JP2018124107A - Measurement device and measurement method - Google Patents

Measurement device and measurement method Download PDF

Info

Publication number
JP2018124107A
JP2018124107A JP2017015110A JP2017015110A JP2018124107A JP 2018124107 A JP2018124107 A JP 2018124107A JP 2017015110 A JP2017015110 A JP 2017015110A JP 2017015110 A JP2017015110 A JP 2017015110A JP 2018124107 A JP2018124107 A JP 2018124107A
Authority
JP
Japan
Prior art keywords
dimensional point
markers
camera
dimensional
positional relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017015110A
Other languages
Japanese (ja)
Inventor
健太郎 戸倉
Kentaro Tokura
健太郎 戸倉
永元 直樹
Naoki Nagamoto
直樹 永元
孝夫 掛橋
Takao Kakehashi
孝夫 掛橋
基博 池原
Motohiro Ikehara
基博 池原
英昭 内山
Hideaki Uchiyama
英昭 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Sumitomo Mitsui Construction Co Ltd
Original Assignee
Kyushu University NUC
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Sumitomo Mitsui Construction Co Ltd filed Critical Kyushu University NUC
Priority to JP2017015110A priority Critical patent/JP2018124107A/en
Publication of JP2018124107A publication Critical patent/JP2018124107A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a measurement device and a measurement method capable of accurately measuring using simultaneous localization and mapping (SLAM).SOLUTION: The measurement method includes the steps of: attaching plural markers in which the relationship of the size and/or position is known to a measurement object; sequentially picking up the markers by a camera; carrying out limited-optimization by using the three-dimensional points (marker) the relative positional relationship of which is known in the image coordinates of the plural three-dimensional points which are picked up by the camera; and calculating the three-dimensional coordinates of the plural three-dimensional points.SELECTED DRAWING: Figure 1

Description

本発明は、複数のマーカを撮影するカメラを備えた計測装置及び計測方法に関する。   The present invention relates to a measurement apparatus and a measurement method including a camera that photographs a plurality of markers.

従来、SLAM(Simultaneous Localization and Mapping)を行うための計測装置(3次元位置計測装置)及び計測方法(3次元位置計測方法)については種々のものが提案されていた(例えば、特許文献1参照)。   Conventionally, various measuring devices (three-dimensional position measuring devices) and measuring methods (three-dimensional position measuring methods) for performing SLAM (Simultaneous Localization and Mapping) have been proposed (for example, see Patent Document 1). .

そして、これらの計測装置や計測方法にはバンドル調整なる手法が利用されていた。その手法は、一般に知られているように、3次元点iの3次元座標をXiとし、カメラjの3次元位置及び姿勢をPjとし、該カメラjの画像に写る3次元点iの画像座標をxijとし、前記3次元点Xiをカメラjの画像に投影する関数をfとした場合に、下式を最小化するPjとXiを算出するという手法である。

Figure 2018124107
A bundle adjustment technique has been used for these measurement apparatuses and measurement methods. As is generally known, the three-dimensional coordinate of a three-dimensional point i is Xi, the three-dimensional position and orientation of the camera j is Pj, and the image coordinates of the three-dimensional point i appearing in the image of the camera j are known. Xij and Pj and Xi that minimize the following equation are calculated when f is a function for projecting the three-dimensional point Xi onto the image of the camera j.
Figure 2018124107

特開2011−043419号公報JP 2011-043419 A

しかしながら、上述のようなSLAMを用いた計測をより高精度に行いたいというニーズがあった。   However, there is a need to perform measurement using SLAM as described above with higher accuracy.

本発明は、上述の問題を解消することのできる計測装置及び計測方法を提供することを目的とするものである。   An object of the present invention is to provide a measuring device and a measuring method capable of solving the above-described problems.

本発明の第1の観点は、図1に例示するものであって、大きさ及び/又は位置関係が既知の複数のマーカ(1)を順次撮影するカメラ(j)と、
3次元点iの3次元座標をXiとし、3次元点mの3次元座標をXmとし、3次元点nの3次元座標をXnとし、カメラ(j)の位置姿勢をPjとし、カメラ(j)に映る3次元点iの画像座標をxijとし、3次元点Xiをカメラ(j)の画像に投影する関数をfとし、3次元点nと3次元点mの相対的位置関係をCnmとし、該相対的位置関係が既知の場合はenm=1とし、該相対的位置関係が既知でない場合はenm=0として、次の式(1)と式(2)を同時に制限付き最適化の枠組みで最小化してPjとXiとを算出する算出手段(6)と、
を備えたことを特徴とする計測装置(7)に関する。

Figure 2018124107
Figure 2018124107
A first aspect of the present invention is illustrated in FIG. 1, and includes a camera (j) that sequentially captures a plurality of markers (1) whose sizes and / or positional relationships are known,
The three-dimensional coordinate of the three-dimensional point i is Xi, the three-dimensional coordinate of the three-dimensional point m is Xm, the three-dimensional coordinate of the three-dimensional point n is Xn, the position and orientation of the camera (j) is Pj, and the camera (j ) Where xij is the image coordinate of the three-dimensional point i reflected in (), f is a function for projecting the three-dimensional point Xi onto the image of the camera (j), and the relative positional relationship between the three-dimensional point n and the three-dimensional point m is C nm When the relative positional relationship is known, e nm = 1, and when the relative positional relationship is not known, e nm = 0, and the following equations (1) and (2) are simultaneously limited and optimal Calculation means (6) for calculating Pj and Xi by minimizing in the framework of
It is related with the measuring device (7) characterized by comprising.
Figure 2018124107
Figure 2018124107

本発明の第2の観点は、図2に例示するものであって、前記相対的位置関係は、大きさが既知のマーカ(1)において4隅のうちの2つの隅の間の距離、又は2つのマーカ(1)間の距離が分かっている場合において該マーカ(1)間の距離であることを特徴とする。   A second aspect of the present invention is illustrated in FIG. 2, and the relative positional relationship is a distance between two of the four corners of the marker (1) having a known size, or When the distance between two markers (1) is known, the distance is between the markers (1).

本発明の第3の観点は、大きさ及び/又は位置関係が既知の複数のマーカ(1)を計測対象物(2)に取り付ける工程と、
該マーカ(1)をカメラ(j)で撮影する工程と、
3次元点iの3次元座標をXiとし、3次元点mの3次元座標をXmとし、3次元点nの3次元座標をXnとし、カメラ(j)の位置姿勢をPjとし、カメラ(j)に映る3次元点iの画像座標をxijとし、3次元点Xiをカメラ(j)の画像に投影する関数をfとし、3次元点nと3次元点mの相対的位置関係をCnmとし、該相対的位置関係が既知の場合はenm=1とし、該相対的位置関係が既知でない場合はenm=0として、次の式(3)と式(4)を同時に制限付き最適化の枠組みで最小化してPjとXiとを算出する工程と、を備えたことを特徴とする計測方法に関する。

Figure 2018124107
Figure 2018124107
A third aspect of the present invention is a step of attaching a plurality of markers (1) having a known size and / or positional relationship to a measurement object (2);
Photographing the marker (1) with a camera (j);
The three-dimensional coordinate of the three-dimensional point i is Xi, the three-dimensional coordinate of the three-dimensional point m is Xm, the three-dimensional coordinate of the three-dimensional point n is Xn, the position and orientation of the camera (j) is Pj, and the camera (j ) Where xij is the image coordinate of the three-dimensional point i reflected in (), f is a function for projecting the three-dimensional point Xi onto the image of the camera (j), and the relative positional relationship between the three-dimensional point n and the three-dimensional point m is C nm When the relative positional relationship is known, e nm = 1, and when the relative positional relationship is not known, e nm = 0, and the following equations (3) and (4) are simultaneously limited and optimized. And a step of calculating Pj and Xi by minimizing in the framework of the conversion.
Figure 2018124107
Figure 2018124107

本発明の第4の観点は、前記相対的位置関係は、大きさが既知のマーカ(1)において4隅のうちの2つの隅の間の距離、又は2つのマーカ(1)間の距離が分かっている場合において該マーカ(1)間の距離であることを特徴とする。   According to a fourth aspect of the present invention, the relative positional relationship is such that the distance between two of the four corners in the marker (1) having a known size, or the distance between the two markers (1). When it is known, it is a distance between the markers (1).

なお、括弧内の番号などは、図面における対応する要素を示す便宜的なものであり、従って、本記述は図面上の記載に限定拘束されるものではない。   Note that the numbers in parentheses are for the sake of convenience indicating the corresponding elements in the drawings, and therefore the present description is not limited to the descriptions on the drawings.

上記した第1乃至4の観点によれば、単にバンドル調整を用いたときよりも高精度に計測をすることができる。   According to the first to fourth aspects described above, measurement can be performed with higher accuracy than when the bundle adjustment is simply used.

図1は、本発明に係る計測装置及び計測方法を説明するためのブロック図である。FIG. 1 is a block diagram for explaining a measuring apparatus and a measuring method according to the present invention. 図2は、マーカの配置状態の一例を示す平面図である。FIG. 2 is a plan view illustrating an example of a marker arrangement state. 図3は、本発明に用いるマーカの構成の一例を示す平面図である。FIG. 3 is a plan view showing an example of the configuration of the marker used in the present invention.

以下、図1乃至図3に沿って、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3.

本発明に係る計測装置は、図1に符号7で例示するものであって、
・ 複数のマーカ1を順次撮影するカメラjと、
・ 該カメラjの位置姿勢Pjと3次元点iの3次元座標Xiとを算出する算出手段6と、
を備えている。
The measuring apparatus according to the present invention is illustrated by reference numeral 7 in FIG.
A camera j that sequentially captures a plurality of markers 1;
A calculating means 6 for calculating the position and orientation Pj of the camera j and the three-dimensional coordinates Xi of the three-dimensional point i;
It has.

ここで、前記カメラjで撮影される複数のマーカ1は、大きさが既知か、マーカどうしの位置関係が既知か、大きさ及びマーカどうしの位置関係が既知である。また、前記算出手段6は、3次元点mの3次元座標をXmとし、3次元点nの3次元座標をXnとし、カメラjの3次元位置と姿勢をPjとし、カメラjに映る3次元点iの画像座標をxijとし、3次元点Xiをカメラjの画像に投影する関数をfとし、3次元点nと3次元点mの相対的位置関係をCnmとし、該相対的位置関係が既知の場合はenm=1とし、該相対的位置関係が既知でない場合はenm=0として、次の式(1)と式(2)を同時に制限付き最適化の枠組みで最小化してPjとXiとを算出するように構成されている。つまり、2点間の距離「Xn−Xm」は本来はCnmなので、下式(2)が最小になるように計算すると精度が良くなるということである。

Figure 2018124107
Figure 2018124107
Here, the plurality of markers 1 photographed by the camera j are known in size, the positional relationship between the markers is known, or the positional relationship between the size and the markers is known. Further, the calculation means 6 sets the three-dimensional coordinate of the three-dimensional point m to Xm, the three-dimensional coordinate of the three-dimensional point n to Xn, the three-dimensional position and orientation of the camera j as Pj, and the three-dimensional image reflected in the camera j. The image coordinate of the point i is xij, the function of projecting the three-dimensional point Xi onto the image of the camera j is f, the relative positional relationship between the three-dimensional point n and the three-dimensional point m is C nm , and the relative positional relationship If e nm = 1 is known, and if the relative positional relationship is not known, e nm = 0, and the following equations (1) and (2) are simultaneously minimized in a limited optimization framework. Pj and Xi are calculated. In other words, the distance “Xn−Xm” between the two points is originally Cnm, and therefore the accuracy is improved by calculating so that the following expression (2) is minimized.
Figure 2018124107
Figure 2018124107

ここで、前記相対的位置関係としては次のものを挙げることができる。すなわち、
・ マーカ1のサイズが既知の場合は、該マーカ1の4隅のうちの2つの隅の間の距離(つまり、該マーカ1の一辺の長さや対角線の長さ)
・ 取り付ける2つのマーカ間の距離が既知の場合(例えば、2つのマーカを1枚の紙に同時に印刷してそれらのマーカ間の距離が分かっている場合や、別々の紙に印刷した2つのマーカであってもそれらのマーカ間の距離(例えば、マーカの中心間の距離)を作業者が実測した場合)は該マーカ間の距離
Here, examples of the relative positional relationship include the following. That is,
When the size of the marker 1 is known, the distance between two of the four corners of the marker 1 (that is, the length of one side of the marker 1 or the length of the diagonal line)
・ When the distance between two markers to be attached is known (for example, when two markers are printed simultaneously on a piece of paper and the distance between the markers is known, or two markers printed on separate papers) Even so, the distance between the markers (for example, when the operator actually measures the distance between the centers of the markers) is the distance between the markers.

本発明に係る計測方法は、
・ 大きさ及び/又は位置関係が既知の複数のマーカを計測対象物2に取り付ける工程と、
・ 該マーカをカメラで撮影する工程と、
・ 3次元点iの3次元座標をXiとし、3次元点mの3次元座標をXmとし、3次元点nの3次元座標をXnとし、カメラjの位置姿勢をPjとし、カメラjに映る3次元点iの画像座標をxijとし、3次元点Xiをカメラjの画像に投影する関数をfとし、3次元点nと3次元点mの相対的位置関係をCnmとし、該相対的位置関係が既知の場合はenm=1とし、該相対的位置関係が既知でない場合はenm=0として、次の式(3)と式(4)を同時に制限付き最適化の枠組みで最小化してPjとXiとを算出する工程と、
を備えている。

Figure 2018124107
Figure 2018124107
The measurement method according to the present invention includes:
Attaching a plurality of markers of known size and / or positional relationship to the measurement object 2;
A step of photographing the marker with a camera;
The three-dimensional coordinate of the three-dimensional point i is Xi, the three-dimensional coordinate of the three-dimensional point m is Xm, the three-dimensional coordinate of the three-dimensional point n is Xn, the position and orientation of the camera j is Pj, and is reflected in the camera j The image coordinate of the three-dimensional point i is xij, the function that projects the three-dimensional point Xi onto the image of the camera j is f, the relative positional relationship between the three-dimensional point n and the three-dimensional point m is C nm , and the relative When the positional relationship is known, e nm = 1, and when the relative positional relationship is not known, e nm = 0, and the following equations (3) and (4) are simultaneously minimized in the framework of limited optimization: And calculating Pj and Xi,
It has.
Figure 2018124107
Figure 2018124107

つまり、上式(4)においてenmは、3次元点nと3次元点mの相対的位置関係が既知の場合は1で、該相対的位置関係が既知でない場合には0とされるので、上式(4)は、該相対的位置関係が既知の場合に制約として設計されることとなる。すなわち、本発明に係る計測方法は、従来のバンドル調整の上記(3)式に、前記相対的位置関係を既知とした制約を追加して上述のようにPjとXiとを算出するものである。   That is, in the above equation (4), enm is 1 when the relative positional relationship between the three-dimensional point n and the three-dimensional point m is known, and is 0 when the relative positional relationship is not known. The above equation (4) is designed as a constraint when the relative positional relationship is known. That is, in the measurement method according to the present invention, Pj and Xi are calculated as described above by adding the constraint that the relative positional relationship is known to the above-described equation (3) of the bundle adjustment. .

ここで、前記相対的位置関係としては次のものを挙げることができる。すなわち、
・ マーカ1のサイズが既知の場合は、該マーカ1の4隅のうちの2つの隅の間の距離(つまり、該マーカ1の一辺の長さや対角線の長さ)
・ 取り付ける2つのマーカ間の距離が既知の場合(例えば、2つのマーカを1枚の紙に同時に印刷してそれらのマーカ間の距離が分かっている場合や、別々の紙に印刷した2つのマーカであってもそれらのマーカ間の距離(例えば、マーカの中心間の距離)を作業者が実測した場合)は該マーカ間の距離
Here, examples of the relative positional relationship include the following. That is,
When the size of the marker 1 is known, the distance between two of the four corners of the marker 1 (that is, the length of one side of the marker 1 or the length of the diagonal line)
・ When the distance between two markers to be attached is known (for example, when two markers are printed simultaneously on a piece of paper and the distance between the markers is known, or two markers printed on separate papers) Even so, the distance between the markers (for example, when the operator actually measures the distance between the centers of the markers) is the distance between the markers.

上記の(1)式だけでも3次元座標をXiは求まるが、本発明によれば、上記(2)式も同時に計算するためカメラjの位置や姿勢(つまり、上式のPij)や3次元点iの3次元座標をXiを高精度で求めることができる。   Xi can be obtained from the above equation (1) alone, but according to the present invention, since the above equation (2) is also calculated at the same time, the position and orientation of camera j (that is, Pij in the above equation) The three-dimensional coordinates of the point i can be obtained with high accuracy Xi.

例えば、図2に例示するように、一辺の長さが20mmの2枚のマーカ1を10000mm離して配置した場合には、下式を制約に追加すれば良い。

Figure 2018124107
For example, as illustrated in FIG. 2, when two markers 1 each having a length of 20 mm are arranged at a distance of 10,000 mm, the following expression may be added to the constraint.
Figure 2018124107

図1に例示するように、様々なところに様々な大きさのマーカ1を配置し、該配置されたマーカ1を手持ちのカメラjで動かしながら色々な方向から撮影すると良い。それにより、各カメラjが撮影した画像上で各マーカ1を認識し、それぞれのマーカ1の大きさの情報を使ってSLAMの最適化によって各マーカ1の3次元位置が随時算出される。   As illustrated in FIG. 1, markers 1 having various sizes may be arranged at various locations, and images may be taken from various directions while the arranged markers 1 are moved by a camera j held by hand. Thereby, each marker 1 is recognized on the image photographed by each camera j, and the three-dimensional position of each marker 1 is calculated at any time by SLAM optimization using information on the size of each marker 1.

なお、本発明に用いるマーカは、、図3に符号1で例示するように、
・ 計測用のターゲット10aを表示する領域であるターゲット表示領域10と、
・ 少なくとも自身のID情報(つまり、そのマーカ1を他のマーカ1から識別できるマーカ識別情報)をコード画像として表示する領域であるコード画像表示領域11,12,13,14と、
を備えている。このマーカ1は、何らかの計測対象物2に取り付けて使用するものであって、前記ターゲット10aをカメラ(動画や静止画を撮影するカメラ)jで撮影して該ターゲット10aの位置(2次元位置や3次元位置)を算出することによって該計測対象物2の位置などを特定するためのものである。
The marker used in the present invention is, as illustrated by reference numeral 1 in FIG.
A target display area 10 which is an area for displaying a measurement target 10a;
A code image display area 11, 12, 13, 14 which is an area for displaying at least its own ID information (that is, marker identification information capable of identifying the marker 1 from other markers 1) as a code image;
It has. The marker 1 is used by being attached to some measurement object 2, and the target 10a is photographed by a camera (camera for photographing a moving image or a still image) j and the position of the target 10a (two-dimensional position or This is for specifying the position of the measurement object 2 by calculating (three-dimensional position).

このマーカ1はシート状(つまり、可撓性を有する薄板状)であることが好ましいが、もちろんこれに限られるものではなく、シート状以外の形状を排除するものではない。また、このマーカ1を前記計測対象物2に取り付ける方法としては、接着剤などを用いた貼着が好ましいが、貼着以外の他の公知の方法を用いても良い。   The marker 1 is preferably in the form of a sheet (that is, a flexible thin plate), but is not limited to this, and does not exclude shapes other than the sheet. Moreover, as a method of attaching the marker 1 to the measurement object 2, sticking using an adhesive or the like is preferable, but other known methods other than sticking may be used.

なお、図3に示す例では、前記ターゲット10aの表示は濃淡模様により行っているが(つまり、黒などの色の濃い部分の複数の角部が一点を指し示すように配置されることにより、その一点でターゲット10aを特定しているが)、もちろんこれに限られるものではなく、
・ 色分け模様によって行うようにしても、
・ 濃淡模様と色分け模様の両方によって行うようにしても、或いは、
・ 材質の違い(例えば、反射率の高い部材と反射率の低い部材との配置状態)によって行うようにしても良い。
In the example shown in FIG. 3, the target 10a is displayed with a shading pattern (that is, by arranging a plurality of corners of dark parts such as black so as to indicate one point, Although the target 10a is specified at one point), of course, it is not limited to this,
・ Even if it is done by color-coded pattern,
-You can do it with both shading and color-coded patterns, or
-You may make it carry out by the difference in material (for example, arrangement state of a member with high reflectance, and a member with low reflectance).

また、図3に示す例では、前記コード画像の表示は濃淡模様(つまり、バーコードやQRコード(登録商標)のように色の濃い部分と色の薄い部分とによって形成された模様)により行っているが、もちろんこれに限られるものではなく、
・ 色分け模様によって行うようにしても、
・ 濃淡模様と色分け模様の両方によって行うようにしても、或いは、
・ 材質の違い(例えば、反射率の高い部材と反射率の低い部材との配置状態)によって行うようにしても良い。また、前記コード画像は、マーカ自身のID情報だけでなく、その他の情報(例えば、該マーカが取り付けられる計測対象物2の形状や寸法等についての情報)を担持するようにしても良い。さらに、図3に示す例では、コード画像表示領域11,12,13,14自体やその内部の模様は矩形状(つまり、長方形状や正方形状)をしているが、もちろんこれに限られるものではなく、矩形以外の形状(例えば、円形)をしていても良い。
In the example shown in FIG. 3, the code image is displayed in a shade pattern (that is, a pattern formed by a dark portion and a light portion such as a barcode or QR code (registered trademark)). Of course, but not limited to this,
・ Even if it is done by color-coded pattern,
-You can do it with both shading and color-coded patterns, or
-You may make it carry out by the difference in material (for example, arrangement state of a member with high reflectance, and a member with low reflectance). Further, the code image may carry not only the ID information of the marker itself but also other information (for example, information on the shape, dimensions, etc. of the measurement object 2 to which the marker is attached). Further, in the example shown in FIG. 3, the code image display areas 11, 12, 13, and 14 themselves and the patterns inside thereof have a rectangular shape (that is, a rectangular shape or a square shape). Instead, the shape may be other than a rectangle (for example, a circle).

ところで、上述したコード画像表示領域11,12,13,14は、前記ターゲット表示領域10を基準とした所定の位置に配置しておくと良い。つまり、該コード画像表示領域は、前記ターゲット表示領域を基準とした位置であって該ターゲット表示領域を基準とすることによって明確に認識できる位置であればどこの位置に配置しても良い。そのようにした場合には、前記ターゲット表示領域を基準とすることによって前記コード画像表示領域の表示位置を正確に特定でき、該コード画像表示領域が担持するデータを短時間で読み取ることができる。ここで、図3に例示するように、前記ターゲット表示領域10を、交差するように配置された複数の帯状表示領域10b,10cにより形成しておき、前記コード画像表示領域11,12,13,14は、互いに隣接する一対の前記帯状表示領域10b,10cに挟まれる位置に配置しておいても良い。なお、図3に示す例では、前記コード画像表示領域11,12,13,14は、交差するように配置された2つの帯状表示領域10b,10cによって略十字状に形成されているが、もちろんこれに限られるものではなく、略X字状に形成されても、或いはその他の形状(つまり、3つ以上の帯状表示領域が交差するような形状)に形成されていても良い。また、図3に示す例では、前記コード画像表示領域11,12,13,14は、前記帯状表示領域10b,10cに挟まれる位置の全て(つまり、4つの部分)にそれぞれ形成されているが、もちろんこれに限られるものではなく、少なくとも1つの部分に形成されていれば良い。   By the way, the above-described code image display areas 11, 12, 13, and 14 are preferably arranged at predetermined positions with reference to the target display area 10. That is, the code image display area may be arranged at any position as long as the position is based on the target display area and can be clearly recognized by using the target display area as a reference. In such a case, the display position of the code image display area can be accurately specified by using the target display area as a reference, and the data carried by the code image display area can be read in a short time. Here, as illustrated in FIG. 3, the target display area 10 is formed by a plurality of strip-shaped display areas 10 b and 10 c arranged so as to intersect with each other, and the code image display areas 11, 12, 13, 14 may be disposed at a position sandwiched between a pair of adjacent band-like display areas 10b and 10c. In the example shown in FIG. 3, the code image display areas 11, 12, 13, and 14 are formed in a substantially cross shape by two belt-like display areas 10b and 10c arranged so as to intersect. However, the present invention is not limited to this, and it may be formed in a substantially X shape, or may be formed in another shape (that is, a shape in which three or more strip-shaped display areas intersect). In the example shown in FIG. 3, the code image display areas 11, 12, 13, and 14 are formed at all positions (that is, four parts) sandwiched between the belt-like display areas 10b and 10c, respectively. Of course, the present invention is not limited to this, and it may be formed in at least one portion.

一方、前記マーカ1を前記計測対象物2に取り付ける作業者が、前記ターゲット表示領域10や前記コード画像表示領域11,12,13,14と明確に区別できるマーク(以下、“識別用マーク”とする)4を、前記ターゲット表示領域10の上方、下方、左方及び右方のうちの少なくとも一方に配置しておくと良い。そのような識別用マーク4を設けた場合には、その作業者は、上下左右が正しくなるように前記マーカ1を前記計測対象物2に取り付けることができる。その結果、計測のための装置(具体的には、前記カメラjが撮影した画像を解析する装置など)は前記コード画像表示領域11,12,13,14の表示位置を高速で正確に特定でき、該コード画像表示領域11,12,13,14が担持するデータを高速で読み取ることができる。なお、図3に示す例では、前記識別用マーク4は色の濃淡の違いによって作業者が識別できるようになっているが、もちろんこれに限られるものではなく、色彩やマーク自体の形状等によって識別できるようにしても良い。   On the other hand, an operator who attaches the marker 1 to the measurement object 2 can clearly distinguish the target display area 10 and the code image display areas 11, 12, 13, and 14 (hereinafter referred to as “identification marks”). 4) may be arranged at least one of the upper, lower, left and right sides of the target display area 10. When such an identification mark 4 is provided, the operator can attach the marker 1 to the measurement object 2 so that the vertical and horizontal directions are correct. As a result, a measurement device (specifically, a device that analyzes an image taken by the camera j) can accurately specify the display positions of the code image display areas 11, 12, 13, and 14 at high speed. The data carried by the code image display areas 11, 12, 13, and 14 can be read at high speed. In the example shown in FIG. 3, the identification mark 4 can be identified by the operator by the difference in color shading, but of course it is not limited to this, and depending on the color, the shape of the mark itself, etc. You may make it distinguishable.

一方、前記マーカ自身の中心(好ましくは、上述したターゲット10aの位置)を指し示すと共に前記ターゲット表示領域10を挟むように表示された補助線(水平線や垂直線)5a,5b,5c,5dを設けておくと良い。そのようにした場合には、前記マーカ自身の水平や垂直やマーカの中心を作業者が容易に知ることができ、作業者は該マーカ1を計測対象物2に適切な状態(つまり、適切な位置や姿勢)に取り付けることができる。   On the other hand, auxiliary lines (horizontal lines and vertical lines) 5a, 5b, 5c, and 5d are provided so as to indicate the center of the marker itself (preferably, the position of the target 10a described above) and sandwich the target display area 10. It is good to keep. In such a case, the operator can easily know the horizontal and vertical of the marker itself and the center of the marker, and the operator can place the marker 1 in an appropriate state (that is, appropriate) Position and posture).

本発明によれば、単にバンドル調整を用いたときよりも高精度に計測をすることができる。   According to the present invention, it is possible to perform measurement with higher accuracy than when simply using bundle adjustment.

1 マーカ
6 算出手段
7 計測装置
j カメラ
1 Marker 6 Calculation means 7 Measuring device j Camera

Claims (4)

大きさ及び/又は位置関係が既知の複数のマーカを順次撮影するカメラと、
3次元点iの3次元座標をXiとし、3次元点mの3次元座標をXmとし、3次元点nの3次元座標をXnとし、カメラjの位置姿勢をPjとし、カメラjに映る3次元点iの画像座標をxijとし、3次元点Xiをカメラjの画像に投影する関数をfとし、3次元点nと3次元点mの相対的位置関係をCnmとし、該相対的位置関係が既知の場合はenm=1とし、該相対的位置関係が既知でない場合はenm=0として、次の式(1)と式(2)を同時に制限付き最適化の枠組みで最小化してPjとXiとを算出する算出手段と、
を備えたことを特徴とする計測装置。
Figure 2018124107
Figure 2018124107
A camera that sequentially captures a plurality of markers having a known size and / or positional relationship;
The three-dimensional coordinate of the three-dimensional point i is Xi, the three-dimensional coordinate of the three-dimensional point m is Xm, the three-dimensional coordinate of the three-dimensional point n is Xn, and the position and orientation of the camera j is Pj. The image coordinate of the three-dimensional point i is xij, the function for projecting the three-dimensional point Xi onto the image of the camera j is f, the relative positional relationship between the three-dimensional point n and the three-dimensional point m is C nm , and the relative position When the relationship is known, e nm = 1, and when the relative positional relationship is not known, e nm = 0, and the following equations (1) and (2) are simultaneously minimized in a limited optimization framework. Calculating means for calculating Pj and Xi;
A measuring device comprising:
Figure 2018124107
Figure 2018124107
前記相対的位置関係は、大きさが既知のマーカにおいて4隅のうちの2つの隅の間の距離、又は2つのマーカ間の距離が分かっている場合において該マーカ間の距離である、
ことを特徴とする請求項1に記載の計測装置。
The relative positional relationship is a distance between two of the four corners of a marker having a known size, or a distance between the markers when the distance between the two markers is known.
The measuring apparatus according to claim 1.
大きさ及び/又は位置関係が既知の複数のマーカを計測対象物に取り付ける工程と、
該マーカをカメラで撮影する工程と、
3次元点iの3次元座標をXiとし、3次元点mの3次元座標をXmとし、3次元点nの3次元座標をXnとし、カメラjの位置姿勢をPjとし、カメラjに映る3次元点iの画像座標をxijとし、3次元点Xiをカメラjの画像に投影する関数をfとし、3次元点nと3次元点mの相対的位置関係をCnmとし、該相対的位置関係が既知の場合はenm=1とし、該相対的位置関係が既知でない場合はenm=0として、次の式(3)と式(4)を同時に制限付き最適化の枠組みで最小化してPjとXiとを算出する工程と、
を備えたことを特徴とする計測方法。
Figure 2018124107
Figure 2018124107
Attaching a plurality of markers of known size and / or positional relationship to the measurement object;
Photographing the marker with a camera;
The three-dimensional coordinate of the three-dimensional point i is Xi, the three-dimensional coordinate of the three-dimensional point m is Xm, the three-dimensional coordinate of the three-dimensional point n is Xn, and the position and orientation of the camera j is Pj. The image coordinate of the three-dimensional point i is xij, the function for projecting the three-dimensional point Xi onto the image of the camera j is f, the relative positional relationship between the three-dimensional point n and the three-dimensional point m is C nm , and the relative position When the relationship is known, e nm = 1, and when the relative positional relationship is not known, e nm = 0, and the following equations (3) and (4) are simultaneously minimized by the limited optimization framework. Calculating Pj and Xi,
A measurement method characterized by comprising:
Figure 2018124107
Figure 2018124107
前記相対的位置関係は、大きさが既知のマーカにおいて4隅のうちの2つの隅の間の距離、又は2つのマーカ間の距離が分かっている場合において該マーカ間の距離である、
ことを特徴とする請求項3に記載の計測方法。
The relative positional relationship is a distance between two of the four corners of a marker having a known size, or a distance between the markers when the distance between the two markers is known.
The measuring method according to claim 3.
JP2017015110A 2017-01-31 2017-01-31 Measurement device and measurement method Pending JP2018124107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017015110A JP2018124107A (en) 2017-01-31 2017-01-31 Measurement device and measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017015110A JP2018124107A (en) 2017-01-31 2017-01-31 Measurement device and measurement method

Publications (1)

Publication Number Publication Date
JP2018124107A true JP2018124107A (en) 2018-08-09

Family

ID=63110132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017015110A Pending JP2018124107A (en) 2017-01-31 2017-01-31 Measurement device and measurement method

Country Status (1)

Country Link
JP (1) JP2018124107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7385723B2 (en) 2016-12-26 2023-11-22 Jcrファーマ株式会社 Novel anti-human transferrin receptor antibody that crosses the blood-brain barrier

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202124A (en) * 2000-12-28 2002-07-19 Kajima Corp Image measuring method and recording medium with recorded image measuring program

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202124A (en) * 2000-12-28 2002-07-19 Kajima Corp Image measuring method and recording medium with recorded image measuring program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
阪野 貴彦 他 : "大型有形文化財計測のための気球搭載型レンジセンサ", 情報処理学会研究報告コンピュータビジョンとイメージメディア(CVIM), vol. 2005−CVIM−148(28), JPN6020042892, 4 March 2005 (2005-03-04), pages 213 - 220, ISSN: 0004499213 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7385723B2 (en) 2016-12-26 2023-11-22 Jcrファーマ株式会社 Novel anti-human transferrin receptor antibody that crosses the blood-brain barrier

Similar Documents

Publication Publication Date Title
JP4604774B2 (en) Calibration method for 3D measurement
JP3624353B2 (en) Three-dimensional shape measuring method and apparatus
CN110148174A (en) Scaling board, scaling board recognition methods and device
CN110009682B (en) Target identification and positioning method based on monocular vision
JP2010025759A (en) Position measuring system
US20180240270A1 (en) Method for recording individual three-dimensional optical images to form a global image of a tooth situation
JP2008014940A (en) Camera calibration method for camera measurement of planar subject and measuring device applying same
JP2018510347A (en) Apparatus, method and apparatus for measuring object size
JP2007263611A (en) Distortion measuring instrument and method
US20210291376A1 (en) System and method for three-dimensional calibration of a vision system
JP2007036482A (en) Information projection display and program
CN108775863A (en) Spectral Confocal displacement sensor positioning device and localization method
JP5477658B2 (en) Calibration jig for calibration, 3D measurement system with calibration jig
CN102446355B (en) Method for detecting target protruding from plane based on double viewing fields without calibration
JP2011209959A (en) Structure for recognizing receiving assembly component, assembly information recognition apparatus using the same, and assembly processing apparatus
EP3411194A1 (en) Robot system calibration
JP4338405B2 (en) Size measuring system and size measuring device
JP2018124107A (en) Measurement device and measurement method
WO2018143151A1 (en) Surveying marker and surveying system
JP6043974B2 (en) Three-dimensional position measuring device, three-dimensional measuring device, and three-dimensional position measuring program
JP2009288165A (en) Calibration method of line sensor camera, calibration device and program
KR20210060762A (en) 3-dimensional scanning system for inspection by pixels of display and the method thereof
JP2002032784A (en) Device and method for operating virtual object
TWI812865B (en) Device, method, storage medium and electronic apparatus for relative positioning
JP2020008434A (en) Three-dimensional measuring device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210506