JP2018127572A - Manufacturing method and purification method of conjugated polymer, and manufacturing method of trimer - Google Patents

Manufacturing method and purification method of conjugated polymer, and manufacturing method of trimer Download PDF

Info

Publication number
JP2018127572A
JP2018127572A JP2017023307A JP2017023307A JP2018127572A JP 2018127572 A JP2018127572 A JP 2018127572A JP 2017023307 A JP2017023307 A JP 2017023307A JP 2017023307 A JP2017023307 A JP 2017023307A JP 2018127572 A JP2018127572 A JP 2018127572A
Authority
JP
Japan
Prior art keywords
transition metal
metal complex
conjugated polymer
group
substituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017023307A
Other languages
Japanese (ja)
Inventor
済 佐藤
Wataru Sato
済 佐藤
友英 村瀬
Tomohide Murase
友英 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2017023307A priority Critical patent/JP2018127572A/en
Publication of JP2018127572A publication Critical patent/JP2018127572A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a conjugated polymer for manufacturing an alignment-based conjugated polymer larger in molecular weight by polymerization with a coupling reaction between a monomer and a trimer.SOLUTION: There are provided a manufacturing method of a conjugated polymer by polymerizing a trimer which may have a substituent having a halogen atoms at 2, 6 positions of cyclopenta-dithiophene represented by Formula (1), and a monomer having trialkyl tin at the 2, 6 positions of the cyclopenta-dithiophene in co-presence of two or more kinds of transition metal complex catalysts by a coupling reaction, and a manufacturing method of a trimer by conducting a coupling reaction on the latter trialkyl tin-containing monomer and a monomer having an aromatic hydrocarbon group which may have a substituent group having 2 halogen atoms or an aromatic heterocyclic group which may have a substituent group in co-presence of two or more kinds of the transition metal complex catalysts.SELECTED DRAWING: None

Description

本発明は、整列性(regionally regular)共役高分子等の共役高分子の製造方法及び精製方法に関する。本発明はまた、この共役高分子の製造原料となるトリマーの製造方法に関する。本発明で製造する整列性共役高分子は、「regioselective(位置選択性)共役高分子」とも称され、反応により特定の位置選択性で合成されるものである。   The present invention relates to a method for producing and purifying a conjugated polymer such as a locally regular conjugated polymer. The present invention also relates to a method for producing a trimer as a raw material for producing the conjugated polymer. The aligned conjugated polymer produced in the present invention is also referred to as “regioselective (regioselective) conjugated polymer”, and is synthesized with a specific regioselectivity by reaction.

有機ELや有機薄膜トランジスタ、有機発光センサーなどのデバイスの半導体材料として、共役高分子が利用されており、中でも整列性共役高分子は、有機薄膜トランジスタへの応用が注目されている。   Conjugated polymers are used as semiconductor materials for devices such as organic EL, organic thin film transistors, and organic light-emitting sensors. Among these, aligned conjugated polymers are attracting attention for application to organic thin film transistors.

従来、整列性共役高分子及びその製造原料であるトリマーの合成方法として、遷移金属触媒を用いてモノマーをカップリングさせる方法が知られている。例えば特許文献1、2、非特許文献1、2には、テトラキストリフェニルホスフィンパラジウム(0)の均一触媒を用いて、マイクロ波下、200℃で2時間、トリマーとモノマーのカップリング反応を行うことにより、シクロペンタジチオフェン骨格と縮合芳香族環骨格とのトリマーユニットとシクロペンタジチオフェン骨格のモノマーユニットとを整列して主鎖に含む整列性共役高分子を、低分子量体やオリゴマーを含む反応生成物として製造する方法や、通常条件下、90℃で72時間の反応でトリマーを製造する方法が開示されている。   Conventionally, a method of coupling monomers using a transition metal catalyst is known as a method for synthesizing an alignment conjugated polymer and a trimer that is a raw material for the production. For example, in Patent Documents 1 and 2 and Non-Patent Documents 1 and 2, a trimer-monomer coupling reaction is performed at 200 ° C. for 2 hours under microwave using a homogeneous catalyst of tetrakistriphenylphosphine palladium (0). By aligning a trimer unit of a cyclopentadithiophene skeleton and a condensed aromatic ring skeleton and a monomer unit of a cyclopentadithiophene skeleton, and including an aligning conjugated polymer in the main chain, including a low molecular weight body and an oligomer A method for producing a reaction product and a method for producing a trimer by reaction at 90 ° C. for 72 hours under normal conditions are disclosed.

米国特許9,293,708号明細書US Pat. No. 9,293,708 中国出願公開第105131258号明細書Chinese Patent Application No. 105131258

Chem.Commun.2016,52,3207-3210.Chem. Commun. 2016, 52, 3207-3210. J.Am.Chem.Soc.2011,133,18538-18541.J. Am. Chem. Soc. 2011, 133, 18538-18541.

整列性共役高分子を適用してより性能の高いデバイスを開発するために、より高分子量分布の整列性共役高分子を得ることが求められる。しかしながら、従来の遷移金属触媒によるカップリング反応では、分子量の大きい整列系共役高分子を製造することはできなかった。これには、以下の2つの理由がある。
(1) ポリマー化原料であるシクロペンタジチオフェンのジスズ誘導体の純度にバラツキがある。
(2) カップリング反応の際、上記(1)のジスズ誘導体の不安定な炭素−スズ結合が切れ、その結果、低分子量体やオリゴマーが残存する。
さらに、得られた粗高分子の精製過程で、ソックスレイ抽出法等で高分子を精製した際に、低分子量側の高分子やオリゴマーが精製高分子側に残ってしまう点にも問題がある。
In order to develop a device with higher performance by applying the aligned conjugated polymer, it is required to obtain an aligned conjugated polymer having a higher molecular weight distribution. However, the conventional transition metal-catalyzed coupling reaction cannot produce an aligned conjugated polymer having a large molecular weight. There are two reasons for this.
(1) The purity of the ditin derivative of cyclopentadithiophene, which is a raw material for polymerization, varies.
(2) During the coupling reaction, the unstable carbon-tin bond of the ditin derivative of the above (1) is broken, and as a result, a low molecular weight body and an oligomer remain.
Furthermore, there is a problem in that the polymer or oligomer on the low molecular weight side remains on the purified polymer side when the polymer is purified by the Soxhlet extraction method or the like in the purification process of the obtained crude polymer. .

本発明は、モノマーとトリマーのカップリング反応による重合で、より分子量の大きい整列系共役高分子を製造するための共役高分子の製造方法及び精製方法と、この共役高分子の原料となるトリマーをモノマー同士のカップリング反応で短時間に高収率で得るトリマーの製造方法を提供することを目的とする。   The present invention relates to a method for producing and purifying a conjugated polymer for producing an aligned conjugated polymer having a higher molecular weight by polymerization by a coupling reaction between a monomer and a trimer, and a trimer as a raw material for the conjugated polymer. It aims at providing the manufacturing method of the trimer obtained in a high yield in a short time by the coupling reaction of monomers.

本発明者らは上記課題を解決するために鋭意検討を行った結果、2種以上の遷移金属錯体触媒の存在下にモノマーのカップリング反応を行うことで、短時間に高収率でトリマーを得ることが可能となり、また、得られたトリマーとモノマーを2種以上の遷移金属錯体触媒の存在下に、カップリング反応により重合させることにより、更には、得られた高分子を特定の方法で精製することにより、より分子量の大きい共役高分子を得ることができることを見出し、本発明を完成するに至った。
すなわち、本発明は以下を要旨とする。
As a result of intensive studies to solve the above-mentioned problems, the present inventors conducted a monomer coupling reaction in the presence of two or more kinds of transition metal complex catalysts, so that the trimer can be obtained in a high yield in a short time. In addition, by polymerizing the obtained trimer and monomer by a coupling reaction in the presence of two or more transition metal complex catalysts, the obtained polymer can be further obtained by a specific method. It has been found that a conjugated polymer having a higher molecular weight can be obtained by purification, and the present invention has been completed.
That is, the gist of the present invention is as follows.

[1] 下記式(1)で表されるトリマーと、下記式(2)で表されるモノマーとを、2種以上の遷移金属錯体触媒の共存下、カップリング反応により重合させる工程を含むことを特徴とする共役高分子の製造方法。 [1] The method includes polymerizing a trimer represented by the following formula (1) and a monomer represented by the following formula (2) by a coupling reaction in the presence of two or more transition metal complex catalysts. A process for producing a conjugated polymer characterized by

Figure 2018127572
Figure 2018127572

(上記式(1)中、R、Rは、各々独立に、置換基を有していてもよい脂肪族炭化水素基、又は置換基を有していてもよい芳香族炭化水素基を表し、Aは、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表し、Xはハロゲン原子を表す。) (In the above formula (1), R 1 and R 2 each independently represents an aliphatic hydrocarbon group which may have a substituent, or an aromatic hydrocarbon group which may have a substituent. A represents an aromatic hydrocarbon group which may have a substituent, or an aromatic heterocyclic group which may have a substituent, and X represents a halogen atom.

Figure 2018127572
Figure 2018127572

(上記式(2)中、R、Rは、各々独立に、置換基を有していてもよい脂肪族炭化水素基、又は置換基を有していてもよい芳香族炭化水素基を表し、Rは、脂肪族炭化水素基を表す。) (In the above formula (2), R 3 and R 4 each independently represents an aliphatic hydrocarbon group which may have a substituent, or an aromatic hydrocarbon group which may have a substituent. And R represents an aliphatic hydrocarbon group.)

[2] 前記2種以上の遷移金属錯体触媒のうち少なくとも1種が不均一系遷移金属錯体触媒であることを特徴とする、[1]に記載の共役高分子の製造方法。 [2] The method for producing a conjugated polymer according to [1], wherein at least one of the two or more transition metal complex catalysts is a heterogeneous transition metal complex catalyst.

[3] 前記2種以上の遷移金属錯体触媒のうち少なくとも1種が不均一系遷移金属錯体触媒であり、かつ少なくとも1種が均一系遷移金属錯体触媒であることを特徴とする、[2]に記載の共役高分子の製造方法。 [3] At least one of the two or more transition metal complex catalysts is a heterogeneous transition metal complex catalyst, and at least one is a homogeneous transition metal complex catalyst, [2] A method for producing a conjugated polymer as described in 1.

[4] 前記式(1)で表されるトリマーと前記式(2)で表されるモノマーを含む反応溶液と、前記均一系遷移金属錯体触媒及び前記不均一系遷移金属錯体触媒とを混合する工程を含むことを特徴とする、[3]に記載の共役高分子の製造方法。 [4] A reaction solution containing the trimer represented by the formula (1) and the monomer represented by the formula (2) is mixed with the homogeneous transition metal complex catalyst and the heterogeneous transition metal complex catalyst. The method for producing a conjugated polymer according to [3], comprising a step.

[5] 前記2種以上の遷移金属錯体触媒を構成する遷移金属のそれぞれが、パラジウムであることを特徴とする、[1]乃至[4]の何れかに記載の共役高分子の製造方法。 [5] The method for producing a conjugated polymer according to any one of [1] to [4], wherein each of the transition metals constituting the two or more transition metal complex catalysts is palladium.

[6] 前記共役高分子が、整列性共役高分子であることを特徴とする[1]乃至[5]の何れかに記載の共役高分子の製造方法。 [6] The method for producing a conjugated polymer according to any one of [1] to [5], wherein the conjugated polymer is an aligned conjugated polymer.

[7] [1]乃至[6]の何れかに記載の共役高分子の製造方法で得られた共役高分子をハロゲン系溶媒に溶解させた後、塩基性シリカゲル、及び酸性シリカゲルに接触させることを特徴とする共役高分子の精製方法。 [7] The conjugated polymer obtained by the method for producing a conjugated polymer according to any one of [1] to [6] is dissolved in a halogen-based solvent, and then contacted with basic silica gel and acidic silica gel. A method for purifying a conjugated polymer characterized by the following.

[8] [1]乃至[6]の何れかに記載の共役高分子の製造方法で得られた共役高分子をハロゲン系溶媒に溶解させた後、得られた共役高分子溶液にアルコール系溶媒又はエステル系溶媒を添加して、該共役高分子を析出させることを特徴とする共役高分子の精製方法。 [8] The conjugated polymer obtained by the method for producing a conjugated polymer according to any one of [1] to [6] is dissolved in a halogen-based solvent, and then the alcohol-based solvent is added to the obtained conjugated polymer solution. Alternatively, a method for purifying a conjugated polymer, comprising adding an ester solvent to precipitate the conjugated polymer.

[9] 下記式(2)で表されるモノマーと、下記式(3)で表されるモノマーとを、2種以上の遷移金属錯体触媒の共存下に、カップリング反応させる工程を含むことを特徴とするトリマーの製造方法。 [9] including a step of coupling a monomer represented by the following formula (2) and a monomer represented by the following formula (3) in the presence of two or more transition metal complex catalysts. A method for producing a trimmer.

Figure 2018127572
Figure 2018127572

(上記式(2)中、R、Rは、各々独立に、置換基を有していてもよい脂肪族炭化水素基、又は置換基を有していてもよい芳香族炭化水素基を表し、Rは、脂肪族炭化水素基を表す。) (In the above formula (2), R 3 and R 4 each independently represents an aliphatic hydrocarbon group which may have a substituent, or an aromatic hydrocarbon group which may have a substituent. And R represents an aliphatic hydrocarbon group.)

Figure 2018127572
Figure 2018127572

(上記式(3)中、Aは、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表し、Xはハロゲン原子を表す。) (In said formula (3), A represents the aromatic hydrocarbon group which may have a substituent, or the aromatic heterocyclic group which may have a substituent, X represents a halogen atom. .)

[10] 前記2種以上の遷移金属錯体触媒のうち少なくとも1種が不均一系遷移金属錯体触媒であることを特徴とする、[9]に記載のトリマーの製造方法。 [10] The method for producing a trimer according to [9], wherein at least one of the two or more transition metal complex catalysts is a heterogeneous transition metal complex catalyst.

[11] 前記2種以上の遷移金属錯体触媒のうち少なくとも1種が不均一系遷移金属錯体触媒であり、かつ少なくとも1種が均一系遷移金属錯体触媒であることを特徴とする、[10]に記載のトリマーの製造方法。 [11] Of the two or more transition metal complex catalysts, at least one is a heterogeneous transition metal complex catalyst and at least one is a homogeneous transition metal complex catalyst, [10] A method for producing a trimmer according to 1.

[12] 前記式(2)で表されるモノマーと前記式(3)で表されるモノマーを含む反応溶液と、前記均一系遷移金属錯体触媒及び前記不均一系遷移金属錯体触媒とを混合する工程を含むことを特徴とする、[11]に記載のトリマーの製造方法。 [12] A reaction solution containing the monomer represented by the formula (2) and the monomer represented by the formula (3) is mixed with the homogeneous transition metal complex catalyst and the heterogeneous transition metal complex catalyst. The method for producing a trimer according to [11], comprising a step.

[13] 前記2種以上の遷移金属錯体触媒を構成する遷移金属のそれぞれが、パラジウムであることを特徴とする、[9]乃至[12]の何れかに記載のトリマーの製造方法。 [13] The method for producing a trimer according to any one of [9] to [12], wherein each of the transition metals constituting the two or more transition metal complex catalysts is palladium.

本発明の共役高分子の製造方法によれば、モノマーとトリマーのカップリング反応による重合を、2種以上の遷移金属錯体触媒の存在下に行うことにより、より分子量の大きい共役高分子を製造することができ、製造された共役高分子を本発明の共役高分子の精製方法に従って精製することにより、低分子量成分の少ない高分子量共役高分子として回収することができる。
また、本発明のトリマーの製造方法によれば、特定のモノマーを、2種以上の遷移金属錯体触媒の存在下にカップリング反応させることにより、この共役高分子のポリマー化原料となるトリマーを短時間に高収率で得ることができる。
According to the method for producing a conjugated polymer of the present invention, a conjugated polymer having a higher molecular weight is produced by performing polymerization by a monomer-trimer coupling reaction in the presence of two or more transition metal complex catalysts. By purifying the produced conjugated polymer according to the method for purifying conjugated polymer of the present invention, it can be recovered as a high molecular weight conjugated polymer having a small amount of low molecular weight components.
In addition, according to the method for producing a trimer of the present invention, a specific monomer is subjected to a coupling reaction in the presence of two or more transition metal complex catalysts, thereby shortening the trimer that is a raw material for polymerizing the conjugated polymer. It can be obtained in high yield over time.

以下に、本発明の実施の形態を詳細に説明する。以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に限定はされない。   Hereinafter, embodiments of the present invention will be described in detail. The description of the constituent requirements described below is an example (representative example) of an embodiment of the present invention, and the present invention is not limited to these contents unless it exceeds the gist.

本発明の共役高分子の製造方法は、特定のトリマーとモノマーを2種以上の遷移金属錯体触媒の共存下にカップリング反応により重合させる工程を含むものであり、本発明のトリマーの製造方法は、特定の2種類のモノマーを2種以上の遷移金属錯体触媒の共存下にカップリング反応させる工程を含むものである。
なお、本発明において、「トリマー」とは、後述の置換基を有していてもよい芳香族炭化水素基(後述の通り、これらは縮合環を含む)及び/又は置換基を有していてもよい芳香族複素環基(後述の通り、これらは縮合環を含む)の間を2本の単結合で連結した化合物をさし、「モノマー」とは、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基(後述の通り、これらは縮合環を含む)を1つのみ有する化合物をさす。
The method for producing a conjugated polymer of the present invention includes a step of polymerizing a specific trimer and a monomer by a coupling reaction in the presence of two or more transition metal complex catalysts. And a step of coupling a specific two kinds of monomers in the presence of two or more kinds of transition metal complex catalysts.
In the present invention, the “trimer” has an aromatic hydrocarbon group (which includes a condensed ring as described later) and / or a substituent which may have a substituent described later. It refers to a compound in which two aromatic bonds (as described below, these include a condensed ring) are connected by two single bonds, and the “monomer” may have a substituent. This refers to a compound having only one aromatic heterocyclic group which may have an aromatic hydrocarbon group or a substituent (as described below, these include a condensed ring).

〔共役高分子の製造方法〕
[遷移金属錯体触媒]
まず、本発明におけるカップリング反応で用いる遷移金属錯体触媒について説明する。
[Method for producing conjugated polymer]
[Transition metal complex catalyst]
First, the transition metal complex catalyst used in the coupling reaction in the present invention will be described.

本発明におけるカップリング反応で用いる2種以上の遷移金属錯体触媒については特に制限はないが、2種以上の遷移金属錯体触媒のうち少なくとも1種が不均一系遷移金属錯体触媒であり、かつ少なくとも1種が均一系遷移金属錯体触媒であることが好ましく、このように、不均一系遷移金属錯体触媒と均一系遷移金属錯体触媒とを併用することにより、以下の作用効果から効率的なカップリング反応を行うことが可能となる。   There are no particular restrictions on the two or more transition metal complex catalysts used in the coupling reaction in the present invention, but at least one of the two or more transition metal complex catalysts is a heterogeneous transition metal complex catalyst, and at least It is preferable that one type is a homogeneous transition metal complex catalyst. Thus, by using a heterogeneous transition metal complex catalyst and a homogeneous transition metal complex catalyst in combination, efficient coupling can be achieved from the following effects. The reaction can be performed.

即ち、本発明におけるカップリング反応において、少なくとも1種が不均一系金属錯体触媒であると、カップリング反応条件下で不安定なモノマーをすばやく炭素−スズ結合が比較的安定なオリゴマーに変換させることができる。また、オリゴマーになると不均一系金属触媒による重合反応速度が落ちる傾向にあるが、オリゴマーからポリマーへの誘導を少なくとも1種の均一系金属触媒で行うことで、より分子量の大きい高分子量体を得ることができるようになる。   That is, in the coupling reaction of the present invention, when at least one kind is a heterogeneous metal complex catalyst, a monomer unstable under coupling reaction conditions can be quickly converted into an oligomer having a relatively stable carbon-tin bond. Can do. In addition, although the polymerization reaction rate due to the heterogeneous metal catalyst tends to decrease when it becomes an oligomer, a polymer having a higher molecular weight can be obtained by conducting the induction from the oligomer to the polymer with at least one homogeneous metal catalyst. Will be able to.

従来、カップリング反応における触媒としては、均一系遷移金属錯体触媒のみ、又は不均一系遷移金属錯体触媒のみを用いることが一般的であった。均一系遷移金属錯体触媒を用いる利点として、まず触媒が溶液中に溶解しているため、モノマーとの接触頻度が高く、一般的に反応性が高いことが挙げられる。また、反応性に応じて配位子を自由に選択できるため、触媒化合物の設計面で有利であること等が挙げられる。一方で、均一系遷移金属錯体触媒は反応溶液中から回収するのが難しい等の課題がある。   Conventionally, it has been common to use only a homogeneous transition metal complex catalyst or only a heterogeneous transition metal complex catalyst as a catalyst in the coupling reaction. As an advantage of using the homogeneous transition metal complex catalyst, first, since the catalyst is dissolved in the solution, the contact frequency with the monomer is high and the reactivity is generally high. Moreover, since a ligand can be freely selected according to the reactivity, it is advantageous in terms of design of the catalyst compound. On the other hand, the homogeneous transition metal complex catalyst has problems such as being difficult to recover from the reaction solution.

しかし、均一系遷移金属錯体触媒と不均一系遷移金属錯体触媒を併用すること、特に反応系中に均一系遷移金属錯体触媒と不均一系遷移金属錯体触媒を共存させることにより、カップリング反応によるトリマーや高分子の合成反応速度が向上すると共に再現性が向上し、分子量の大きい整列性共役高分子を得ることができるようになる。この効果は、特に原料モノマーが、熱的及び/又は化学的に不安定なモノマーの場合に有効である。   However, by using a homogeneous transition metal complex catalyst and a heterogeneous transition metal complex catalyst together, especially by allowing a homogeneous transition metal complex catalyst and a heterogeneous transition metal complex catalyst to coexist in the reaction system, The synthesis reaction rate of the trimer and polymer is improved and the reproducibility is improved, and an aligned conjugated polymer having a large molecular weight can be obtained. This effect is particularly effective when the raw material monomer is a thermally and / or chemically unstable monomer.

均一系遷移金属錯体触媒と不均一系遷移金属錯体触媒との併用で、カップリング反応速度が向上する理由は明らかではないが、例えば使用する均一系遷移金属錯体触媒と不均一系遷移金属錯体触媒のTOF(turnover frequency)及びTON(turnover number)の違いにより、トリマーや高分子の合成反応が促進され、反応速度が向上することが考えられる。   The reason why the coupling reaction speed is improved by the combined use of the homogeneous transition metal complex catalyst and the heterogeneous transition metal complex catalyst is not clear. For example, the homogeneous transition metal complex catalyst and the heterogeneous transition metal complex catalyst to be used are used. It is considered that the synthesis reaction of trimer and polymer is promoted and the reaction rate is improved due to the difference in TOF (turnover frequency) and TON (turnover number).

例えばTOFが大きい不均一系遷移金属錯体触媒によりモノマーを短時間でオリゴマーに変換し、続いて、TONが大きい均一系遷移金属錯体触媒により反応を進行させることで、結果として高分子合成の反応性を向上させることができると考えられる。なお、TOFが大きい遷移金属錯体触媒を均一系遷移金属錯体触媒とし、TONが大きい遷移金属錯体を不均一系遷移金属触媒としてもよい。   For example, by converting a monomer into an oligomer in a short time with a heterogeneous transition metal complex catalyst having a large TOF, and then proceeding with a reaction with a homogeneous transition metal complex catalyst having a large TON, as a result, the reactivity of polymer synthesis Can be improved. A transition metal complex catalyst having a large TOF may be a homogeneous transition metal complex catalyst, and a transition metal complex having a large TON may be a heterogeneous transition metal catalyst.

1種以上の均一系遷移金属錯体触媒と、1種以上の不均一系遷移金属錯体触媒を併用する場合、反応系内には、1種以上の均一系遷移金属錯体触媒及び1種以上の不均一系遷移金属錯体触媒を同時に入れてもよく、均一系遷移金属錯体触媒及び不均一系遷移金属錯体触媒のいずれか一方を反応系に入れた後、もう一方を入れてもよい。
ただし、反応速度の向上や反応操作の簡便性の点で、1種以上の均一系遷移金属錯体触媒及び1種以上の不均一系遷移金属錯体触媒を同時に反応系に混合してカップリング反応を行うことが好ましい。
When one or more homogeneous transition metal complex catalysts and one or more heterogeneous transition metal complex catalysts are used in combination, one or more homogeneous transition metal complex catalysts and one or more heterogeneous transition metal complex catalysts are contained in the reaction system. A homogeneous transition metal complex catalyst may be added at the same time, or after one of the homogeneous transition metal complex catalyst and the heterogeneous transition metal complex catalyst is added to the reaction system, the other may be added.
However, in order to improve the reaction rate and the convenience of the reaction operation, one or more homogeneous transition metal complex catalysts and one or more heterogeneous transition metal complex catalysts are mixed in the reaction system at the same time to carry out a coupling reaction. Preferably it is done.

本明細書において、遷移金属錯体触媒とは、遷移金属塩と、この遷移金属塩と遷移金属錯体を形成する有機配位子とを組み合わせた触媒をいう。一方、有機配位子を有さない遷移金属塩は、本発明における遷移金属錯体触媒には含まない。   In this specification, the transition metal complex catalyst refers to a catalyst obtained by combining a transition metal salt and an organic ligand that forms a transition metal complex with the transition metal salt. On the other hand, transition metal salts having no organic ligand are not included in the transition metal complex catalyst in the present invention.

有機配位子を有さない遷移金属塩の例としては、CuO、CuO、CuI、CuBr、CuCl、CuCl、CuBr、又はCuIなどの、Stilleカップリングにおける助触媒として用いられる遷移金属無機塩が挙げられる。 Examples of transition metal salts without organic ligands include transitions used as promoters in Stille couplings such as Cu 2 O, CuO, CuI, CuBr, CuCl, CuCl 2 , CuBr 2 , or CuI 2 A metal inorganic salt is mentioned.

反応速度の向上効果をより確実に得るためには、1種以上の均一系遷移金属錯体触媒及び1種以上の不均一系遷移金属錯体触媒は、それぞれ単独でカップリング反応を触媒できることが好ましい。ここで、1種以上の均一系遷移金属錯体触媒及び1種以上の不均一系遷移金属錯体触媒を用いる例としては、互いに異なる構造を有する遷移金属錯体触媒を併用する場合が挙げられる。   In order to more reliably obtain the effect of improving the reaction rate, it is preferable that one or more homogeneous transition metal complex catalysts and one or more heterogeneous transition metal complex catalysts can each independently catalyze a coupling reaction. Here, as an example of using one or more kinds of homogeneous transition metal complex catalysts and one or more kinds of heterogeneous transition metal complex catalysts, there is a case where transition metal complex catalysts having different structures are used in combination.

また、1種以上の均一系遷移金属錯体触媒及び1種以上の不均一系遷移金属錯体触媒を併用する場合、それぞれの遷移金属触媒活性種を遷移金属塩と配位子とを反応させることによって形成させてから、それぞれをカップリング反応の系中に投入してもよく、反応系中で遷移金属塩と配位子とを反応させて遷移金属触媒活性種を形成してもよい。   In the case where one or more homogeneous transition metal complex catalysts and one or more heterogeneous transition metal complex catalysts are used in combination, by reacting each transition metal catalyst active species with a transition metal salt and a ligand. After the formation, each may be introduced into a coupling reaction system, or a transition metal salt and a ligand may be reacted in the reaction system to form a transition metal catalytically active species.

なお、2種以上の均一系遷移金属錯体を用いてもよいし、2種以上の不均一系遷移金属錯体を用いてもよい。   Two or more homogeneous transition metal complexes may be used, or two or more heterogeneous transition metal complexes may be used.

種類の異なる均一系遷移金属錯体としては、例えば遷移金属の種類が異なるもの、配位子の種類や数が異なるもの、或いはこれら複数の点で異なるもの等が挙げられる。また、種類の異なる不均一系遷移金属錯体としては、例えば遷移金属の種類が異なるもの、配位子の種類や数が異なるもの、担体の種類が異なるもの、或いはこれら複数の点で異なるもの等が挙げられる。   Examples of different types of homogeneous transition metal complexes include, for example, those having different types of transition metals, those having different types and numbers of ligands, and those having different points. In addition, different types of heterogeneous transition metal complexes include, for example, those with different types of transition metals, those with different types and numbers of ligands, those with different types of carriers, and those with different points. Is mentioned.

<均一系遷移金属錯体触媒>
以下に、本発明におけるカップリング反応において利用できる均一系遷移金属錯体触媒について説明する。カップリング反応を円滑に進行させるために、均一系遷移金属錯体としてはカップリング用遷移金属錯体を用いることが好ましく、特に遷移金属として後周期遷移金属を用いることが好ましい。
<Homogeneous transition metal complex catalyst>
The homogeneous transition metal complex catalyst that can be used in the coupling reaction of the present invention will be described below. In order to make the coupling reaction proceed smoothly, it is preferable to use a transition metal complex for coupling as the homogeneous transition metal complex, and it is particularly preferable to use a late transition metal as the transition metal.

本明細書において後周期遷移金属とは、周期表における第8族〜第11族元素のことをいう。後周期遷移金属の中でも特に、パラジウム(Pd)、ニッケル(Ni)、鉄(Fe)、又は銅(Cu)を含む均一系遷移金属錯体を用いることが、反応性を向上させるために好ましい。より好ましくは、反応性が良く、反応基質を選ばない、パラジウム(Pd)である。
本明細書において、周期表とは、IUPAC2006年度推奨版(Recommendations of IUPAC 2006)のことを指す。
In the present specification, the term “periodic transition metal” refers to a Group 8 to Group 11 element in the periodic table. Among the late transition metals, it is particularly preferable to use a homogeneous transition metal complex containing palladium (Pd), nickel (Ni), iron (Fe), or copper (Cu) in order to improve the reactivity. More preferred is palladium (Pd), which has good reactivity and does not select a reaction substrate.
In this specification, the periodic table refers to the IUPAC 2006 recommended version (Recommendations of IUPAC 2006).

特に、パラジウムは、様々なクロスカップリング反応において汎用的に用いることができ、反応性も高いことから好ましい。   In particular, palladium is preferable because it can be widely used in various cross-coupling reactions and has high reactivity.

均一系遷移金属錯体触媒が有する有機配位子としては、周期表第13族〜第16族までの典型元素から形成されるもので、炭素原子を有するものが挙げられる。   Examples of the organic ligand possessed by the homogeneous transition metal complex catalyst include those formed from typical elements of Groups 13 to 16 of the periodic table, and those having carbon atoms.

また、遷移金属錯体触媒の一部にハロゲン原子、水素原子を有していてもよい。このような有機配位子は、遷移金属錯体触媒の機能を向上させる点で好ましい。具体的な例としては、J. Hartwig,”Organotransition Metal Chemistry”,University Science Books刊(2010年)およびその中の引用文献に記載の有機配位子や、Strem社,”Metal Catalysts for Organic Synthesis”(2011年)記載の有機配位子が挙げられる。各遷移金属に適した有機配位子を適宜選択してもよい。   Further, a part of the transition metal complex catalyst may have a halogen atom or a hydrogen atom. Such an organic ligand is preferable in terms of improving the function of the transition metal complex catalyst. As a specific example, J. Org. Organic ligands described in Hartwig, “Organotransition Metal Chemistry”, University Science Books (2010) and references cited therein, Strem, “Metal Catalysts for Organics 11” A child. An organic ligand suitable for each transition metal may be appropriately selected.

以下に、均一系遷移金属錯体触媒として最も好適なパラジウム錯体について説明する。
パラジウム錯体は、パラジウム(0)が重要な触媒種であるが、一般に、空気中で不安定で分解されやすい。一方、パラジウム(II)は安定であり、配位子との共存により容易にパラジウム(0)に変換され系中で活性種を発生させる。なお、系中でパラジウム(II)錯体と配位子とから活性なパラジウム(0)錯体を作製する場合、パラジウム(II)錯体とパラジウム(0)錯体との2種類の錯体が用いられているのではなく、1種類のパラジウム錯体が用いられているものと考える。
Below, the most suitable palladium complex as a homogeneous transition metal complex catalyst is demonstrated.
In the palladium complex, palladium (0) is an important catalyst species, but in general, it is unstable and easily decomposed in air. On the other hand, palladium (II) is stable and easily converted to palladium (0) by coexistence with a ligand to generate active species in the system. In addition, when producing an active palladium (0) complex from a palladium (II) complex and a ligand in the system, two types of complexes of a palladium (II) complex and a palladium (0) complex are used. It is considered that one kind of palladium complex is used instead.

具体的なパラジウム試薬の例としては、Pd(PPh、Pd(P(o−tol)、Pd(P(t−Bu)、Pd(dba)、Pd(dba)CHCl、Pd(dba)、Pd(MeCN)(BF、PdCl、PdBr、Pd(acac)、Pd(TFA)、Pd(allyl)Cl、[Pd(allyl)Cl]、Pd(PCyCl、Pd(P(o−tol)Cl、Pd(OAc)、PdCl(dppf)、PdCl(dppf)CHCl、Pd(MeCN)Cl、Pd(amPhos)Cl、PdCl(dtbpf)又はPdCl(PPhなど0価又は2価のものが挙げられる。 Specific examples of the palladium reagent include Pd (PPh 3 ) 4 , Pd (P (o-tol) 3 ) 4 , Pd (P (t-Bu) 3 ) 4 , Pd 2 (dba) 3 , Pd 2 (Dba) 3 CHCl 3 , Pd (dba) 2 , Pd (MeCN) 4 (BF 4 ) 2 , PdCl 2 , PdBr 2 , Pd (acac) 2 , Pd (TFA) 2 , Pd (allyl) Cl 2 , [ Pd (allyl) Cl] 2 , Pd (PCy 3 ) 2 Cl 2 , Pd (P (o-tol) 3 ) 2 Cl 2 , Pd (OAc) 2 , PdCl 2 (dppf), PdCl 2 (dppf) CH 2 Examples thereof include zero-valent or divalent compounds such as Cl 2 , Pd (MeCN) 2 Cl 2 , Pd (amPhos) Cl 2 , PdCl 2 (dtbpf), or PdCl 2 (PPh 3 ) 2 .

2価のパラジウム錯体、及びジベンジリデンアセトンパラジウムは、各種配位子と混合することにより、活性なPd(0)錯体を形成することができる。配位子の具体的な例としては、PPh、dppf、dba、P(t−Bu)、P(Cy)、AsPh、P(o−tol)などが挙げられる。 A divalent palladium complex and dibenzylideneacetone palladium can form an active Pd (0) complex by mixing with various ligands. Specific examples of the ligand include PPh 3 , dppf, dba, P (t-Bu) 3 , P (Cy) 3 , AsPh 3 , P (o-tol) 3 and the like.

配位子の別の例としては、Buchwald型のビフェニルタイプ(ビフェニルホスフィン誘導体)(例えば、Acc.Chem.Res.,41,1461−1473,2008、Chem.Sci.,2,27−50,2011に挙げられたもの)、Nolan型のカルベンタイプ(例えば、Chem.Rev.,109,3612−3676、Acc.Chem.Res.,41,1440−1449に挙げられたもの)、Fu型の脂肪族ホスフィンタイプ(例えば、Acc.Chem.Res.,41,1555−1564に挙げられたもの)、OrganらのPEPPSIタイプ、Beller型、パラダサイクル型(例えば、Dupontら,Chem.Rev.,105,2527−2571(2005)、Nolanら,Acc.Chem.Res.,41,1440−1449(2008)に挙げられたもの)などが挙げられる。反応性を向上させる観点から、配位子としては、ホスフィン配位子が好ましく用いられる。   Other examples of the ligand include Buchwald-type biphenyl type (biphenylphosphine derivative) (for example, Acc. Chem. Res., 41, 1461-1473, 2008, Chem. Sci., 2, 27-50, 2011). Nolan type carbene type (for example, those listed in Chem. Rev., 109, 3612-3676, Acc. Chem. Res., 41, 1440-1449), Fu type aliphatic Phosphine type (for example, those listed in Acc. Chem. Res., 41, 1555-1564), Organ et al., PEPPSI type, Beller type, palladacycle type (for example, Dupont et al., Chem. Rev., 105, 2527). -2571 (2005), Nolan et al., A c.Chem.Res., 41,1440-1449 (2008) to those listed), and the like. From the viewpoint of improving the reactivity, a phosphine ligand is preferably used as the ligand.

<不均一系遷移金属錯体触媒>
以下に、本発明におけるカップリング反応において利用できる不均一系遷移金属錯体触媒について説明する。カップリング反応を円滑に進行させるために、不均一系遷移金属錯体としてはカップリング用遷移金属錯体を用いることが好ましく、特に遷移金属として後周期遷移金属を用いることが好ましい。後周期遷移金属の中でも特に、パラジウム(Pd)、又はニッケル(Ni)を含む不均一系遷移金属錯体を用いることが、反応性を向上させるために好ましい。さらに好ましくは、パラジウム(Pd)を含む不均一系遷移金属錯体を用いることである。
<Heterogeneous transition metal complex catalyst>
The heterogeneous transition metal complex catalyst that can be used in the coupling reaction of the present invention will be described below. In order to facilitate the coupling reaction, it is preferable to use a transition metal complex for coupling as the heterogeneous transition metal complex, and it is particularly preferable to use a late transition metal as the transition metal. Among the late transition metals, it is particularly preferable to use a heterogeneous transition metal complex containing palladium (Pd) or nickel (Ni) in order to improve the reactivity. More preferably, a heterogeneous transition metal complex containing palladium (Pd) is used.

不均一系遷移金属錯体触媒が有する有機配位子としては、均一系遷移金属錯体触媒について挙げたものと同様のものを用いることができる。また、公知文献(Strem社,”Heterogeneous Catalysts”(2011年))記載の有機配位子を用いることもできる。   As an organic ligand which a heterogeneous transition metal complex catalyst has, the same thing as what was mentioned about the homogeneous transition metal complex catalyst can be used. In addition, organic ligands described in known literature (Strem, “Heterogeneous Catalysts” (2011)) can also be used.

操作の容易性の観点から、不均一系遷移金属錯体触媒は担体に担持されていることが好ましい。担体の例としては、金属、ナノコロイド、ナノ粒子、磁性化合物、金属酸化物、ガラス、ミクロ孔物質、メソ孔物質、ゼオライト、ポリマーなどが挙げられる。   From the viewpoint of ease of operation, the heterogeneous transition metal complex catalyst is preferably supported on a carrier. Examples of carriers include metals, nanocolloids, nanoparticles, magnetic compounds, metal oxides, glasses, microporous materials, mesoporous materials, zeolites, polymers, and the like.

なかでも、ゼオライト、ポリマー等に担持された不均一系遷移金属錯体触媒を用いることは、不均一系遷移金属錯体触媒の回収が容易であるためにより好ましい。   Among these, it is more preferable to use a heterogeneous transition metal complex catalyst supported on zeolite, a polymer, or the like because the heterogeneous transition metal complex catalyst can be easily recovered.

また、不均一系遷移金属錯体触媒の担体が多孔性担体であることは、反応を促進する点でより好ましい。多孔性担体としては、多孔性ガラス、ゼオライト、多孔性ポリマーが挙げられる。なかでも、不均一系遷移金属錯体触媒の担体が多孔性ガラス又は多孔性ポリマーが好ましい。   Moreover, it is more preferable that the support of the heterogeneous transition metal complex catalyst is a porous support in terms of promoting the reaction. Examples of the porous carrier include porous glass, zeolite, and porous polymer. Among these, the support for the heterogeneous transition metal complex catalyst is preferably porous glass or a porous polymer.

多孔性ガラスとしては、ガラスウール等が挙げられる。多孔性ポリマーとしては、ポリスチレン、ポリエチレン又は尿素樹脂等が挙げられる。具体的には、公知文献、Recoverable and Recyclable Catalysts,Benaqlia,M.著、Wiley刊、2009年、Chemical Reviews,107,133−173(2007),Chemical Reviews,111,2251−2320(2011),Chemical Reivews,109,594−642(2009),Chemical Reviews,109,815−838(2009)に記載されているものが挙げられる。   Examples of the porous glass include glass wool. Examples of the porous polymer include polystyrene, polyethylene, and urea resin. Specifically, publicly known literature, Recoverable and Recyclable Catalysts, Benaqlia, M., et al. Author, Wiley, 2009, Chemical Reviews, 107, 133-173 (2007), Chemical Reviews, 111, 251-2320 (2011), Chemical Reviews, 109, 594-642 (2009), Chemical Rev. 109 -838 (2009).

不均一系遷移金属錯体触媒の具体的な例としては、Liebscherら,Chem.Rev.,107,133−173(2007)、Molnar,Chem.Rev.,111,2251−2320(2011)、Polshettiwarら,Chem.Rev.,111,3036−3075(2011)、Adv.Synth.Catal.,346,1553−1582(2006)、Adv.Synth.Catal.,348,609−679(2008)、Alonsoら,Tetrahedron,64,3047−3101(2008)、Tetrahedron,61,11771−11835(2005)、Polshettiwarら,Tetrahedron,63,6949−6976(2007)、Coord.Chem.Rev.,253,2599−2626(2009)、Kobayashiら,Chem.Rev.,109,594−642(2009)などに記載のものが挙げられる。   Specific examples of heterogeneous transition metal complex catalysts include Liebscher et al., Chem. Rev. 107, 133-173 (2007), Molnar, Chem. Rev. 111, 2251-2320 (2011), Polshettiwar et al., Chem. Rev. 111, 3036-3075 (2011), Adv. Synth. Catal. , 346, 1553-1582 (2006), Adv. Synth. Catal. 348, 609-679 (2008), Alonso et al., Tetrahedron, 64, 3047-3101 (2008), Tetrahedron, 61, 11771-11835 (2005), Polshettiwar et al., Tetrahedron, 63, 6949-6976 (2007), Coord. . Chem. Rev. 253, 2599-2626 (2009), Kobayashi et al., Chem. Rev. 109, 594-642 (2009), and the like.

不均一系遷移金属錯体触媒のより具体的な例としては、FibreCat 1001、FibreCat 1007、FibreCat 1026、Pl Palladium、Palladium−Nanocage、Palladium(II)−Hydrotalcite(m)、Palladium(II)−Hydrotalcite(以上、和光純薬社製)、Pd EnCatシリーズ(登録商標)、PS−TPPPdCl、PS−TPPPd(OAc)、PS−TPPPdTPP、Pd含有のChemDoseタブレット(以上、Aldrich社製)、SiliaCat S−Pd、SiliaCat DPP−Pd(以上、SiliCycle社製)などが挙げられる。 More specific examples of the heterogeneous transition metal complex catalyst include FibreCat 1001, FibreCat 1007, FibreCat 1026, Pl Palladium, Palladium-Nanocage, Palladium (II) -Hydroitalite (m), Palladium (ro) , Manufactured by Wako Pure Chemical Industries, Ltd.), Pd EnCat series (registered trademark), PS-TPP 2 PdCl 2 , PS-TPP 2 Pd (OAc) 2 , PS-TPP 2 PdTPP 2 , Pd-containing ChemDose tablet (above, Aldrich) SiriCat S-Pd, SiliaCat DPP-Pd (manufactured by SiliCycle).

なお、市販の不均一系遷移金属錯体触媒は、予め配位子を含んでいないものもある。配位子を含んでいない場合、配位子を添加してもよい。   Some commercially available heterogeneous transition metal complex catalysts do not contain a ligand in advance. When no ligand is contained, a ligand may be added.

配位子の添加は、予め行われてもよいし、カップリング反応の反応系中で行われてもよい。配位子としては、均一系遷移金属錯体触媒について説明したものと同様のものを用いることができる。反応操作を容易とするために、遷移金属錯体と配位子とが予め練り込まれた多孔質担体を触媒として用いることが好ましい。   The addition of the ligand may be performed in advance or may be performed in the reaction system of the coupling reaction. As the ligand, the same ligands as those described for the homogeneous transition metal complex catalyst can be used. In order to facilitate the reaction operation, it is preferable to use, as a catalyst, a porous carrier in which a transition metal complex and a ligand are kneaded in advance.

<触媒使用量>
本発明において、2種以上の遷移金属錯体触媒として均一系遷移金属錯体触媒と不均一系遷移金属錯体触媒を併用する場合、両者を併用することによる前述の効果を有効に得る上で、均一系遷移金属錯体触媒と不均一系遷移金属錯体触媒とは、それぞれの活性金属換算の使用量比(mol比)で、均一系遷移金属錯体触媒:不均一系遷移金属錯体触媒=1:0.1〜5、特に1:0.5〜1.5の割合で用いることが好ましい。不均一系遷移金属錯体触媒は低分子からオリゴマーへ、均一系遷移金属錯体触媒はオリゴマーからポリマーへ、それぞれ触媒の機能を分けて用いているため、同じ当量であることが最も好ましい。
<Amount of catalyst used>
In the present invention, when a homogeneous transition metal complex catalyst and a heterogeneous transition metal complex catalyst are used in combination as two or more kinds of transition metal complex catalysts, in order to effectively obtain the above-described effects by using both, a homogeneous system The transition metal complex catalyst and the heterogeneous transition metal complex catalyst are used in an amount ratio (mol ratio) in terms of active metal, and the homogeneous transition metal complex catalyst: heterogeneous transition metal complex catalyst = 1: 0.1. It is preferable to use it in a ratio of ˜5, particularly 1: 0.5 to 1.5. Since the heterogeneous transition metal complex catalyst is used from a low molecule to an oligomer, and the homogeneous transition metal complex catalyst is used from an oligomer to a polymer, the functions of the catalyst are separately used.

2種以上の遷移金属錯体触媒の合計の使用量については特に制限はなく、反応形式、反応条件等に応じて、通常のカップリング反応における触媒使用量の範囲内で適宜設定することができる。   There is no restriction | limiting in particular about the total usage-amount of 2 or more types of transition metal complex catalysts, According to the reaction form, reaction conditions, etc., it can set suitably within the range of the catalyst usage-amount in a normal coupling reaction.

[トリマー(1)]
次に本発明の共役高分子の製造方法のポリマー化原料のうちの一方である下記式(1)で表されるトリマー(以下「トリマー(1)」と称す場合がある。)について説明する。
[Trimmer (1)]
Next, a trimer represented by the following formula (1) (hereinafter sometimes referred to as “trimer (1)”), which is one of the polymerized raw materials of the method for producing a conjugated polymer of the present invention, will be described.

なお、本明細書において、芳香族炭化水素基とは、芳香族炭化水素環に結合手を有する基であり、この芳香族炭化水素環に、更に芳香族炭化水素環、脂肪族炭化水素環、芳香族複素環、及び脂肪族複素環(非芳香族複素環)から選ばれる1種又は2種以上の環が1〜5個程度縮合した縮合環基も、芳香族炭化水素基に含むものとする。
同様に、芳香族複素環基とは、芳香族複素環に結合手を有する基であり、この芳香族複素環に、更に芳香族炭化水素環、脂肪族炭化水素環、芳香族複素環、及び脂肪族複素環(非芳香族複素環)から選ばれる1種又は2種以上の環が1〜5個程度縮合した縮合環基も、芳香族複素環基に含むものとする。
In the present specification, the aromatic hydrocarbon group is a group having a bond in the aromatic hydrocarbon ring, and further to this aromatic hydrocarbon ring, an aromatic hydrocarbon ring, an aliphatic hydrocarbon ring, The aromatic hydrocarbon group also includes a condensed ring group in which about 1 to 5 rings of one or two or more kinds selected from an aromatic heterocyclic ring and an aliphatic heterocyclic ring (non-aromatic heterocyclic ring) are condensed.
Similarly, the aromatic heterocyclic group is a group having a bond to the aromatic heterocyclic ring, and further includes an aromatic hydrocarbon ring, an aliphatic hydrocarbon ring, an aromatic heterocyclic ring, and A condensed heterocyclic group obtained by condensing about 1 to 5 rings of one or two or more selected from an aliphatic heterocyclic ring (non-aromatic heterocyclic ring) is also included in the aromatic heterocyclic group.

Figure 2018127572
Figure 2018127572

(上記式(1)中、R、Rは、各々独立に、置換基を有していてもよい脂肪族炭化水素基、又は置換基を有していてもよい芳香族炭化水素基を表し、Aは、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表し、Xはハロゲン原子を表す。) (In the above formula (1), R 1 and R 2 each independently represents an aliphatic hydrocarbon group which may have a substituent, or an aromatic hydrocarbon group which may have a substituent. A represents an aromatic hydrocarbon group which may have a substituent, or an aromatic heterocyclic group which may have a substituent, and X represents a halogen atom.

上記式(1)におけるR、Rの置換基を有していてもよい脂肪族炭化水素基の脂肪族炭化水素基として、炭素数1〜30の脂肪族炭化水素基が挙げられる。脂肪族炭化水素基の例としては、アルキル基、又はアルケニル基などが挙げられる。 Examples of the aliphatic hydrocarbon group of the aliphatic hydrocarbon group that may have a substituent of R 1 and R 2 in the above formula (1) include an aliphatic hydrocarbon group having 1 to 30 carbon atoms. Examples of the aliphatic hydrocarbon group include an alkyl group or an alkenyl group.

アルキル基の炭素数は、通常1以上、好ましくは3以上、より好ましくは4以上、一方、通常30以下、好ましくは25以下、より好ましくは20以下である。このようなアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、シクロプロピル基、nブチル基、iso−ブチル基、tert−ブチル基、3−メチルブチル基、シクロブチル基、ペンチル基、シクロペンチル基、ヘキシル基、2−エチルヘキシル基、シクロヘキシル基、ヘプチル基、シクロヘプチル基、オクチル基、シクロオクチル基、ノニル基、シクロノニル基、デシル基、シクロデシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシ基、ヘプタデシル基、オクタデシル基、ノナデシル基、又は、エイコシル基などが挙げられる。その中でも、2−エチルヘキシル基、テトラデシル基、ペンタデシル基、ヘキサデシ基、ヘプタデシル基、オクタデシル基、ノナデシル基、又は、エイコシル基が好ましい。   The carbon number of the alkyl group is usually 1 or more, preferably 3 or more, more preferably 4 or more, and usually 30 or less, preferably 25 or less, more preferably 20 or less. Examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, a cyclopropyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, a 3-methylbutyl group, and a cyclobutyl group. Group, pentyl group, cyclopentyl group, hexyl group, 2-ethylhexyl group, cyclohexyl group, heptyl group, cycloheptyl group, octyl group, cyclooctyl group, nonyl group, cyclononyl group, decyl group, cyclodecyl group, undecyl group, dodecyl group , Tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, or eicosyl group. Among them, 2-ethylhexyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, or eicosyl group is preferable.

アルケニル基の炭素数は、通常1以上、好ましくは3以上、より好ましくは4以上、一方、通常30以下、好ましくは25以下、より好ましくは20以下である。このようなアルケニル基としては、例えば、エテン基、プロペン基、ブテン基、ペンテン基、ヘキセン基、ヘプテン基、オクテン基、ノネン基、デセン基、ウンデセン基、ドデセン基、トリデセン基、テトラデセン基、ペンタデセン基、ヘキサデセン基、ヘプタデセン基、オクタデセン基、ノナデセン基、イコセン基又はゲラニル基などが挙げられる。   The carbon number of the alkenyl group is usually 1 or more, preferably 3 or more, more preferably 4 or more, and usually 30 or less, preferably 25 or less, more preferably 20 or less. Examples of such alkenyl groups include ethene, propene, butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, tridecene, tetradecene, pentadecene, and the like. Group, hexadecene group, heptadecene group, octadecene group, nonadecene group, icocene group or geranyl group.

、Rの置換基を有していてもよい芳香族炭化水素基の芳香族炭化水素基としては、炭素数6〜60、好ましくは6〜20、より好ましくは6〜14の芳香族炭化水素基、例えば、フェニル基、ナフチル基、インダニル基、インデニル基、フルオレニル基、アントラセニル基、アズレニニル基などが挙げられ、好ましくはフェニル基、ナフチル基である。 The aromatic hydrocarbon group of the aromatic hydrocarbon group which may have a substituent for R 1 and R 2 is an aromatic hydrocarbon group having 6 to 60 carbon atoms, preferably 6 to 20 carbon atoms, more preferably 6 to 14 carbon atoms. Examples of the hydrocarbon group include a phenyl group, a naphthyl group, an indanyl group, an indenyl group, a fluorenyl group, an anthracenyl group, and an azuleninyl group, and a phenyl group and a naphthyl group are preferable.

これら脂肪族炭化水素基、芳香族炭化水素基が有していてもよい置換基としては、特に限定はないが、好ましくはハロゲン原子、水酸基、シアノ基、アミノ基、エステル基、アルキルカルボニル基、アセチル基、スルホニル基、シリル基、ボリル基、ニトリル基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、芳香族炭化水素基又は芳香族複素環基である。これらは、隣接する置換基同士で連結して環を形成していてもよい。特に芳香族基が有していてもよい置換基としては、炭素数1〜20のアルコキシ基又は炭素数1〜20のアルキル基が挙げられる。また、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられ、特にフッ素原子が好ましい。   The substituent that these aliphatic hydrocarbon groups and aromatic hydrocarbon groups may have is not particularly limited, but is preferably a halogen atom, a hydroxyl group, a cyano group, an amino group, an ester group, an alkylcarbonyl group, An acetyl group, a sulfonyl group, a silyl group, a boryl group, a nitrile group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aromatic hydrocarbon group, or an aromatic heterocyclic group. These may be connected with adjacent substituents to form a ring. In particular, the substituent which the aromatic group may have includes an alkoxy group having 1 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms. Moreover, as a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom is mentioned, A fluorine atom is especially preferable.

、Rは同一であってもよく異なるものであってもよいが、合成上は同一であることが好ましい。 R 1 and R 2 may be the same or different, but are preferably the same in terms of synthesis.

、Rは、好ましくは、置換基を有していない、炭素数が3〜30、特に炭素数6〜25、とりわけ炭素数10〜20のアルキル基である。R、Rが上記炭素数のアルキル基であると、製造された整列性共役高分子から高性能デバイスを効率的に製造できる点において好ましい。 R 1 and R 2 are preferably alkyl groups having 3 to 30 carbon atoms, particularly 6 to 25 carbon atoms, especially 10 to 20 carbon atoms, which have no substituent. It is preferable that R 1 and R 2 are alkyl groups having the above carbon number in that a high-performance device can be efficiently produced from the produced ordered conjugated polymer.

Aは、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基である。   A is an aromatic hydrocarbon group which may have a substituent, or an aromatic heterocyclic group which may have a substituent.

Aの置換基を有していてもよい芳香族炭化水素基の芳香族炭化水素基としては、R、Rの芳香族炭化水素基として例示したものの他、後述の縮合環基が挙げられる。 Examples of the aromatic hydrocarbon group of the aromatic hydrocarbon group which may have a substituent for A include those exemplified as the aromatic hydrocarbon groups for R 1 and R 2 , and the condensed ring groups described below. .

Aの置換基を有していてもよい芳香族複素環基の芳香族複素環基としては、炭素数3〜12の、好ましくは5員環又は6員環の芳香族複素環基であり、例えばチエニル基、フリル基、ピリジル基、ピリミジル基、チアゾリル基、オキサゾリル基、トリアゾリル基や後述の縮合環基などが挙げられ、中でも、チエニル基、ピリジル基、ピリミジル基、チアゾリル基、オキサゾリル基や後述の縮合環基が好ましい。   The aromatic heterocyclic group of the aromatic heterocyclic group which may have a substituent of A is a C3-C12, preferably 5-membered or 6-membered aromatic heterocyclic group, Examples include a thienyl group, a furyl group, a pyridyl group, a pyrimidyl group, a thiazolyl group, an oxazolyl group, a triazolyl group, and a condensed ring group described later. Among them, a thienyl group, a pyridyl group, a pyrimidyl group, a thiazolyl group, an oxazolyl group, and the following These fused ring groups are preferred.

Aの芳香族炭化水素基、芳香族複素環基が有していてもよい置換基としては、R、Rが有していてもよい置換基として前述したものが挙げられる。 Examples of the substituent that the aromatic hydrocarbon group and aromatic heterocyclic group of A may have include those described above as the substituent that R 1 and R 2 may have.

Aは、芳香族炭化水素環及び/又は芳香族複素環が2〜6個、好ましくは2〜3個縮合してなる縮合環基であることが溶解性の維持の観点から好ましく、このような縮合環基としては以下に例示するものが挙げられる。   A is preferably a condensed ring group obtained by condensing 2 to 6, preferably 2 to 3, aromatic hydrocarbon rings and / or aromatic heterocycles from the viewpoint of maintaining solubility. Examples of the condensed ring group include those exemplified below.

Figure 2018127572
Figure 2018127572

Figure 2018127572
Figure 2018127572

Figure 2018127572
Figure 2018127572

これらのうち、Aの縮合環基としては、特にベンゼン環等の芳香族炭化水素環に、チアジアゾール環、トリアゾール環、ピラジン環、ピリダジン環等の芳香族複素環が縮合した芳香族炭化水素基であることが好ましい。   Among these, the condensed ring group of A is an aromatic hydrocarbon group in which an aromatic heterocyclic ring such as a benzene ring is condensed with an aromatic heterocyclic ring such as a thiadiazole ring, a triazole ring, a pyrazine ring, or a pyridazine ring. Preferably there is.

これらの縮合環基は置換基を有していてもよく、その置換基としては、前述のR、Rが有していてもよい置換基として例示したもののうち、アルキル基、アルコキシ基、塩素原子、フッ素原子、臭素原子等のハロゲン原子が好ましく、特にフッ素原子が好ましく、その置換位置は芳香族炭化水素環上であって1個のみ置換していることが、整列性共役高分子を配向させる面から好ましい。 These condensed ring groups may have a substituent, and as the substituent, among those exemplified as the substituents that R 1 and R 2 may have, an alkyl group, an alkoxy group, A halogen atom such as a chlorine atom, a fluorine atom, or a bromine atom is preferred, and a fluorine atom is particularly preferred, and the substitution position is on the aromatic hydrocarbon ring, and only one substitution is performed. This is preferable from the aspect of orientation.

なお、式(1)中の2個のAは同一であってもよく異なるものであってもよいが、合成上同一であることが好ましい。   Two A in formula (1) may be the same or different, but are preferably the same in synthesis.

式(1)のXのハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子が挙げられるが、反応性の点からは臭素原子又はヨウ素原子が特に好ましい。   Examples of the halogen atom of X in the formula (1) include a chlorine atom, a bromine atom, and an iodine atom, but a bromine atom or an iodine atom is particularly preferable from the viewpoint of reactivity.

式(1)中の2個のXについても同一であってもよく、異なるものであってもよいが、合成上同一であることが好ましい。   The two Xs in formula (1) may be the same or different, but are preferably the same in terms of synthesis.

[モノマー(2)]
次に本発明の共役高分子の製造方法のポリマー化原料のうちの他方である、下記式(2)で表されるモノマー(以下「モノマー(2)」と称す場合がある。)について説明する。
[Monomer (2)]
Next, a monomer represented by the following formula (2) (hereinafter sometimes referred to as “monomer (2)”), which is the other of the polymerization raw materials in the method for producing a conjugated polymer of the present invention, will be described. .

Figure 2018127572
Figure 2018127572

(上記式(2)中、R、Rは、各々独立に、置換基を有していてもよい脂肪族炭化水素基、又は置換基を有していてもよい芳香族炭化水素基を表し、Rは、脂肪族炭化水素基を表す。) (In the above formula (2), R 3 and R 4 each independently represents an aliphatic hydrocarbon group which may have a substituent, or an aromatic hydrocarbon group which may have a substituent. And R represents an aliphatic hydrocarbon group.)

上記式(2)におけるR、Rの置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基としては、式(1)におけるR、Rの置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基として例示したものが挙げられ、好ましいものも同様である。 The aliphatic hydrocarbon group which may have a substituent of R 3 and R 4 in the above formula (2) and the aromatic hydrocarbon group which may have a substituent include R in the formula (1) 1, R 2 of aliphatic optionally substituted hydrocarbon group include those exemplified as aromatic hydrocarbon group which may have a substituent, preferable ones are also same.

、Rは同一であってもよく異なるものであってもよいが、合成上同一であることが好ましい。また同様の理由から、R、Rは、式(1)におけるR、Rとも同一であることが好ましい。 R 3 and R 4 may be the same or different, but are preferably the same in synthesis. For the same reason, R 3 and R 4 are preferably the same as R 1 and R 2 in formula (1).

式(1)中のRの脂肪族炭化水素基は、好ましくは炭素数1〜4の低級アルキル基であり、特に好ましくは高反応性をもつメチル基である。式(2)中の2個のSnR基は、特にトリメチルスタニル(−Sn(CH)であることが好ましく、式(2)中の2個のSnR基は同一であることが好ましい。 The aliphatic hydrocarbon group represented by R in the formula (1) is preferably a lower alkyl group having 1 to 4 carbon atoms, and particularly preferably a methyl group having high reactivity. The two SnR 3 groups in the formula (2) are particularly preferably trimethylstannyl (—Sn (CH 3 ) 3 ), and the two SnR 3 groups in the formula (2) are the same. Is preferred.

[トリマー(1)とモノマー(2)の量比]
前述のトリマー(1)とモノマー(2)のカップリング反応による重合を行う際のこれらの量比は、目的とする共役高分子の分子量分布に依存するが、トリマー(1)とモノマー(2)とのモル比は通常0.75以上、好ましくは0.85以上であり、一方、通常1.3以下、好ましくは1.2以下である。モル比が上記の範囲内にあることにより、より高い収率で高分子量体を得ることができる。
[Quantity ratio of trimer (1) and monomer (2)]
The amount ratio of the trimer (1) and the monomer (2) in the polymerization by the coupling reaction depends on the molecular weight distribution of the target conjugated polymer, but the trimer (1) and the monomer (2). Is usually 0.75 or more, preferably 0.85 or more, and is usually 1.3 or less, preferably 1.2 or less. When the molar ratio is within the above range, a high molecular weight product can be obtained with a higher yield.

[反応溶媒]
本発明の共役高分子の製造方法では、好ましくは、前述のトリマー(1)とモノマー(2)とを含む反応溶液に、前述の均一系遷移金属錯体触媒と不均一系遷移金属錯体触媒とを同時に混合してカップリング反応により重合させる。
[Reaction solvent]
In the method for producing a conjugated polymer of the present invention, preferably, the homogeneous transition metal complex catalyst and the heterogeneous transition metal complex catalyst are added to the reaction solution containing the trimer (1) and the monomer (2). Simultaneously mixed and polymerized by a coupling reaction.

このカップリング反応に用いる溶媒としては、例えば、ベンゼン、トルエン、エチルベンゼン、キシレンなどの芳香族炭化水素溶媒;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼンなどのハロゲン化芳香族炭化水素溶媒;トリエチルアミン、ジイソプロピルエチルアミン、ピロリジン、ピペリジン、ピリジンなどのアミン系溶媒;N,N−ジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドンなどの非プロトン性極性有機溶媒などが挙げられる。これらの溶媒は1種を単独で用いてもよいし、2種以上の溶媒を混合して用いてもよい。   Examples of the solvent used in this coupling reaction include aromatic hydrocarbon solvents such as benzene, toluene, ethylbenzene, and xylene; halogenated aromatic hydrocarbon solvents such as chlorobenzene, dichlorobenzene, and trichlorobenzene; triethylamine, diisopropylethylamine, and pyrrolidine. Amine type solvents such as N, N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and the like. These solvents may be used alone or in a mixture of two or more solvents.

溶媒の使用量は、トリマー(1)及びモノマー(2)と生成する共役高分子を十分に溶解させるために、トリマー(1)及びモノマー(2)の合計重量1gに対して、通常、1×10−2mL以上、好ましくは1×10−1mL以上、より好ましくは1mL以上である。一方、共役高分子の精製を容易とするために、通常1×10mL以下、好ましくは1×10mL以下、より好ましくは2×10mL以下である。 The amount of the solvent used is usually 1 × with respect to 1 g of the total weight of the trimer (1) and the monomer (2) in order to sufficiently dissolve the trimer (1) and the monomer (2) and the resulting conjugated polymer. 10 −2 mL or more, preferably 1 × 10 −1 mL or more, more preferably 1 mL or more. On the other hand, in order to facilitate the purification of the conjugated polymer, it is usually 1 × 10 5 mL or less, preferably 1 × 10 3 mL or less, more preferably 2 × 10 2 mL or less.

[反応条件]
<反応雰囲気>
遷移金属錯体触媒の劣化を防ぐために、カップリング反応は不活性ガス下で反応を行うことが好ましい。特に、窒素雰囲気下、又はアルゴン雰囲気下で反応を行うことが好ましい。
[Reaction conditions]
<Reaction atmosphere>
In order to prevent the deterioration of the transition metal complex catalyst, the coupling reaction is preferably performed under an inert gas. In particular, the reaction is preferably performed in a nitrogen atmosphere or an argon atmosphere.

<反応温度>
反応温度は特に限定されないが、通常は、室温以上、溶媒の沸点以下の温度で行う。反応速度を上げるために、オートクレーブ又はマイクロ波などを用いて、加圧及び/又は加熱を行ってもよい。オートクレーブ又はマイクロ波の場合は、溶媒の沸点以上の温度で行ってもよいが、得られる共役高分子の分解を防ぐために、250℃以下が好ましい。
<Reaction temperature>
Although reaction temperature is not specifically limited, Usually, it carries out at the temperature below room temperature and the boiling point of a solvent. In order to increase the reaction rate, pressurization and / or heating may be performed using an autoclave or a microwave. In the case of an autoclave or microwave, it may be carried out at a temperature not lower than the boiling point of the solvent, but is preferably 250 ° C. or lower in order to prevent decomposition of the resulting conjugated polymer.

マイクロ波加熱の場合、Biotage Microwave Initiators+を用い、加熱は60〜80℃から100〜130℃、150〜180℃まで段階的に昇温して行うことが好ましい。オートフレーブ加熱の場合、用いる溶媒の沸点〜150℃付近で行うことが好ましい。   In the case of microwave heating, Biotage Microwave Initiators + is preferably used, and heating is preferably performed in a stepwise manner from 60 to 80 ° C. to 100 to 130 ° C. and 150 to 180 ° C. In the case of autoflavor heating, it is preferably performed at a boiling point of the solvent to be used up to about 150 ° C.

<反応時間>
反応時間はトリマー(1)及びモノマー(2)の反応性や反応温度などに依存するが、短い時間で反応を十分に完結させる観点から、通常5分以上、好ましくは30分以上、より好ましくは1時間以上であり、一方、通常48時間以下、好ましくは24時間以下、より好ましくは15時間、さらに好ましくは12時間、特に好ましくは6時間、とりわけ好ましくは3時間である。この時間に、後述する末端処理に要する時間は含まない。通常は、分析GPCを用いるなどの方法で所望の分子量体共役高分子が得られたか否かを確認し、後述する末端処理を行う。
<Reaction time>
The reaction time depends on the reactivity of the trimer (1) and the monomer (2), the reaction temperature, and the like, but from the viewpoint of sufficiently completing the reaction in a short time, it is usually 5 minutes or more, preferably 30 minutes or more, more preferably On the other hand, it is usually 48 hours or less, preferably 24 hours or less, more preferably 15 hours, still more preferably 12 hours, particularly preferably 6 hours, and particularly preferably 3 hours. This time does not include the time required for the end treatment described later. Usually, it is confirmed whether or not a desired molecular weight conjugated polymer is obtained by a method such as using analytical GPC, and a terminal treatment described later is performed.

本発明では2種以上の遷移金属錯体触媒を用いることで反応時間を短縮した上で、高分子量の共役高分子を製造することができるため、例えば、マイクロ波加熱の場合は、合計で5〜20分の反応時間で、またオートクレーブ加熱の場合は、合計で30分〜2時間の反応時間で目的の高分子量共役高分子を得ることができる。   In the present invention, since the reaction time can be shortened by using two or more transition metal complex catalysts and a high molecular weight conjugated polymer can be produced, for example, in the case of microwave heating, The target high molecular weight conjugated polymer can be obtained in a reaction time of 20 minutes and in the case of autoclave heating in a total reaction time of 30 minutes to 2 hours.

<末端処理>
重合反応後の共役高分子に対しては、末端処理を行うことが好ましい。共役高分子の末端処理を行うことにより、共役高分子に含まれる、臭素(Br)若しくはヨウ素(I)などのハロゲン原子、又はアルキルスタニル基の末端残基(式(1)におけるXや式(2)における−SnR)の残存量を減らすことができる。この末端処理を行うことは、半導体性能及び耐久性の点でより良好な性能の共役高分子を得ることができるために、好ましい。
<End treatment>
The terminal treatment is preferably performed on the conjugated polymer after the polymerization reaction. By terminal treatment of the conjugated polymer, a halogen atom such as bromine (Br) or iodine (I) or a terminal residue of the alkylstannyl group contained in the conjugated polymer (X or formula in formula (1)) it is possible to reduce the residual amount of -SnR 3) in (2). This terminal treatment is preferable because a conjugated polymer having better performance can be obtained in terms of semiconductor performance and durability.

共役高分子の末端のハロゲン原子の処理方法としては、特段の制限は無いが、反応系中に末端処理剤としてアリールトリアルキルスズを加えた後、加熱撹拌を行う方法が挙げられる。この操作により、共役高分子の末端にあるハロゲン原子をアリール基に変換することができる。このことは、共役安定効果により、共役高分子がより安定になるため、好ましい。   The method for treating the halogen atom at the terminal of the conjugated polymer is not particularly limited, and examples thereof include a method in which aryltrialkyltin is added as a terminal treating agent in the reaction system and then heated and stirred. By this operation, the halogen atom at the terminal of the conjugated polymer can be converted into an aryl group. This is preferable because the conjugated polymer becomes more stable due to the conjugated stability effect.

使用できるアリールトリアルキルスズの例としてはフェニルトリメチルスズ又はチエニルトリメチルスズなどが挙げられる。アリールトリアルキルスズの添加量としては、特段の制限は無いが、ハロゲン原子を有するトリマー(1)に対して、通常1.0×10−2当量以上、好ましくは0.1当量以上、より好ましくは1当量以上であり、一方、通常50当量以下、好ましくは20当量以下、より好ましくは10当量以上である。加熱時間は、特段の制限は無いが、通常30分以上、好ましくは1時間以上であり、一方、通常50時間以下、好ましくは20時間以下である。これらの反応条件で反応を行うことにより、より短時間かつ高い変換率で末端処理を行うことができる。 Examples of aryltrialkyltin that can be used include phenyltrimethyltin and thienyltrimethyltin. The amount of aryltrialkyltin added is not particularly limited, but is usually 1.0 × 10 −2 equivalent or more, preferably 0.1 equivalent or more, more preferably, relative to the trimer (1) having a halogen atom. Is 1 equivalent or more, and is usually 50 equivalents or less, preferably 20 equivalents or less, more preferably 10 equivalents or more. The heating time is not particularly limited, but is usually 30 minutes or longer, preferably 1 hour or longer, and is usually 50 hours or shorter, preferably 20 hours or shorter. By performing the reaction under these reaction conditions, the terminal treatment can be performed in a shorter time and with a higher conversion rate.

共役高分子の末端のアルキルスタニル基(−SnR)の処理方法としては、特段の制限は無いが、反応系中に末端処理剤としてハロゲン化アリールを加えた後、加熱撹拌を行う方法が挙げられる。この操作により、共役高分子の末端にあるアルキルスタニル基をアリール基に変換することができる。このことは、共役安定効果により、共役高分子がより安定になりうるために好ましい。また、熱分解しやすいアルキルスタニル基が共役高分子中に存在しなくなることから、共役高分子の経時劣化が抑えられることが期待される。 There is no particular limitation on the method for treating the terminal alkylstannyl group (—SnR 3 ) of the conjugated polymer, but there is a method in which an aryl halide is added as a terminal treatment agent in the reaction system and then heated and stirred. Can be mentioned. By this operation, the alkylstannyl group at the terminal of the conjugated polymer can be converted to an aryl group. This is preferable because the conjugated polymer can be more stable due to the conjugated stability effect. Moreover, since the alkylstannyl group which is easily thermally decomposed does not exist in the conjugated polymer, it is expected that deterioration with time of the conjugated polymer can be suppressed.

使用できるハロゲン化アリールの例としてはヨードチオフェン、ヨードベンゼン、ブロモチオフェン又はブロモベンゼンなどが挙げられる。ハロゲン化アリールの添加量としては、特段の制限は無いが、アルキルスタニル基を有するモノマー(2)に対して、通常1.0×10−2当量以上、好ましくは0.1当量以上、より好ましくは1当量以上であり、一方、通常50当量以下、好ましくは20当量以下、より好ましくは10当量以上である。加熱時間は、特段の制限は無いが、通常30分以上、好ましくは1時間以上であり、一方、通常50時間以下、好ましくは10時間以下である。これらの反応条件で反応を行うことにより、より短時間かつ高い変換率で末端処理を行うことができる。 Examples of aryl halides that can be used include iodothiophene, iodobenzene, bromothiophene, and bromobenzene. The addition amount of the aryl halide is not particularly limited, but is usually 1.0 × 10 −2 equivalent or more, preferably 0.1 equivalent or more, more than the monomer (2) having an alkylstannyl group. The amount is preferably 1 equivalent or more, and is usually 50 equivalents or less, preferably 20 equivalents or less, more preferably 10 equivalents or more. The heating time is not particularly limited, but is usually 30 minutes or longer, preferably 1 hour or longer, and is usually 50 hours or shorter, preferably 10 hours or shorter. By performing the reaction under these reaction conditions, the terminal treatment can be performed in a shorter time and with a higher conversion rate.

これらの末端処理の操作については、特段の制限は無いが、末端処理剤同士が反応することを防ぐために、ハロゲン原子の処理とアルキルスタニル基の処理とを独立に行うことが好ましい。また、ハロゲン原子の処理とアルキルスタニル基の処理とはどちらを先に行ってもよい。また、末端処理は、共役高分子の精製前に行ってもよいし、共役高分子の精製後に行ってもよい。   Although there are no particular restrictions on the operation of these terminal treatments, it is preferable to perform the halogen atom treatment and the alkylstannyl group treatment independently to prevent the end treatment agents from reacting with each other. Either the halogen atom treatment or the alkylstannyl group treatment may be performed first. Further, the terminal treatment may be performed before the purification of the conjugated polymer or after the purification of the conjugated polymer.

末端処理を精製後に行う場合には、共役高分子と一方の末端処理剤(ハロゲン化アリール又はアリールトリメチルスズ)とを有機溶剤に溶解した後、パラジウム触媒などの遷移金属触媒を加え、窒素下で加熱撹拌を行う。さらに、もう一方の末端処理剤(アリールトリメチルスズ又はハロゲン化アリール)を加え、加熱撹拌を行う。加熱時間は、特段の制限は無いが、通常30分以上、好ましくは1時間以上であり、一方、通常25時間以下、好ましくは10時間以下である。このような手順で行うことは、末端残基を短時間に効率よく高い変換率で除去できるため、好ましい。   When the end treatment is performed after purification, after dissolving the conjugated polymer and one of the end treatment agents (aryl halide or aryltrimethyltin) in an organic solvent, a transition metal catalyst such as a palladium catalyst is added, and under nitrogen. Stir with heat. Further, the other end treating agent (aryltrimethyltin or aryl halide) is added and heated and stirred. The heating time is not particularly limited, but is usually 30 minutes or longer, preferably 1 hour or longer, and is usually 25 hours or shorter, preferably 10 hours or shorter. It is preferable to perform such a procedure because the terminal residue can be efficiently removed at a high conversion rate in a short time.

[共役高分子の精製]
共役高分子の精製は、共役高分子に対し貧溶媒による単なる再沈殿、ソックスレイ抽出、ゲル浸透クロマトグラフィー、又はスキャベンジャーにより行うことができるが、本発明の共役高分子の精製方法では、これらの従来法による精製後、或いは、これらの精製を行うことなく、下記(1)及び/又は(2)の方法で精製を行う。
(1) 共役高分子をハロゲン系溶媒に完溶させた後、塩基性シリカゲル、及び酸性シリカゲルに接触させ、得られた溶液を一定量まで濃縮する。
(2) 得られた共役高分子のハロゲン系溶媒に、撹拌下、酢酸エチル系溶媒等のエステル系溶媒又はアルコール系溶媒を添加して共役高分子を析出させる。
[Purification of Conjugated Polymer]
The conjugated polymer can be purified by simple reprecipitation of the conjugated polymer with a poor solvent, Soxhlet extraction, gel permeation chromatography, or scavenger. Purification is performed by the following method (1) and / or (2) after purification by the conventional method or without performing these purifications.
(1) After completely dissolving the conjugated polymer in a halogen-based solvent, it is brought into contact with basic silica gel and acidic silica gel, and the resulting solution is concentrated to a certain amount.
(2) An ester solvent such as an ethyl acetate solvent or an alcohol solvent is added to the halogen solvent of the obtained conjugated polymer with stirring to precipitate the conjugated polymer.

上記精製法(1)の場合、例えば、反応溶液にアルコール溶媒を加えて一旦共役高分子を析出させてこれを濾取した後、得られた固体をクロロホルム、ジクロロメタン等のハロゲン系溶媒に完溶させた後、塩基性シリカゲルに接触させて残存する触媒金属を除去し、更に酸性シリカゲルに接触させてハロゲン系溶媒に溶けにく大きな高分子量体、有機不純物および無機塩を除去して精製する。この塩基性シリカゲルと酸性シリカゲルによる処理は、共役高分子溶液にシリカゲルを添加して撹拌混合するバッチ処理でもよく、共役高分子溶液をシリカゲルを充填したカラムに通す連続処理であってもよい。例えば、カラム管に、酸性シリカゲルを充填後、その上に塩基性シリカゲルを充填する方法により、同時に精製行うこともできるが、塩基性シリカゲルで30分以上接触撹拌処理した後、そのまま、酸性シリカゲルを充填したカラム管にチャージして処理するのが効率的である。   In the case of the above purification method (1), for example, after adding an alcohol solvent to the reaction solution to precipitate a conjugated polymer once and filtering this, the resulting solid is completely dissolved in a halogen solvent such as chloroform or dichloromethane. After that, the remaining catalytic metal is removed by contacting with basic silica gel, and further, it is purified by contacting with acidic silica gel to remove large high molecular weight substances, organic impurities, and inorganic salts that are hardly soluble in halogenated solvents. The treatment with basic silica gel and acidic silica gel may be a batch treatment in which silica gel is added to a conjugated polymer solution and stirred and mixed, or a continuous treatment in which the conjugated polymer solution is passed through a column packed with silica gel. For example, after the column silica gel is filled with acidic silica gel, it can be purified at the same time by filling it with basic silica gel. It is efficient to charge and process the packed column tube.

このシリカゲル処理後は、処理液を濃縮して、再度最小限のハロゲン系溶媒に溶解させ、エステル系溶媒(具体的には、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチルなど)、又は、アルコール系溶媒(具体的には、メタノール、エタノール、2−プロパノールなど)をハロゲン系溶媒に適度に混合し(混合比率は、上記混合溶液のスポットテストにより比率を決める)、高分子量体のみを析出させて、沈殿物を濾取する。濾別した沈殿物は上記の比率の複数溶媒系で洗浄する。得られた高分子量体の沈殿物をハロゲン系溶媒に溶解した後、溶媒を除き、得られたフィルム上の沈澱に、アルコール性溶媒を加え、容器から剥ぎ取り、濾過することで、共役高分子を回収する。   After this silica gel treatment, the treatment solution is concentrated and dissolved again in a minimal halogen solvent, and ester solvents (specifically, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, etc.) ) Or an alcohol solvent (specifically, methanol, ethanol, 2-propanol, etc.) is appropriately mixed with a halogen solvent (the mixing ratio is determined by a spot test of the above mixed solution), and the high molecular weight Only the body is precipitated, and the precipitate is collected by filtration. The filtered precipitate is washed with a multiple solvent system in the above ratio. After dissolving the obtained high molecular weight precipitate in a halogen-based solvent, the solvent is removed, and an alcoholic solvent is added to the precipitate on the obtained film, and then peeled off from the container and filtered. Recover.

上記精製法(2)の場合、例えば、ソックスレイ抽出を行って、最終的に上述のエステル系溶媒(具体的には、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチルなど)または、ハロゲン系溶媒で抽出して得た共役高分子溶液にメタノール、エタノール、2−プロパノール等のアルコール溶媒を加えて共役高分子を析出させ、カラム処理以降の上記方法に従う方法も挙げられる。   In the case of the purification method (2), for example, Soxhlet extraction is performed, and finally the above ester solvent (specifically, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, etc.) Alternatively, a method in which an alcohol solvent such as methanol, ethanol, 2-propanol or the like is added to a conjugated polymer solution obtained by extraction with a halogen-based solvent to precipitate a conjugated polymer, and the method according to the above-described method after column treatment is also included.

上記どちらの場合も、共役高分子溶液中のハロゲン系溶媒と、添加するエステル溶媒又はアルコール溶媒との量比は、v/v比でハロゲン系溶媒:エステル溶媒又はアルコール溶媒=1:10〜1:0.1、特に1:3〜1:0.3の範囲とすることが、低分子量体を除去し、共役高分子の精製効果の面で好ましい。   In either case, the quantitative ratio of the halogen-based solvent in the conjugated polymer solution to the ester solvent or alcohol solvent to be added is v / v ratio: halogen-based solvent: ester solvent or alcohol solvent = 1: 10-1 : 0.1, especially in the range of 1: 3 to 1: 0.3 is preferable in terms of the purification effect of the conjugated polymer by removing low molecular weight substances.

[共役高分子]
本発明の共役高分子の製造方法により得られる共役高分子(以下、「本発明の共役高分子」と称す場合がある。)、好ましくは整列性共役高分子の重量平均分子量(Mw)は、通常20K以上、より好ましくは50K以上、さらに好ましくは75K以上、特に好ましくは100K以上である。一方、好ましくは350K以下、より好ましくは250K以下、さらに好ましくは200K以下、特に好ましくは150K以下である。共役高分子の重量平均分子量(Mw)は光吸収波長の長波長化や高吸光度化の点でこの範囲が好ましい。また、光電変換素子の材料に用いた際に移動度が向上する点でこの範囲が好ましい。
[Conjugated polymer]
The conjugated polymer obtained by the method for producing a conjugated polymer of the present invention (hereinafter sometimes referred to as “conjugated polymer of the present invention”), preferably the weight average molecular weight (Mw) of the aligned conjugated polymer is Usually, it is 20K or more, more preferably 50K or more, further preferably 75K or more, and particularly preferably 100K or more. On the other hand, it is preferably 350K or less, more preferably 250K or less, further preferably 200K or less, and particularly preferably 150K or less. The range of the weight average molecular weight (Mw) of the conjugated polymer is preferable in view of increasing the light absorption wavelength and increasing the absorbance. Moreover, this range is preferable at the point which a mobility improves when it uses for the material of a photoelectric conversion element.

また、本発明の共役高分子のPDIは、通常1.0以上、好ましくは1.2以上、より好ましくは1.5以上、さらに好ましくは1.75以上である。一方、通常5.0以下、好ましくは4.0以下、より好ましくは3.0以下、さらに好ましくは2.5以下である。低分子量体を除去できているという観点から、PEIがこの範囲にあることが好ましい。また、光電変換素子の材料に用いた際に移動度と素子再現性が向上する点でこの範囲が好ましい。   Further, the PDI of the conjugated polymer of the present invention is usually 1.0 or more, preferably 1.2 or more, more preferably 1.5 or more, and further preferably 1.75 or more. On the other hand, it is usually 5.0 or less, preferably 4.0 or less, more preferably 3.0 or less, and further preferably 2.5 or less. From the viewpoint that the low molecular weight can be removed, the PEI is preferably in this range. Moreover, this range is preferable in terms of improving mobility and element reproducibility when used as a material for a photoelectric conversion element.

なお、整列性共役高分子の重量平均分子量(Mw)及びPDIは、ゲル浸透クロマトグラフィ(GPC)により求めるものとする。具体的には、カラムとして、Agilent PL−gel 10um MIXED−B(アジレント、300mm x 7.5mm)を2本ずつ直列に繋いで用い、ポンプとして島津製作所製 LC−20AT、オーブンとしてCTO−20A、検出器として示差屈折率検出器(島津製作所製:RID−20A)、及びUV−vis検出器(島津製作所製:SPD−20A)を用いることにより測定できる。手順としては、まず、測定対象の共役高分子を例えば、5mLのバイアルに3mg秤りとり、オルトジクロロベンゼン3mLを80℃、1時間、400rpm回転下、ホットプレートで加熱溶解させ、得られた溶液のうち5μLを80℃に保ったカラムに注入する。移動相としてオルトジクロロベンゼンを用い、1.0mL/minの流速で測定を行なう。解析にはLC−Solution(島津製作所)を用いる。   The weight average molecular weight (Mw) and PDI of the aligned conjugated polymer are determined by gel permeation chromatography (GPC). Specifically, Agilent PL-gel 10um MIXED-B (Agilent, 300 mm x 7.5 mm) is connected in series as two columns, LC-20AT manufactured by Shimadzu Corporation as a pump, CTO-20A as an oven, It can be measured by using a differential refractive index detector (manufactured by Shimadzu Corp .: RID-20A) and a UV-vis detector (manufactured by Shimadzu Corp .: SPD-20A) as a detector. As a procedure, first, 3 mg of a conjugated polymer to be measured is weighed in, for example, a 5 mL vial, and 3 mL of orthodichlorobenzene is heated and dissolved on a hot plate at 80 ° C. for 1 hour at 400 rpm. 5 μL of the solution is injected into a column kept at 80 ° C. Measurement is performed at a flow rate of 1.0 mL / min using orthodichlorobenzene as the mobile phase. LC-Solution (Shimadzu Corporation) is used for the analysis.

〔トリマーの製造方法〕
本発明のトリマーの製造方法は、前述のモノマー(2)と下記式(3)で表されるモノマー(以下「モノマー(3)」と称す場合がある。)とを、2種以上の遷移金属錯体触媒の共存下にカップリング反応させる工程を含むものであり、前述の本発明の共役高分子の製造方法におけるポリマー化原料となるトリマー(1)に該当するトリマーを製造することができる。
[Method for producing trimmer]
The method for producing a trimer according to the present invention includes the above-described monomer (2) and a monomer represented by the following formula (3) (hereinafter sometimes referred to as “monomer (3)”) in two or more transition metals. It includes a step of performing a coupling reaction in the presence of a complex catalyst, and a trimer corresponding to the trimer (1) serving as a polymerization raw material in the above-described method for producing a conjugated polymer of the present invention can be produced.

Figure 2018127572
Figure 2018127572

(上記式(3)中、Aは、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表し、Xはハロゲン原子を表す。) (In said formula (3), A represents the aromatic hydrocarbon group which may have a substituent, or the aromatic heterocyclic group which may have a substituent, X represents a halogen atom. .)

上記式(3)において、A、Xはそれぞれ、前述の式(1)におけるA、Xと同義であり、好ましいものも同一である。   In the above formula (3), A and X have the same meanings as A and X in the above formula (1), respectively, and preferred ones are also the same.

また、本発明のトリマーの製造方法で用いる2種以上の遷移金属錯体触媒についても、本発明の共役高分子の製造方法で用いる2種以上の遷移金属錯体触媒と同様であり、好ましいもの、その使用割合等についても前述の通りである。   Also, the two or more transition metal complex catalysts used in the method for producing a trimer of the present invention are the same as the two or more transition metal complex catalysts used in the method for producing a conjugated polymer of the present invention. The use ratio and the like are as described above.

本発明のトリマーの製造方法においても、モノマー(2)とモノマー(3)とを含む反応溶媒に対して、前述の均一系遷移金属錯体触媒と不均一系遷移金属錯体触媒とを同時に混合してカップリング反応を行うことが好ましい。
カップリング反応時のモノマー(2)とモノマー(3)との量比は、モノマー(2)とモノマー(3)とのモル比で、通常1.8以上、好ましくは2.0以上であり、一方、通常2.5以下、好ましくは2.3以下である。モノマー(2)とモノマー(3)との量比を、上記の範囲内とすることで、高収率で目的のトリマー(1)を製造することができる。
Also in the trimer production method of the present invention, the above-mentioned homogeneous transition metal complex catalyst and heterogeneous transition metal complex catalyst are mixed at the same time in the reaction solvent containing the monomer (2) and the monomer (3). A coupling reaction is preferably performed.
The amount ratio of the monomer (2) and the monomer (3) during the coupling reaction is usually 1.8 or more, preferably 2.0 or more in terms of the molar ratio of the monomer (2) and the monomer (3). On the other hand, it is usually 2.5 or less, preferably 2.3 or less. By setting the quantitative ratio of the monomer (2) and the monomer (3) within the above range, the target trimer (1) can be produced in a high yield.

反応に用いる溶媒としては、共役高分子の製造に用いる反応溶媒として前述したものを用いることができ、溶媒の使用量についても、モノマー(2),(3)と生成トリマーとを十分に溶媒させる観点から、モノマー(2),(3)の合計重量1gに対して、通常、1×10−2mL以上、好ましくは1×10−1mL以上、より好ましくは1mL以上である。一方、得られるトリマー(1)の精製を容易とするために、通常1×10mL以下、好ましくは1×10mL以下、より好ましくは2×10mL以下である。 As the solvent used in the reaction, those mentioned above as the reaction solvent used in the production of the conjugated polymer can be used, and the monomer (2), (3) and the generated trimer are sufficiently solvented with respect to the amount of solvent used. From the viewpoint, it is usually 1 × 10 −2 mL or more, preferably 1 × 10 −1 mL or more, more preferably 1 mL or more with respect to 1 g of the total weight of the monomers (2) and (3). On the other hand, in order to facilitate purification of the trimer (1) to be obtained, it is usually 1 × 10 5 mL or less, preferably 1 × 10 3 mL or less, more preferably 2 × 10 2 mL or less.

反応雰囲気は用いる遷移金属錯体触媒の劣化を防ぐために、不活性ガス下で反応を行うことが好ましい。特に、窒素雰囲気下、又はアルゴン雰囲気下で反応を行うことが好ましい。   In order to prevent deterioration of the transition metal complex catalyst to be used, the reaction atmosphere is preferably performed under an inert gas. In particular, the reaction is preferably performed in a nitrogen atmosphere or an argon atmosphere.

反応温度は特に限定されないが、通常は、室温以上、溶媒の沸点以下の温度で行う。   Although reaction temperature is not specifically limited, Usually, it carries out at the temperature below room temperature and the boiling point of a solvent.

反応時間はモノマー(2),(3)の反応性に依存するが、短い時間で反応を十分に完結させる観点から、通常10分以上、好ましくは20分以上、より好ましくは30分以上であり、一方、通常90分以下、好ましくは60分以下、より好ましくは45分以下である。通常は、分析GPCを用いるなどの方法で反応が完結したか否かを確認して反応を終了する。
本発明によれば、2種以上の遷移金属錯体触媒を用いた上で、反応時間を上記の通り短かめに設定することで、目的のトリマーを高収率で得ることができる。
Although the reaction time depends on the reactivity of the monomers (2) and (3), it is usually at least 10 minutes, preferably at least 20 minutes, more preferably at least 30 minutes from the viewpoint of sufficiently completing the reaction in a short time. On the other hand, it is usually 90 minutes or less, preferably 60 minutes or less, more preferably 45 minutes or less. Usually, the reaction is completed after confirming whether the reaction is completed by a method such as using analytical GPC.
According to the present invention, the target trimer can be obtained in high yield by using two or more transition metal complex catalysts and setting the reaction time short as described above.

反応により得られたトリマーは、反応溶媒にメタノール等のアルコール溶媒を加えて析出させて濾別し、シリカゲル等で精製して目的のトリマーを得る。   The trimer obtained by the reaction is precipitated by adding an alcohol solvent such as methanol to the reaction solvent, filtered, and purified by silica gel or the like to obtain the desired trimer.

なお、本発明でトリマーの製造及び共役高分子の製造に用いるモノマー(2)は、通常、下記式(2A)で表されるシクロペンタジチオフェン化合物をリチウム化した後スズ化して製造される。   The monomer (2) used for the production of the trimer and the conjugated polymer in the present invention is usually produced by lithiation of a cyclopentadithiophene compound represented by the following formula (2A) and then tinization.

Figure 2018127572
Figure 2018127572

(上記式(2A)中、R、R、Rは式(2)におけると同義である。) (In the above formula (2A), R, R 3 and R 4 have the same meanings as in formula (2).)

この際、後述の実施例に示されるように、2置換アミンとブチルリチウムとの反応から得られるリチウム塩、例えば、リチウムジイソプロピルアミド(LDA)等の弱い求核性のリチウム化試薬を用い、リチウム化及びその後のスズ化を複数回に分けて段階的に行うことにより、−SnR基が導入されていない未反応のシクロペンタジチオフェン化合物や、−SnR基が1つしか導入されていないモノスズ置換シクロペンタジチオフェン化合物の残留を防止し、反応生成物の純度を上げることで、本発明のトリマーの製造方法における収率を上げ、高収率でトリマーを製造することが可能となる。 At this time, as shown in Examples described later, a lithium salt obtained from a reaction between a disubstituted amine and butyl lithium, for example, a weak nucleophilic lithiation reagent such as lithium diisopropylamide (LDA) is used. by performing stepwise in a plurality of times and subsequent stanylated, and cyclopentadithiophene unreacted compound of -SnR 3 group is not introduced, -SnR 3 group is not introduced only one By preventing the residue of the monotin-substituted cyclopentadithiophene compound and increasing the purity of the reaction product, it is possible to increase the yield in the method for producing a trimer of the present invention, and to produce a trimer at a high yield.

以下、実施例により本発明を更に詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by a following example, unless the summary is exceeded.

[実施例1]
<ジスズ体の製造>

Figure 2018127572
[Example 1]
<Manufacture of distin body>
Figure 2018127572

500mLの3つ口フラスコ中、窒素雰囲気下、化合物1(14.1g,224mmol)を入れ、テトラヒドロフラン(THF,100mL)に溶解させ、−78℃に冷却した。さらにリチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,1.04M,26mL,1.2eq)を滴下し、室温まで昇温し、20分撹拌した。再び、−78℃に冷却し、塩化トリメチルスズのテトラヒドロフラン溶液(TCI社製,5.5g/THF7.5mL,1.2eq)を滴下し、室温まで昇温し、20分撹拌した。再び、−78℃に冷却し、リチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,1.04M,26mL,1.2eq)を滴下し、室温まで昇温し、20分撹拌した。再び、−78℃に冷却し、塩化トリメチルスズのテトラヒドロフラン溶液(TCI社製,5.5g/THF7.5mL,1.2eq)を滴下し、室温まで昇温し、20分撹拌した。再び、−78℃に冷却し、リチウムジイソプロピルアミド(LDA)のテトラヒドロフラン/ヘキサン溶液(関東化学社製,1.04M、26mL,1.2eq)を滴下し、室温まで昇温し、20分撹拌した。再び、−78℃に冷却し、塩化トリメチルスズのテトラヒドロフラン溶液(TCI社製,5.5g/THF7.5mL,1.2eq)を滴下後、室温まで昇温し、20分撹拌した。反応液に0℃の水を加え、0℃のヘキサンで抽出後、有機層を水洗した。有機層を硫酸ナトリウム上で乾燥し、濾過して減圧濃縮後、真空下で乾燥することにより、化合物2を定量的に灰色固体として得た。   In a 500 mL three-necked flask, compound 1 (14.1 g, 224 mmol) was placed under a nitrogen atmosphere, dissolved in tetrahydrofuran (THF, 100 mL), and cooled to -78 ° C. Further, a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., 1.04M, 26 mL, 1.2 eq) was added dropwise, the temperature was raised to room temperature, and the mixture was stirred for 20 minutes. Again, it cooled to -78 degreeC, the tetrahydrofuran solution (The product made by TCI, 5.5g / THF7.5mL, 1.2eq) of trimethyltin chloride was dripped, and it heated up to room temperature, and stirred for 20 minutes. The mixture was cooled again to −78 ° C., a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., 1.04 M, 26 mL, 1.2 eq) was added dropwise, the temperature was raised to room temperature, and the mixture was stirred for 20 minutes. . Again, it cooled to -78 degreeC, the tetrahydrofuran solution (The product made by TCI, 5.5g / THF7.5mL, 1.2eq) of trimethyltin chloride was dripped, and it heated up to room temperature, and stirred for 20 minutes. The mixture was cooled again to −78 ° C., a tetrahydrofuran / hexane solution of lithium diisopropylamide (LDA) (manufactured by Kanto Chemical Co., 1.04M, 26 mL, 1.2 eq) was added dropwise, the temperature was raised to room temperature, and the mixture was stirred for 20 minutes. . The mixture was cooled again to −78 ° C., a tetrahydrofuran solution of trimethyltin chloride (manufactured by TCI, 5.5 g / THF 7.5 mL, 1.2 eq) was added dropwise, and the mixture was warmed to room temperature and stirred for 20 minutes. Water at 0 ° C. was added to the reaction solution, and the mixture was extracted with hexane at 0 ° C., and then the organic layer was washed with water. The organic layer was dried over sodium sulfate, filtered, concentrated under reduced pressure, and dried under vacuum to obtain Compound 2 quantitatively as a gray solid.

<トリマーの製造>

Figure 2018127572
<Manufacture of trimmer>
Figure 2018127572

200mLの3つ口フラスコに、化合物2(2.43g,2.55mmol)と化合物3(1.67g,5.36mmol)を入れ、窒素置換した。無水トルエン50mLと無水N,N−ジメチルホルムアミド(DMF)12.5mLを加え、テトラキストリフェニルホスフィンパラジウム(0)0.27gとPd EnCat(登録商標)30TPP 0.36g加え、100℃で30分加熱した。その後50℃まで冷却し、メタノールを100mL添加し、撹拌下室温まで放置した。これを濾過し、得られた粗生成物を、シリカゲルカラムクロマトグラフィーで精製し、化合物4を84%の収率で、オレンジ固体として得た。   In a 200 mL three-necked flask, compound 2 (2.43 g, 2.55 mmol) and compound 3 (1.67 g, 5.36 mmol) were placed and purged with nitrogen. Add 50 mL of anhydrous toluene and 12.5 mL of anhydrous N, N-dimethylformamide (DMF), add 0.27 g of tetrakistriphenylphosphine palladium (0) and 0.36 g of Pd EnCat (registered trademark) 30 TPP, and heat at 100 ° C. for 30 minutes. did. Thereafter, it was cooled to 50 ° C., 100 mL of methanol was added, and the mixture was allowed to stand at room temperature with stirring. This was filtered, and the resulting crude product was purified by silica gel column chromatography to obtain Compound 4 as an orange solid in 84% yield.

<共役高分子の製造>

Figure 2018127572
<Manufacture of conjugated polymer>
Figure 2018127572

化合物4(232mg、0.231mmol)と化合物2(228mg、0.21mmol)をマイクロ波用反応容器に加え、グローブボックス中、テトラキストリフェニルホスフィンパラジウム(0)12mgと、Pd EnCat(登録商標)TPP30 25mgと、無水キシレン4mLを加え、マイクロ波反応装置(Biotage Microwave Initiators+)にて窒素雰囲気下、マイクロ波反応を行い、この間、80℃、2分;130℃、2分;160℃、2分;200℃、40分;と昇温させた。その後、室温にもどし、このマイクロ波用反応容器をグローボックスに移し、末端処理としてテトラキストリフェニルホスフィンパラジウム(0)6mgと、2−ブロモチオフェン0.2mLと、無水キシレン4mLを加えた後、再度上記と同様にマイクロ波反応を行い、80℃、2分;130℃、2分;160℃、20分;と昇温させた。その後、室温まで冷やし、メタノールを加え、粗高分子を得た。   Compound 4 (232 mg, 0.231 mmol) and compound 2 (228 mg, 0.21 mmol) are added to a microwave reaction vessel, and 12 mg of tetrakistriphenylphosphine palladium (0) and Pd EnCat (registered trademark) TPP30 in a glove box. 25 mg and 4 mL of anhydrous xylene were added, and microwave reaction was performed in a nitrogen atmosphere using a microwave reactor (Biotage Microwave Initiators +) during this period, 80 ° C., 2 minutes; 130 ° C., 2 minutes; 160 ° C., 2 minutes; 200 ° C., 40 minutes; Then, it returns to room temperature, moves this microwave reaction container to a glow box, and after adding 6 mg of tetrakistriphenylphosphine palladium (0), 0.2 mL of 2-bromothiophene and 4 mL of anhydrous xylene as a terminal treatment, The microwave reaction was performed in the same manner as described above, and the temperature was raised to 80 ° C., 2 minutes; 130 ° C., 2 minutes; 160 ° C., 20 minutes; Then, it cooled to room temperature and added methanol and obtained the crude polymer.

反応溶液をメタノール中に注ぎ、析出した沈殿を濾取した。
得られた固体をクロロホルムに溶解させ、ジアミノシリカゲルを加えて10分室温で撹拌した後、酸性シリカゲルのショートカラムを通した。カラム流出溶液を濃縮し、クロロホルム/酢酸エチル(40mL/30mL、1:1.5v/v)を溶媒共役高分子5を析出させて、その238mgを得た。
得られた共役高分子5の重量平均分子量(Mw)は54,000であり、分子量分布(PDI)は2.4であった。
The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
The obtained solid was dissolved in chloroform, diamino silica gel was added, and the mixture was stirred for 10 minutes at room temperature, and then passed through a short column of acidic silica gel. The column effluent solution was concentrated, and solvent conjugate polymer 5 was precipitated with chloroform / ethyl acetate (40 mL / 30 mL, 1: 1.5 v / v) to obtain 238 mg thereof.
The obtained conjugated polymer 5 had a weight average molecular weight (Mw) of 54,000 and a molecular weight distribution (PDI) of 2.4.

[実施例2]
窒素雰囲気下、50mLナスフラスコに、化合物4(221mg、0.220mmol)、化合物2(225mg、0.207mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(10.4mg)、Pd EnCat(登録商標)TPP30 22mg、及び無水キシレン(4.6mL)を入れ、90℃で1時間、続いて100℃で2時間撹拌した。反応液をキシレンで4倍に希釈してさらに0.5時間加熱撹拌した後、末端処理として、2−ブロモチオフェン0.2mLを加えて1時間加熱撹拌した後、さらにブロモベンゼン(2mL)を加えて4時間加熱撹拌して、反応溶液をメタノール中に注ぎ、析出した沈殿を濾取した。
[Example 2]
In a 50 mL eggplant flask under a nitrogen atmosphere, compound 4 (221 mg, 0.220 mmol), compound 2 (225 mg, 0.207 mmol), tetrakis (triphenylphosphine) palladium (0) (10.4 mg), Pd EnCat (registered trademark). ) TPP30 (22 mg) and anhydrous xylene (4.6 mL) were added, and the mixture was stirred at 90 ° C for 1 hour and then at 100 ° C for 2 hours. After the reaction solution was diluted 4-fold with xylene and further stirred with heating for 0.5 hour, as a terminal treatment, 0.2 mL of 2-bromothiophene was added and stirred with heating for 1 hour, and then bromobenzene (2 mL) was added. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.

得られた固体をクロロホルムに溶解させ、ジアミノシリカゲルを加えて10分室温で撹拌した後、酸性シリカゲルのショートカラムを通した。カラム流出溶液を濃縮し、クロロホルム/酢酸エチルを溶媒として再沈殿を行い、析出した沈殿を濾別して、共役高分子5を246mg得た。
得られた共役高分子5の重量平均分子量(Mw)は60,000であり、分子量分布(PDI)は2.1であった。
The obtained solid was dissolved in chloroform, diamino silica gel was added, and the mixture was stirred for 10 minutes at room temperature, and then passed through a short column of acidic silica gel. The column effluent solution was concentrated, reprecipitation was performed using chloroform / ethyl acetate as a solvent, and the deposited precipitate was separated by filtration to obtain 246 mg of conjugated polymer 5.
The obtained conjugated polymer 5 had a weight average molecular weight (Mw) of 60,000 and a molecular weight distribution (PDI) of 2.1.

[比較例1]
非特許文献1(Chem.Commun.2106,52,3207)に従って共役高分子5の製造を行った。
化合物4(232mg、0.231mmol)と、化合物2(228mg、0.21mmol)を、実施例1で用いたものと同じマイクロ波用反応容器に加え、グローブボックス中、テトラキストリフェニルホスフィンパラジウム(0)12mgと、無水キシレン4mLを加え、実施例1と同様にマイクロ波反応を行い、80℃、2分;130℃、2分;160℃、2分;200℃、40分;と昇温させた。その後、室温にもどし、このマイクロ波用反応容器をグローボックスに移し、テトラキストリフェニルホスフィンパラジウム(0)6mgと、2−ブロモチオフェン0.2mLと、無水キシレン4mLを加えた後、再度マイクロ波反応を行い、80℃、2分;130℃、2分;160℃、20分;と昇温させた。その後、室温まで冷却し、メタノールを加え、粗高分子を得た。
[Comparative Example 1]
The conjugated polymer 5 was produced according to Non-Patent Document 1 (Chem. Commun. 2106, 52, 3207).
Compound 4 (232 mg, 0.231 mmol) and Compound 2 (228 mg, 0.21 mmol) were added to the same microwave reactor as used in Example 1, and tetrakistriphenylphosphine palladium (0 ) 12 mg and 4 mL of anhydrous xylene were added, and the microwave reaction was carried out in the same manner as in Example 1. The temperature was raised to 80 ° C., 2 minutes; 130 ° C., 2 minutes; 160 ° C., 2 minutes; It was. Thereafter, the temperature is returned to room temperature, and the microwave reaction vessel is transferred to a glow box. After adding 6 mg of tetrakistriphenylphosphine palladium (0), 0.2 mL of 2-bromothiophene, and 4 mL of anhydrous xylene, the microwave reaction is performed again. The temperature was raised to 80 ° C., 2 minutes; 130 ° C., 2 minutes; 160 ° C., 20 minutes; Then, it cooled to room temperature and added methanol and obtained crude polymer.

ソックスレイ法を用い、この粗生成物をメタノール、ジクロロメタン、クロロホルムの順で、連続抽出を行った。クロロホルム溶液のみを減圧下、溶媒を除き、シリカゲルカラムを通し、再度減圧下、溶媒を除き、メタノールを加え、高分子を濾取し、260mgを得た。
得られた共役高分子5の重量平均分子量(Mw)は18,000であり、分子量分布(PDI)は2.9であった。
Using the Soxhray method, this crude product was continuously extracted in the order of methanol, dichloromethane, and chloroform. Only the chloroform solution was removed under reduced pressure, the solvent was removed, passed through a silica gel column, the solvent was removed again under reduced pressure, methanol was added, and the polymer was collected by filtration to obtain 260 mg.
The obtained conjugated polymer 5 had a weight average molecular weight (Mw) of 18,000 and a molecular weight distribution (PDI) of 2.9.

上記の実施例及び比較例より、本発明によれば、整列性共役高分子のポリマー化原料のトリマーを短時間のカップリング反応で高収率に製造すると共に、このトリマーを用いて、より高分子量分布の高分子量整列性共役高分子を製造することができることが分かる。   From the above examples and comparative examples, according to the present invention, the trimer of the raw material for polymerizing the alignment conjugated polymer is produced in a high yield by a short-time coupling reaction, and the trimer is used to obtain a higher yield. It can be seen that a high molecular weight aligned conjugated polymer having a molecular weight distribution can be produced.

Claims (13)

下記式(1)で表されるトリマーと、下記式(2)で表されるモノマーとを、2種以上の遷移金属錯体触媒の共存下、カップリング反応により重合させる工程を含むことを特徴とする共役高分子の製造方法。
Figure 2018127572
(上記式(1)中、R、Rは、各々独立に、置換基を有していてもよい脂肪族炭化水素基、又は置換基を有していてもよい芳香族炭化水素基を表し、Aは、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表し、Xはハロゲン原子を表す。)
Figure 2018127572
(上記式(2)中、R、Rは、各々独立に、置換基を有していてもよい脂肪族炭化水素基、又は置換基を有していてもよい芳香族炭化水素基を表し、Rは、脂肪族炭化水素基を表す。)
Including a step of polymerizing a trimer represented by the following formula (1) and a monomer represented by the following formula (2) by a coupling reaction in the presence of two or more transition metal complex catalysts. A method for producing a conjugated polymer.
Figure 2018127572
(In the above formula (1), R 1 and R 2 each independently represents an aliphatic hydrocarbon group which may have a substituent, or an aromatic hydrocarbon group which may have a substituent. A represents an aromatic hydrocarbon group which may have a substituent, or an aromatic heterocyclic group which may have a substituent, and X represents a halogen atom.
Figure 2018127572
(In the above formula (2), R 3 and R 4 each independently represents an aliphatic hydrocarbon group which may have a substituent, or an aromatic hydrocarbon group which may have a substituent. And R represents an aliphatic hydrocarbon group.)
前記2種以上の遷移金属錯体触媒のうち少なくとも1種が不均一系遷移金属錯体触媒であることを特徴とする、請求項1に記載の共役高分子の製造方法。   The method for producing a conjugated polymer according to claim 1, wherein at least one of the two or more transition metal complex catalysts is a heterogeneous transition metal complex catalyst. 前記2種以上の遷移金属錯体触媒のうち少なくとも1種が不均一系遷移金属錯体触媒であり、かつ少なくとも1種が均一系遷移金属錯体触媒であることを特徴とする、請求項2に記載の共役高分子の製造方法。   The at least one of the two or more transition metal complex catalysts is a heterogeneous transition metal complex catalyst, and at least one of the transition metal complex catalysts is a homogeneous transition metal complex catalyst. A method for producing a conjugated polymer. 前記式(1)で表されるトリマーと前記式(2)で表されるモノマーを含む反応溶液と、前記均一系遷移金属錯体触媒及び前記不均一系遷移金属錯体触媒とを混合する工程を含むことを特徴とする、請求項3に記載の共役高分子の製造方法。   A step of mixing a reaction solution containing the trimer represented by the formula (1) and the monomer represented by the formula (2), and the homogeneous transition metal complex catalyst and the heterogeneous transition metal complex catalyst. The method for producing a conjugated polymer according to claim 3, wherein: 前記2種以上の遷移金属錯体触媒を構成する遷移金属のそれぞれが、パラジウムであることを特徴とする、請求項1乃至4の何れか1項に記載の共役高分子の製造方法。   The method for producing a conjugated polymer according to any one of claims 1 to 4, wherein each of the transition metals constituting the two or more transition metal complex catalysts is palladium. 前記共役高分子が、整列性共役高分子であることを特徴とする請求項1乃至5の何れか1項に記載の共役高分子の製造方法。   The method for producing a conjugated polymer according to any one of claims 1 to 5, wherein the conjugated polymer is an aligned conjugated polymer. 請求項1乃至6の何れか1項に記載の共役高分子の製造方法で得られた共役高分子をハロゲン系溶媒に溶解させた後、塩基性シリカゲル、及び酸性シリカゲルに接触させることを特徴とする共役高分子の精製方法。   The conjugated polymer obtained by the method for producing a conjugated polymer according to any one of claims 1 to 6 is dissolved in a halogen-based solvent, and then contacted with basic silica gel and acidic silica gel. A method for purifying a conjugated polymer. 請求項1乃至6の何れか1項に記載の共役高分子の製造方法で得られた共役高分子をハロゲン系溶媒に溶解させた後、得られた共役高分子溶液にアルコール系溶媒又はエステル系溶媒を添加して、該共役高分子を析出させることを特徴とする共役高分子の精製方法。   The conjugated polymer obtained by the method for producing a conjugated polymer according to any one of claims 1 to 6 is dissolved in a halogen-based solvent, and then the alcohol-based solvent or ester-based solution is added to the obtained conjugated polymer solution. A method for purifying a conjugated polymer, comprising adding a solvent to precipitate the conjugated polymer. 下記式(2)で表されるモノマーと、下記式(3)で表されるモノマーとを、2種以上の遷移金属錯体触媒の共存下に、カップリング反応させる工程を含むことを特徴とするトリマーの製造方法。
Figure 2018127572
(上記式(2)中、R、Rは、各々独立に、置換基を有していてもよい脂肪族炭化水素基、又は置換基を有していてもよい芳香族炭化水素基を表し、Rは、脂肪族炭化水素基を表す。)
Figure 2018127572
(上記式(3)中、Aは、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表し、Xはハロゲン原子を表す。)
Including a step of coupling a monomer represented by the following formula (2) and a monomer represented by the following formula (3) in the presence of two or more transition metal complex catalysts. Trimmer manufacturing method.
Figure 2018127572
(In the above formula (2), R 3 and R 4 each independently represents an aliphatic hydrocarbon group which may have a substituent, or an aromatic hydrocarbon group which may have a substituent. And R represents an aliphatic hydrocarbon group.)
Figure 2018127572
(In said formula (3), A represents the aromatic hydrocarbon group which may have a substituent, or the aromatic heterocyclic group which may have a substituent, X represents a halogen atom. .)
前記2種以上の遷移金属錯体触媒のうち少なくとも1種が不均一系遷移金属錯体触媒であることを特徴とする、請求項9に記載のトリマーの製造方法。   The method for producing a trimer according to claim 9, wherein at least one of the two or more transition metal complex catalysts is a heterogeneous transition metal complex catalyst. 前記2種以上の遷移金属錯体触媒のうち少なくとも1種が不均一系遷移金属錯体触媒であり、かつ少なくとも1種が均一系遷移金属錯体触媒であることを特徴とする、請求項10に記載のトリマーの製造方法。   The at least one of the two or more transition metal complex catalysts is a heterogeneous transition metal complex catalyst, and at least one of the transition metal complex catalysts is a homogeneous transition metal complex catalyst. Trimmer manufacturing method. 前記式(2)で表されるモノマーと前記式(3)で表されるモノマーを含む反応溶液と、前記均一系遷移金属錯体触媒及び前記不均一系遷移金属錯体触媒とを混合する工程を含むことを特徴とする、請求項11に記載のトリマーの製造方法。   A step of mixing a reaction solution containing the monomer represented by the formula (2) and the monomer represented by the formula (3) with the homogeneous transition metal complex catalyst and the heterogeneous transition metal complex catalyst. The method for producing a trimer according to claim 11, wherein: 前記2種以上の遷移金属錯体触媒を構成する遷移金属のそれぞれが、パラジウムであることを特徴とする、請求項9乃至12の何れか1項に記載のトリマーの製造方法。   The method for producing a trimer according to any one of claims 9 to 12, wherein each of the transition metals constituting the two or more kinds of transition metal complex catalysts is palladium.
JP2017023307A 2017-02-10 2017-02-10 Manufacturing method and purification method of conjugated polymer, and manufacturing method of trimer Pending JP2018127572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017023307A JP2018127572A (en) 2017-02-10 2017-02-10 Manufacturing method and purification method of conjugated polymer, and manufacturing method of trimer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017023307A JP2018127572A (en) 2017-02-10 2017-02-10 Manufacturing method and purification method of conjugated polymer, and manufacturing method of trimer

Publications (1)

Publication Number Publication Date
JP2018127572A true JP2018127572A (en) 2018-08-16

Family

ID=63173635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017023307A Pending JP2018127572A (en) 2017-02-10 2017-02-10 Manufacturing method and purification method of conjugated polymer, and manufacturing method of trimer

Country Status (1)

Country Link
JP (1) JP2018127572A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020141A1 (en) * 2019-07-30 2021-02-04 住友化学株式会社 METHOD FOR PRODUCING π-CONJUGATED POLYMER

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020141A1 (en) * 2019-07-30 2021-02-04 住友化学株式会社 METHOD FOR PRODUCING π-CONJUGATED POLYMER
JP2021021043A (en) * 2019-07-30 2021-02-18 住友化学株式会社 METHOD FOR PRODUCING π-CONJUGATED POLYMER
CN114174374A (en) * 2019-07-30 2022-03-11 住友化学株式会社 Method for producing pi-conjugated polymer
JP7293026B2 (en) 2019-07-30 2023-06-19 住友化学株式会社 Method for producing π-conjugated polymer
CN114174374B (en) * 2019-07-30 2024-04-26 住友化学株式会社 Method for producing pi-conjugated polymer

Similar Documents

Publication Publication Date Title
Vasconcelos et al. Synthesis of symmetrical biaryl compounds by homocoupling reaction
US20070073055A1 (en) Transition metal complexes of N-heterocyclic carbenes, method of preparation and use in transition metal catalyzed organic transformations
Wakioka et al. Remarkable ligand effect of P (2-MeOC6H4) 3 on palladium-catalyzed direct arylation
WO2013065855A1 (en) Method for producing conjugated polymer, conjugated polymer, photoelectric conversion element, solar cell, and solar cell module
WO2012014844A1 (en) Polythiophene polymerization catalyst, and method for producing poly(substituted thiophene)
Huang et al. Copper-catalyzed decarboxylative coupling of alkynyl carboxylates with 1, 1-dibromo-1-alkenes
TW201202226A (en) Method of making coupled heteroary1 compounds via rearrangement of halogenated heteroaromatics followed by oxidative coupling
Thogiti et al. Polymer anchored 3-benzoyl-1-(1-benzylpiperidin-4-yl)-2-thiopseudourea-Pd (II) complex: An efficient catalyst for the copper and solvent free Sonogashira cross-coupling reaction
CN111253305B (en) Alkenyl or alkylation reaction method of alkyl substituted azaarene
JP2018127572A (en) Manufacturing method and purification method of conjugated polymer, and manufacturing method of trimer
Yang et al. A highly efficient and practical new PEG-bound bi-cinchona alkaloid ligand for the catalytic asymmetric aminohydroxylation of alkenes
Zou et al. An electrochemically polymerized and assembled cyclopalladated bi-thiophene imine for catalyzing coupling reactions: a modern strategy to enhance catalytic activity
Lee et al. Cross‐linked poly (4‐vinylpyridine/styrene) copolymer‐supported bismuth (III) triflate: an efficient heterogeneous catalyst for silylation of alcohols and phenols with HMDS
CN110683926B (en) Preparation method of carboxylic acid aryl ester compound
JP5283494B2 (en) Method for producing fluorene derivative
JPWO2015170688A1 (en) Metal-supported porous coordination polymer catalyst
Fujita et al. A Step-Efficient Pathway to Chlorine-Functionalized Thiophene Oligomers by Palladium-Catalyzed Deprotonative Coupling of Chlorothiophenes
CN101143331B (en) Non-palladium catalyst system used for coupling reaction
Jayasundara et al. Merging Iridium-Catalyzed C–H Borylations with Palladium-Catalyzed Cross-Couplings Using Triorganoindium Reagents
JP2015013832A (en) Production method of aromatic compound, and organic electronic materials
Zheng et al. Bis (imino) acenaphthene (BIAN)-Supported N-Heterocyclic Carbene Palladium Complexes with Ancillary Ligands: Readily Activated Precatalysts for Direct C–H Arylation of Thiophenes
JP5306336B2 (en) Process for producing substituted heteroaromatic compounds
JP2011183366A (en) Catalyst composition for c-c coupling reaction
TW201518311A (en) Fused thiophene ditin monomers
JP2021520339A (en) Tetraphenylphenoxytungsten oxoalkylidene complex, its production method and its use

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210818