JP2018124699A - Frequency response analysis algorithm - Google Patents

Frequency response analysis algorithm Download PDF

Info

Publication number
JP2018124699A
JP2018124699A JP2017015031A JP2017015031A JP2018124699A JP 2018124699 A JP2018124699 A JP 2018124699A JP 2017015031 A JP2017015031 A JP 2017015031A JP 2017015031 A JP2017015031 A JP 2017015031A JP 2018124699 A JP2018124699 A JP 2018124699A
Authority
JP
Japan
Prior art keywords
force
friction
delay element
frequency response
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017015031A
Other languages
Japanese (ja)
Other versions
JP6966062B2 (en
Inventor
佳弘 前田
Yoshihiro Maeda
佳弘 前田
佑希 杉浦
Yuki Sugiura
佑希 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2017015031A priority Critical patent/JP6966062B2/en
Publication of JP2018124699A publication Critical patent/JP2018124699A/en
Application granted granted Critical
Publication of JP6966062B2 publication Critical patent/JP6966062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To be related to a frequency response analysis algorithm for identifying linear dynamics of a mechanical system (1) by vibrating force.SOLUTION: Frequency response analysis algorithm includes a plant (20) and an observer (10) in a block diagram of a mechanism system (1). In the plant (20), a position (y ') in response to an input (u) originating from the vibrating force is output from friction force (f), a plant characteristic (P(s)), a delay element of the force dimension (Gdi(s)), and a delay element of the position dimension (Gdo(s)). In the observer (10), a difference from a friction force (fob) calculated from a friction model (15) using the position (y ') and a product of the input (u), a delay element model of the force dimension (Gdim(s)), and a delay element model of the position dimension (Gdom(s)), is output as an update value of the input (u). The vibrating force may be small, there is no big noise to vibrate the mechanism system and there is no risk of destroying the mechanical system. It is unnecessary to update and adjust the vibrating force and friction model parameters.SELECTED DRAWING: Figure 2

Description

本発明は、各種案内・軸受を有する精密位置決め機構システム(以下、機構システムと記す)に対する、線形ダイナミクスの周波数特性を同定するための周波数応答解析アルゴリズムに関する。 The present invention relates to a frequency response analysis algorithm for identifying frequency characteristics of linear dynamics for a precision positioning mechanism system (hereinafter referred to as a mechanism system) having various guides and bearings.

機構システムに対する、線形ダイナミクスの周波数特性を同定する従来技術は主に2つある。 There are two main techniques for identifying the frequency characteristics of linear dynamics for mechanical systems.

従来技術1は、例えば特許文献1のようにサーボアナライザを用いた正弦波掃引試験において、周波数応答解析時の機構システムに対する加振力を、機構システムが有する摩擦力の影響が無視できるように増加することである。加振力を増加することで周波数応答解析結果における摩擦の影響を低減できるが、機構システムへの最大加振力の制限、加振する際の大きな騒音、大加振力による機構システム破損の恐れなどの理由で、実用的ではないことも多い。 In prior art 1, for example, in a sinusoidal sweep test using a servo analyzer as in Patent Document 1, the excitation force on the mechanism system at the time of frequency response analysis is increased so that the influence of the frictional force of the mechanism system can be ignored. It is to be. Although the influence of friction on the frequency response analysis results can be reduced by increasing the excitation force, the maximum excitation force on the mechanical system is limited, the loud noise during vibration, and the mechanical system may be damaged by the large excitation force For many reasons, it is not practical.

また従来技術1においては、周波数応答解析アルゴリズムに対する力と位置に関する2つの入力信号のうち、力の次元に対応する信号には機構システムへの加振力そのものを用いるため、軸受・案内部で発生する摩擦の影響が考慮されていない。よって、線形ダイナミクスに対する周波数応答解析における非線形な摩擦の影響を除去できない。 Further, in the prior art 1, since the excitation force to the mechanism system itself is used for the signal corresponding to the force dimension among the two input signals related to the force and position for the frequency response analysis algorithm, it is generated in the bearing / guide unit. The effect of friction is not taken into account. Therefore, the influence of nonlinear friction in the frequency response analysis with respect to linear dynamics cannot be removed.

一方、非特許文献1に記載されている従来技術2は、摩擦モデルを用いて摩擦を推定し、周波数応答解析における摩擦の影響を低減可能であるが、システムの入出力に存在する遅れ要素の影響を考慮していなため、線形ダイナミクスに対する解析誤差を生じる。これに対し、加振力の増加や、摩擦モデルパラメータの更新・調整を要する、という問題点を有する。
即ち、従来技術2において、入出力に存在する遅れ要素を考慮していないため、線形ダイナミクスの解析誤差を生ずる。また、その解析誤差を補正するための加振力や摩擦モデルパラメータの調整・更新に多大な労力が必要となる。
On the other hand, the related art 2 described in Non-Patent Document 1 can estimate the friction using a friction model and reduce the influence of friction in the frequency response analysis. Since the influence is not taken into account, an analysis error for linear dynamics is generated. On the other hand, there is a problem that it is necessary to increase the excitation force and to update / adjust the friction model parameters.
That is, in the conventional technique 2, since a delay element existing in input / output is not taken into consideration, an analysis error of linear dynamics occurs. In addition, much effort is required to adjust and update the excitation force and the friction model parameters for correcting the analysis error.

特開平8−094690JP-A-8-094690

Proc. IEEE IECON2017, 'Analysis and Compensation of Nonlinear Friction Effect on Frequency Identification', pp.4453-4458.Proc.IEEE IECON2017, 'Analysis and Compensation of Nonlinear Friction Effect on Frequency Identification', pp.4453-4458.

本発明の課題は、機構システムに過大な加振力を加えることなく、解析誤差を補正するための加振力や摩擦モデルパラメータの調整・更新に多大な労力を必要としない線形ダイナミクスの周波数特性を同定する周波数応答解析アルゴリズムを提供することである。 The problem of the present invention is that the frequency characteristics of linear dynamics do not require a great deal of effort to adjust or update the excitation force and friction model parameters for correcting the analysis error without applying an excessive excitation force to the mechanism system. It is to provide a frequency response analysis algorithm for identifying.

課題を解決するために、発明は、加振力により機構システム(1)の線形ダイナミクスを同定する周波数応答解析アルゴリズムにおいて、機構システム(1)のブロック線図に、プラント(20)及びオブザーバ(10)を有し、加振力に起因する入力(u)に対し、プラント(20)において、摩擦力(f)、プラント特性(P(s))、力次元の遅れ要素(Gdi(s))と位置次元の遅れ要素(Gdo(s))より位置(y’)を出力し、オブザーバ(10)において、入力(u)と、力次元の遅れ要素モデル(Gdim(s))と、位置次元の遅れ要素モデル(Gdom(s))と、の積と、位置(y’)を用いて摩擦モデル(15)から算出した摩擦力(fob)との差を、実入力(ue)の推定値(uob)として出力する周波数応答解析アルゴリズムである。
なお、上記及び特許請求の範囲における括弧内の符号は、特許請求の範囲に記載された用語と後述の実施形態に記載されて当該用語の例となる具体物等との対応関係を示すものである。
In order to solve the problem, the present invention relates to a frequency response analysis algorithm for identifying linear dynamics of a mechanism system (1) by an excitation force, and includes a plant (20) and an observer (10) in a block diagram of the mechanism system (1). ) And an input (u) due to the excitation force, the plant (20) has a frictional force (f), a plant characteristic (P (s)), and a force dimension delay element (Gdi (s)). And the position (y ′) from the position dimension delay element (Gdo (s)), and the observer (10) receives the input (u), the force dimension delay element model (Gdim (s)), and the position dimension. The difference between the product of the delay element model (Gdom (s)) and the frictional force (fob) calculated from the friction model (15) using the position (y ′) is the estimated value of the actual input (ue) The frequency to output as (uob) It is the answer analysis algorithm.
In addition, the code | symbol in the parenthesis in the said and the claim shows the correspondence of the term described in the claim, and the specific substance etc. which are described in the below-mentioned embodiment, and become the example of the said term. is there.

発明によると、加振力は、機構システムを動かす程度でよい。即ち、機構システムの摩擦力を考慮した適正な加振力でよいので、機構システムを加振する際の大きな騒音がない。よって、機構システムを破壊する恐れもない。
また、加振力や摩擦モデル入出力の遅れ要素の影響を考慮しているため、加振力や摩擦モデルパラメータ更新・調整が不要である。従って、機構システムの線形ダイナミクスを同定する周波数応答解析において、人的労力や時間の削減が可能である。
According to the invention, the excitation force may be sufficient to move the mechanism system. That is, since an appropriate excitation force that takes into account the frictional force of the mechanism system is sufficient, there is no significant noise when the mechanism system is vibrated. Therefore, there is no fear of destroying the mechanism system.
In addition, since the influence of the excitation force and the delay factor of the friction model input / output is taken into consideration, it is not necessary to update or adjust the excitation force or the friction model parameter. Therefore, it is possible to reduce human labor and time in the frequency response analysis for identifying the linear dynamics of the mechanism system.

実施形態のFRAシステム構成を示すブロック線図。The block diagram which shows the FRA system structure of embodiment. 実施形態のプラント及びオブザーバの詳細を示すブロック線図。The block diagram which shows the detail of the plant and observer of embodiment. 本発明におけるころがり摩擦の考え方を示す。The concept of rolling friction in the present invention will be described. 実施形態の摩擦モデルの実施例を示すブロック線図。The block diagram which shows the Example of the friction model of embodiment. 本実施形態の周波数応答のシミュレーション結果を示す(比較:遅れ要素を考慮しない、摩擦を考慮しない)。The simulation result of the frequency response of this embodiment is shown (comparison: delay element is not considered, friction is not considered). 本実施形態の周波数応答のシミュレーション結果を示す(比較:遅れ要素を考慮しない、摩擦要素を考慮)。The simulation result of the frequency response of this embodiment is shown (comparison: a delay element is not considered, a friction element is considered). 本実施形態の周波数応答を制御器モデルに用いた位置決め過渡応答のシミュレーション結果を示す(比較:遅れ要素を考慮、摩擦要素を考慮しない)。The simulation result of the positioning transient response which used the frequency response of this embodiment for the controller model is shown (comparison: a delay element is considered, a friction element is not considered). 従来のFRAシステム構成を示すブロック線図。The block diagram which shows the conventional FRA system structure.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

(実施形態)
機構システム1は、機器部(可動部を備える揺動あるいは直動機械、可動部に対する推力を発生するアクチュエータ、アクチュエータを駆動するためのサーボアンプ及び可動部位置を検出するセンサ等、制御演算を行う補償器)と周波数応答解析(以下、FRA)部によって構成される。
本実施形態は、このような摩擦を内在するメカトロニクス機器の線形ダイナミクスに対する、周波数応答解析を用いた周波数応答解析アルゴリズムに関するものである。
(Embodiment)
The mechanism system 1 performs control calculations such as a device unit (a swinging or linear motion machine including a movable unit, an actuator that generates thrust for the movable unit, a servo amplifier for driving the actuator, and a sensor that detects the position of the movable unit). Compensator) and a frequency response analysis (hereinafter referred to as FRA) unit.
The present embodiment relates to a frequency response analysis algorithm using frequency response analysis with respect to linear dynamics of a mechatronics device in which such friction is inherent.

図1は、FRAシステムの実施形態のブロック線図である。機構システム1のFRAシステム3は、サーボアナライザ5とオブザーバ10を有する。機構システム1の機器部は、プラント20と制御演算を行う補償器C(z)7を有する。プラント20には、機器部のサーボアンプやセンサに起因する入出力の遅れ要素、機械系における共振振動などの線形ダイナミクス、可動部の位置や速度に依存した非線形な摩擦が含まれる。
FRAシステム3より、一定周波数の加振力usinを出力されると、加振力usinは、第1加算器8を経由してオブザーバ10とプラント20への入力uとなる。入力uによってプラント20が変位y’を生じる。変位y’は、FRAシステム3のサーボアナライザ5とオブザーバ10へ入力されると共に、第2加算器9に入力され、位置指令r(例えばr=0)との差分が計算されて補償器C(z)7に入力される。
補償器C(z)7では、制御アルゴリズムに基づき変位の次元から力の次元に変換し、FRAシステム3からの加振力usinに加算されプラントへの入力uとなる。
本実施形態は、オブザーバ10にて、入力uと変位y’から更新された実入力ueの推定uobが出力され、サーボアナライザ5に入力される。ここで、実入力ueの推定uobでは、機構システム1の機器部の摩擦の影響が除かれている。
即ち、同定対象となるプラント20における実入力ueの推定uobと出力y’をサーボアナライザ3に入力する。サーボアナライザ3では、離散フーリエ変換等の周波数解析アルゴリズムによってuobとy’の周波数応答を算出し、ゲイン及び位相を計算する。uobには、実際の機器部の摩擦力の影響が除かれているので線形特性のみで構成される。よって、本実施形態は、線形プラント特性に対する高精度なFRAを用いた周波数応答解析アルゴリズムとなる。
FIG. 1 is a block diagram of an embodiment of an FRA system. The FRA system 3 of the mechanism system 1 includes a servo analyzer 5 and an observer 10. The equipment part of the mechanism system 1 includes a compensator C (z) 7 that performs control calculation with the plant 20. The plant 20 includes input / output delay elements caused by servo amplifiers and sensors in the equipment section, linear dynamics such as resonance vibration in the mechanical system, and nonlinear friction depending on the position and speed of the movable section.
When an excitation force usin having a constant frequency is output from the FRA system 3, the excitation force usin becomes an input u to the observer 10 and the plant 20 via the first adder 8. The input u causes the plant 20 to produce a displacement y ′. The displacement y ′ is input to the servo analyzer 5 and the observer 10 of the FRA system 3 and also input to the second adder 9, and a difference from the position command r (for example, r = 0) is calculated to calculate the compensator C ( z) is input to 7.
The compensator C (z) 7 converts the displacement dimension into the force dimension based on the control algorithm, and adds to the excitation force usin from the FRA system 3 to become an input u to the plant.
In this embodiment, the observer 10 outputs an estimated uob of the actual input ue updated from the input u and the displacement y ′, and inputs it to the servo analyzer 5. Here, in the estimation uob of the actual input ue, the influence of the friction of the device unit of the mechanism system 1 is excluded.
That is, the estimation uob of the actual input ue and the output y ′ in the plant 20 to be identified are input to the servo analyzer 3. In the servo analyzer 3, the frequency response of uob and y ′ is calculated by a frequency analysis algorithm such as discrete Fourier transform, and the gain and phase are calculated. Since the influence of the frictional force of the actual device part is removed, uub is composed only of linear characteristics. Therefore, the present embodiment is a frequency response analysis algorithm using a highly accurate FRA for linear plant characteristics.

加振力usinは、単一周波数のサイン波を用いたが、これに限らずM系列や合成正弦波等の複数の周波数成分から構成される信号でもよい。 As the excitation force usin, a sine wave having a single frequency is used. However, the excitation force usin is not limited to this, and may be a signal composed of a plurality of frequency components such as an M series and a synthesized sine wave.

FRAシステム3にはサーボアナライザ5を用いたが、これに限らず周波数解析を行うアルゴリズムを備えるシステムでもよい。 Although the servo analyzer 5 is used for the FRA system 3, the present invention is not limited to this, and a system including an algorithm for performing frequency analysis may be used.

図2は、実施形態のプラント20及びオブザーバ10の詳細を示すブロック線図である。
プラント20において、線形ダイナミクスP(s)への実入力ueは、入力uと、実制御対象中の入力に存在する力次元の遅れ要素Gdi(s)の積から、第4加算器27にてシステム1の摩擦力fを差し引くことで表される。ここで、力次元の遅れ要素Gdi(s)は、伝達関数である。
次に、実入力ueとプラント特性P(s)との積にて変位yを得る。ここで、プラント特性P(s)は、機構システム(1)の線形ダイナミクスを表す伝達関数であり、例えば数式(1)で示される。
FIG. 2 is a block diagram illustrating details of the plant 20 and the observer 10 according to the embodiment.
In the plant 20, the actual input ue to the linear dynamics P (s) is obtained by the fourth adder 27 from the product of the input u and the force dimension delay element Gdi (s) existing in the input in the actual control target. It is expressed by subtracting the friction force f of the system 1. Here, the force dimension delay element Gdi (s) is a transfer function.
Next, the displacement y is obtained by the product of the actual input ue and the plant characteristic P (s). Here, the plant characteristic P (s) is a transfer function representing the linear dynamics of the mechanism system (1), and is represented by, for example, Expression (1).

変位yに位置次元の遅れ要素Gdo(s)の積にて変位y’を得る。ここで、位置次元の遅れ要素Gdo(s)は、伝達関数である。
オブザーバ10においては、まず入力uと、力次元の遅れ要素モデルGdim(s)と、位置次元の遅れ要素モデルGdim(s)と、の積を算出する。一方、プラント20の出力である変位y’に対し、摩擦モデル15により摩擦力fobを求める。実入力ueの推定uobは、第3加算器17にて、uとGdim(s)とGdom(s)の積から摩擦力fobを引いて求める。この関係を数式(2)に示す。
The displacement y ′ is obtained by multiplying the displacement y by the delay element Gdo (s) in the position dimension. Here, the position dimension delay element Gdo (s) is a transfer function.
The observer 10 first calculates the product of the input u, the force dimension delay element model Gdim (s), and the position dimension delay element model Gdim (s). On the other hand, the friction force fob is obtained by the friction model 15 with respect to the displacement y ′ that is the output of the plant 20. The estimated uob of the actual input ue is obtained by subtracting the frictional force fob from the product of u, Gdim (s), and Gdom (s) by the third adder 17. This relationship is shown in Equation (2).

ここで、摩擦モデル15が実摩擦特性を理想的に表現できるとき、摩擦力fobは数式(3)を満たす。

ここで、モデル化によりGdo(s)=Gdom(s)とみなせるとき、数式(2)、(3)より数式(4)が成立する。
Here, when the friction model 15 can ideally express the actual friction characteristic, the frictional force fob satisfies Expression (3).

Here, when it can be considered that Gdo (s) = Gdom (s) by modeling, Expression (4) is established from Expressions (2) and (3).

加えて、モデル化によりGdi(s)=Gdim(s)とみなせるとき、数式(2)、(3)、(4)より、数式(1)のプラント特性P(s)の推定Pob(s)は、数式(5)で計算できる。
In addition, when Gdi (s) = Gdim (s) can be considered by modeling, the estimated Pob (s) of the plant characteristic P (s) of Equation (1) from Equations (2), (3), and (4). Can be calculated by equation (5).

本実施形態で供される摩擦モデル15とは、位置および速度等の入力に対して摩擦力を出力するモデルを指す。
機構システム1の可動部に内在する各種ころがり案内・ころがり軸受機構で発生する摩擦がころがり摩擦等を対象とする。具体的には、可動部に用いられる案内・軸受部の実機データ、計算から摩擦モデルを構築する。例えば転がり摩擦は、転がり要素を用いた案内・軸受で発生する摩擦力であり、粗動・微動によって非線形に摩擦挙動が変化する。数10〜数100μmの微動領域では非線形ばね特性を示し、それ以上の粗動領域ではクーロン摩擦による静的特性を示す。ころがり摩擦に限らず、すべり案内・軸受などの摺動部も摩擦に対しても同様にモデル化すれば、FRAシステムにおける摩擦モデルとして使用することができる。
The friction model 15 provided in this embodiment refers to a model that outputs a friction force in response to inputs such as position and speed.
Friction generated by various rolling guide / rolling bearing mechanisms inherent in the movable part of the mechanism system 1 is intended for rolling friction and the like. Specifically, a friction model is constructed from actual machine data and calculation of the guide / bearing used for the movable part. For example, rolling friction is a frictional force generated in a guide / bearing using a rolling element, and the frictional behavior changes nonlinearly due to coarse / fine movement. Nonlinear spring characteristics are exhibited in the fine movement region of several tens to several hundreds of micrometers, and static characteristics due to Coulomb friction are exhibited in the coarse movement region higher than that. Not only rolling friction but also sliding parts such as sliding guides and bearings can be modeled similarly to friction, and can be used as a friction model in the FRA system.

図3は、本実施形態におけるころがり摩擦の考え方を示す。
図3(a)は、ころがり摩擦の全体サイクル(ア)〜(エ)を示す。横軸を変位、縦軸を摩擦力である。(ア)より右側へ移動する際、変位に対して摩擦力が非線形かつ急峻に増加して(イ)に移る。(イ)から(ウ)へは、変位の増加に対して摩擦力の増加は緩やかである。(ウ)より左側へ移動する際、変位に対して摩擦力は急峻に減少して(エ)に移動する。(エ)から(ア)へは、変位の減少(減少量)に対して摩擦力の減少は緩やかである。
図3(b)は、(ア)から(イ)の変化を拡大して示す。
微動は(ア)から(イ)及び(ウ)から(エ)であり、ころがり案内・軸受機構で供されるころがり要素が有効に転動するまでを指す。粗動は(イ)から(ウ)及び(エ)から(ア)であり、ころがり要素が完全に転動している状態を指す。
FIG. 3 shows the concept of rolling friction in this embodiment.
Fig.3 (a) shows the whole cycle (a)-(d) of rolling friction. The horizontal axis is displacement, and the vertical axis is frictional force. When moving to the right side from (a), the frictional force increases non-linearly and steeply with respect to the displacement and moves to (b). From (b) to (c), the increase in friction force is moderate with respect to the increase in displacement. When moving to the left side from (c), the frictional force sharply decreases with respect to the displacement and moves to (d). From (D) to (A), the decrease in friction force is moderate with respect to the decrease (decrease amount) in displacement.
FIG. 3B shows an enlarged view of the change from (a) to (b).
The fine movements are (a) to (b) and (c) to (d) and refer to the rolling element provided by the rolling guide / bearing mechanism until it effectively rolls. Coarse movement is from (A) to (U) and from (E) to (A), and refers to a state in which the rolling elements are completely rolling.

図4は、転がり摩擦の摩擦モデル15を示す。転がり摩擦モデル15は、N個の要素モデルが並列に繋がっている。各要素モデルには、弾性要素Kiと減衰要素Diが並列に構成され、摩擦力fiが発生する。この各要素モデルの摩擦力fiを加えた値が転がり摩擦力になる。 FIG. 4 shows a friction model 15 of rolling friction. In the rolling friction model 15, N element models are connected in parallel. In each element model, an elastic element Ki and a damping element Di are configured in parallel, and a frictional force fi is generated. A value obtained by adding the frictional force fi of each element model is a rolling frictional force.

転がり摩擦力は、数式(6)〜(11)により計算される。
The rolling friction force is calculated by the mathematical formulas (6) to (11).

一方、機構システム1の粘性に起因する粘性摩擦力は数式(12)で計算される。
On the other hand, the viscous frictional force resulting from the viscosity of the mechanism system 1 is calculated by Expression (12).

以上より、摩擦力fobは、数式(11)の転がり摩擦力と数式(12)式の粘性摩擦力の和として、数式(13)で表示される。
As described above, the frictional force fob is expressed by the equation (13) as the sum of the rolling friction force of the equation (11) and the viscous friction force of the equation (12).

図5は、本実施形態の周波数応答のシミュレーション結果を示す。比較として、従来技術1(遅れ要素を考慮しない、摩擦を考慮しない)を示す。
(ア)の太い破線は、同定すべき実線形プラント特性P(s)であり、目標値に相当する。本実施形態の結果を、(エ)の太い実線(振幅A=75N)、及び(オ)の太い破線(振幅A=12N)で示す。振幅Aは、加振力の最大値に相当する。以上の3つの線である(ア)、(エ)、及び(オ)は、位相、ゲインともよく一致し、一本の太線で示され良く同定できている。特に、本実施形態は、加振力が12Nと小さくでも実線形プラント特性P(s)を同定できている。
また、従来技術1のFRA法による結果(遅れ要素を考慮しない、摩擦を考慮しない)を、(イ)の細い破線(振幅A=75N)、及び(ウ)の細い破線(振幅A=12N)で示すが、(ア)の太い破線の同定すべき実線形プラント特性P(s)には一致しておらず同定できていない。なお、差が大きいほうが小さな加振力(振幅A=12N)の場合である。
FIG. 5 shows the simulation result of the frequency response of this embodiment. As a comparison, prior art 1 (not considering the delay element and not considering the friction) is shown.
The thick broken line in (a) is the real linear plant characteristic P (s) to be identified and corresponds to the target value. The results of the present embodiment are indicated by a thick solid line (a) (amplitude A = 75N) and a thick broken line (a) (amplitude A = 12N). The amplitude A corresponds to the maximum value of the excitation force. The above three lines (a), (d), and (e) are in good agreement with both phase and gain, and are well identified by a single thick line. In particular, this embodiment can identify the real linear plant characteristic P (s) even when the excitation force is as small as 12N.
Further, the results of the FRA method of the prior art 1 (not considering the delay element and not considering the friction) are shown in (a) a thin broken line (amplitude A = 75N) and (c) a thin broken line (amplitude A = 12N). However, it does not coincide with the real linear plant characteristic P (s) to be identified indicated by the thick broken line in (a) and cannot be identified. Note that the larger the difference, the smaller the excitation force (amplitude A = 12N).

図6は、本実施形態の周波数応答のシミュレーション結果を示す。比較として、非特許文献1記載されている従来技術2(遅れ要素を考慮しない、摩擦を考慮)を示す。
(ア)の太い破線は、同定すべき実線形プラント特性P(s)であり、目標値に相当する。本実施形態の結果を、(ウ)の太い実線(振幅A=12N)で示す。振幅Aは、加振力の最大値に相当する。以上の2つの線である(ア)及び(ウ)は、位相、ゲインともよく一致し、一本の太線で示され良く同定される。ここで、本実施形態は、加振力が12Nと小さくでも実線形プラント特性P(s)を再現できている。
同時に従来技術2のFRA法による結果(遅れ要素を考慮しない、摩擦を考慮)を、(イ)の実線(振幅A=75N)で示すが、加振力を大きくしても、(ア)の太い破線の同定すべき実線形プラント特性P(s)には一致せず同定できていない。
FIG. 6 shows the simulation result of the frequency response of this embodiment. As a comparison, prior art 2 described in Non-Patent Document 1 (not considering delay elements, considering friction) is shown.
The thick broken line in (a) is the real linear plant characteristic P (s) to be identified and corresponds to the target value. The result of this embodiment is indicated by a thick solid line (a) (amplitude A = 12N). The amplitude A corresponds to the maximum value of the excitation force. The above two lines (A) and (C) are in good agreement with both phase and gain, and are well identified by a single thick line. Here, the present embodiment can reproduce the real linear plant characteristic P (s) even when the excitation force is as small as 12N.
At the same time, the result of the FRA method of prior art 2 (not considering the lag element and considering the friction) is shown by the solid line (a) (amplitude A = 75 N). The actual linear plant characteristic P (s) to be identified with a thick broken line does not match and cannot be identified.

以上、本実施形態によれば、機構システム1に、過大な加振力を加える必要がない。機構システム1を動かす程度の、摩擦力を考慮した適正な加振力でよいので、機構システム1を加振する際の大きな騒音がない。よって、機構システムを破壊する恐れもない。
更に、解析誤差を補正するための加振力や摩擦モデルパラメータの調整・更新に多大な労力を必要としないので、人的労力や時間の削減が可能である。
よって、本実施形態は、小さな適正な加振力にて効率的に高精度で、機構システム1の線形ダイナミクスの周波数特性を同定する周波数応答解析アルゴリズムを提供することができる。
As described above, according to the present embodiment, it is not necessary to apply an excessive excitation force to the mechanism system 1. An appropriate excitation force that takes into account the frictional force that moves the mechanism system 1 is sufficient, so there is no significant noise when the mechanism system 1 is excited. Therefore, there is no fear of destroying the mechanism system.
Furthermore, since a great deal of labor is not required for adjusting and updating the excitation force and the friction model parameters for correcting the analysis error, it is possible to reduce human labor and time.
Therefore, the present embodiment can provide a frequency response analysis algorithm for identifying the frequency characteristics of the linear dynamics of the mechanism system 1 with high efficiency efficiently with a small appropriate excitation force.

図7は、本実施形態の周波数応答を制御器モデルに用いた、位置決め過渡応答のシミュレーション結果を示す。比較として、従来技術1(遅れ要素を考慮しない、摩擦を考慮しない)を示す。
(ア)の太い破線は、目標値である。(イ)に本実施形態の周波数応答を制御器モデルに用いた結果を示す。(ア)及び(イ)はよく一致している。これは、図6、7で示されるように、同定すべき実線形プラント特性P(s)を、本実施形態が良く同定しているからである。
一方、(ウ)の従来技術1(遅れ要素を考慮しない、摩擦を考慮しない)では、オ−バーシュートが発生しており、目標値とも良く一致していない。これは、同定すべき実線形プラント特性P(s)を、従来技術1は精度良く同定していないからである。このような同定誤差が生じた場合、機構システムの位置決め精度は劣化する。従来技術2(遅れ要素を考慮しない、摩擦を考慮)の場合もこれと同様の結果となる。よって、実線形プラント特性P(s)の同定精度を上げるために、加振力や摩擦モデルパラメータの調整・更新に多大な労力を必要とし、その人的労力や時間も多大となる。
FIG. 7 shows a simulation result of positioning transient response using the frequency response of the present embodiment as a controller model. As a comparison, prior art 1 (not considering the delay element and not considering the friction) is shown.
The thick broken line in (a) is the target value. (A) shows the result of using the frequency response of the present embodiment for the controller model. (A) and (b) agree well. This is because, as shown in FIGS. 6 and 7, the present embodiment sufficiently identifies the real linear plant characteristic P (s) to be identified.
On the other hand, in the conventional technique 1 of (c) (a delay element is not considered and friction is not considered), an overshoot occurs and does not agree well with the target value. This is because the prior art 1 does not accurately identify the real linear plant characteristic P (s) to be identified. When such an identification error occurs, the positioning accuracy of the mechanism system deteriorates. In the case of the prior art 2 (not considering the delay element, considering the friction), the same result is obtained. Therefore, in order to increase the identification accuracy of the real linear plant characteristic P (s), a great amount of labor is required for adjusting and updating the excitation force and the friction model parameters, and the human labor and time are also great.

(参考例)
図8は、従来のFRAシステム101の構成を示すブロック線図である。FRAシステム103にサーボアナライザ105を有するが、オブザーバ10は有しない。
(Reference example)
FIG. 8 is a block diagram showing a configuration of a conventional FRA system 101. The FRA system 103 includes the servo analyzer 105 but does not include the observer 10.

周波数応答解析機器を扱うメーカにとって、精密位置決め機構システム1等で問題視されている摩擦システムに対する線形ダイナミクス解析技術として有望である。 It is promising as a linear dynamics analysis technique for a friction system that is regarded as a problem in the precision positioning mechanism system 1 and the like for manufacturers handling frequency response analysis equipment.

1 機構システム
3 FRAシステム
5 サーボアナライザ
7 補償器C(z)
8 第1加算器
9 第2加算器
10 オブザーバ
Gdim(S) 力次元の遅れ要素モデル(伝達関数)
Gdom(S) 位置次元の遅れ要素モデル(伝達関数)
15 摩擦モデル(FM)
17 第3加算器
20 プラント
Gdi(S) 力次元の遅れ要素(伝達関数)
Gdo(S) 位置次元の遅れ要素(伝達関数)
P(s) プラント特性(伝達関数)
27 第4加算器

1 Mechanical system 3 FRA system 5 Servo analyzer
7 Compensator C (z)
8 First adder 9 Second adder 10 Observer Gdim (S) Force dimension delay element model (transfer function)
Gdom (S) Position dimension delay element model (transfer function)
15 Friction model (FM)
17 Third adder 20 Plant Gdi (S) Force dimension delay element (transfer function)
Gdo (S) Position dimension delay element (transfer function)
P (s) Plant characteristics (transfer function)
27 Fourth adder

Claims (1)

加振力により機構システム(1)の線形ダイナミクスを同定する周波数応答解析アルゴリズムにおいて、
前記機構システム(1)のブロック線図に、プラント(20)及びオブザーバ(10)を有し、
前記加振力に起因する入力(u)に対し 、
前記プラント(20)において、
摩擦力(f)、プラント特性(P(s))、力次元の遅れ要素(Gdi(s))と位置次元の遅れ要素(Gdo(s))より位置(y’)を出力し、
前記オブザーバ(10)において、
前記入力(u)と、力次元の遅れ要素モデル(Gdim(s))と、位置次元の遅れ要素モデル(Gdom(s))と、の積と、
前記位置(y’)を用いて摩擦モデル(15)から算出した摩擦力(fob)との差を、
前記入力(u)の更新値として出力する周波数応答解析アルゴリズム。

In the frequency response analysis algorithm for identifying the linear dynamics of the mechanism system (1) by the excitation force,
The block diagram of the mechanism system (1) has a plant (20) and an observer (10),
For input (u) resulting from the excitation force,
In the plant (20),
Output the position (y ′) from the frictional force (f), plant characteristics (P (s)), force dimension delay element (Gdi (s)) and position dimension delay element (Gdo (s)),
In the observer (10),
A product of the input (u), a force dimension delay element model (Gdim (s)), and a position dimension delay element model (Gdom (s));
The difference from the frictional force (fob) calculated from the friction model (15) using the position (y ′),
A frequency response analysis algorithm that is output as an updated value of the input (u).

JP2017015031A 2017-01-31 2017-01-31 Frequency response analysis algorithm Active JP6966062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017015031A JP6966062B2 (en) 2017-01-31 2017-01-31 Frequency response analysis algorithm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017015031A JP6966062B2 (en) 2017-01-31 2017-01-31 Frequency response analysis algorithm

Publications (2)

Publication Number Publication Date
JP2018124699A true JP2018124699A (en) 2018-08-09
JP6966062B2 JP6966062B2 (en) 2021-11-10

Family

ID=63108946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017015031A Active JP6966062B2 (en) 2017-01-31 2017-01-31 Frequency response analysis algorithm

Country Status (1)

Country Link
JP (1) JP6966062B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047974A1 (en) * 2022-08-31 2024-03-07 株式会社豊田自動織機 Frequency response function identification system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073476A (en) * 2003-08-28 2005-03-17 Yaskawa Electric Corp Method for extracting characteristics of machine
WO2007105527A1 (en) * 2006-03-07 2007-09-20 National University Cooperation Nagoya Institute Of Technology Control method and controller of positioning mechanism
JP2007295715A (en) * 2006-04-25 2007-11-08 Yaskawa Electric Corp System identification device and motor controller equipped therewith
JP2008299573A (en) * 2007-05-31 2008-12-11 Yaskawa Electric Corp Digital control device
JP5490335B1 (en) * 2013-06-03 2014-05-14 三菱電機株式会社 Frequency response measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073476A (en) * 2003-08-28 2005-03-17 Yaskawa Electric Corp Method for extracting characteristics of machine
WO2007105527A1 (en) * 2006-03-07 2007-09-20 National University Cooperation Nagoya Institute Of Technology Control method and controller of positioning mechanism
JP2007295715A (en) * 2006-04-25 2007-11-08 Yaskawa Electric Corp System identification device and motor controller equipped therewith
JP2008299573A (en) * 2007-05-31 2008-12-11 Yaskawa Electric Corp Digital control device
JP5490335B1 (en) * 2013-06-03 2014-05-14 三菱電機株式会社 Frequency response measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047974A1 (en) * 2022-08-31 2024-03-07 株式会社豊田自動織機 Frequency response function identification system

Also Published As

Publication number Publication date
JP6966062B2 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
CN101821582B (en) Method for determining dynamic errors in measuring machine
Wos et al. Adaptive control of the electro‐hydraulic servo‐system with external disturbances
Chen et al. Feedback linearization of active magnetic bearings: current-mode implementation
Pereira et al. Adaptive input shaping for single-link flexible manipulators using an algebraic identification
JP7348977B2 (en) Inspection system with real-time compensation of changing system parameters
Izadbakhsh A note on the “nonlinear control of electrical flexible-joint robots”
He et al. Boundary output feedback control of a flexible string system with input saturation
Yang et al. Spline adaptive filter with fractional-order adaptive strategy for nonlinear model identification of magnetostrictive actuator
Wos et al. Practical parallel position-force controller for electro-hydraulic servo drive using on-line identification
JP2018124699A (en) Frequency response analysis algorithm
Alkaya Unscented Kalman filter performance for closed-loop nonlinear state estimation: a simulation case study
Seki et al. Modeling and compensation for hysteresis properties in piezoelectric actuators
Leniowska et al. Vibration control of a circular plate using parametric controller with phase shift adjustment
Post et al. A robust nonlinear observation strategy for the control of flexible manipulators
Karim et al. Control-based compensation of friction and backlash within rack-and-pinion drives
Kaliński et al. A modified method of vibration surveillance by using the optimal control at energy performance index
Zhang et al. Parameter identification of nonlinear system via a dynamic frequency approach and its energy harvester application
Braun et al. Sliding mode observation with iterative parameter adaption for fast-switching solenoid valves
Sidhom et al. Robust estimator design for control of electropneumatic system
Wu et al. Sliding mode based learning control for track-following in hard disk drives
Subramanian et al. A model-based inferential feedforward approach to deal with hysteresis in a motion system
Tayouri et al. Modeling and Parameter Identification of Piezoelectric Actuator in Micropositioning Systems
Chen et al. Robust indirect adaptive control of electromechanical servo systems with uncertain time-varying parameters
CN101943889A (en) The method and the device that make the electric drive system regulator start and/or move automatically
JP6989099B2 (en) Frequency response analysis system that suppresses the frequency dead zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211014

R150 Certificate of patent or registration of utility model

Ref document number: 6966062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150