JP2018126707A - Waste water treating device and method using spore-forming bacterium - Google Patents

Waste water treating device and method using spore-forming bacterium Download PDF

Info

Publication number
JP2018126707A
JP2018126707A JP2017022823A JP2017022823A JP2018126707A JP 2018126707 A JP2018126707 A JP 2018126707A JP 2017022823 A JP2017022823 A JP 2017022823A JP 2017022823 A JP2017022823 A JP 2017022823A JP 2018126707 A JP2018126707 A JP 2018126707A
Authority
JP
Japan
Prior art keywords
spore
tank
cesium
water treatment
contaminated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017022823A
Other languages
Japanese (ja)
Other versions
JP6280661B1 (en
Inventor
押田 忠弘
Tadahiro Oshida
忠弘 押田
耕三 菅波
Kozo Suganami
耕三 菅波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tao Eng Co Ltd
Tao Engineering Co Ltd
Original Assignee
Tao Eng Co Ltd
Tao Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tao Eng Co Ltd, Tao Engineering Co Ltd filed Critical Tao Eng Co Ltd
Priority to JP2017022823A priority Critical patent/JP6280661B1/en
Application granted granted Critical
Publication of JP6280661B1 publication Critical patent/JP6280661B1/en
Publication of JP2018126707A publication Critical patent/JP2018126707A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a device and a method for removing water-soluble metals such as strontium and cesium.SOLUTION: The method for efficiently removing water-soluble metals comprises: adjusting contaminated water so as to be in an environment where spore-forming bacterium can survive; mixing the spore-forming bacterium with the contaminated water, to form a biological film and a spore; making the biological film adsorb strontium, cesium, and the like; and making the spore take strontium, cesium, and the like in it. A deice for the same is also provided.SELECTED DRAWING: Figure 1

Description

金属イオン、特にストロンチウムを含む汚染水を芽胞形成細菌により処理する装置、及び廃水処理方法に関する。   The present invention relates to an apparatus for treating contaminated water containing metal ions, particularly strontium, with a spore-forming bacterium, and a wastewater treatment method.

河川や海域へ工場等からの排水を行う場合には、健康や生活環境を保護するように、水質の検査が義務付けられている。有機物の除去には活性汚泥法など比較的安価な廃水処理方法が開発されているが、金属などの無機物を効率良く、しかも低コストで除去する方法は未だ開発されていない。無機物の処理は、主として薬品により沈殿させて処理する方法やゼオライトなどの吸着剤やイオン交換樹脂などによって吸着する方法がとられている。   When draining water from factories to rivers and sea areas, water quality inspection is obliged to protect health and living environment. A relatively inexpensive wastewater treatment method such as an activated sludge method has been developed for the removal of organic substances, but a method for removing inorganic substances such as metals efficiently and at a low cost has not yet been developed. As for the treatment of the inorganic substance, a method of precipitating with a chemical or a method of adsorbing with an adsorbent such as zeolite or an ion exchange resin is mainly used.

実際に、福島第一原子力発電所の事故及びその対策を実施する中で、汚染水からのストロンチウム、セシウムなど多種の放射性物質の除去は、濾過法、鉄共沈法、炭酸塩沈殿法、あるいは吸着剤、キレート樹脂、イオン交換樹脂などを用いる方法が検討され、それらを多段階に組み合わせた複雑なシステムで汚染水の浄化が行われている。しかし、システムを運用する中で、核種と適用されている除去方法の組み合わせでそれぞれに種々の問題点が存在しており、より安価で効率の良い方法への改善が求められている。   In fact, while carrying out accidents and countermeasures at the Fukushima Daiichi Nuclear Power Station, various radioactive materials such as strontium and cesium can be removed from contaminated water by filtration, iron coprecipitation, carbonate precipitation, or A method using an adsorbent, a chelate resin, an ion exchange resin or the like has been studied, and the contaminated water is purified by a complicated system in which they are combined in multiple stages. However, there are various problems in the combination of nuclide and applied removal method in operating the system, and improvement to a cheaper and more efficient method is demanded.

上述のような薬品や吸着剤を使用する方法の他に、微生物を用いて汚染水や廃水から水溶性金属イオンを除去する方法も知られている(非特許文献1、特許文献1〜3)。非特許文献1には、飲水に工場廃水から混入したストロンチウムを好熱性細菌(Bacillus属)によって除去する方法が開示されている。特許文献1には、放射性物質によって汚染された構築物、土壌等を除染洗浄した後の洗浄溶液に乳酸菌、有芽胞桿菌、酵母を混入し、放射性セシウムを菌体に必要な栄養素として取り込ませ除染することが開示されている。特許文献2には、微生物が形成する生物膜に放射性物質を吸収、吸着させ、汚染水を浄化する方法が開示されている。特許文献3には、脱窒菌、セシウム蓄積菌(Rhodococcus属)によってセシウムを吸着させ、Hebeloma属に属する微生物の菌糸にストロンチウムを吸着させることによって、廃液からセシウム、ストロンチウムを除去する方法が開示されている。   In addition to the above methods using chemicals and adsorbents, methods for removing water-soluble metal ions from contaminated water and wastewater using microorganisms are also known (Non-patent Document 1, Patent Documents 1 to 3). . Non-Patent Document 1 discloses a method for removing strontium mixed in drinking water from factory wastewater with a thermophilic bacterium (genus Bacillus). In Patent Document 1, lactic acid bacteria, spore gonococci, and yeast are mixed in a cleaning solution after decontamination and cleaning of a structure contaminated with radioactive substances, soil, and the like, and radioactive cesium is incorporated as a necessary nutrient in the cells. Dyeing is disclosed. Patent Document 2 discloses a method for purifying contaminated water by absorbing and adsorbing a radioactive substance on a biofilm formed by microorganisms. Patent Document 3 discloses a method for removing cesium and strontium from waste liquid by adsorbing cesium by denitrifying bacteria and cesium-accumulating bacteria (genus Rhodococcus) and adsorbing strontium to the mycelium of microorganisms belonging to the genus Hebeloma. Yes.

特開2014−190978号公報JP 2014-190978 A 特開2013−104765号公報JP 2013-104765 A 特開2007−271306号公報JP 2007-271306 A

Chaalal, O., et al., 2015, J. Indust. Eng. Chem. Vol.21, p.822-827.Chaalal, O., et al., 2015, J. Indust. Eng. Chem. Vol. 21, p.822-827. Foerster, H. F. & Foster, J. W., 1966, J. Bacteriol. Vol.91,p.1333-1345.Foerster, H. F. & Foster, J. W., 1966, J. Bacteriol. Vol. 91, p.1333-1345. 近藤雅臣、渡辺一仁(編)、1995年、スポア実験マニュアル、技報堂Masaomi Kondo, Kazuhito Watanabe (ed.), 1995, Spore experiment manual, Gihodo

現在福島第一原子力発電所で実施されている汚染水処理の主な問題点としては除去率が低いこと、吸着する性能が低いこと、容易に除去しにくい核種が存在すること、カラムの段数が多いこと、吸収材の耐用期間が短いこと、吸収材が高価であり運転コストが高額になること、廃棄物として高レベル放射性物質を吸着した吸収材が大量に生じ、その処理と保管が必要になることなどがある。これらの問題に対処するために、効率的で安価な除去方法が求められている。   The main problems with the contaminated water treatment currently implemented at the Fukushima Daiichi NPS are the low removal rate, low adsorption performance, the presence of nuclides that are difficult to remove, and the number of columns. Large amount of absorbent material, short life span of absorbent material, expensive absorbent material and high operating cost, large amount of absorbent material adsorbing high-level radioactive material as waste, which needs to be treated and stored There are things to be. In order to cope with these problems, an efficient and inexpensive removal method is required.

微生物を使用する方法に関しても以下のような問題点がある。非特許文献1に記載の方法は飲料水に適したレベルまでストロンチウムを除去する方法であるが、想定している汚染水の量やストロンチウム濃度が異なること、種々の汚染物質が含まれていることからそのまま応用できるものとは考えられない。また、特許文献1〜3に記載の方法は、セシウム除去を念頭においたものであり、多種の核種に対応できるものではないなどの問題点がある。   The method using microorganisms has the following problems. The method described in Non-Patent Document 1 is a method for removing strontium to a level suitable for drinking water, but the amount of contaminated water and strontium concentration assumed are different and various pollutants are included. It cannot be considered that it can be applied as it is. In addition, the methods described in Patent Documents 1 to 3 have cesium removal in mind and have a problem that they cannot cope with various nuclides.

本発明は、多量の汚染水を迅速に効率よく、かつ、処理後に生じる産業廃棄物が少ない装置及び方法を提供することを課題とする。また、多段階の吸収剤処理を必要としない、低コストの処理装置及び方法を開示することを課題とする。   An object of the present invention is to provide an apparatus and a method that can quickly and efficiently produce a large amount of contaminated water and produce less industrial waste after treatment. It is another object of the present invention to disclose a low-cost processing apparatus and method that does not require multistage absorbent processing.

本発明は、汚染水、特に放射性物質に汚染された水を処理する水処理装置、水処理方法に関する。
(1)芽胞形成細菌を用いた水処理装置であって、芽胞形成細菌が生存できる環境に汚染水を調節する汚染水調節槽と、投入した菌による生物膜及び/又は芽胞を形成させる芽胞形成槽と、沈殿槽を備えている水処理装置。
(2)芽胞形成細菌を栄養細胞として増殖させる培養槽及び/又は調節された汚染水と芽胞形成細菌の栄養細胞とを混合する混合槽を備えている(1)記載の水処理装置。
(3)前記芽胞形成槽に微生物付着担体を備えている(1)又は(2)記載の水処理装置。
(4)前記芽胞形成槽に剥落促進手段を備えている(1)〜(3)いずれか1つ記載の水処理装置。
(5)前記沈降槽に放射線遮蔽壁を備えている(1)〜(4)いずれか1つ記載の水処理装置。
(6)さらに、セシウム蓄積菌を培養しセシウムを蓄積させるセシウム蓄積槽を備えることを特徴とする(1)〜(5)いずれか1つ記載の水処理装置。
(7)汚染水処理方法であって、芽胞形成細菌が生存できる環境に汚染水を調節する調節工程と、芽胞形成細菌を混合する混合工程と、生物膜の形成及び/又は混合した菌の芽胞を形成させる芽胞形成工程と、汚泥と処理水を分離する分離工程を備えている汚染水処理方法。
(8)セシウム蓄積菌によりセシウムを菌体内に蓄積させるセシウム蓄積工程とセシウム濃縮汚泥と処理水を分離する分離工程を備えている(7)記載の汚染水処理方法。
The present invention relates to a water treatment apparatus and a water treatment method for treating contaminated water, particularly water contaminated with radioactive substances.
(1) A water treatment apparatus using spore-forming bacteria, wherein a contaminated water control tank for adjusting contaminated water to an environment in which spore-forming bacteria can survive, and spore formation for forming a biofilm and / or spore by the introduced bacteria A water treatment device comprising a tank and a sedimentation tank.
(2) The water treatment apparatus according to (1), further comprising a culture tank for growing spore-forming bacteria as vegetative cells and / or a mixing tank for mixing regulated contaminated water and vegetative cells of spore-forming bacteria.
(3) The water treatment apparatus according to (1) or (2), wherein the spore formation tank is provided with a microorganism adhesion carrier.
(4) The water treatment apparatus according to any one of (1) to (3), wherein the spore formation tank is provided with a peeling promoting means.
(5) The water treatment apparatus according to any one of (1) to (4), wherein the sedimentation tank includes a radiation shielding wall.
(6) The water treatment apparatus according to any one of (1) to (5), further comprising a cesium accumulation tank for culturing cesium accumulation bacteria and accumulating cesium.
(7) A method for treating contaminated water, comprising a step of adjusting contaminated water to an environment in which spore-forming bacteria can survive, a step of mixing spore-forming bacteria, and the formation of biofilm and / or the spores of mixed fungi A contaminated water treatment method comprising a spore forming step for forming a sludge and a separation step for separating sludge and treated water.
(8) The contaminated water treatment method according to (7), comprising a cesium accumulation step for accumulating cesium in the microbial cells by a cesium accumulation bacterium, and a separation step for separating the cesium-enriched sludge and the treated water.

水処理装置の一実施形態を示す図。The figure which shows one Embodiment of a water treatment apparatus. 水処理方法の概略を示す図。The figure which shows the outline of a water treatment method. 多段階水処理方法の概略を示す図。The figure which shows the outline of a multistage water treatment method.

以下、主として放射性物質を含む汚染水を除去する方法について詳述するが、工場廃水に含まれる金属イオンを除去する装置、及び方法としても使用できることは言うまでもない。   Hereinafter, although the method of removing the contaminated water mainly containing a radioactive substance is explained in full detail, it cannot be overemphasized that it can be used also as an apparatus and a method of removing the metal ion contained in a factory wastewater.

本水処理装置は、芽胞に水溶性金属を取り込む芽胞形成細菌を用い、芽胞を形成させて回収し、水処理を行う装置である。芽胞形成細菌は、増殖に適した条件下では栄養細胞として細胞分裂を繰り返し増殖する。しかし、増殖に適さない条件下に置かれた時に細胞内に芽胞を形成し、休眠期に入る性質を有する。芽胞は強固な構造を持ち、熱や物理的な圧力、化学薬品などに極めて強い耐性を示す。   This water treatment apparatus is an apparatus that uses a spore-forming bacterium that takes in a water-soluble metal into a spore, forms and recovers the spore, and performs water treatment. Spore-forming bacteria repeatedly proliferate as vegetative cells under conditions suitable for growth. However, it has the property of forming a spore in the cell and entering a dormant period when placed under conditions unsuitable for growth. Spores have a strong structure and are extremely resistant to heat, physical pressure and chemicals.

芽胞は構造上、芽胞殻、コルテックス、コアよりなり、そのうちコアにはDNA、RNA、タンパク質などの高分子が含まれ、低分子としてはジピコリン酸とカルシウムイオンを多量に含む。ジピコリン酸は芽胞乾燥重量の5〜15%を占める。陽イオンであるカルシウムイオンはカルボン酸残基を有するジピコリン酸にキレートされて存在すると考えられている。芽胞形成時には細胞内で多量のジピコリン酸が合成され、多量のカルシウムイオンが菌体外から吸収される。ストロンチウムは周期表上カルシウムと同じ族に属し、カルシウムと同様な性質を示す。そのため、ストロンチウムイオンやバリウムイオンもコア形成時に吸収されることが知られている(非特許文献2)。ストロンチウムの芽胞形成細胞内への吸収機序は芽胞形成時のコアへの取り込みである。この性質を利用して、芽胞形成細菌に芽胞を形成させ、芽胞を汚泥とともに回収することにより、ストロンチウムを濃縮し、処理水から除去することができる。   The spore is structurally composed of a spore shell, cortex, and core, in which the core contains a high molecular weight such as DNA, RNA, and protein, and the low molecule contains a large amount of dipicolinic acid and calcium ions. Dipicolinic acid accounts for 5-15% of the spore dry weight. It is believed that calcium ions, which are cations, are chelated to dipicolinic acid having a carboxylic acid residue. At the time of spore formation, a large amount of dipicolinic acid is synthesized within the cell, and a large amount of calcium ions are absorbed from outside the cells. Strontium belongs to the same group as calcium on the periodic table and exhibits the same properties as calcium. Therefore, it is known that strontium ions and barium ions are also absorbed during core formation (Non-patent Document 2). The absorption mechanism of strontium into spore-forming cells is the uptake into the core during spore formation. Utilizing this property, strontium can be concentrated and removed from the treated water by forming spores in spore-forming bacteria and collecting the spores together with sludge.

また、芽胞だけではなく微生物が形成する生物膜(バイオフィルム)にも、ストロンチウムやセシウムなどの金属イオンが吸収、吸着される。生物膜とは、微生物菌体と微生物が分泌した菌体外多糖類やタンパク質、菌体残渣などが集積した構造体のことであり、物体の表面に付着した状態で形成される。生物膜内では微生物が高密度に生息し大集落を形成する。生物膜には、ストロンチウムイオンだけではなく、多種の金属イオンが吸着する。したがって、芽胞を形成させると同時に生物膜を形成させ回収することにより多種の金属イオンを回収することができる。   Moreover, metal ions such as strontium and cesium are absorbed and adsorbed not only on spores but also on biofilms (biofilms) formed by microorganisms. A biofilm is a structure in which microbial cells and extracellular polysaccharides, proteins secreted by microorganisms, and microbial residue are accumulated, and is formed in a state of being attached to the surface of an object. Within the biofilm, microorganisms inhabit at high density and form large settlements. In addition to strontium ions, various metal ions are adsorbed on the biofilm. Therefore, various metal ions can be recovered by forming and collecting biofilms at the same time as forming spores.

芽胞形成細菌は系統分類学上、真正細菌ドメイン、ファーミキューテス門に属するバチラーレス目及びクロストリジアーレス目に分類される細菌である。この2つの目の中の種々の科、属に属する菌種が芽胞を形成する。代表的な属としては好気条件下で発育するバチルス属及び嫌気条件下で発育するクロストリジア属がある。   Spore-forming bacteria are bacteria classified in the phylogenetic class, Bacillus-less and Clostridiares, belonging to the eubacterial domain, Fermicutes. The species belonging to various families and genera in these two eyes form spores. Typical genera include the genus Bacillus that grows under aerobic conditions and the genus Clostridia that grows under anaerobic conditions.

バチルス属の代表的な種としては、Bacillus subtilis、B. cereus、B. megaterium、B. licheniformis、B. natto、 B. brevis、 B. circulans、 B. coagulans、 B. pumilus、 B. thuringiensis、B. macerans、B. thiaminolyricusなどが知られている。クロストリジア属の代表的な種としては、Clostridium pasteurianum、C. bifermentans、C. butyricum、C. acetobutylicum、C. sporogenes、C. roseum、C. septicumなどが知られている。これらの菌を用いて芽胞にストロンチウムを取り込ませ、さらに、生物膜を形成させることにより多様な金属の除去が可能である。また、これらの種に限らず芽胞を形成し、ストロンチウムなどの金属を効率よく取り込む種であれば、上記以外のどのような種を用いても構わない。   Representative species of the genus Bacillus include Bacillus subtilis, B. cereus, B. megaterium, B. licheniformis, B. natto, B. brevis, B. circulans, B. coagulans, B. pumilus, B. thuringiensis, B macerans, B. thiaminolyricus, etc. are known. As typical species of the genus Clostridia, Clostridium pasteurianum, C. bifermentans, C. butyricum, C. acetobutylicum, C. sporogenes, C. roseum, C. septicum and the like are known. Using these bacteria, various metals can be removed by incorporating strontium into the spores and forming a biofilm. In addition to these species, any species other than those described above may be used as long as they form spores and efficiently incorporate metals such as strontium.

芽胞形成菌は菌種によって、芽胞に取り込まれる金属の組成や量が異なることから、芽胞形成細菌1種だけに限らず、別種の芽胞形成細菌を1種以上同時に追加して用いてもよい。芽胞形成菌以外にもコバルト、ルテニウム、アンチモン、セシウム、ヨウ素などを特異的に吸収、吸着する微生物が報告されている。また、活性汚泥法においては菌体の凝集を促進する微生物の存在が汚泥の形成に重要であることが知られている。多核種の同時除去、あるいは菌体の凝集や生物膜の形成を促進するために、芽胞形成細菌に加えて芽胞を形成しない微生物を1種以上同時に追加して用いてもよい。   Since the composition and amount of the metal taken into the spore differ depending on the bacterial species, the spore-forming bacterium is not limited to one spore-forming bacterium, and one or more spore-forming bacteria may be added and used simultaneously. In addition to spore-forming bacteria, microorganisms that specifically absorb and adsorb cobalt, ruthenium, antimony, cesium, iodine and the like have been reported. In addition, in the activated sludge method, it is known that the presence of microorganisms that promote cell aggregation is important for sludge formation. In order to promote simultaneous removal of multi-nuclides, or aggregation of bacterial cells and formation of biofilms, one or more microorganisms that do not form spores in addition to spore-forming bacteria may be added and used simultaneously.

本発明の水処理装置について、以下図面を示しながら詳細に説明する。図1には水処理装置の一実施形態を、図2には水処理方法の概略を示す。ここでは、放射性ストロンチウムなどの放射性物質を除去することを目的とする水処理装置について説明するが、工場廃水などに含まれる非放射性物質の除去に応用できることは言うまでもない。また、以下ではバチルス属菌を使用する方法について詳述するが、クロストリジウム属菌等を使用する場合には、嫌気性にするなど菌の生育に適した条件を選択することにより応用することができる。菌の生育や芽胞の形成条件については非特許文献3を参考にして条件設定を行えばよい。   The water treatment apparatus of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows an embodiment of a water treatment apparatus, and FIG. 2 shows an outline of a water treatment method. Here, although the water treatment apparatus aiming at removing radioactive substances, such as radioactive strontium, is demonstrated, it cannot be overemphasized that it can apply to the removal of the non-radioactive substance contained in factory wastewater etc. In addition, the method for using the Bacillus genus will be described in detail below. However, when a Clostridium bacterium or the like is used, it can be applied by selecting conditions suitable for the growth of the bacterium, such as making it anaerobic. . The conditions for the growth of bacteria and the formation of spores may be set with reference to Non-Patent Document 3.

汚染水は、まず汚染水調節槽において、pH、イオン濃度など菌体が生存できる条件に調節を行う。汚染水のpHが酸性あるいはアルカリ性に偏っている場合には、pH調節剤を加えて芽胞形成に適したpHに調整する。また、電気伝導度を測定することによりカルシウムイオンなど芽胞形成に重要な働きを持つイオンの濃度を推測する。放射性物質が含まれる汚染水を処理する場合には、汚染水中のβ線、γ線など放射線量を測定する必要がある。汚染水中のγ線はGM管検出器等で測定し、放射性核種の量、挙動を計測する。また、β線についてはサンプリングした汚染水をシンチレーションカウンターを用いて測定すれば良い。弱いβ線源である放射性ストロンチウムについてはICP−MS(誘導結合プラズマ−質量分析計)等で測定すればよい。   First, the contaminated water is adjusted in a contaminated water control tank to conditions such as pH and ion concentration that allow the cells to survive. When the pH of the contaminated water is biased to acidity or alkalinity, a pH adjusting agent is added to adjust to a pH suitable for spore formation. In addition, the concentration of ions having an important function for spore formation, such as calcium ions, is estimated by measuring electrical conductivity. When treating contaminated water containing radioactive substances, it is necessary to measure the radiation dose such as β rays and γ rays in the contaminated water. Gamma rays in the contaminated water are measured with a GM tube detector or the like to measure the amount and behavior of the radionuclide. Moreover, what is necessary is just to measure the sampled contaminated water about a beta ray using a scintillation counter. Radioactive strontium that is a weak β-ray source may be measured by ICP-MS (inductively coupled plasma-mass spectrometer) or the like.

汚染水調節槽では、槽内の水を適宜サンプリングし、pH、イオン濃度の測定を行ってもよいし、pH、イオン濃度などを自動的に測定するpHセンサ、導電率測定装置を汚染水調節槽に設けてモニターし自動的に調節するように構成してもよい。また、水温を測定し、微生物の生息に適する温度に調節することが好ましい。   In the contaminated water control tank, the water in the tank may be sampled appropriately to measure the pH and ion concentration, or the pH sensor and conductivity measuring device that automatically measure pH, ion concentration, etc. will adjust the contaminated water. You may comprise so that it may provide in a tank and monitor and adjust automatically. In addition, it is preferable to measure the water temperature and adjust the temperature to a temperature suitable for microorganisms.

また、芽胞形成槽において汚染水に糖やアミノ酸等の有機物が多量に含まれると芽胞の形成が抑制されることから、芽胞が形成される条件、すなわち貧栄養状態が達成できるかをモニターする必要がある。有機物の測定は、COD(化学的酸素要求量)、BOD(生物化学的酸素要求量)、TOC(全有機炭素)を測定することによって行ってもよいし、グルコースセンサを用いて汚染水に含まれているグルコース量を測定してもよい。汚染水が有機物やカルシウムイオンを高濃度で含み貧栄養状態でない場合には、汚染水調節槽でpH等を調整したあとに、混合槽に導き栄養細胞を添加し好気培養を行い、栄養分を枯渇させたあとで、混合槽内で芽胞形成を誘導する培地条件に調整してもよい。   In addition, if the contaminated water contains a large amount of organic substances such as sugar and amino acids in the spore formation tank, the formation of the spore is suppressed, so it is necessary to monitor the conditions under which the spore is formed, that is, whether the oligotrophic state can be achieved. There is. The organic matter may be measured by measuring COD (chemical oxygen demand), BOD (biochemical oxygen demand), TOC (total organic carbon), or contained in contaminated water using a glucose sensor. The amount of glucose present may be measured. If the contaminated water contains a high concentration of organic matter or calcium ions and is not in an oligotrophic state, after adjusting the pH etc. in the contaminated water adjustment tank, add nutrient cells to the mixing tank and perform aerobic culture to remove the nutrients. After depletion, the medium conditions may be adjusted to induce spore formation in the mixing tank.

また、汚染水に外界の微生物が大量に含まれ、それらが増殖することによって投入する芽胞形成細菌の増殖や芽胞形成を抑制する可能性がある場合は、水質調整に先立ち処理液を50℃以上に加温処理することによって、外界由来の微生物を殺菌し、影響を防ぐことが可能である。また、芽胞形成細菌として好熱性の芽胞形成細菌を用いる場合には、混合槽や芽胞形成槽を好熱性芽胞形成細菌が発育できる45℃以上の高温に維持することによって、外界由来の微生物の繁殖を抑制し、安定して培養を維持することができる。   In addition, if the contaminated water contains a large amount of microorganisms in the outside world and there is a possibility of suppressing the growth or spore formation of the spore-forming bacteria introduced by the growth, the treatment solution should be 50 ° C. or higher prior to water quality adjustment. It is possible to sterilize microorganisms derived from the outside world and to prevent the influence by performing the heating treatment. Further, when a thermophilic spore-forming bacterium is used as the spore-forming bacterium, the mixing vessel or the spore-forming bacterium is maintained at a high temperature of 45 ° C. or higher at which the thermophilic spore-forming bacterium can grow, so that microorganisms derived from the outside world can propagate. Can be suppressed and culture can be maintained stably.

次に、混合槽において、pH等が調節された汚染水と培養槽で培養された芽胞形成細菌の栄養細胞を混合する。芽胞形成細菌は、併設されている培養槽において増殖させて、混合槽へ移送させてもよいし、異なる施設内の培養槽で培養された菌を濃縮し、混合槽に投入してもよい。   Next, in the mixing tank, the contaminated water whose pH and the like are adjusted and the vegetative cells of the spore-forming bacteria cultured in the culture tank are mixed. The spore-forming bacteria may be grown in a culture tank provided therewith and transferred to a mixing tank, or the bacteria cultured in a culture tank in a different facility may be concentrated and put into the mixing tank.

培養槽では、培養温度を調節する加温冷却装置、酸素濃度を調節する散気装置、菌体が沈殿するのを防止する撹拌装置などを設けることにより、栄養細胞を高密度で培養する。培養条件は例えば非特許文献3に記載されている公知の方法を用いることができる。ここでは撹拌装置として撹拌翼を記載しているが、効率良く撹拌することができるのであれば、どのような撹拌装置を用いても良い。   In the culture tank, vegetative cells are cultured at a high density by providing a heating / cooling device for adjusting the culture temperature, an aeration device for adjusting the oxygen concentration, a stirring device for preventing the bacterial cells from being precipitated, and the like. For example, a known method described in Non-Patent Document 3 can be used as the culture condition. Here, a stirring blade is described as a stirring device, but any stirring device may be used as long as stirring can be performed efficiently.

また、高密度で微生物の培養を行うことができるように、温度、酸素濃度、pH、電気伝導度、COD、TOCをモニターしながら培養することが望ましい。例えば、バチルス属菌種は好気条件で増殖するため培養槽において高い溶存酸素量が必要であるのに対し、クロストリジウム属菌種は嫌気性条件で増殖するため溶存酸素量は低濃度に保つ必要がある。各菌種に適した培養条件となるように、温度、酸素濃度や菌の増殖状態などをモニターし、培養条件を確認しながら培養することが重要である。   In addition, it is desirable to culture while monitoring temperature, oxygen concentration, pH, electrical conductivity, COD, and TOC so that microorganisms can be cultured at high density. For example, Bacillus species grow under aerobic conditions, so a high amount of dissolved oxygen is required in the culture tank, whereas Clostridium species grow under anaerobic conditions, so the dissolved oxygen amount needs to be kept at a low concentration. There is. It is important to perform culture while confirming the culture conditions by monitoring the temperature, oxygen concentration, bacterial growth state, etc. so that the culture conditions are suitable for each bacterial species.

混合槽において汚染水と栄養細胞が一定の割合になるように混合される。混合槽では、汚染水に含まれているストロンチウムイオンなどの金属イオンと投入された栄養細胞が混合された状態で存在する。混合槽は、培養槽と同様に、加温冷却装置、攪拌装置を備えている。また、汚染水調節槽と同様に、放射線量、温度、pH、電気伝導度、COD、TOC、さらに酸素濃度を測定することが好ましい。これらの測定は汚染水調節槽と同様に、適宜サンプリングして測定してもよいし、槽内に測定器を配置し自動的に測定する構成としてもよい。   In the mixing tank, the contaminated water and vegetative cells are mixed at a certain ratio. In the mixing tank, metal ions such as strontium ions contained in the contaminated water and the introduced vegetative cells exist in a mixed state. Similar to the culture tank, the mixing tank includes a heating / cooling device and a stirring device. Moreover, it is preferable to measure a radiation dose, temperature, pH, electrical conductivity, COD, TOC, and oxygen concentration similarly to the contaminated water control tank. Similar to the contaminated water control tank, these measurements may be performed by sampling as appropriate, or may be configured to automatically measure by placing a measuring instrument in the tank.

栄養細胞と金属イオンは、混合槽で混合された後に芽胞形成槽に移送される。また、場合によっては、混合槽を設けずに、水質が調節された汚染水を直接芽胞形成槽に流入させる構成としてもよい。その場合には、栄養細胞は芽胞形成槽に直接導入し、芽胞形成槽内で混合すればよい。   Vegetative cells and metal ions are mixed in the mixing tank and then transferred to the spore formation tank. Moreover, depending on the case, it is good also as a structure which flows in the contaminated water by which the water quality was adjusted directly to a spore formation tank, without providing a mixing tank. In that case, the vegetative cells may be introduced directly into the spore formation tank and mixed in the spore formation tank.

芽胞形成槽には微生物付着担体が設けられている。微生物付着担体には、菌体が形成する生物膜が付着する。上述のように、生物膜には多糖類やタンパク質とともに、菌体や芽胞が存在する。例えば、芽胞形成細菌としてバチルス属菌を用いた場合には、芽胞内にストロンチウムが蓄積し、生物膜には様々な金属イオンが吸着する。放射性物質を含む汚染水の場合には、ストロンチウム90(90Sr)、セシウム137(137Cs)など種々の核種により汚染されていることが想定される。ストロンチウムを芽胞に取り込むバチルス属菌を芽胞形成細菌として選択することにより、芽胞内に90Srが濃縮され、90Sr以外の核種も生物膜に吸着されることから、種々の核種を濃縮し除去することができる。 The spore formation tank is provided with a microorganism-adhering carrier. The biofilm formed by the cells adheres to the microorganism adhesion carrier. As described above, the biofilm contains cells and spores along with polysaccharides and proteins. For example, when a Bacillus bacterium is used as a spore-forming bacterium, strontium accumulates in the spore and various metal ions are adsorbed on the biofilm. In the case of contaminated water containing a radioactive substance, it is assumed that it is contaminated with various nuclides such as strontium 90 ( 90 Sr) and cesium 137 ( 137 Cs). By selecting a Bacillus genus that incorporates strontium into the spore as a spore-forming bacterium, 90 Sr is concentrated in the spore, and nuclides other than 90 Sr are also adsorbed to the biofilm, so that various nuclides are concentrated and removed. be able to.

微生物付着担体は生物膜が形成される表面積を増やすためのものであり、どのような構造のものであっても構わない。図1には一例として多撚多条糸網翼担体を模式的に示している。微生物付着担体は、多撚多条糸網翼担体のように複数の繊維条糸を螺旋状に撚った多撚条糸をさらに撚り合わせた複合多撚多条糸により構成した網目状の構造物が中心から翼のように突出している構造物とすることができる。一つ一つ独立した翼状の構造物とすることにより、微生物の大群落を含む生物膜を形成することができる。また、網目状の構造物としていることから、液体の滞留を防ぐことができる。多撚条糸は、ナイロン、綿、ポリプロピレンなどの糸を用いて作製することができる。微生物付着担体は、これに限らず微生物が形成する生物膜の付着面を大きくすることができればどのような形態のものでもよい。   The microorganism adhesion carrier is for increasing the surface area on which the biofilm is formed, and may have any structure. FIG. 1 schematically shows a multi-twisted multi-filament blade carrier as an example. The microorganism-adhered carrier is a mesh-like structure composed of a composite multi-twisted multi-strand yarn in which a plurality of fiber yarns are spirally twisted like a multi-twisted multi-strand mesh blade carrier. A structure in which an object projects like a wing from the center can be used. By using individual wing-like structures one by one, a biofilm containing a large community of microorganisms can be formed. In addition, since the structure is a network structure, the liquid can be prevented from staying. The multi-twisted yarn can be manufactured using yarns such as nylon, cotton, and polypropylene. The microorganism-adhering carrier is not limited to this, and may have any form as long as the adhesion surface of the biofilm formed by the microorganism can be enlarged.

また、芽胞形成槽には微生物付着担体が設置されない場合もある。芽胞形成細菌が処理水中に懸濁されている状態で、芽胞が形成されるとともに、菌体の凝集体であるフロックが形成され、容易に沈殿する場合には、微生物付着担体の設置は必要ない。フロックを含む処理水をそのまま沈殿槽に移送すればよい。   In some cases, the spore forming tank is not provided with a microorganism-adhering carrier. When spores are formed in a state where the spore-forming bacteria are suspended in the treated water, flocs that are aggregates of the microbial cells are formed and settle easily, it is not necessary to install a microbial adhesion carrier . What is necessary is just to transfer the treated water containing a flock to a sedimentation tank as it is.

芽胞形成槽には、生物膜の形成、芽胞形成の条件を調節することができるように、加温冷却装置、散気装置を備えることができる。また、芽胞形成細菌が沈殿せずに効率良く生物膜を形成し、芽胞形成を行うことができるように撹拌装置が設けられている。混合槽と同様に、放射線量、温度、pH、電気伝導度、COD、TOC、グルコース濃度、酸素濃度等をモニターしながら一定時間芽胞形成を行わせる。   The spore formation tank may be provided with a heating / cooling device and an air diffuser so that the conditions of biofilm formation and spore formation can be adjusted. In addition, a stirrer is provided so that spore-forming bacteria can efficiently form a biofilm without sedimentation and spore formation can be performed. As with the mixing tank, spore formation is performed for a certain period of time while monitoring the radiation dose, temperature, pH, electrical conductivity, COD, TOC, glucose concentration, oxygen concentration, and the like.

芽胞を形成するための条件は、槽内の水質が貧栄養となることである。槽内のグルコース濃度、COD、TOCを測定し、芽胞形成条件が整っているか解析し、芽胞を形成する条件に調整することができる。また、バチルス属菌では、芽胞形成時には増殖期よりも低い酸素濃度が適していることが知られている。したがって、芽胞形成槽では培養槽より低い溶存酸素量になるように、散気装置によって溶存酸素量を調節する。   The condition for forming spores is that the water quality in the tank is poorly nourished. It is possible to measure the glucose concentration, COD, and TOC in the tank, analyze whether the spore formation conditions are in place, and adjust the conditions to form spores. In addition, it is known that in the genus Bacillus, an oxygen concentration lower than that in the growth phase is suitable at the time of spore formation. Therefore, the amount of dissolved oxygen is adjusted by the air diffuser so that the amount of dissolved oxygen is lower in the spore formation tank than in the culture tank.

また、芽胞を形成する環境条件だけではなく、芽胞形成を開始するとともに増加することが知られているアミラーゼ、プロテアーゼなどのバイオマーカーを用いて芽胞形成細菌が実際に芽胞形成を開始したかを確認することもできる。具体的には、芽胞形成槽から処理液を採取し、菌体を遠心処理によって除いた上清を調製し、アミラーゼ、プロテアーゼ量を測定し、芽胞形成が適切に開始されているかモニターすればよい。上清中のアミラーゼ、プロテアーゼ量は、アミラーゼ活性などの酵素活性を公知の方法により測定してもよいし、各タンパク質をELISA、ウェスタンブロット法などの免疫測定法により測定してもよい。また、RT−PCRなどの方法により菌体内の遺伝子発現を測定してもよい。   In addition to the environmental conditions that form spores, biomarkers such as amylase and protease, which are known to increase with the onset of spore formation, confirm whether spore-forming bacteria actually started spore formation. You can also Specifically, the treatment solution is collected from the spore formation tank, a supernatant is prepared by removing the cells by centrifugation, the amount of amylase and protease is measured, and it is monitored whether spore formation is appropriately started. . The amount of amylase and protease in the supernatant may be measured by a known method for enzyme activity such as amylase activity, or each protein may be measured by an immunoassay such as ELISA or Western blot. Moreover, you may measure the gene expression in a microbial cell by methods, such as RT-PCR.

一定時間経過後、形成された芽胞や生物膜は微生物付着担体から自然に剥落する。また、芽胞や生物膜が形成された後に剥落促進手段を用いて、生物膜及び芽胞を微生物付着担体から剥落させることができる。ここでは、剥落促進手段として超音波振動子を用いているが、担体をしごいて生物膜を剥落する構成としてもよい。具体的には、芽胞形成槽を円形とし、中心に設けた中心軸から外径方向に放射状に延びる複数の放射軸に沿ってブラシ状の微生物付着担体を配置する。中心軸はモーターにより回転可能な構成とし、芽胞や生物膜が形成された後、中心軸とともに微生物付着担体を回転させ、微生物付着担体の上下を緩く挟むような幅で固定されている構造物の間を移動させることにより生物膜を剥落させることができる。また、担体を担持する軸を振動させることにより担体自体を振動させたり、撹拌装置を強く回転させたり、散気装置を用いて曝気することによって、生物膜と芽胞の剥落を促してもよい。   After a certain period of time, the formed spores and biofilms are naturally peeled off from the microorganism adhesion carrier. In addition, after the spore or biofilm is formed, the biofilm and the spore can be peeled off from the microorganism-adhering carrier by using a peeling promoting means. Here, although an ultrasonic transducer is used as the peeling promoting means, a configuration in which the biofilm is peeled off by squeezing the carrier may be used. Specifically, the spore formation tank is circular, and brush-like microorganism-adhering carriers are arranged along a plurality of radial axes extending radially from the central axis provided at the center in the outer diameter direction. The central axis can be rotated by a motor. After the spore or biofilm is formed, the microbial adhesion carrier is rotated together with the central axis, and the structure is fixed with a width so that the upper and lower sides of the microbial adhesion carrier are loosely sandwiched. The biofilm can be peeled off by moving between them. Further, the biofilm and the spore may be peeled off by vibrating the shaft carrying the carrier, vibrating the carrier itself, rotating the stirring device strongly, or aeration using an aeration device.

微生物付着担体から剥離させた芽胞、生物膜を多量に含む処理水は沈殿槽へと移送される。芽胞、生物膜は、沈殿槽で沈殿させ、濃縮汚泥とする。沈殿槽には、放射線量、温度、pH、電気伝導度、COD、TOC、酸素濃度を測定するモニターを設けることができる。放射性物質が吸着された生物膜、90Srを含む芽胞が濃縮された放射性汚泥は処理水と分離され回収される。回収した汚泥の減容は、工場廃水処理施設における活性汚泥法で一般的に行われているように、脱水機を用いて沈殿汚泥を脱水し減容すればよい。減容した汚泥は濃縮された放射性物質含有物として扱い、適切な処理を施し保管管理することができる。沈殿槽は90Srをはじめとする濃縮した沈殿汚泥を含むために、高い放射能を含む場合がある。発生する放射線を遮るためと作業者への汚染を防ぐために沈殿槽は放射線遮蔽壁を備え、内容物が飛散しないような密閉状態に保つ必要がある。 Treated water containing a large amount of spore and biofilm separated from the microorganism-adhering carrier is transferred to a sedimentation tank. Spores and biofilms are precipitated in a sedimentation tank to form concentrated sludge. The precipitation tank can be provided with a monitor for measuring radiation dose, temperature, pH, electrical conductivity, COD, TOC, and oxygen concentration. The biofilm adsorbed with radioactive material and the radioactive sludge enriched with spores containing 90 Sr are separated from the treated water and recovered. The volume of recovered sludge may be reduced by dewatering the precipitated sludge using a dehydrator, as is generally done by the activated sludge method in factory wastewater treatment facilities. Reduced volume of sludge can be handled as concentrated radioactive material content, and can be properly treated and stored. Since the sedimentation tank contains concentrated sedimentation sludge including 90 Sr, it may contain high radioactivity. In order to block the generated radiation and to prevent contamination to workers, the sedimentation tank must be equipped with a radiation shielding wall and kept in a sealed state so that the contents do not scatter.

本水処理方法においては、効率良く放射性物質を濃縮するために、芽胞形成を行わせる工程が重要である。そのため、汚染水や培養液に含まれる増殖や芽胞形成に重要な働きを持つ因子を定量して、処理水を適切な状態に維持、管理する必要がある。各槽内の水質のモニタリングの他、定期的に処理水をサンプリングして菌の状態を解析することが望ましい。サンプリングした芽胞形成細菌は顕微鏡で形態観察し、栄養細胞の発育、コンタミネーションの有無、芽胞の形成状況、生物膜の形成状況を確認し維持管理を行う。   In this water treatment method, a step of causing spore formation is important for efficiently concentrating radioactive substances. Therefore, it is necessary to quantify factors having an important function in the growth and spore formation contained in the contaminated water and the culture solution, and to maintain and manage the treated water in an appropriate state. In addition to monitoring the water quality in each tank, it is desirable to periodically sample the treated water and analyze the state of the bacteria. The sampled spore-forming bacteria are observed with a microscope, and the growth of vegetative cells, the presence or absence of contamination, the status of spore formation, and the status of biofilm formation are confirmed and maintained.

また、上述のようにグルコースなどの糖分、有機物量を測定するだけではなく、アミノ酸、マンガンイオン、カルシウムイオン、鉄イオン、ストロンチウムイオン、ジピコリン酸などを定期的に測定することが好ましい。マンガンイオン、カルシウムイオン、鉄イオンは芽胞の形成率を上昇させることが知られている。一方、多量のカルシウムイオンの存在はストロンチウムの吸収と拮抗すると予測されるため、芽胞形成時のカルシウムイオン濃度の管理は重要である。このように種々の培養条件を管理することによって効率よく汚染水の処理を行うことができる。   Moreover, it is preferable to periodically measure amino acids, manganese ions, calcium ions, iron ions, strontium ions, dipicolinic acid, etc., as well as measuring sugars such as glucose and the amount of organic substances as described above. Manganese ions, calcium ions, and iron ions are known to increase the rate of spore formation. On the other hand, since the presence of a large amount of calcium ions is predicted to antagonize the absorption of strontium, management of the calcium ion concentration during spore formation is important. Thus, the contaminated water can be efficiently treated by managing various culture conditions.

本処理方法は、微生物の培養によって汚染水から金属イオンを除去する方法であるから、微生物の生存環境として重要である、温度、pH、溶存酸素量は常時モニターする必要がある。また、上述のように芽胞形成に影響を与えるカルシウム濃度、放射性、非放射性ストロンチウム濃度、グルコース濃度、有機物濃度は、調節工程、混合工程、芽胞形成工程でモニターを行いながら、適宜調節する必要がある。また、ジピコリン酸産生量や顕微鏡による芽胞形成率を検討しながら効率良く芽胞形成を行わせることが重要である。   Since this treatment method is a method for removing metal ions from contaminated water by culturing microorganisms, it is necessary to constantly monitor the temperature, pH, and amount of dissolved oxygen, which are important as a living environment for microorganisms. In addition, as described above, the calcium concentration, radioactivity, non-radioactive strontium concentration, glucose concentration, and organic matter concentration that affect spore formation must be adjusted as appropriate while monitoring in the adjustment step, mixing step, and spore formation step. . It is also important to efficiently perform spore formation while examining dipicolinic acid production and a microscopic spore formation rate.

次に複数の菌種を段階的に投入し処理を行う方法について説明する(図3)。原子力発電所の事故や事故対応措置で排出される汚染水には、放射性セシウムと放射性ストロンチウムが多量に含まれている。そこで、セシウムを菌体内に取り込むセシウム蓄積菌であるロドコッカス属菌を用いてセシウムを除去し、続いてストロンチウムを除去する段階的な処理方法を取る。   Next, a method for performing processing by introducing a plurality of bacterial species in stages will be described (FIG. 3). Contaminated water discharged from nuclear power plant accidents and accident response measures contains a large amount of radioactive cesium and radioactive strontium. Therefore, a stepwise treatment method is used in which cesium is removed using Rhodococcus spp., Which is a cesium-accumulating bacterium that takes cesium into the cells, and then strontium is removed.

まず、ロドコッカス属菌を公知の方法により培養する。ロドコッカス属菌は、効率的にセシウムを菌体内に取り込むことが知られているロドコッカス・エリスロポリス(Rhodococcus erythropolis)などを用いることができるが、処理条件などに合わせて適切な菌を選択すればよい。増殖期のロドコッカス属菌は培養工程において高密度に培養する。汚染水は、菌が増殖、生育することができる環境に調節工程において調節され、増殖期細胞と混合される(混合工程)。混合工程では菌が再び増殖できる条件を満たすように温度、pH、溶存酸素量等の培養条件の調整を行う。   First, Rhodococcus is cultured by a known method. Rhodococcus erythropolis can be used as Rhodococcus genus bacteria, which are known to efficiently incorporate cesium into the cells. However, it is only necessary to select appropriate bacteria according to the processing conditions. . Rhodococcus species in the growth phase are cultured at a high density in the culture process. The contaminated water is adjusted in an adjustment step to an environment in which bacteria can grow and grow, and is mixed with cells in the growth phase (mixing step). In the mixing step, the culture conditions such as temperature, pH, dissolved oxygen amount, etc. are adjusted so as to satisfy the conditions for allowing the bacteria to grow again.

次に、混合工程で混合された菌と汚染水はセシウム蓄積槽に移送され、ロドコッカス属菌体内にセシウムが蓄積される。また、生物膜にも多種のイオンが吸着する。セシウム蓄積槽では、攪拌装置で撹拌を行いながら高密度に培養した後、沈殿槽や分離膜などで分離しセシウム濃縮汚泥と中間処理水を分離することができる。また、セシウム蓄積槽に実施例1と同様に微生物付着担体を備え生物膜を付着させた後に剥落促進手段を用いて微生物付着担体から剥離し、中間処理水とセシウム濃縮汚泥に分離してもよい。   Next, the bacteria and contaminated water mixed in the mixing step are transferred to a cesium accumulation tank, and cesium is accumulated in the body of the genus Rhodococcus. Various ions are also adsorbed on the biofilm. In the cesium accumulation tank, after culturing at high density while stirring with a stirrer, the cesium-enriched sludge and the intermediate treated water can be separated by separation with a precipitation tank or a separation membrane. Further, as in Example 1, the cesium accumulation tank may be provided with a microorganism-adhering carrier and attached to a biofilm, and then peeled off from the microorganism-adhering carrier using a peeling promoting means, and separated into intermediate treated water and cesium-enriched sludge. .

分離された中間処理水には、ストロンチウムをはじめとする金属イオンが含まれていることから、これを実施例1と同様にして処理を行う。具体的には、中間処理水は、調節工程でバチルス属菌の培養条件に適するように調節され、混合工程で栄養細胞と混合する。芽胞形成工程において、芽胞内にストロンチウムを取り込ませるとともに、生物膜に吸着させる。一定期間培養の後、最終処理水とストロンチウム濃縮汚泥とに分離する。pH、温度等を計測する計測器等は実施例1と同様に設置し、培養条件を調節すればよい。   Since the separated intermediate treated water contains metal ions including strontium, it is treated in the same manner as in Example 1. Specifically, the intermediate treated water is adjusted so as to be suitable for the culture conditions of the genus Bacillus in the adjusting step, and mixed with vegetative cells in the mixing step. In the spore formation step, strontium is taken into the spore and adsorbed on the biofilm. After culturing for a certain period, it is separated into final treated water and strontium-enriched sludge. A measuring instrument or the like for measuring pH, temperature, etc. may be installed in the same manner as in Example 1 to adjust the culture conditions.

また、ロドコッカス属菌によって、セシウムが除去された中間処理水は、必要があれば50℃以上に加温し、中間処理水中に残存しているロドコッカス属菌を殺菌処理する。加温処理することによって、混合工程で混合されるバチルス属菌がロドコッカス属菌の影響を受けることはない。   Further, the intermediate treated water from which cesium has been removed by the Rhodococcus spp. Is heated to 50 ° C. or higher if necessary, and the Rhodococcus spp. Remaining in the intermediate treated water is sterilized. By performing the heating treatment, the Bacillus genus mixed in the mixing step is not affected by the Rhodococcus genus.

実施例2で示すように、多段階の処理を行うことによって、高濃度に存在するとともに、環境への影響の大きい放射性セシウム、放射性ストロンチウムを非常に低濃度まで除去することができる。ここでは、まずロドコッカス属菌で処理し、次にバチルス属菌で処理する方法について示したが、順番を変えて処理を行ってもよいし、また、クロストリジウム属菌を用いて処理を行ってもよい。   As shown in Example 2, by performing multi-stage treatment, it is possible to remove radioactive cesium and radioactive strontium, which are present at high concentrations and have a large environmental impact, to very low concentrations. Here, the method of treating with Rhodococcus spp. And then treating with Bacillus sp. Was shown, but the treatment may be performed in a different order, or the treatment with Clostridium spp. Good.

微生物を用いて金属イオンを濃縮することから、低コストで迅速に汚染水処理を行うことができるだけではなく、吸着剤を用いて除去する方法と比較して発生する産業廃棄物も非常に少なくてすむ。原子力発電所の事故に伴い自然環境中に放出された放射性物質、また、原発施設の管理、制御によって排出された汚染水はもちろんのこと、工業廃水に含まれるストロンチウムをはじめとする金属イオンを効率良く除去することができる。
Concentration of metal ions using microorganisms not only allows for rapid and costly treatment of contaminated water, but also generates very little industrial waste compared to the removal method using adsorbents. I'm sorry. Efficient use of radioactive materials released into the natural environment due to nuclear power plant accidents, contaminated water discharged through the management and control of nuclear power plants, and metal ions such as strontium contained in industrial wastewater Can be removed well.

本発明は、汚染水、特に放射性物質に汚染された水を処理する水処理装置、水処理方法に関する。
(1)芽胞形成細菌を用いた水処理装置であって、芽胞形成細菌が生存できる環境に汚染水を調節する汚染水調節槽と、投入した菌による生物膜及び/又は芽胞を形成させる芽胞形成槽と、沈殿槽を備えている水処理装置。
(2)芽胞形成細菌を栄養細胞として増殖させる培養槽及び/又は調節された汚染水と芽胞形成細菌の栄養細胞とを混合する混合槽を備えている(1)記載の水処理装置。
(3)前記芽胞形成槽に微生物付着担体を備えている(1)又は(2)記載の水処理装置。
(4)前記芽胞形成槽に剥落促進手段を備えている(1)〜(3)いずれか1つ記載の水処理装置。
(5)前記沈殿槽に放射線遮蔽壁を備えている(1)〜(4)いずれか1つ記載の水処理装置。
(6)さらに、セシウム蓄積菌を培養しセシウムを蓄積させるセシウム蓄積槽を備えることを特徴とする(1)〜(5)いずれか1つ記載の水処理装置。
(7)汚染水処理方法であって、芽胞形成細菌が生存できる環境に汚染水を調節する調節工程と、芽胞形成細菌を混合する混合工程と、生物膜の形成及び/又は混合した菌の芽胞を形成させる芽胞形成工程と、汚泥と処理水を分離する分離工程を備えている汚染水処理方法。
(8)セシウム蓄積菌によりセシウムを菌体内に蓄積させるセシウム蓄積工程とセシウム濃縮汚泥と処理水を分離する分離工程を備えている(7)記載の汚染水処理方法。

The present invention relates to a water treatment apparatus and a water treatment method for treating contaminated water, particularly water contaminated with radioactive substances.
(1) A water treatment apparatus using spore-forming bacteria, wherein a contaminated water control tank for adjusting contaminated water to an environment in which spore-forming bacteria can survive, and spore formation for forming a biofilm and / or spore by the introduced bacteria A water treatment device comprising a tank and a sedimentation tank.
(2) The water treatment apparatus according to (1), further comprising a culture tank for growing spore-forming bacteria as vegetative cells and / or a mixing tank for mixing regulated contaminated water and vegetative cells of spore-forming bacteria.
(3) The water treatment apparatus according to (1) or (2), wherein the spore formation tank is provided with a microorganism adhesion carrier.
(4) The water treatment apparatus according to any one of (1) to (3), wherein the spore formation tank is provided with a peeling promoting means.
(5) the comprises a radiation shielding wall precipitation buttocks tank (1) to (4) water treatment apparatus according any one.
(6) The water treatment apparatus according to any one of (1) to (5), further comprising a cesium accumulation tank for culturing cesium accumulation bacteria and accumulating cesium.
(7) A method for treating contaminated water, comprising a step of adjusting contaminated water to an environment in which spore-forming bacteria can survive, a step of mixing spore-forming bacteria, and the formation of biofilm and / or the spores of mixed fungi A contaminated water treatment method comprising a spore forming step for forming a sludge and a separation step for separating sludge and treated water.
(8) The contaminated water treatment method according to (7), comprising a cesium accumulation step for accumulating cesium in the microbial cells by a cesium accumulation bacterium, and a separation step for separating the cesium-enriched sludge and the treated water.

Claims (8)

芽胞形成細菌を用いた水処理装置であって、
芽胞形成細菌が生存できる環境に汚染水を調節する汚染水調節槽と、
投入した菌による生物膜及び/又は芽胞を形成させる芽胞形成槽と、
沈殿槽を備えている水処理装置。
A water treatment apparatus using spore-forming bacteria,
A contaminated water control tank for adjusting contaminated water to an environment in which spore-forming bacteria can survive;
A spore formation tank for forming a biofilm and / or spore by the introduced bacteria;
Water treatment device equipped with a sedimentation tank.
芽胞形成細菌を栄養細胞として増殖させる培養槽及び/又は調節された汚染水と芽胞形成細菌の栄養細胞とを混合する混合槽を備えている請求項1記載の水処理装置。   The water treatment apparatus according to claim 1, further comprising a culture tank for growing the spore-forming bacteria as vegetative cells and / or a mixing tank for mixing the regulated contaminated water and the vegetative cells of the spore-forming bacteria. 前記芽胞形成槽に微生物付着担体を備えている請求項1又は2記載の水処理装置。   The water treatment apparatus according to claim 1 or 2, wherein the spore formation tank is provided with a microorganism adhesion carrier. 前記芽胞形成槽に剥落促進手段を備えている請求項1〜3いずれか1項記載の水処理装置。   The water treatment apparatus according to any one of claims 1 to 3, wherein the spore formation tank is provided with a peeling promoting means. 前記沈降槽に放射線遮蔽壁を備えている請求項1〜4いずれか1項記載の水処理装置。   The water treatment apparatus of any one of Claims 1-4 which are equipped with the radiation shielding wall in the said sedimentation tank. さらに、セシウム蓄積菌を培養しセシウムを蓄積させるセシウム蓄積槽を備えることを特徴とする請求項1〜5いずれか1項記載の水処理装置。   Furthermore, the water treatment apparatus of any one of Claims 1-5 provided with the cesium accumulation | storage tank which culture | cultivates a cesium accumulation | storage microbe and accumulates cesium. 汚染水処理方法であって、
芽胞形成細菌が生存できる環境に汚染水を調節する調節工程と、
芽胞形成細菌を混合する混合工程と、
生物膜の形成及び/又は混合した菌の芽胞を形成させる芽胞形成工程と、
汚泥と処理水を分離する分離工程を備えている汚染水処理方法。
Contaminated water treatment method,
A regulatory process that regulates contaminated water to an environment in which spore-forming bacteria can survive;
A mixing step of mixing spore-forming bacteria;
A spore formation step of forming a biofilm and / or forming a mixed fungal spore;
A contaminated water treatment method comprising a separation step of separating sludge and treated water.
セシウム蓄積菌によりセシウムを菌体内に蓄積させるセシウム蓄積工程と
セシウム濃縮汚泥と処理水を分離する分離工程を備えている請求項7記載の汚染水処理方法。
The contaminated water treatment method according to claim 7, further comprising a cesium accumulation step of accumulating cesium in the microbial cells by a cesium accumulation bacterium and a separation step of separating the cesium-enriched sludge and the treated water.
JP2017022823A 2017-02-10 2017-02-10 Waste water treatment apparatus and method for treating waste water by spore-forming bacteria Active JP6280661B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017022823A JP6280661B1 (en) 2017-02-10 2017-02-10 Waste water treatment apparatus and method for treating waste water by spore-forming bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017022823A JP6280661B1 (en) 2017-02-10 2017-02-10 Waste water treatment apparatus and method for treating waste water by spore-forming bacteria

Publications (2)

Publication Number Publication Date
JP6280661B1 JP6280661B1 (en) 2018-02-14
JP2018126707A true JP2018126707A (en) 2018-08-16

Family

ID=61195851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017022823A Active JP6280661B1 (en) 2017-02-10 2017-02-10 Waste water treatment apparatus and method for treating waste water by spore-forming bacteria

Country Status (1)

Country Link
JP (1) JP6280661B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220161023A (en) * 2021-05-28 2022-12-06 한국과학기술원 Apparatus And Method for Removing Radionuclide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167625A (en) * 2000-11-28 2002-06-11 Japan Atom Energy Res Inst Method for sequential separation of plutonium and uranium from aqueous solution by microorganism
JP2007064732A (en) * 2005-08-30 2007-03-15 Mitsubishi Heavy Ind Ltd Radioactive waste water treatment equipment and treatment method
JP2007271306A (en) * 2006-03-30 2007-10-18 Mitsubishi Heavy Ind Ltd Cesium adsorbent and method for removing radionuclide
JP2013104765A (en) * 2011-11-14 2013-05-30 Ando Mitsuo Radioactive material decontamination and removal method
JP2014190978A (en) * 2013-03-27 2014-10-06 Tadao Kobayashi Method of decontaminating radioactive pollution processing object, and decontamination apparatus using the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167625A (en) * 2000-11-28 2002-06-11 Japan Atom Energy Res Inst Method for sequential separation of plutonium and uranium from aqueous solution by microorganism
JP2007064732A (en) * 2005-08-30 2007-03-15 Mitsubishi Heavy Ind Ltd Radioactive waste water treatment equipment and treatment method
JP2007271306A (en) * 2006-03-30 2007-10-18 Mitsubishi Heavy Ind Ltd Cesium adsorbent and method for removing radionuclide
JP2013104765A (en) * 2011-11-14 2013-05-30 Ando Mitsuo Radioactive material decontamination and removal method
JP2014190978A (en) * 2013-03-27 2014-10-06 Tadao Kobayashi Method of decontaminating radioactive pollution processing object, and decontamination apparatus using the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220161023A (en) * 2021-05-28 2022-12-06 한국과학기술원 Apparatus And Method for Removing Radionuclide
KR102515155B1 (en) 2021-05-28 2023-03-29 한국과학기술원 Apparatus And Method for Removing Radionuclide

Also Published As

Publication number Publication date
JP6280661B1 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
Zhang et al. Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor
CN106277283B (en) Strengthen the method for removing arsenic antimony ion in water removal using iron and manganese oxides biological in filter tank
Gutiérrez-Alfaro et al. Combining sun-based technologies (microalgae and solar disinfection) for urban wastewater regeneration
Mohamed et al. Removal of nutrients and organic pollutants from household greywater by phycoremediation for safe disposal
CN109607982A (en) A kind of laboratory integration waste water treatment system
CN102168054A (en) Sphingomonas strain and application thereof in water treatment
Naz et al. Physiological activities associated with biofilm growth in attached and suspended growth bioreactors under aerobic and anaerobic conditions
CN108587954A (en) The preparation method and application of salt tolerant ammonia oxidizing bacteria immobilization biological charcoal ball
KR20150037909A (en) Method and device for treating ammonia nitrogen-containing water at low temperature
Sun et al. Research on removal of fluoroquinolones in rural domestic wastewater by vertical flow constructed wetlands under different hydraulic loads
CN203890204U (en) Comprehensive treatment system of medical wastewater
CN102505011A (en) Microbial immobilized embedding method for degrading pollutants and dedicated device therefor
El Bestawy Efficiency of immobilized cyanobacteria in heavy metals removal from industrial effluents
US20150122709A1 (en) Water treatment system
JP6280661B1 (en) Waste water treatment apparatus and method for treating waste water by spore-forming bacteria
Kaur Nagi et al. Bioremediation of coke plant wastewater from steel industry with mixed activated sludge–microalgal consortium in lab‐scale semi‐continuous mode
Moharikar et al. Microbial population dynamics at effluent treatment plants
Derakhshan et al. Evaluation of volcanic pumice stone as media in fixed bed sequence batch reactor for atrazine removal from aquatic environments
CN102730898A (en) Community domestic sewage treatment technology
CN103755036A (en) Method for treatment on 137Cs radioactive waste liquid by microbe adsorption
Maharjan et al. Nitrogen removal from ammonium-contaminated groundwater using dropping nitrification–cotton-based denitrification reactor
JP7104959B2 (en) Wastewater treatment equipment using microorganisms, wastewater treatment method, and microorganisms used for wastewater treatment
Khanitchaidecha et al. Development of an attached growth reactor for NH4–N removal at a drinking water supply system in Kathmandu Valley, Nepal
Mherzi et al. Evaluation of the effectiveness of leachate biological treatment using bacteriological and parasitological monitoring
Qamar et al. Development of floating treatment wetlands with plant-bacteria partnership to clean textile bleaching effluent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170509

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170509

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180119

R150 Certificate of patent or registration of utility model

Ref document number: 6280661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250