し、迅速に凝集体の形成を予測できることが明らかとなった。   The results are shown in FIGS. FIG. 12 shows the results of measuring the treated antibody using the method of the present invention. FIG. 13 shows the results of measuring the treated antibody using a commercially available cell counter. FIG. 14 shows the results of measuring the treated antibody using a commercially available biopharmaceutical aggregation evaluation system. In the method of the present invention, a difference is observed in the measured values at 4 ° C. and 50 ° C. at the stage where the treatment is performed overnight, so that denatured human antibodies can be confirmed, and as a result, the formation of aggregates can be predicted. (FIG. 12). On the other hand, the difference between the measured values at 4 ° C. and 50 ° C. in the commercially available cell measurement device and biopharmaceutical aggregation evaluation system was observed after 10 days of treatment (FIGS. 13 and 14). From this, it became clear that the method of the present invention can predict the formation of aggregates more quickly than the method using the conventional apparatus.

以上説明したように、本発明によれば、ストレス(例えば、酸、アルカリ、加熱、凍結融解、撹拌)等により変性を受けた抗体による凝集体形成を迅速・簡便に予測することできる。また本発明の方法によれば、Biacore(GEヘルスケア製)等の高価な専用装置を必要とせず、比較的に安価に変性した抗体の凝集体形成予測ができる。したがって、本発明は、ヒト抗体を含む医薬品の品質管理等において有用である。   As described above, according to the present invention, aggregate formation by an antibody that has been denatured due to stress (for example, acid, alkali, heating, freeze-thawing, stirring) or the like can be predicted quickly and easily. Further, according to the method of the present invention, it is possible to predict the formation of an aggregate of an antibody that has been denatured relatively inexpensively without requiring an expensive dedicated device such as Biacore (manufactured by GE Healthcare). Therefore, the present invention is useful in quality control of pharmaceuticals including human antibodies.

Claims (6)

以下の(1)から(3)の工程を含む、抗体の凝集体の形成を予測する方法。
(1)配列番号1に記載のアミノ酸配列を含み変性した抗体を認識するオリゴペプチドが担体に結合しているオリゴペプチド結合担体と、
被検抗体を含む試料と、
被検抗体を認識する抗体に標識物質が直接又は間接に結合している標識抗体と
を接触させることにより、オリゴペプチド結合担体と変性した抗体と標識抗体とが反応した複合体を形成させる工程、
(2)工程(1)で形成した複合体中の標識物質を検出することにより、前記試料中の変性した抗体の量を測定する工程、
(3)工程(2)において測定した変性した抗体の量に基づき、前記試料中の被検抗体の凝集体の形成を予測する工程
A method for predicting the formation of an antibody aggregate, comprising the following steps (1) to (3).
(1) an oligopeptide-binding carrier in which an oligopeptide that recognizes a denatured antibody comprising the amino acid sequence of SEQ ID NO: 1 is bound to a carrier;
A sample containing the test antibody;
A step of forming a complex in which an oligopeptide-binding carrier, a denatured antibody, and a labeled antibody react by contacting a labeled antibody in which a labeled substance is bound directly or indirectly to an antibody that recognizes a test antibody;
(2) a step of measuring the amount of denatured antibody in the sample by detecting the labeling substance in the complex formed in step (1),
(3) A step of predicting the formation of an aggregate of the test antibody in the sample based on the amount of the denatured antibody measured in the step (2).
まずオリゴペプチド結合担体と被検抗体を含む試料とを接触させ、次いで標識抗体と接触させる、請求項1に記載の方法。 The method according to claim 1, wherein the oligopeptide-binding carrier is first contacted with a sample containing the test antibody, and then contacted with a labeled antibody. 前記オリゴペプチド結合担体が、さらにコラーゲンペプチドによりブロッキングされてなる担体である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the oligopeptide-binding carrier is a carrier further blocked with a collagen peptide. 担体が疎水性の高いプレートである、請求項1〜3いずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the carrier is a highly hydrophobic plate. 担体が磁性ビーズである、請求項1〜3いずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the carrier is a magnetic bead. 配列番号1に記載のアミノ酸配列を含み変性した抗体を認識するオリゴペプチドが担体に結合しているオリゴペプチド結合担体と、
被検抗体を認識する抗体に直接又は間接に標識物質が結合している標識抗体と
を含む、抗体の凝集体形成を予測するためのキット。
An oligopeptide-binding carrier in which an oligopeptide that recognizes a denatured antibody containing the amino acid sequence of SEQ ID NO: 1 is bound to a carrier;
A kit for predicting antibody aggregate formation, comprising a labeled antibody in which a labeling substance is bound directly or indirectly to an antibody recognizing a test antibody.
JP2017022882A 2017-02-10 2017-02-10 Antibody aggregate formation prediction method Pending JP2018128408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017022882A JP2018128408A (en) 2017-02-10 2017-02-10 Antibody aggregate formation prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017022882A JP2018128408A (en) 2017-02-10 2017-02-10 Antibody aggregate formation prediction method

Publications (1)

Publication Number Publication Date
JP2018128408A true JP2018128408A (en) 2018-08-16

Family

ID=63173824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017022882A Pending JP2018128408A (en) 2017-02-10 2017-02-10 Antibody aggregate formation prediction method

Country Status (1)

Country Link
JP (1) JP2018128408A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515589A (en) * 1997-03-06 2001-09-18 バイオン ダイアグノスティック サイエンシーズ,インコーポレイテッド Screening and treatment using complement regulators or receptor proteins
US20050244905A1 (en) * 2004-04-29 2005-11-03 Harry Ischiropoulos Nitrated fibrinogen as a marker for coronary artery disease and rapid blood clot formation
WO2008054030A1 (en) * 2006-11-02 2008-05-08 Kagoshima University IgG-BINDING PEPTIDE
JP2008292242A (en) * 2007-05-23 2008-12-04 Keio Gijuku Screening method of swine edema disease
JP2009500611A (en) * 2005-07-01 2009-01-08 アルボー ビータ コーポレーション Methods and compositions for the diagnosis and treatment of influenza
JP2014139575A (en) * 2006-05-05 2014-07-31 Leukocare Ag Biocompatible three-dimensional matrix for fixing biological material
WO2014115229A1 (en) * 2013-01-28 2014-07-31 独立行政法人産業技術総合研究所 Antibody-binding peptide
US20140248283A1 (en) * 2010-04-15 2014-09-04 Alper Biotech, Llc Monoclonal antibodies against her2 antigens, and uses therefor
JP2016175908A (en) * 2009-11-20 2016-10-06 アバクシス, インコーポレイテッド Peptides, devices, and methods for the detection of ehrlichia antibodies

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515589A (en) * 1997-03-06 2001-09-18 バイオン ダイアグノスティック サイエンシーズ,インコーポレイテッド Screening and treatment using complement regulators or receptor proteins
US20050244905A1 (en) * 2004-04-29 2005-11-03 Harry Ischiropoulos Nitrated fibrinogen as a marker for coronary artery disease and rapid blood clot formation
JP2009500611A (en) * 2005-07-01 2009-01-08 アルボー ビータ コーポレーション Methods and compositions for the diagnosis and treatment of influenza
JP2014139575A (en) * 2006-05-05 2014-07-31 Leukocare Ag Biocompatible three-dimensional matrix for fixing biological material
WO2008054030A1 (en) * 2006-11-02 2008-05-08 Kagoshima University IgG-BINDING PEPTIDE
JP2008292242A (en) * 2007-05-23 2008-12-04 Keio Gijuku Screening method of swine edema disease
JP2016175908A (en) * 2009-11-20 2016-10-06 アバクシス, インコーポレイテッド Peptides, devices, and methods for the detection of ehrlichia antibodies
US20140248283A1 (en) * 2010-04-15 2014-09-04 Alper Biotech, Llc Monoclonal antibodies against her2 antigens, and uses therefor
WO2014115229A1 (en) * 2013-01-28 2014-07-31 独立行政法人産業技術総合研究所 Antibody-binding peptide

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GIBBS, J. ET AL.: "Immobilization Principles Selecting the Surface for ELISA Assays", APPLICATION NOTE, vol. CLS-DD-AN-454 REV1, JPN6020041390, 2001, pages 2, ISSN: 0004479047 *
内山進, 外: "抗体医薬品の溶液物性", 薬剤学, vol. 74, no. 1, JPN6021012230, 2014, pages 12 - 18, ISSN: 0004479048 *
石川智世至: "抗体医薬品の製剤設計", 薬剤学, vol. 72, no. 5, JPN6021012232, 2012, pages 276 - 282, ISSN: 0004479049 *
阿萬大介, 外: "抗体医薬の物理的安定性評価における示唆走査型マイクロカロリーメーターの活用", 熱測定, vol. 38, no. 1, JPN6021012233, 2011, pages 9 - 15, ISSN: 0004479050 *

Similar Documents

Publication Publication Date Title
Kim et al. CRP detection from serum for chip-based point-of-care testing system
EP2995952B1 (en) Reagent kit, measurement kit, and method of measuring test substance
JPH06501555A (en) Improvements in solid-phase binding assays
JP5155453B2 (en) Method for quantifying protein leakage from protein-based affinity chromatography resins
Vashist et al. Surface plasmon resonance-based immunoassay for procalcitonin
JP6431766B2 (en) Immunological detection method and immunological detection reagent
Bleher et al. Development of a new parallelized, optical biosensor platform for label-free detection of autoimmunity-related antibodies
EP2673646A1 (en) Diagnostic method for urinary tract infection
US20200408772A1 (en) Reagent kit, measurement kit, and measurement method
JP5647599B2 (en) Method for detecting a substance in a biological sample
Bakhmachuk et al. Surface Plasmon Resonance Investigations of Bioselective Element Based on the Recombinant Protein A for Immunoglobulin Detection
CN107505459B (en) Time-resolved fluorescence immunochromatographic test strip and kit for quantitatively detecting human H-FABP and preparation method thereof
JP2009222712A (en) Method, reagent and kit for detecting metichillin resistant staphylococcus
US20200408773A1 (en) Reagent kit, measurement kit, and measurement method
JP2017187476A (en) Method of measuring modified antibody
WO2010024271A1 (en) Modified anti-heparin/pf4 complex antibody and hit antibody standard
KR20100124727A (en) High-molecular-weight adiponectin measurement method
US11635387B2 (en) Optical imaging system using lateral illumination for digital assays
JP6992262B2 (en) Manufacturing method of denaturing antibody measurement reagent
JP2018128408A (en) Antibody aggregate formation prediction method
WO2021210632A1 (en) Adenovirus immunoassay method and immunoassay instrument
Morrissey et al. Kinetics of Antigen− Antibody Interactions Employing a MALDI Mass Spectrometry Immunoassay
JP2005524087A (en) Sandwich assays and kits
WO2017033846A1 (en) Immunological test method and immunological test kit
TW201943727A (en) An application method for applying different labeled single-domain binding proteins combinations to micro-immunoassay and detection method for IgE

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210413