JP2018126038A - Power generation amount prediction device, power generation amount prediction method, and power generation amount prediction system - Google Patents

Power generation amount prediction device, power generation amount prediction method, and power generation amount prediction system Download PDF

Info

Publication number
JP2018126038A
JP2018126038A JP2017018922A JP2017018922A JP2018126038A JP 2018126038 A JP2018126038 A JP 2018126038A JP 2017018922 A JP2017018922 A JP 2017018922A JP 2017018922 A JP2017018922 A JP 2017018922A JP 2018126038 A JP2018126038 A JP 2018126038A
Authority
JP
Japan
Prior art keywords
solar radiation
power generation
amount
radiation amount
specific area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017018922A
Other languages
Japanese (ja)
Other versions
JP6922238B2 (en
Inventor
清次 河内
Seiji Kawachi
清次 河内
玄洋 三川
Genyo Mikawa
玄洋 三川
崇 土居
Takashi Doi
崇 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2017018922A priority Critical patent/JP6922238B2/en
Publication of JP2018126038A publication Critical patent/JP2018126038A/en
Application granted granted Critical
Publication of JP6922238B2 publication Critical patent/JP6922238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To identify a variation tendency of a power generation amount in a specific area while considering wind directions to enable accurate prediction of the power generation amount.SOLUTION: A power generation amount prediction device comprises: a storage unit for previously storing first solar radiation amount past information showing a past solar radiation amount of a first location positioned on the windward side of a specific area and second solar radiation amount past information showing a past solar radiation amount of a second location that is opposite to the first location while interposing the specific area between the first location and second location and is positioned on the leeward side of the specific area; a variation tendency calculation unit for identifying a variation tendency of a solar radiation amount of the specific area between the first location and second location, on the basis of first solar radiation amount past information and second solar radiation amount past information corresponding to the first solar radiation amount past information; and a power generation amount prediction unit for calculating a predicted solar radiation amount of the specific area on the basis of a first actually measured solar radiation amount of the first location and the variation tendency as well as for predicting a power generation amount of a photovoltaic power generation facility installed in the specific area on the basis of the predicted solar radiation amount.SELECTED DRAWING: Figure 2

Description

本発明は、発電量予測装置、発電量予測方法、発電量予測システムに関する。   The present invention relates to a power generation amount prediction device, a power generation amount prediction method, and a power generation amount prediction system.

例えば、気象観測データから雲の移動方向を取得して、雲の移動方向の下流に位置する予測地点における発電量を予測する発電量予測装置が知られている。(例えば特許文献1)。   For example, there is known a power generation amount prediction device that acquires a cloud moving direction from weather observation data and predicts a power generation amount at a prediction point located downstream in the cloud moving direction. (For example, patent document 1).

特開2015−169621号JP2015-169621

特許文献1には、雲の移動方向を考慮することにより、特定の領域の発電量を予測する装置が開示されている。特許文献1に係る装置では、発電量を観測できる地点を所定の領域内で確保できるように、洋上発電装置や浮体式太陽光パネルなどの水上施設を用いている。所定の領域内で発電量を観測できるため、予測精度を向上できる。しかし、特許文献1に係る装置では、発電量の観測地点を確保するところに特徴を有するものの、雲の移動方向と観測地点での発電量に基づいて、観測地点の下流に位置する予測地点の発電量を予測しているにすぎない。雲が上流から下流にかけて移動する過程において、日射量の変化を考慮していないため、発電量の予測精度が低下する虞があった。   Patent Document 1 discloses an apparatus that predicts a power generation amount in a specific region by considering the moving direction of a cloud. In the apparatus according to Patent Document 1, a floating facility such as an offshore power generation apparatus or a floating solar panel is used so that a point where the power generation amount can be observed can be secured within a predetermined region. Since the power generation amount can be observed within a predetermined area, the prediction accuracy can be improved. However, although the apparatus according to Patent Document 1 has a feature of securing an observation point of the power generation amount, based on the moving direction of the cloud and the power generation amount at the observation point, the prediction point located downstream of the observation point It is only predicting the amount of power generation. In the process in which the cloud moves from upstream to downstream, since the change in the amount of solar radiation is not taken into account, there is a possibility that the prediction accuracy of the power generation amount is lowered.

前述した課題を解決する主たる本発明は、特定地域に設置される太陽光発電設備の発電量を予測する発電量予測装置であって、前記特定地域よりも風上に位置する第1地点の過去の日射量を示す第1日射量過去情報と、前記特定地域を挟んで前記第1地点と対向し、前記特定地域よりも風下に位置する第2地点の過去の日射量を示す第2日射量過去情報と、を予め格納する記憶部と、前記第1日射量過去情報と、前記第1日射量過去情報に対応する前記第2日射量過去情報とに基づいて、前記第1地点と前記第2地点の間の前記特定地域における日射量の変化傾向を特定する変化傾向算定部と、前記第1地点の第1実測日射量と、前記変化傾向とに基づいて前記特定地域の予測日射量を算出するとともに、前記予測日射量に基づいて前記特定地域に設置される前記太陽光発電設備の発電量を予測する発電量予測部と、を備えることを特徴とする。   The main present invention that solves the above-described problem is a power generation amount prediction device that predicts the power generation amount of a photovoltaic power generation facility installed in a specific area, and the past of the first point located upstream from the specific area. First solar radiation amount past information indicating the amount of solar radiation, and second solar radiation amount indicating the past solar radiation amount of the second point facing the first point across the specific region and located leeward than the specific region Based on the storage unit that stores the past information in advance, the first solar radiation amount past information, and the second solar radiation amount past information corresponding to the first solar radiation amount past information, the first point and the first Based on the change tendency calculation unit for specifying the change tendency of the solar radiation amount in the specific area between the two points, the first actually measured solar radiation amount of the first point, and the change tendency, the predicted solar radiation amount of the specific area is calculated. Calculate and specify the specific solar radiation based on the predicted solar radiation Characterized in that it comprises a power generation amount prediction unit for predicting a power generation amount of the photovoltaic power generation facilities to be installed in-band, a.

本発明の他の特徴については、添付図面および本明細書の記載により明らかとなる。   Other features of the present invention will become apparent from the accompanying drawings and the description of this specification.

本発明によれば、風向を考慮しつつ、特定の地域における発電量の変化傾向を特定するため、精度の高い発電量の予測が可能となる。   According to the present invention, it is possible to predict the power generation amount with high accuracy since the change tendency of the power generation amount in a specific region is specified while taking the wind direction into consideration.

本実施形態に係る発電量予測システムおよび特定地域の雲の移動状況の一例を示す図である。It is a figure which shows an example of the electric power generation amount prediction system which concerns on this embodiment, and the movement condition of the cloud of a specific area. 本実施形態に係る発電量予測装置の構成例を示す図である。It is a figure which shows the structural example of the electric power generation amount prediction apparatus which concerns on this embodiment. 本実施形態に係る第1風向における雲の移動の一例を示す図である。It is a figure which shows an example of the movement of the cloud in the 1st wind direction which concerns on this embodiment. 本実施形態に係る第2風向における雲の移動の一例を示す図である。It is a figure which shows an example of the movement of the cloud in the 2nd wind direction which concerns on this embodiment. 本実施形態に係る日射量の過去又は将来の変化傾向の一例を示す図である。It is a figure which shows an example of the past or future change tendency of the solar radiation amount which concerns on this embodiment. 本実施形態に係る日射量過去テーブルの構成例を示す図である。It is a figure which shows the structural example of the solar radiation amount past table which concerns on this embodiment. 本実施形態に係る日射量現在テーブルの構成例を示す図である。It is a figure which shows the structural example of the solar radiation amount present table which concerns on this embodiment. 本実施形態に係る日射量予測テーブルの構成例を示す図である。It is a figure which shows the structural example of the solar radiation amount prediction table which concerns on this embodiment. 本実施形態に係る発電容量テーブルの構成例を示す図である。It is a figure which shows the structural example of the power generation capacity table which concerns on this embodiment. 本実施形態に係る発電量予測テーブルの構成例を示す図である。It is a figure which shows the structural example of the electric power generation amount prediction table which concerns on this embodiment. 本実施形態に係る処理手順の一例を示す図である。It is a figure which shows an example of the process sequence which concerns on this embodiment.

本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。以下の説明において、同一符号を付した部分は同一の要素を表し、その基本的な構成および動作は同様であるものとする。   At least the following matters will become apparent from the description of this specification and the accompanying drawings. In the following description, parts denoted by the same reference numerals represent the same elements, and the basic configuration and operation thereof are the same.

===発電量予測システム1===
図1を参照しつつ、発電量予測システム1について、以下のように説明する。図1は、本実施形態に係る発電量予測システム1および特定地域の雲の移動状況の一例を示す図である。
=== Power Generation Prediction System 1 ===
The power generation amount prediction system 1 will be described as follows with reference to FIG. FIG. 1 is a diagram illustrating an example of a power generation amount prediction system 1 according to the present embodiment and a cloud movement state in a specific area.

発電量予測システム1は、風向および日射量を考慮しつつ、太陽光発電設備100が設置されている地域(以下、「特定地域」と称する。)における、太陽光発電設備100の発電量を予測するシステムである。特定地域とは、図1に示すように、太陽光発電設備100が集中的に配置されている特定の地域であって、予め定められている地域である。   The power generation amount prediction system 1 predicts the power generation amount of the solar power generation facility 100 in an area where the solar power generation facility 100 is installed (hereinafter referred to as a “specific area”) while taking into consideration the wind direction and the amount of solar radiation. System. As shown in FIG. 1, the specific area is a specific area where the photovoltaic power generation facilities 100 are intensively arranged and is a predetermined area.

発電量予測システム1は、風向を示す風向情報を、例えば気象庁から取得する。また、日射量を示す日射量情報を日射量計10から取得する。発電量予測システム1は、特定地域の風向情報を取得し、特定地域の日射量の変化傾向を特定することにより、特定地域内および特定地域の周囲の風下側の発電量を予測する。   The power generation amount prediction system 1 acquires wind direction information indicating the wind direction from, for example, the Japan Meteorological Agency. Further, the solar radiation amount information indicating the solar radiation amount is acquired from the solar radiation meter 10. The power generation amount prediction system 1 predicts the amount of power generation on the leeward side in the specific region and around the specific region by acquiring the wind direction information of the specific region and specifying the change tendency of the solar radiation amount in the specific region.

このような発電量予測システム1は、日射量計10と、発電量予測装置20と、を含んで構成されている。   Such a power generation amount prediction system 1 includes a solar radiation meter 10 and a power generation amount prediction device 20.

==日射量計10==
図1を参照しつつ、日射量計10(10a〜10d)について、以下のとおり説明する。
== Insolation meter 10 ==
The solar radiation meter 10 (10a-10d) is demonstrated as follows, referring FIG.

日射量計10は、日射量を計測する計器である。日射量計10の仕様は、特に限定されるものではなく、汎用されている日射量計でよい。図1に示すように、夫々の日射量計10a〜10dは、特定地域の周囲において、例えば特定地域を中心に90度を成して四つ配置されている。日射量計10a〜10dで計測された日射量を示す日射量情報は、通信ネットワーク(不図示)を介して発電量予測装置20に送信される。   The solar radiation meter 10 is an instrument that measures the amount of solar radiation. The specification of the solar radiation meter 10 is not particularly limited, and may be a widely used solar radiation meter. As shown in FIG. 1, each of the solar radiation meters 10a to 10d is arranged around the specific area, for example, at 90 degrees around the specific area. The solar radiation amount information indicating the solar radiation amount measured by the solar radiation meters 10a to 10d is transmitted to the power generation amount prediction device 20 via a communication network (not shown).

==発電量予測装置20==
図2を参照しつつ、発電量予測装置20について、以下のとおり説明する。図2は、本実施形態に係る発電量予測装置20の構成例を示す図である。
== Power Generation Prediction Device 20 ==
The power generation amount prediction apparatus 20 will be described as follows with reference to FIG. FIG. 2 is a diagram illustrating a configuration example of the power generation amount prediction apparatus 20 according to the present embodiment.

発電量予測装置20は、気象庁から取得する風向情報,風速情報および日射量計10から取得する日射量情報に基づいて、特定地域における太陽光発電設備100の将来の発電量を予測する装置である。   The power generation amount prediction device 20 is a device that predicts the future power generation amount of the photovoltaic power generation facility 100 in a specific area based on wind direction information, wind speed information acquired from the Japan Meteorological Agency, and solar radiation amount information acquired from the solar radiation meter 10. .

発電量予測装置20は、特定地域の周囲の風上側(第1地点)における現在および至近の日射量を示す日射量情報(以下、「日射量現在情報」と称する。)、風向を示す風向情報、風速を示す風速情報および特定地域の周囲の過去の日射量を示す日射量情報(以下、「日射量過去情報」と称する。)に基づいて、特定地域における日射量の変化傾向を特定する機能を有する。変化傾向とは、特定地域における風上側から風下側に向かって、時間の経過とともに日射量が変化する傾向である。なお、変化傾向の算定については、後述する変化傾向算定部21aにて詳細に説明する。   The power generation amount prediction device 20 includes solar radiation amount information (hereinafter referred to as “sunlight amount current information”) indicating the current and nearest solar radiation amount on the windward side (first point) around the specific area, and wind direction information indicating the wind direction. The function of specifying the change tendency of the amount of solar radiation in the specific area based on the wind speed information indicating the wind speed and the solar radiation amount information indicating the past amount of solar radiation around the specific area (hereinafter referred to as “sunlight amount past information”). Have A change tendency is a tendency that the amount of solar radiation changes with the passage of time from the windward side to the leeward side in a specific area. The calculation of the change tendency will be described in detail in the change tendency calculation unit 21a described later.

そして、発電量予測装置20は、特定された変化傾向に基づいて、日射量現在情報から、特定地域における将来の日射量(予測日射量)を示す日射量情報(以下、「日射量予測情報」と称する。)を算出する。なお、特定地域における将来の日射量の算出については、後述する日射量予測部21cにて詳細に説明する。   Then, the power generation amount prediction device 20 calculates solar radiation amount information indicating the future solar radiation amount (predicted solar radiation amount) in a specific area (hereinafter referred to as “sun radiation amount prediction information”) from the current solar radiation amount information based on the identified change tendency. Is calculated). In addition, calculation of the future solar radiation amount in a specific area is demonstrated in detail in the solar radiation amount estimation part 21c mentioned later.

そして、日射量予測情報に基づいて、特定地域における太陽光発電設備100の将来の発電量を算出する。なお、将来の発電量の算出については、後述する発電量予測部21eにて詳細に説明する。   And the future electric power generation amount of the solar power generation equipment 100 in a specific area is calculated based on solar radiation amount prediction information. The calculation of the future power generation amount will be described in detail in a power generation amount prediction unit 21e described later.

このような機能を有する発電量予測装置20は、図2に示すように、演算処理部21と、記憶部22と、入力部23と、出力部24と、メモリ25と、を含んで構成されている。   As shown in FIG. 2, the power generation amount prediction apparatus 20 having such a function includes an arithmetic processing unit 21, a storage unit 22, an input unit 23, an output unit 24, and a memory 25. ing.

演算処理部21は、例えばCPUあるいはMPUなどで構成されている。演算処理部21は、メモリ25に格納されているプログラムを読み出すことにより、各種機能を実現する。演算処理部21は、変化傾向算定部21aと、予測地域区分部21bと、日射量予測部21cと、発電容量算出部21dと、発電量予測部21eと、を含んで構成されている。演算処理部21の各構成要素については、詳細に後述する。   The arithmetic processing unit 21 is constituted by, for example, a CPU or MPU. The arithmetic processing unit 21 realizes various functions by reading a program stored in the memory 25. The arithmetic processing unit 21 includes a change tendency calculation unit 21a, a predicted region classification unit 21b, a solar radiation amount prediction unit 21c, a power generation capacity calculation unit 21d, and a power generation amount prediction unit 21e. Each component of the arithmetic processing unit 21 will be described later in detail.

記憶部22は、プログラムや各種情報を記憶する装置である。記憶部22は、例えば、ROM、RAMあるいはフラッシュメモリなどで構成されている。記憶部22については、詳細に後述する。   The storage unit 22 is a device that stores programs and various types of information. The storage unit 22 is configured by, for example, a ROM, a RAM, or a flash memory. The storage unit 22 will be described in detail later.

入力部23は、例えば発電量予測装置20が接続する通信ネットワーク(不図示)から日射量情報、風向情報、風速情報などの各種情報を入力するネットワークインターフェイスである。出力部24は、例えば発電量予測装置20が接続する通信ネットワークに各種情報を出力するネットワークインターフェイスである。メモリ25は、例えば演算処理部21が処理するためのプログラムを格納する装置である。メモリ25は、例えば、ハードディスクドライブ、SSDあるいは光学式記憶装置などで構成されている。   The input unit 23 is a network interface that inputs various types of information such as solar radiation amount information, wind direction information, and wind speed information from a communication network (not shown) to which the power generation amount prediction device 20 is connected, for example. The output unit 24 is a network interface that outputs various types of information to a communication network to which the power generation amount prediction apparatus 20 is connected, for example. The memory 25 is a device that stores a program for the arithmetic processing unit 21 to process, for example. The memory 25 is composed of, for example, a hard disk drive, SSD, or optical storage device.

<<変化傾向算定部21a>>
図2、図3、図4、図5を参照しつつ、変化傾向算定部21aについて、以下のとおり説明する。図3は、本実施形態に係る第1風向における雲の移動の一例を示す図である。図4は、本実施形態に係る第2風向における雲の移動の一例を示す図である。図5は、本実施形態に係る日射量の過去又は将来の変化傾向の一例を示す図である。なお、図3、図4に示すような太陽光発電設備100の配置を示す図(表示画面)は、発電量予測装置20か、又は、他の装置により作成されているものとする。
<< Change Trend Calculation Unit 21a >>
With reference to FIGS. 2, 3, 4, and 5, the change tendency calculation unit 21a will be described as follows. FIG. 3 is a diagram illustrating an example of cloud movement in the first wind direction according to the present embodiment. FIG. 4 is a diagram illustrating an example of cloud movement in the second wind direction according to the present embodiment. FIG. 5 is a diagram illustrating an example of a past or future change tendency of the solar radiation amount according to the present embodiment. In addition, the figure (display screen) which shows arrangement | positioning of the photovoltaic power generation equipment 100 as shown in FIG. 3, FIG. 4 shall be produced by the electric power generation amount prediction apparatus 20 or another apparatus.

変化傾向算定部21aは、風向情報、風速情報、日射量現在情報と、特定地域の周囲の日射量過去情報とに基づいて、特定地域における日射量の変化傾向を算定する機能を有する。   The change tendency calculation unit 21a has a function of calculating the change tendency of the solar radiation amount in the specific area based on the wind direction information, the wind speed information, the current solar radiation amount current information, and the solar radiation amount past information around the specific area.

図3に示すように、西風を示す第1風向の場合における、変化傾向算定部21aの機能について説明する。変化傾向算定部21aは、例えば気象庁から取得する風向情報に基づいて、日射量計10a〜10dのうち、風向に沿う二つの日射量計を選定する。日射量計の選定において、変化傾向算定部21aは、特定地域と接するように第1風向と垂直に、風上側に第1風向垂線を引き、風下側に第2風向垂線を引く。そして、第1風向垂線の風上側に位置する日射量計10aと、第2風向垂線の風下側に位置する日射量計10bを選定する。また,例えば気象庁から風速情報を取得する。これらにより、日射量計10aから日射量計10bに向かって辿る、特定地域における日射量の変化傾向を算定できる。なお、第1風向垂線および第2風向垂線は、日射量計を選定するための仮想線である。   As shown in FIG. 3, the function of the change tendency calculation unit 21a in the case of the first wind direction indicating the west wind will be described. The change tendency calculating unit 21a selects two solar radiation meters along the wind direction from the solar radiation meters 10a to 10d based on, for example, wind direction information acquired from the Japan Meteorological Agency. In selecting the solar radiation meter, the change tendency calculating unit 21a draws a first wind direction perpendicular line to the windward side and a second wind direction perpendicular line to the leeward side so as to be in contact with the specific area. And the solar radiation amount meter 10a located in the windward side of a 1st wind direction perpendicular line and the solar radiation amount meter 10b located in the leeward side of a 2nd wind direction perpendicular line are selected. For example, wind speed information is acquired from the Japan Meteorological Agency. By these, the change tendency of the solar radiation amount in a specific area traced from the solar radiation meter 10a toward the solar radiation meter 10b can be calculated. The first wind direction perpendicular line and the second wind direction perpendicular line are virtual lines for selecting the solar radiation meter.

また、図4に示すように、北北西を示す第2風向の場合においては、図3と同様に、第1風向垂線、第2風向垂線を引く。そして、第1風向垂線の風上側に位置する日射量計10cと、第2風向垂線の風下側に位置する日射量計10dを選定する。これにより、日射量計10cから日射量計10dに向かって辿る、特定地域における日射量の変化傾向を算定できる。   Also, as shown in FIG. 4, in the case of the second wind direction indicating north-northwest, the first wind direction perpendicular line and the second wind direction perpendicular line are drawn as in FIG. Then, the solar radiation meter 10c located on the windward side of the first wind direction perpendicular line and the solar radiation meter 10d located on the leeward side of the second wind direction perpendicular line are selected. Thereby, the change tendency of the solar radiation amount in a specific area traced from the solar radiation meter 10c toward the solar radiation meter 10d can be calculated.

以下、図3を参照しつつ、変化傾向算定部21aについて、より具体的に説明する。なお、以下の説明においては、日射量計10aが設置される地点を「第1地点」とし、第1地点における日射量過去情報を「第1日射量過去情報」とし、日射量計10bが設置される地点を「第2地点」とし、第2地点における日射量過去情報を「第2日射量過去情報」とする。   Hereinafter, the change tendency calculation unit 21a will be described in more detail with reference to FIG. In the following description, the point where the solar radiation meter 10a is installed is referred to as “first point”, the past solar radiation amount information at the first point is referred to as “first solar radiation amount past information”, and the solar radiation meter 10b is installed. The point to be played is “second point”, and the past solar radiation amount information at the second point is “second solar radiation amount past information”.

変化傾向算定部21aは、変化傾向を算定するために、日射量現在情報,第1日射量過去情報、第2日射量過去情報を記憶部22(日射量過去テーブル22a、日射量現在テーブル22b)から読み込む。変化傾向算定部21aは、第1地点で計測される日射量現在情報に類似する第1日射量過去情報と、第1日射量過去情報に対応し、第2地点で計測される第2日射量過去情報と、に基づいて、第1地点の日射量(雲)が第2地点に到達するまでの時間および日射量(雲)の変化を算出する。なお、日射量(雲)の変化の算出では、風速を考慮することが好ましい。これにより、過去の風向および風速などの条件の元、第1地点で計測された日射量(雲)が第2地点に到達するまでの時間および日射量(雲)の変化(以下、「日射量変化」と称する。)を算出できる。日射量変化の算出方法では、一定時間における第1日射量過去情報と、所定の時間経過後の第2日射量過去情報とを比較し、所定の範囲内の誤差か否かを判定する。そして、誤差が所定の範囲内である場合、第2日射量過去情報が第1日射量過去情報に対応する日射量過去情報であると判定する。所定の範囲内とは、予め設定される任意の数値である。これにより、変化傾向算定部21aは、第1地点の日射量(雲)に対応する第2地点の日射量(雲)の変化を算出できる。なお、所定の時間とは、第1地点と第2地点との距離、風速を考慮して算出される時間であることが好ましい。   The change tendency calculation unit 21a stores the solar radiation amount current information, the first solar radiation amount past information, and the second solar radiation amount past information in the storage unit 22 (the solar radiation amount past table 22a and the solar radiation amount current table 22b) in order to calculate the change tendency. Read from. The change tendency calculation unit 21a corresponds to the first solar radiation amount past information similar to the solar radiation amount current information measured at the first point and the second solar radiation amount measured at the second point corresponding to the first solar radiation amount past information. Based on the past information, the time until the solar radiation amount (cloud) at the first point reaches the second point and the change in the solar radiation amount (cloud) are calculated. In calculating the change in the amount of solar radiation (clouds), it is preferable to consider the wind speed. As a result, the amount of solar radiation (clouds) measured at the first point and the change in the amount of solar radiation (clouds) until reaching the second point under conditions such as the past wind direction and wind speed (hereinafter referred to as “sunlight amount”). Called "change"). In the calculation method of the solar radiation amount change, the first solar radiation amount past information at a predetermined time is compared with the second solar radiation amount past information after a predetermined time, and it is determined whether or not the error is within a predetermined range. When the error is within a predetermined range, it is determined that the second solar radiation amount past information is the solar radiation amount past information corresponding to the first solar radiation amount past information. Within the predetermined range is an arbitrary numerical value set in advance. Thereby, the change tendency calculation part 21a can calculate the change of the solar radiation amount (cloud) of the 2nd point corresponding to the solar radiation amount (cloud) of the 1st point. The predetermined time is preferably a time calculated in consideration of the distance between the first point and the second point and the wind speed.

図5(ア)〜(エ)を参照しつつ、変化傾向算定部21aによる日射量の変化傾向について、具体的に説明する。図5(ア)は第1地点における日射量の変化傾向の一例を示し、図5(イ)は第1地域における日射量の変化傾向の一例を示し、図5(ウ)は第2地域における日射量の変化傾向の一例を示し、図5(エ)は第2地点における日射量の変化傾向の一例を示す。ただし、図5(ア)〜(エ)では、一例として、過去時刻11時00分を基準として過去の変化傾向が作成されているものとして、以下説明する。   The change tendency of the solar radiation amount by the change tendency calculation part 21a is demonstrated concretely, referring FIG. 5 (A)-(D). FIG. 5 (a) shows an example of the change tendency of the solar radiation amount at the first point, FIG. 5 (a) shows an example of the change tendency of the solar radiation amount at the first area, and FIG. An example of the change tendency of the solar radiation amount is shown, and FIG. 5D shows an example of the change tendency of the solar radiation amount at the second point. However, in FIGS. 5A to 5D, the following description will be given assuming that a past change trend is created based on the past time 11:00 as an example.

日射量現在情報、第1日射量過去情報および日射量変化に基づいて、例えば図5(ア)に示す第1地点の日射量の変化傾向を作成する。変化傾向算定部21aは、第1地点の日射量(雲)が第2地点に到達するまでの時間および日射量変化に基づいて、図5(イ),(ウ)に示すように、第1地点の日射量の変化傾向に対応する、第1地域における日射量の第1変化傾向と、第2地域における日射量の第2変化傾向を算出する。また、図5(エ)に示すように、第1地点の日射量の変化傾向に対応する第2地点における日射量の第3変化傾向を算出する。なお、第1地域および第2地域とは、後述する予測地域区分部21bが区分けする特定地域内の地域をいう。このように、変化傾向算定部21aは、第1地点における日射量の変化傾向に対応する、第1地域、第2地域および第2地点における日射量の第1変化傾向、第2変化傾向および第3変化傾向を算出できる。これにより、後述する日射量予測部21cは、第1地点における日射量現在情報、日射量の第1変化傾向、第2変化傾向および第3変化傾向に基づいて、当該日射量現在情報に対応する、第1地域、第2地域および第2地点における将来の日射量予測情報を算出できる。   Based on the solar radiation amount current information, the first solar radiation amount past information, and the solar radiation amount change, for example, a change tendency of the solar radiation amount at the first point shown in FIG. As shown in FIGS. 5 (a) and 5 (c), the change tendency calculation unit 21a performs the first time as shown in FIGS. 5 (a) and 5 (c) based on the time until the solar radiation amount (cloud) at the first point reaches the second point and the solar radiation amount change. A first change tendency of the solar radiation amount in the first region and a second change tendency of the solar radiation amount in the second region corresponding to the change tendency of the solar radiation amount at the point are calculated. Further, as shown in FIG. 5D, the third change tendency of the solar radiation amount at the second point corresponding to the change tendency of the solar radiation amount at the first point is calculated. The first area and the second area refer to areas in a specific area that are classified by a predicted area classification unit 21b described later. As described above, the change trend calculation unit 21a corresponds to the change tendency of the solar radiation amount at the first point, the first change tendency, the second change tendency and the first change of the solar radiation amount in the first region, the second region and the second point. 3 Change tendency can be calculated. Thereby, the solar radiation amount prediction part 21c mentioned later respond | corresponds to the said solar radiation amount present information based on the solar radiation amount present information in the 1st point, the 1st change tendency of the solar radiation quantity, the 2nd change tendency, and the 3rd change tendency. Future solar radiation amount prediction information in the first area, the second area, and the second point can be calculated.

なお、変化傾向算定部21aは、上述した日射量変化の算出および日射量の変化傾向の算定を、全風向について実行する。これにより、発電量予測装置20は、全風向における第1変化傾向、第2変化傾向および第3変化傾向に基づいて風向に応じた発電量を予測することができる。   In addition, the change tendency calculation part 21a performs the calculation of the solar radiation amount change mentioned above and the calculation of the change tendency of solar radiation amount about all wind directions. Thereby, the electric power generation amount prediction apparatus 20 can predict the electric power generation amount according to a wind direction based on the 1st change tendency in a whole wind direction, a 2nd change tendency, and a 3rd change tendency.

<<予測地域区分部21b>>
図3、図4を参照しつつ、予測地域区分部21bについて、以下のとおり説明する。
<< Predicted area section 21b >>
With reference to FIG. 3 and FIG. 4, the predicted area classification unit 21 b will be described as follows.

予測地域区分部21bは、特定地域を風上側と風下側の領域に区分けする機能を有する。図3に示すように、西風を示す第1風向の場合、予測地域区分部21bは、特定地域を二等分するように、第1風向と垂直方向(南北方向)に区画線を引く。また、図4に示すように、北北西を示す第2風向の場合、予測地域区分部21bは、特定地域を二等分するように、第2風向と垂直方向(北東東方向)に区画線を引く。区画線で区画された特定地域において、風上側を第1地域とし、風下側を第2地域とする。これにより、前述した変化傾向算定部21aは、第1地域での日射量の第1変化傾向を算出し、第2地域での日射量の第2変化傾向を算出できるため、特定地域内で予測する日射量の精度を高めることができる。なお、予測地域区分部21bは、風向が変化する度に、上述したように区画線を引くことにより、特定地域を第1地域および第2地域に区分けする。また、区画線は、特定地域を区分けするための仮想線である。   The predicted area classification unit 21b has a function of dividing a specific area into an upwind area and an leeward area. As shown in FIG. 3, in the case of the first wind direction indicating the west wind, the predicted area classification unit 21 b draws a lane line in the direction perpendicular to the first wind direction (north-south direction) so as to bisect the specific area. In addition, as shown in FIG. 4, in the case of the second wind direction indicating north-northwest, the predicted area dividing unit 21b divides the second wind direction and the vertical direction (northeast-east direction) so as to bisect the specific area. pull. In a specific area partitioned by a lane line, the windward side is the first area and the leeward side is the second area. Thereby, since the change tendency calculation part 21a mentioned above can calculate the 1st change tendency of the solar radiation amount in a 1st area, and can calculate the 2nd change tendency of the solar radiation quantity in a 2nd area, it predicts within a specific area. The accuracy of the amount of solar radiation can be increased. In addition, every time the wind direction changes, the predicted area classification unit 21b classifies the specific area into the first area and the second area by drawing a dividing line as described above. The lane marking is a virtual line for dividing a specific area.

<<日射量予測部21c>>
図5を参照しつつ、日射量予測部21cについて、以下のとおり説明する。ただし、図5(ア)〜(エ)は、一例として、現在時刻11時00分を基準として将来の日射量の変化傾向が作成されているものとして、以下説明する。
<< Insolation amount prediction unit 21c >>
The solar radiation amount prediction unit 21c will be described as follows with reference to FIG. However, FIGS. 5A to 5D will be described below assuming that the trend of change in the amount of solar radiation in the future is created based on the current time of 11:00 as an example.

日射量予測部21cは、日射量の第1〜第3変化傾向から将来の日射量を予測する機能を有する。日射量予測部21cは、記憶部22の日射量現在テーブル22bから日射量現在情報を取得する。図5(ア)では、現在時刻が11時00分において、その日射量現在情報が“180”W/m2であることを示す。図5(イ)に示すように、日射量予測部21cは、第1地点の日射量現在情報を基準とし、第1変化傾向に基づいて、第1地域における将来の日射量(第1予測日射量)を示す情報(以下、「第1日射量予測情報」と称する。)を予測する。また、図5(ウ)に示すように、第1地点の日射量現在情報を基準とし、第2変化傾向に基づいて、第2地域における将来の日射量(第2予測日射量)を示す情報(以下、「第2日射量予測情報」と称する。)を予測する。さらに、図5(エ)に示すように、第1地点の日射量現在情報を基準とし、第3変化傾向に基づいて、第2地点における将来の日射量を示す情報(以下、「第3日射量予測情報」と称する。)を予測する。日射量予測部21cは、予測した第1日射量予測情報、第2日射量予測情報および第3日射量予測情報を後述する記憶部22に送信する。 The solar radiation amount prediction unit 21c has a function of predicting the future solar radiation amount from the first to third change trends of the solar radiation amount. The solar radiation amount prediction unit 21 c acquires the solar radiation amount current information from the solar radiation amount current table 22 b of the storage unit 22. FIG. 5A shows that the current solar radiation amount information is “180” W / m 2 when the current time is 11:00. As shown in FIG. 5 (a), the solar radiation amount predicting unit 21c is based on the current solar radiation amount information at the first point, and based on the first change tendency, the future solar radiation amount (first predicted solar radiation). Information) (hereinafter referred to as “first solar radiation amount prediction information”). Further, as shown in FIG. 5 (c), information indicating the future solar radiation amount (second predicted solar radiation amount) in the second region based on the second change tendency based on the current solar radiation amount information at the first point. (Hereinafter referred to as “second solar radiation amount prediction information”). Further, as shown in FIG. 5 (d), based on the current amount of solar radiation at the first point, the information indicating the future amount of solar radiation at the second point based on the third change tendency (hereinafter referred to as “third solar radiation”). This is referred to as “quantity prediction information”. The solar radiation amount prediction unit 21c transmits the predicted first solar radiation amount prediction information, second solar radiation amount prediction information, and third solar radiation amount prediction information to the storage unit 22 described later.

具体的には、図5(ア)に示す第1地点の日射量現在情報が“180”W/m2であるとき、図5(イ)に示す第1変化傾向に基づくと、将来時刻の11時05分における第1地域の将来の第1日射量予測情報が“180”W/m2と予測される。同様に、図5(ウ)に示す第2変化傾向に基づくと、将来時刻の11時10分における第2地域の将来の第2日射量予測情報が“180”W/m2と予測される。同様に、図5(エ)に示す第3変化傾向に基づくと、将来時刻の11時15分における第2地点の将来の第3日射量予測情報が“180”W/m2と予測される。これにより、日射量予測部21cは、第1地点の日射量現在情報に基づいて、5分後の第1地域の第1日射量予測情報、10分後の第2地域の第2日射量予測情報、15分後の第2地点の第3日射量予測情報を算出できる。なお、予測する将来時刻は、あくまで一例を示す時刻であり、特定地域の大きさなどにより任意に変更される時刻とする。 Specifically, when the solar radiation amount current information at the first point shown in FIG. 5 (a) is “180” W / m 2 , based on the first change tendency shown in FIG. Future first solar radiation amount prediction information of the first region at 11:05 is predicted to be “180” W / m 2 . Similarly, based on the second change tendency shown in FIG. 5C, the future second solar radiation amount prediction information of the second region at 11:10 of the future time is predicted to be “180” W / m 2. . Similarly, based on the third change tendency shown in FIG. 5D, the future third solar radiation amount prediction information at the second point at 11:15 of the future time is predicted to be “180” W / m 2. . Thereby, the solar radiation amount prediction part 21c is based on the solar radiation amount present information of the 1st point, the 1st solar radiation amount prediction information of the 1st area 5 minutes later, and the 2nd solar radiation amount prediction of the 2nd area 10 minutes later Information, third solar radiation amount prediction information of the second point after 15 minutes can be calculated. Note that the predicted future time is a time that is just an example, and is a time that is arbitrarily changed depending on the size of the specific area.

<<発電容量算出部21d>>
図3、図4を参照しつつ、発電容量算出部21dについて、以下のとおり詳細に説明する。
<< Power generation capacity calculation unit 21d >>
The power generation capacity calculation unit 21d will be described in detail with reference to FIGS. 3 and 4 as follows.

発電容量算出部21dは、第1地域および第2地域の夫々の発電容量を算出する機能を有する。発電容量算出部21dは、第1地域に配置される全ての太陽光発電設備101a〜101g(111a〜111g)の第1発電容量と、第2地域に配置される全ての太陽光発電設備102a〜102g(112a〜112g)の第2発電容量を算出する。具体的には、図3に示すように、西風の場合、第1発電容量は、区画線の風上側における太陽光発電設備101a〜101gの総発電容量であり、第2発電容量は、区画線の風下側における太陽光発電設備102a〜102gの総発電容量である。また、図4に示されるように、北北西風の場合、第1発電容量は、区画線の風上側における太陽光発電設備111a〜111gの総発電容量であり、第2発電容量は、区画線の風下側における太陽光発電設備112a〜112gの総発電容量である。第1発電容量および第2発電容量を算出するために、発電容量算出部21dは、後述する発電容量テーブル22dを参照して、南北方向に対して風向の成す角度に基づき、第1地域および第2地域の発電容量を算出する。例えば、図4に示す北北西風が南北方向に対して12度を成す場合、発電容量算出部21dは発電容量テーブル22dを参照すると、第1地域の発電容量が5300kWと算出され、第2地域の発電容量が4700kWと算出される。   The power generation capacity calculation unit 21d has a function of calculating the power generation capacity of each of the first region and the second region. The power generation capacity calculation unit 21d includes the first power generation capacities of all the solar power generation facilities 101a to 101g (111a to 111g) arranged in the first area and all the solar power generation equipments 102a to 102a arranged in the second area. A second power generation capacity of 102 g (112a to 112g) is calculated. Specifically, as shown in FIG. 3, in the case of west wind, the first power generation capacity is the total power generation capacity of the photovoltaic power generation facilities 101a to 101g on the windward side of the lane line, and the second power generation capacity is the lane line. It is the total power generation capacity of the photovoltaic power generation facilities 102a to 102g on the leeward side. In addition, as shown in FIG. 4, in the case of north-northwest wind, the first power generation capacity is the total power generation capacity of the solar power generation facilities 111 a to 111 g on the windward side of the lane line, and the second power generation capacity is the lane line. It is the total power generation capacity of the photovoltaic power generation facilities 112a to 112g on the leeward side. In order to calculate the first power generation capacity and the second power generation capacity, the power generation capacity calculation unit 21d refers to a power generation capacity table 22d described later, and based on the angle formed by the wind direction with respect to the north-south direction, Calculate the power generation capacity in two regions. For example, when the north-northwest wind shown in FIG. 4 forms 12 degrees with respect to the north-south direction, the power generation capacity calculation unit 21d refers to the power generation capacity table 22d, and the power generation capacity in the first region is calculated as 5300 kW. Is calculated to be 4700 kW.

<<発電量予測部21e>>
図3を参照しつつ、発電量予測部21eについて、以下のとおり詳細に説明する。
<< Power generation amount prediction unit 21e >>
The power generation amount prediction unit 21e will be described in detail with reference to FIG.

発電量予測部21eは、第1地域および第2地域の夫々の発電量を算出する機能を有する。発電量予測部21eは、第1地域に配置される全ての太陽光発電設備101a〜101gの第1発電量と、第2地域に配置される全ての太陽光発電設備102a〜102gの第2発電量を算出する。具体的には、図3に示すように、発電量予測部21eは、記憶部22の日射量予測テーブル22cおよび発電容量テーブル22dを参照して、日射量予測部21cで予測された第1地域の第1日射量予測情報および第2日射量予測情報に、発電容量算出部21dで算出された第1地域の第1発電容量および第2地域の第2発電容量を掛けて、それに所定の係数を掛けて第1地域の第1発電量および第2地域の第2発電量を算出する。発電量予測部21eは、算出した第1発電量を示す情報(以下、「第1発電量情報」と称する。)および第2発電量を示す情報(以下、「第2発電量情報」と称する。)を記憶部22に送信する。なお、所定の係数とは、例えば、「NEDO技術開発機構太陽光発電導入ガイドブック」に掲載されている「損失係数」をいう。   The power generation amount prediction unit 21e has a function of calculating the power generation amounts of the first region and the second region. The power generation amount prediction unit 21e includes the first power generation amount of all the solar power generation facilities 101a to 101g arranged in the first region and the second power generation of all the solar power generation facilities 102a to 102g arranged in the second region. Calculate the amount. Specifically, as shown in FIG. 3, the power generation amount prediction unit 21e refers to the solar radiation amount prediction table 22c and the power generation capacity table 22d in the storage unit 22, and is the first region predicted by the solar radiation amount prediction unit 21c. The first solar radiation amount prediction information and the second solar radiation amount prediction information are multiplied by the first power generation capacity of the first region and the second power generation capacity of the second region calculated by the power generation capacity calculation unit 21d, and a predetermined coefficient is obtained. To calculate the first power generation amount in the first region and the second power generation amount in the second region. The power generation amount prediction unit 21e is information indicating the calculated first power generation amount (hereinafter referred to as “first power generation amount information”) and information indicating the second power generation amount (hereinafter referred to as “second power generation amount information”). .) Is transmitted to the storage unit 22. The predetermined coefficient refers to, for example, “loss coefficient” published in “NEDO Technology Development Organization Photovoltaic Power Generation Introduction Guidebook”.

<<記憶部22>>
記憶部22は、演算処理部21が処理を実行するための各種データを格納する機能を有する。記憶部22は、日射量過去テーブル22aと、日射量現在テーブル22bと、日射量予測テーブル22cと、発電容量テーブル22dと、発電量予測テーブル22eと、を格納している。
<< Storage unit 22 >>
The storage unit 22 has a function of storing various data for the arithmetic processing unit 21 to execute processing. The storage unit 22 stores a solar radiation amount past table 22a, a solar radiation amount current table 22b, a solar radiation amount prediction table 22c, a power generation capacity table 22d, and a power generation amount prediction table 22e.

図6を参照しつつ、日射量過去テーブル22aについて詳細に説明する。図6は、本実施形態に係る日射量過去テーブル22aの構成例を示す図である。日射量過去テーブル22aは、変化傾向算定部21aが変化傾向を特定するための、日射量計10a〜10dで計測される日射量過去情報を格納するテーブルである。日射量過去テーブル22aは、例えば、過去の日時を示す“日時”項目、その日時における“風向”項目、“風速”項目、夫々の日射量計10a〜10dで計測される“A”項目、“B”項目、“C”項目、“D”項目を対応付けて格納している。具体的には、“日時”が“7月9日12時00分”の場合、“風向”は“西”風を示し、“風速”は“2”m/sを示し、“日射量”は日射量計10aが“200”W/m2、日射量計10bが“150”W/m2、日射量計10cが“110”W/m2、日射量計10dが“130”W/m2を示す。なお、日射量過去テーブル22aの形式は、一例を示すものであり演算処理部21が参照可能なデータベース形式であればよい。 The solar radiation amount past table 22a will be described in detail with reference to FIG. FIG. 6 is a diagram illustrating a configuration example of the solar radiation amount past table 22a according to the present embodiment. The solar radiation amount past table 22a is a table for storing the past solar radiation amount information measured by the solar radiation meters 10a to 10d for the change tendency calculating unit 21a to specify the change tendency. The solar radiation amount past table 22a includes, for example, a “date and time” item indicating a past date and time, a “wind direction” item and a “wind speed” item at the date and time, an “A” item measured by each of the solar radiation meters 10a to 10d, “ The “B” item, the “C” item, and the “D” item are stored in association with each other. Specifically, when “date and time” is “July 9th 12:00”, “wind direction” indicates “west” wind, “wind speed” indicates “2” m / s, and “sunlight” The solar radiation meter 10a is “200” W / m 2 , the solar radiation meter 10b is “150” W / m 2 , the solar radiation meter 10c is “110” W / m 2 , and the solar radiation meter 10d is “130” W / m 2 . m 2 is indicated. Note that the format of the solar radiation amount past table 22a is an example, and any database format that can be referred to by the arithmetic processing unit 21 may be used.

図7を参照しつつ、日射量現在テーブル22bについて詳細に説明する。図7は、本実施形態に係る日射量現在テーブル22bの構成例を示す図である。日射量現在テーブル22bは、日射量予測部21cが日射量を予測するための、日射量計10a〜10dで計測される日射量現在情報を格納するテーブルである。日射量現在テーブル22bは、例えば、現在および至近の日時を示す“日時”項目、その日時における、風向を示す“風向”項目、“風速”項目、夫々の日射量計10a〜10dで計測される“A”項目、“B”項目、“C”項目、“D”項目を対応付けて格納している。なお、日射量現在テーブル22bの形式は、一例を示すものであり演算処理部21が参照可能なデータベース形式であればよい。   The solar radiation amount current table 22b will be described in detail with reference to FIG. FIG. 7 is a diagram illustrating a configuration example of the solar radiation amount current table 22b according to the present embodiment. The solar radiation amount current table 22b is a table that stores the solar radiation amount current information measured by the solar radiation meters 10a to 10d for the solar radiation amount prediction unit 21c to predict the solar radiation amount. The solar radiation amount current table 22b is measured by, for example, a “date and time” item indicating the current date and the closest date, a “wind direction” item indicating the wind direction and a “wind speed” item, and the respective solar radiation meters 10a to 10d. The “A” item, the “B” item, the “C” item, and the “D” item are stored in association with each other. It should be noted that the format of the solar radiation amount current table 22b is an example, and any database format that can be referred to by the arithmetic processing unit 21 may be used.

図8を参照しつつ、日射量予測テーブル22cについて詳細に説明する。図8は、本実施形態に係る日射量予測テーブル22cの構成例を示す図である。日射量予測テーブル22cは、日射量予測部21cが予測した第1日射量予測情報および第2日射量予測情報を格納するテーブルである。日射量予測テーブル22cは、例えば、予測時間先の日時を示す“日時”項目、その日時における“風向”項目、第1日射量予測情報を示す“第1地域”項目、第2日射量予測情報を示す“第2地域”項目を対応付けて格納している。なお、日射量予測テーブル22cの形式は、一例を示すものであり演算処理部21が参照可能なデータベース形式であればよい。   The solar radiation amount prediction table 22c will be described in detail with reference to FIG. FIG. 8 is a diagram illustrating a configuration example of the solar radiation amount prediction table 22c according to the present embodiment. The solar radiation amount prediction table 22c is a table that stores the first solar radiation amount prediction information and the second solar radiation amount prediction information predicted by the solar radiation amount prediction unit 21c. The solar radiation amount prediction table 22c includes, for example, a “date and time” item indicating the date and time ahead of the predicted time, a “wind direction” item at the date and time, a “first region” item indicating the first solar radiation amount prediction information, and second solar radiation amount prediction information. Is stored in association with the “second region” item. Note that the format of the solar radiation amount prediction table 22c is an example, and any database format that can be referred to by the arithmetic processing unit 21 may be used.

図9を参照しつつ、発電容量テーブル22dについて詳細に説明する。図9は、本実施形態に係る発電容量テーブル22dの構成例を示す図である。発電容量テーブル22dは、発電容量算出部21dが発電容量を算出するため、又、発電量予測部21eが発電量を予想するための、第1発電容量を示す情報(以下、「第1発電容量情報」と称する。)および第2発電容量を示す情報(以下、「第2発電容量情報」と称する。)を格納するテーブルである。発電容量テーブル22dは、例えば、南北方向に対して区画線の成す角度を示す“角度”項目、その角度における、第1発電容量を示す“第1地域”項目、第2発電容量を示す“第2地域”項目を対応付けて格納している。具体的には、“角度”が“4”の場合、第1発電容量情報を示す“第1地域”は“4800”kWを示し、第2発電容量情報を示す“第2地域”は“5200”kWを示す。図9では、説明の便宜上、第1発電容量情報および第2発電容量情報の合計が10000kWとなるように示しているが、図9は、特定地域の発電容量の合計値に合わせて作成されることとする。なお、発電容量テーブル22dの形式は、一例を示すものであり演算処理部21が参照可能なデータベース形式であればよい。   The power generation capacity table 22d will be described in detail with reference to FIG. FIG. 9 is a diagram illustrating a configuration example of the power generation capacity table 22d according to the present embodiment. The power generation capacity table 22d includes information indicating the first power generation capacity (hereinafter referred to as “first power generation capacity” for the power generation capacity calculation unit 21d to calculate the power generation capacity and the power generation amount prediction unit 21e to predict the power generation amount. And a table for storing information indicating the second power generation capacity (hereinafter referred to as “second power generation capacity information”). The power generation capacity table 22d includes, for example, an “angle” item indicating an angle formed by a lane marking with respect to the north-south direction, a “first region” item indicating a first power generation capacity at that angle, and a “first” indicating a second power generation capacity. “2 regions” items are stored in association with each other. Specifically, when the “angle” is “4”, the “first region” indicating the first generation capacity information indicates “4800” kW, and the “second region” indicating the second generation capacity information is “5200”. “Indicates kW. In FIG. 9, for convenience of explanation, the total of the first power generation capacity information and the second power generation capacity information is shown to be 10000 kW, but FIG. 9 is created according to the total value of the power generation capacity in the specific area. I will do it. The format of the power generation capacity table 22d is an example, and any database format that can be referred to by the arithmetic processing unit 21 may be used.

図10を参照しつつ、発電量予測テーブル22eについて詳細に説明する。図10は、本実施形態に係る発電量予測テーブル22eの構成例を示す図である。発電量予測テーブル22eは、発電量予測部21eが予測した第1発電量情報および第2発電量情報を格納するテーブルである。発電量予測テーブル22eは、例えば、予測時間先の日時を示す“日時”項目、その日時における第1発電量予測情報を示す“第1地域”項目、第2発電量予測情報を示す“第2地域”項目を対応付けて格納している。なお、図10では、第1地域および第2地域の発電量予測情報のみ対応づけているが、さらに第2地点の発電量予測情報を対応づけて格納されていてもよい。また、発電量予測テーブル22eの形式は、一例を示すものであり演算処理部21が参照可能なデータベース形式であればよい。   The power generation amount prediction table 22e will be described in detail with reference to FIG. FIG. 10 is a diagram illustrating a configuration example of the power generation amount prediction table 22e according to the present embodiment. The power generation amount prediction table 22e is a table that stores the first power generation amount information and the second power generation amount information predicted by the power generation amount prediction unit 21e. The power generation amount prediction table 22e includes, for example, a “date and time” item indicating the date and time ahead of the prediction time, a “first region” item indicating the first power generation amount prediction information at the date and time, and “second” indicating the second power generation amount prediction information. “Region” items are stored in association with each other. In FIG. 10, only the power generation amount prediction information of the first region and the second region is associated, but the power generation amount prediction information of the second point may be stored in association with each other. Moreover, the format of the electric power generation amount prediction table 22e shows an example, and may be a database format that can be referred to by the arithmetic processing unit 21.

===処理フロー===
図11を参照しつつ、発電量予測システム1の処理手順について、以下のとおり説明する。図11は、本実施形態に係る処理手順の一例を示す図である。図11では、右側に記憶部22の各種テーブルを示し、左側に演算処理部21の処理内容を示す。演算処理部21と記憶部22との間の矢印は、情報の流れを示している。
=== Processing flow ===
The processing procedure of the power generation amount prediction system 1 will be described as follows with reference to FIG. FIG. 11 is a diagram illustrating an example of a processing procedure according to the present embodiment. In FIG. 11, various tables of the storage unit 22 are shown on the right side, and the processing content of the arithmetic processing unit 21 is shown on the left side. An arrow between the arithmetic processing unit 21 and the storage unit 22 indicates the flow of information.

発電量予測システム1は、特定地域の周囲に配置される全ての日射量計10から日射量過去情報を取得し、日射量過去情報を記憶部22の日射量過去テーブル22aに格納する。また、特定地域内に配置される全ての太陽光発電設備100の発電容量情報を、記憶部22の発電容量テーブル22dに格納する。特定地域を第1地域と第2地域に区分けする場合においては、第1地域の第1発電容量情報および第2地域の第2発電容量情報の夫々を算出して格納する。つまり、発電量予測システム1では、将来の発電量を算出する前段階において、予め日射量過去情報および特定地域の発電容量を算出して記憶部22に格納している。   The power generation amount prediction system 1 acquires the solar radiation amount past information from all the solar radiation meters 10 arranged around the specific area, and stores the solar radiation amount past information in the solar radiation amount past table 22 a of the storage unit 22. Further, the power generation capacity information of all the photovoltaic power generation facilities 100 arranged in the specific area is stored in the power generation capacity table 22 d of the storage unit 22. When the specific area is divided into the first area and the second area, the first generation capacity information of the first area and the second generation capacity information of the second area are calculated and stored. That is, in the power generation amount prediction system 1, the solar radiation amount past information and the power generation capacity in the specific area are calculated in advance and stored in the storage unit 22 before the future power generation amount is calculated.

先ず、変化傾向算定部21aは、記憶部22に格納されている日射量現在テーブル22bから第1地点の風向情報、風速情報、日射量現在情報を取得する(S100)。変化傾向算定部21aは、変化傾向を算定するために、記憶部22に格納されている日射量過去テーブル22aから日射量現在情報に類似する日射量過去情報を取得する(S101)。変化傾向算定部21aは、風向情報、風速情報および日射量過去情報に基づいて、第1地点および第2地点を特定し、特定地域における第1地域の第1変化傾向と第2地域の第2変化傾向を算定する(S102)。第1,第2変化傾向は、図5(イ),(ウ)に示すような形式で、予め記憶部22に格納される。さらに、変化傾向算定部21aは、特定地域の周囲における第2地点の第3変化傾向を算出し、予め記憶部22に格納させてもよい。   First, the change tendency calculation unit 21a acquires the wind direction information, the wind speed information, and the solar radiation amount current information of the first point from the solar radiation amount current table 22b stored in the storage unit 22 (S100). In order to calculate the change tendency, the change trend calculation unit 21a acquires the solar radiation amount past information similar to the solar radiation amount current information from the solar radiation amount past table 22a stored in the storage unit 22 (S101). The change tendency calculation unit 21a identifies the first point and the second point based on the wind direction information, the wind speed information, and the solar radiation amount past information, and the first change tendency of the first region and the second point of the second region in the specific region. A change tendency is calculated (S102). The first and second change tendencies are stored in the storage unit 22 in advance in a format as shown in FIGS. Furthermore, the change tendency calculation unit 21a may calculate the third change tendency of the second point around the specific area and store it in the storage unit 22 in advance.

次に、予測地域区分部21bは、現在の風向情報に基づいて、特定地域を第1地域および第2地域に区分けする(S103)。予測地域区分部21bは、特定地域を二等分するように、風向と垂直方向に区画線を引く。予測地域区分部21bは、特定地域における、区画線の風上側を第1地域とし、区画線の風下側を第2地域として設定する。   Next, the predicted area classification unit 21b classifies the specific area into the first area and the second area based on the current wind direction information (S103). The predicted area classification unit 21b draws a lane marking in the direction perpendicular to the wind direction so as to bisect the specific area. The predicted area classification unit 21b sets the leeward side of the lane line as the first area and the leeward side of the lane line as the second area in the specific area.

次に、日射量予測部21cは、日射量を予測するために、第1,第2変化傾向と日射量現在情報に基づいて、第1地域および第2地域の将来の日射量(第1日射量予測情報、第2日射量予測情報)を算出する(S104)。日射量予測部21cは、算出した第1日射量予測情報および第2日射量予測情報を記憶部22(日射量予測テーブル22c)に出力する。さらに、日射量予測部21cは、第3変化傾向に基づいて、第2地点の将来の日射量(第3日射量予測情報)を算出してもよい。   Next, the solar radiation amount prediction unit 21c predicts the solar radiation amount based on the first and second change trends and the current solar radiation amount current information, and the future solar radiation amount (first solar radiation amount) in the first region and the second region. (Amount prediction information, second solar radiation amount prediction information) is calculated (S104). The solar radiation amount prediction unit 21c outputs the calculated first solar radiation amount prediction information and second solar radiation amount prediction information to the storage unit 22 (the solar radiation amount prediction table 22c). Furthermore, the solar radiation amount prediction unit 21c may calculate the future solar radiation amount (third solar radiation amount prediction information) at the second point based on the third change tendency.

次に、発電容量算出部21dは、予測地域区分部21bで区分けされた第1地域および第2地域の夫々の発電容量を算出する(S105)。発電容量算出部21dは、現在の風向情報に基づいて、記憶部22に格納されている発電容量テーブル22dから第1地域の第1発電容量情報および第2地域の第2発電容量情報を取得する。   Next, the power generation capacity calculation unit 21d calculates the power generation capacity of each of the first region and the second region divided by the prediction region classification unit 21b (S105). The power generation capacity calculation unit 21d acquires the first power generation capacity information of the first region and the second power generation capacity information of the second region from the power generation capacity table 22d stored in the storage unit 22 based on the current wind direction information. .

次に、発電量予測部21eは、予測地域区分部21bで区分けされた第1地域および第2地域の夫々の発電量を算出する(S106)。発電量予測部21eは、記憶部22に格納されている日射量予測テーブル22cから第1日射量予測情報および第2日射量予測情報を取得する(S106)。発電量予測部21eは、第1発電容量情報、第1日射量予測情報および所定の係数(損失係数)の積を計算することにより、第1地域の第1発電量情報を算出する。同様に、第2発電容量情報、第2日射量予測情報および所定の係数(損失係数)の積を計算することにより、第2地域の第2発電量情報を算出する。発電量予測部21eは、算出した第1発電量情報および第2発電量情報を、記憶部22(発電量予測テーブル22e)に出力する(S106)。予測地域区分部21bは、風向の変化に応じて、第1地域および第2地域の設定を変更する(S107)。   Next, the power generation amount prediction unit 21e calculates the power generation amounts of the first region and the second region divided by the prediction region classification unit 21b (S106). The power generation amount prediction unit 21e acquires the first solar radiation amount prediction information and the second solar radiation amount prediction information from the solar radiation amount prediction table 22c stored in the storage unit 22 (S106). The power generation amount prediction unit 21e calculates the first power generation amount information of the first region by calculating the product of the first power generation capacity information, the first solar radiation amount prediction information, and a predetermined coefficient (loss coefficient). Similarly, the second power generation amount information of the second region is calculated by calculating the product of the second power generation capacity information, the second solar radiation amount prediction information, and a predetermined coefficient (loss coefficient). The power generation amount prediction unit 21e outputs the calculated first power generation amount information and second power generation amount information to the storage unit 22 (power generation amount prediction table 22e) (S106). The predicted area classification unit 21b changes the settings of the first area and the second area according to the change in the wind direction (S107).

尚、上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物も含まれる。例えば、以下のような実施形態も含まれるものとする。   In addition, said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof. For example, the following embodiments are also included.

===その他の実施形態===
<<日射量計>>
上記において、日射量計は発電量予測システム1に含まれているように記載したが、これに限定されない。発電量予測システム1に日射量計が含まれていなくてもよく、例えば気象庁から日射量情報を取得してもよい。
=== Other Embodiments ===
<< Insolation meter >>
In the above description, the solar radiation meter is described as being included in the power generation amount prediction system 1, but is not limited thereto. The power generation amount prediction system 1 may not include the solar radiation meter, and for example, the solar radiation amount information may be acquired from the Japan Meteorological Agency.

上記において、日射量計は特定地域の周囲において略均等に90度を成して四つ配置されているとして記載したが、これに限定されない。例えば、四つを超えるような多数の日射量計10を特定地域の周囲に配置してもよい。これにより、将来の日射量の予測精度が向上する。   In the above description, the solar radiation meter has been described as being arranged at 90 degrees substantially uniformly around the specific area, but is not limited thereto. For example, a large number of solar radiation meters 10 that exceed four may be arranged around a specific area. Thereby, the prediction accuracy of the future solar radiation amount improves.

<<変化傾向算定部21a>>
上記において、変化傾向算定部21aは風向情報、風速情報、日射量現在情報と、特定地域の周囲の日射量過去情報とに基づいて、特定地域における日射量の変化傾向を算定するとして説明したが、これに限定されない。変化傾向算定部21aは、風向情報(特定地域に対して風上および風下がわかる情報)および日射量過去情報に基づいて、特定地域における日射量の変化傾向を算定してもよい。少なくとも風向情報(特定地域に対して風上および風下がわかる情報)および日射量過去情報を用いることにより、雲の移動および雲の影響による日射量の変化傾向を算定できるためである。
<< Change Trend Calculation Unit 21a >>
In the above description, the change tendency calculation unit 21a is described as calculating the change tendency of the solar radiation amount in the specific area based on the wind direction information, the wind speed information, the current solar radiation amount information, and the solar radiation amount past information around the specific area. However, the present invention is not limited to this. The change tendency calculation unit 21a may calculate the change tendency of the solar radiation amount in the specific area based on the wind direction information (information indicating the windward and leeward with respect to the specific area) and the solar radiation amount past information. This is because, by using at least wind direction information (information indicating upwind and leeward for a specific area) and solar radiation amount past information, it is possible to calculate the trend of change in solar radiation amount due to cloud movement and cloud effects.

<<予測地域区分部21b>>
上記において、予測地域区分部21bは演算処理部21に含まれて構成されるとして説明したが、これに限定されない。例えば、予測地域区分部21bを含まれていなくてもよく、その場合は特定地域を区分けせずに日射量および発電量を予測する。
<< Predicted area section 21b >>
In the above, although the prediction area division part 21b was demonstrated as being comprised by the arithmetic processing part 21, it is not limited to this. For example, the predicted area classification unit 21b may not be included, and in this case, the solar radiation amount and the power generation amount are predicted without dividing the specific area.

<<日射量予測部21c>>
上記において、日射量予測部21cは演算処理部21に含まれて構成されるとして説明したが、これに限定されない。例えば、日射量予測部21cの機能を発電量予測部21eが有していてもよい。
<< Insolation amount prediction unit 21c >>
In the above description, the solar radiation amount prediction unit 21c has been described as being included in the arithmetic processing unit 21, but is not limited thereto. For example, the power generation amount prediction unit 21e may have the function of the solar radiation amount prediction unit 21c.

上記において、日射量予測部21cは第2地点の第3日射量予測情報を予測するように記載したが、これに限定されない。日射量予測部21cは少なくとも第1日射量予測情報と第2日射量予測情報を算出できればよい。また、日射量予測部21cは、演算処理部21が予測地域区分部21bを含んで構成されていない場合は特定地域の将来の日射量を予測できればよい。   In the above description, the solar radiation amount prediction unit 21c has been described so as to predict the third solar radiation amount prediction information of the second point, but is not limited thereto. The solar radiation amount prediction unit 21c only needs to calculate at least the first solar radiation amount prediction information and the second solar radiation amount prediction information. Moreover, the solar radiation amount prediction part 21c should just be able to predict the future solar radiation amount of a specific area, when the arithmetic processing part 21 is not comprised including the prediction area division part 21b.

<<発電容量算出部21d>>
上記において、発電容量算出部21dは演算処理部21に含まれて構成されるとして説明したが、これに限定されない。例えば、発電容量算出部21dは演算処理部21に含まれていなくてもよく、その場合は発電量予測システム1とは別の装置から特定地域の発電容量を取得してもよい。
<< Power generation capacity calculation unit 21d >>
In the above description, the power generation capacity calculation unit 21d has been described as being included in the arithmetic processing unit 21, but is not limited thereto. For example, the power generation capacity calculation unit 21d may not be included in the arithmetic processing unit 21, and in that case, the power generation capacity in a specific area may be acquired from a device different from the power generation amount prediction system 1.

<<発電量予測部21e>>
上記において、発電量予測部21eは第1発電量および第2発電量を算出するとして説明したが、これに限定されない。例えば、予測地域区分部21bが演算処理部21に含まれていない場合、発電量予測部21eは特定地域の将来の発電量を算出することのみでもよい。
<< Power generation amount prediction unit 21e >>
In the above description, the power generation amount prediction unit 21e has been described as calculating the first power generation amount and the second power generation amount, but is not limited thereto. For example, when the predicted region classification unit 21b is not included in the arithmetic processing unit 21, the power generation amount prediction unit 21e may only calculate the future power generation amount in a specific region.

<<記憶部22>>
上記において、記憶部22は発電量予測装置20に含まれて構成されているとして説明したが、これに限定されない。例えば、記憶部22は発電量予測装置20に含まれていなくてもよく、記憶部22に格納される各テーブルが発電量予測装置20とは独立した他の装置に格納されていてもよい。ただし、発電量予測装置20は、当該他の装置の格納テーブルを参照できるように、当該他の装置に接続されていることとする。
<< Storage unit 22 >>
In the above description, the storage unit 22 has been described as being configured to be included in the power generation amount prediction apparatus 20, but is not limited thereto. For example, the storage unit 22 may not be included in the power generation amount prediction device 20, and each table stored in the storage unit 22 may be stored in another device independent of the power generation amount prediction device 20. However, the power generation amount prediction apparatus 20 is connected to the other apparatus so that the storage table of the other apparatus can be referred to.

===まとめ===
以上説明したように、本実施形態に係る発電量予測装置20は、特定地域に設置される太陽光発電設備100の発電量を予測する発電量予測装置20であって、特定地域よりも風上に位置する第1地点の過去の日射量を示す第1日射量過去情報と、特定地域を挟んで第1地点と対向し、特定地域よりも風下に位置する第2地点の過去の日射量を示す第2日射量過去情報と、を予め格納する記憶部22と、第1日射量過去情報と、第1日射量過去情報に対応する第2日射量過去情報とに基づいて、第1地点と第2地点の間の特定地域における日射量の変化傾向を特定する変化傾向算定部21aと、第1地点の現在の日射量と、変化傾向とに基づいて特定地域の予測日射量を算出するとともに、予測日射量に基づいて特定地域に設置される太陽光発電設備100の発電量を予測する発電量予測部21eと、備える。本実施形態によれば、現在の風向および日射量に基づいて特定地域における発電量を正確に予測することができるため、特定地域の電力需給調整を適切に実行できる。
=== Summary ===
As described above, the power generation amount prediction apparatus 20 according to the present embodiment is a power generation amount prediction apparatus 20 that predicts the power generation amount of the solar power generation facility 100 installed in a specific area, and is upwind from the specific area. The first solar radiation amount past information indicating the past solar radiation amount of the first point located at the first point, and the past solar radiation amount of the second point that is opposed to the first point across the specific region and located leeward than the specific region. Based on the storage unit 22 that stores in advance the second solar radiation amount past information to be shown, the first solar radiation amount past information, and the second solar radiation amount past information corresponding to the first solar radiation amount past information, While calculating the change tendency calculation part 21a which specifies the change tendency of the solar radiation amount in the specific area between the 2nd points, and calculating the predicted solar radiation amount of the specific area based on the current solar radiation amount and the change tendency of the first point , Sunlight installed in a specific area based on predicted solar radiation And the power generation amount prediction unit 21e for predicting the amount of electric power generated by the electric equipment 100 includes. According to this embodiment, since the power generation amount in a specific area can be accurately predicted based on the current wind direction and the amount of solar radiation, power supply and demand adjustment in the specific area can be appropriately executed.

又、本実施形態に係る発電量予測装置20は、風向と交差する方向に特定地域を、風上側の第1地域と、風下側の第2地域と、に区分けする予測地域区分部21bをさらに備え、変化傾向算定部21aは、第1日射量過去情報と、第1日射量過去情報に対応する第2日射量過去情報とに基づいて、第1地域における日射量の第1変化傾向と、第2地域における日射量の第2変化傾向と、を算定し、発電量予測部21eは、第1地点の現在の日射量と、第1変化傾向とに基づいて、第1地域の将来の日射量を算出するとともに、第1地域の将来の日射量に基づいて第1地域に設置される太陽光発電設備101a〜101g(111a〜111g)の第1発電量を予測し、第1地点の現在の日射量と、第2変化傾向とに基づいて、第2地域の将来の日射量を算出するとともに、第2地域の将来の日射量に基づいて第2地域に設置される太陽光発電設備102a〜102g(112a〜112g)の第2発電量を予測する、ことを特徴とする。本実施形態によれば、特定地域を二等分することにより、特定地域における発電量をより正確に予測することができるため、特定地域の電力需給調整をより適切に実行できる。   Moreover, the power generation amount prediction apparatus 20 according to the present embodiment further includes a prediction area classification unit 21b that divides a specific area in a direction crossing the wind direction into a first area on the windward side and a second area on the leeward side. The change tendency calculating unit 21a includes a first change tendency of the amount of solar radiation in the first region based on the first amount of solar radiation past information and the second amount of solar radiation past information corresponding to the first amount of solar radiation past information, The second change tendency of the solar radiation amount in the second region is calculated, and the power generation amount prediction unit 21e calculates the future solar radiation in the first region based on the current solar radiation amount at the first point and the first change tendency. While calculating the amount, predicting the first power generation amount of the solar power generation facilities 101a to 101g (111a to 111g) installed in the first region based on the future solar radiation amount of the first region, The future of the second region based on the amount of solar radiation and the second trend of change The solar radiation amount is calculated, and the second power generation amount of the solar power generation facilities 102a to 102g (112a to 112g) installed in the second region is predicted based on the future solar radiation amount of the second region. To do. According to the present embodiment, since the power generation amount in the specific area can be predicted more accurately by dividing the specific area into two equal parts, the power supply and demand adjustment in the specific area can be more appropriately executed.

又、本実施形態に係る発電量予測装置20の予測地域区分部21bは、風向と垂直に交差する方向に特定地域を、風上側の第1地域と、風下側の第2地域と、に区分けすることを特徴とする。本実施形態によれば、より正確に特定地域を二等分することができるため、より正確に特定地域における発電量を予測することができる。   In addition, the predicted area classification unit 21b of the power generation amount prediction apparatus 20 according to the present embodiment classifies the specific area in the direction perpendicular to the wind direction into the first area on the windward side and the second area on the leeward side. It is characterized by doing. According to the present embodiment, since the specific area can be divided into two more accurately, the power generation amount in the specific area can be predicted more accurately.

又、本実施形態に係る発電量予測装置20の予測地域区分部21bは、風向に応じて、特定地域における第1地域および第2地域の区分けを変更することを特徴とする。本実施形態によれば、風向に応じて予測する特定地域の区分けを変更するため、より正確に特定地域における発電量を予測することができる。   Moreover, the prediction area classification | segmentation part 21b of the electric power generation amount prediction apparatus 20 which concerns on this embodiment changes the classification of the 1st area and the 2nd area in a specific area according to a wind direction. According to this embodiment, since the classification of the specific area to be predicted is changed according to the wind direction, the power generation amount in the specific area can be predicted more accurately.

又、本実施形態に係る発電量予測装置20は、第1地域に設置される太陽光発電設備101a〜101g(111a〜111g)の第1発電容量と、第2地域に設置される太陽光発電設備102a〜102g(112a〜112g)の第2発電容量と、を算出する発電容量算出部21dをさらに備え、発電量予測部21eは、第1地域の将来の日射量と第1発電容量とに基づいて第1発電量を予測し、第2地域の将来の日射量と前記第2発電容量とに基づいて第2発電量を予測することを特徴とする。本実施形態によれば、第1地域および第2地域の夫々の発電容量を容易に算出することできる。   Moreover, the power generation amount prediction apparatus 20 according to the present embodiment includes the first power generation capacity of the solar power generation facilities 101a to 101g (111a to 111g) installed in the first region and the solar power generation installed in the second region. The power generation capacity calculation unit 21d that calculates the second power generation capacity of the facilities 102a to 102g (112a to 112g) is further provided, and the power generation amount prediction unit 21e calculates the future solar radiation amount and the first power generation capacity of the first region. The first power generation amount is predicted based on the second generation amount, and the second power generation amount is predicted based on the future solar radiation amount in the second region and the second power generation capacity. According to this embodiment, the power generation capacity of each of the first region and the second region can be easily calculated.

20 発電量予測装置
21a 変化傾向算定部
21b 予測地域区分部
21d 発電容量算出部
21e 発電量予測部
22 記憶部
100、101a〜101g、102a〜102g、111a〜111g、112a〜112g 太陽光発電設備
20 Power generation amount prediction device 21a Change tendency calculation unit 21b Prediction area division unit 21d Power generation capacity calculation unit 21e Power generation amount prediction unit 22 Storage units 100, 101a to 101g, 102a to 102g, 111a to 111g, 112a to 112g

Claims (7)

特定地域に設置される太陽光発電設備の発電量を予測する発電量予測装置であって、
前記特定地域よりも風上に位置する第1地点の過去の日射量を示す第1日射量過去情報と、前記特定地域を挟んで前記第1地点と対向し、前記特定地域よりも風下に位置する第2地点の過去の日射量を示す第2日射量過去情報と、を予め格納する記憶部と、
前記第1日射量過去情報と、前記第1日射量過去情報に対応する前記第2日射量過去情報とに基づいて、前記第1地点と前記第2地点の間の前記特定地域における日射量の変化傾向を特定する変化傾向算定部と、
前記第1地点の第1実測日射量と、前記変化傾向とに基づいて前記特定地域の予測日射量を算出するとともに、前記予測日射量に基づいて前記特定地域に設置される前記太陽光発電設備の発電量を予測する発電量予測部と、
を備えることを特徴とする発電量予測装置。
A power generation amount prediction device for predicting a power generation amount of a solar power generation facility installed in a specific area,
The first solar radiation amount past information indicating the past solar radiation amount of the first point located on the windward side from the specific region, the first point facing the first region across the specific region, and located leeward from the specific region A storage unit that stores in advance the second solar radiation amount past information indicating the past solar radiation amount of the second point to be,
Based on the first solar radiation amount past information and the second solar radiation amount past information corresponding to the first solar radiation amount past information, the solar radiation amount in the specific area between the first point and the second point is determined. A change trend calculator that identifies the change trend;
The solar power generation facility installed in the specific area based on the predicted solar radiation amount while calculating the predicted solar radiation amount of the specific area based on the first actually measured solar radiation amount of the first point and the change tendency A power generation amount prediction unit for predicting the power generation amount of
A power generation amount prediction apparatus comprising:
風向と交差する方向に前記特定地域を、風上側の第1地域と、風下側の第2地域と、に区分けする予測地域区分部
をさらに備え、
前記変化傾向算定部は、前記第1日射量過去情報と、前記第1日射量過去情報に対応する前記第2日射量過去情報とに基づいて、前記第1地域における日射量の第1変化傾向と、前記第2地域における日射量の第2変化傾向と、を算定し、
前記発電量予測部は、前記第1実測日射量と、前記第1変化傾向とに基づいて、前記第1地域の第1予測日射量を算出するとともに、前記第1予測日射量に基づいて前記第1地域に設置される前記太陽光発電設備の第1発電量を予測し、前記第1実測日射量と、前記第2変化傾向とに基づいて、前記第2地域の第2予測日射量を算出するとともに、前記第2予測日射量に基づいて前記第2地域に設置される前記太陽光発電設備の第2発電量を予測する
ことを特徴とする請求項1に記載の発電量予測装置。
A predictive region classification unit that divides the specific region into a first region on the windward side and a second region on the leeward side in a direction crossing the wind direction;
The change tendency calculation unit is configured to determine a first change tendency of the solar radiation amount in the first region based on the first solar radiation amount past information and the second solar radiation amount past information corresponding to the first solar radiation amount past information. And a second change tendency of the amount of solar radiation in the second region,
The power generation amount prediction unit calculates a first predicted solar radiation amount of the first region based on the first actually measured solar radiation amount and the first change tendency, and based on the first predicted solar radiation amount, A first power generation amount of the photovoltaic power generation facility installed in the first region is predicted, and a second predicted solar radiation amount of the second region is calculated based on the first actually measured solar radiation amount and the second change tendency. The power generation amount prediction device according to claim 1, wherein the second power generation amount of the solar power generation facility installed in the second area is predicted based on the second predicted solar radiation amount.
前記予測地域区分部は、風向と垂直に交差する方向に前記特定地域を、風上側の前記第1地域と、風下側の前記第2地域と、に区分けする
ことを特徴とする請求項2に記載の発電量予測装置。
The prediction area classification unit divides the specific area into the first area on the windward side and the second area on the leeward side in a direction perpendicular to the wind direction. The power generation amount prediction apparatus described.
前記予測地域区分部は、風向に応じて、前記特定地域における前記第1地域および前記第2地域の区分けを変更する
ことを特徴とする請求項2又は請求項3に記載の発電量予測装置。
The power generation amount prediction device according to claim 2 or 3, wherein the predicted area classification unit changes the classification of the first area and the second area in the specific area according to a wind direction.
前記第1地域に設置される前記太陽光発電設備の第1発電容量と、前記第2地域に設置される前記太陽光発電設備の第2発電容量と、を算出する発電容量算出部
をさらに備え、
前記発電量予測部は、前記第1予測日射量と前記第1発電容量とに基づいて前記第1発電量を予測し、前記第2予測日射量と前記第2発電容量とに基づいて前記第2発電量を予測する
ことを特徴とする請求項2乃至請求項4に記載の発電量予測装置。
A power generation capacity calculating unit that calculates a first power generation capacity of the solar power generation facility installed in the first area and a second power generation capacity of the solar power generation facility installed in the second area; ,
The power generation amount prediction unit predicts the first power generation amount based on the first predicted solar radiation amount and the first power generation capacity, and based on the second predicted solar radiation amount and the second power generation capacity, The power generation amount prediction apparatus according to claim 2, wherein two power generation amounts are predicted.
特定地域に設置される太陽光発電設備の発電量を予測する発電量予測方法であって、 前記特定地域よりも風上に位置する第1地点の過去の日射量を示す第1日射量過去情報と、前記特定地域を挟んで前記第1地点と対向し、前記特定地域よりも風下に位置する第2地点の過去の日射量を示す第2日射量過去情報と、を予め格納し、
前記第1日射量過去情報と、前記第1日射量過去情報に対応する前記第2日射量過去情報とに基づいて、前記第1地点と前記第2地点の間の前記特定地域における日射量の変化傾向を特定し、
前記第1地点の第1実測日射量と、前記変化傾向とに基づいて前記特定地域の予測日射量を算出するとともに、前記予測日射量に基づいて前記特定地域に設置される前記太陽光発電設備の発電量を予測する
ことを特徴とする発電量予測方法。
A power generation amount prediction method for predicting a power generation amount of a photovoltaic power generation facility installed in a specific area, the first solar radiation amount past information indicating a past solar radiation amount at a first point located upstream from the specific area. And the second solar radiation amount past information indicating the past solar radiation amount of the second point facing the first point across the specific region and located leeward than the specific region,
Based on the first solar radiation amount past information and the second solar radiation amount past information corresponding to the first solar radiation amount past information, the solar radiation amount in the specific area between the first point and the second point is determined. Identify change trends,
The solar power generation facility installed in the specific area based on the predicted solar radiation amount while calculating the predicted solar radiation amount of the specific area based on the first actually measured solar radiation amount of the first point and the change tendency A method for predicting the amount of power generation characterized by predicting the amount of power generation.
特定地域に設置される太陽光発電設備の発電量を予測する発電量予測システムであって、
前記特定地域よりも風上に位置する第1地点の日射量を計測する第1日射量計と、
前記特定地域を挟んで前記第1地点と対向し、前記特定地域よりも風下に位置する第2地点の日射量を計測する第2日射量計と、
前記第1地点の過去の日射量を示す第1日射量過去情報と、前記第2地点の過去の日射量を示す第2日射量過去情報と、を予め格納する記憶部と、前記第1日射量過去情報と、前記第1日射量過去情報に対応する前記第2日射量過去情報とに基づいて、前記第1地点と前記第2地点の間の前記特定地域における日射量の変化傾向を特定する変化傾向算定部と、前記第1地点の第1実測日射量と前記変化傾向とに基づいて前記特定地域の予測日射量を算出するとともに、前記予測日射量に基づいて前記特定地域に設置される前記太陽光発電設備の発電量を予測する発電量予測部と、を備える発電量予測装置と、
を備えることを特徴とする発電量予測システム。
A power generation amount prediction system that predicts the amount of power generated by solar power generation facilities installed in a specific area,
A first solar radiation meter that measures the amount of solar radiation at a first point located upstream from the specific area;
A second solar radiation meter that measures the amount of solar radiation at a second point that faces the first point across the specific area and is located leeward of the specific area;
A storage unit for preliminarily storing first solar radiation amount past information indicating a past solar radiation amount at the first point and second solar radiation amount past information indicating a past solar radiation amount at the second point; and the first solar radiation. Based on the amount past information and the second amount of solar radiation past information corresponding to the first amount of solar radiation past information, a change trend of the amount of solar radiation in the specific area between the first point and the second point is specified. And calculating a predicted solar radiation amount of the specific area based on the first measured solar radiation amount and the change tendency of the first point, and installed in the specific area based on the predicted solar radiation amount A power generation amount prediction unit that predicts a power generation amount of the solar power generation facility, and
A power generation amount prediction system comprising:
JP2017018922A 2017-02-03 2017-02-03 Power generation amount prediction device, power generation amount prediction method, power generation amount prediction system Active JP6922238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017018922A JP6922238B2 (en) 2017-02-03 2017-02-03 Power generation amount prediction device, power generation amount prediction method, power generation amount prediction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017018922A JP6922238B2 (en) 2017-02-03 2017-02-03 Power generation amount prediction device, power generation amount prediction method, power generation amount prediction system

Publications (2)

Publication Number Publication Date
JP2018126038A true JP2018126038A (en) 2018-08-09
JP6922238B2 JP6922238B2 (en) 2021-08-18

Family

ID=63111756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017018922A Active JP6922238B2 (en) 2017-02-03 2017-02-03 Power generation amount prediction device, power generation amount prediction method, power generation amount prediction system

Country Status (1)

Country Link
JP (1) JP6922238B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111415029A (en) * 2019-06-11 2020-07-14 中国电力工程顾问集团华北电力设计院有限公司 Prediction system and prediction method for large-scale new energy output characteristics
KR20210070025A (en) * 2019-12-04 2021-06-14 한국항공우주연구원 Method, apparatus and computer program for predicting solar radiation
KR20210147366A (en) * 2020-05-28 2021-12-07 숭실대학교산학협력단 System and method for solar power generation forecast using a similar day based on reinforcement learning

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182017A (en) * 2007-01-24 2008-08-07 Meidensha Corp Control method of photovoltaic power generation system and power generation predicting apparatus of photovoltaic power generation system
JP2010186840A (en) * 2009-02-11 2010-08-26 Mitsubishi Electric Corp Photovoltaic generation system
US20110060475A1 (en) * 2009-08-05 2011-03-10 First Solar, Inc. Cloud Tracking
JP2012124188A (en) * 2010-12-06 2012-06-28 Hitachi Ltd Photovoltaic power generation prediction device, photovoltaic power generation prediction method, system voltage controller, system voltage control method
JP2013051326A (en) * 2011-08-31 2013-03-14 Sanyo Electric Co Ltd Power generation amount prediction system and power management system using the same
JP2015169621A (en) * 2014-03-10 2015-09-28 トヨタ自動車株式会社 power generation amount prediction device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182017A (en) * 2007-01-24 2008-08-07 Meidensha Corp Control method of photovoltaic power generation system and power generation predicting apparatus of photovoltaic power generation system
JP2010186840A (en) * 2009-02-11 2010-08-26 Mitsubishi Electric Corp Photovoltaic generation system
US20110060475A1 (en) * 2009-08-05 2011-03-10 First Solar, Inc. Cloud Tracking
JP2012124188A (en) * 2010-12-06 2012-06-28 Hitachi Ltd Photovoltaic power generation prediction device, photovoltaic power generation prediction method, system voltage controller, system voltage control method
JP2013051326A (en) * 2011-08-31 2013-03-14 Sanyo Electric Co Ltd Power generation amount prediction system and power management system using the same
JP2015169621A (en) * 2014-03-10 2015-09-28 トヨタ自動車株式会社 power generation amount prediction device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
小林浩昭: ""他の地域の発電量データを利用した太陽光発電の短期予測"", 電気学会研究会資料, vol. 分冊3,PE-14-164, JPN6020049387, 2014, pages 119 - 124, ISSN: 0004412668 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111415029A (en) * 2019-06-11 2020-07-14 中国电力工程顾问集团华北电力设计院有限公司 Prediction system and prediction method for large-scale new energy output characteristics
KR20210070025A (en) * 2019-12-04 2021-06-14 한국항공우주연구원 Method, apparatus and computer program for predicting solar radiation
KR102367028B1 (en) 2019-12-04 2022-02-24 한국항공우주연구원 Method, apparatus and computer program for predicting solar radiation
KR20210147366A (en) * 2020-05-28 2021-12-07 숭실대학교산학협력단 System and method for solar power generation forecast using a similar day based on reinforcement learning
KR102394050B1 (en) 2020-05-28 2022-05-03 숭실대학교 산학협력단 System and method for solar power generation forecast using a similar day based on reinforcement learning

Also Published As

Publication number Publication date
JP6922238B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
CN104809511B (en) Insulator pollution prediction method and apparatus
Lange On the uncertainty of wind power predictions—Analysis of the forecast accuracy and statistical distribution of errors
JP7194868B1 (en) Methods and apparatus for detecting yaw anomalies with respect to wind, and devices and storage media thereof
US20170124461A1 (en) Air quality forecast by adapting pollutant emission inventory
CN108664682A (en) A kind of prediction technique and its system of transformer top-oil temperature
JP2018126038A (en) Power generation amount prediction device, power generation amount prediction method, and power generation amount prediction system
CN105511957A (en) Method and system for generating work alarm
KR102310306B1 (en) Method for clustering power plants and performing cluster based abnormality diagnosis
CN110009736A (en) Method for building up, device, equipment and the storage medium of three-dimensional wake flow model
US20230327440A1 (en) Power generation amount management system and power generation amount management method
Massaro et al. Advanced and Complex Energy Systems Monitoring and Control: A Review on Available Technologies and Their Application Criteria
CN115526429A (en) Decoupling analysis method for wind power prediction error, processor and storage medium
Wolff et al. Selection of numerical weather forecast features for PV power predictions with random forests
Sathler et al. Overall equipment effectiveness as a metric for assessing operational losses in wind farms: a critical review of literature
CN116482460A (en) Fault diagnosis method for power grid equipment and related equipment
Franklin et al. Development of cost effective data acquisition system to evaluate the performance of solar photovoltaic thermal systems
CN108267613B (en) Wind measurement data processing method and related equipment
Li et al. Predicting Vertical Daylight Illuminance Data From Measured Solar Irradiance: A Machine Learning-Based Luminous Efficacy Approach
CN115983449A (en) Offshore base field group determination method and device, storage medium and electronic equipment
KR20170060361A (en) Device for analyzing power demands and system comprising the same
JP2016136807A (en) Power generation amount prediction device, power generation amount prediction method and program
JP2018207669A (en) Power generation amount prediction device, power generation amount prediction method, and program
KR101947868B1 (en) Method for designing, planning of solar photovoltatic powergeneration system and computer readable record medium on which a program therefor is recorded
WO2020105151A1 (en) Facility maintenance inspection assisting system and order of inspection determination method
CN112749820A (en) Wind power prediction method and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R150 Certificate of patent or registration of utility model

Ref document number: 6922238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150