JP2018124077A - Reaction field provision body and reaction system using the same - Google Patents

Reaction field provision body and reaction system using the same Download PDF

Info

Publication number
JP2018124077A
JP2018124077A JP2017014068A JP2017014068A JP2018124077A JP 2018124077 A JP2018124077 A JP 2018124077A JP 2017014068 A JP2017014068 A JP 2017014068A JP 2017014068 A JP2017014068 A JP 2017014068A JP 2018124077 A JP2018124077 A JP 2018124077A
Authority
JP
Japan
Prior art keywords
reaction
reaction field
rotating means
stacked
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017014068A
Other languages
Japanese (ja)
Other versions
JP6843429B2 (en
Inventor
楊 明
Akira Yo
明 楊
内山一美
Kazumi Uchiyama
國吉 伊藤
Kuniyoshi Ito
國吉 伊藤
智美 白鳥
Tomomi Shiratori
智美 白鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2017014068A priority Critical patent/JP6843429B2/en
Publication of JP2018124077A publication Critical patent/JP2018124077A/en
Application granted granted Critical
Publication of JP6843429B2 publication Critical patent/JP6843429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reaction field provision body capable of performing highly accurate measurement by rapidly and accurately completing reaction.SOLUTION: A reaction field provision body includes: a lamination reaction field where reaction plates are laminated; rotation means provided at one end of the lamination reaction field; and connection means for connecting the lamination reaction field to the rotation means. Flow channels for reaction are formed on both front and rear surfaces of each one of the reaction plates. The connection means are connected to the rotation means by penetrating the reaction plates at places in the lamination reaction field by deviation from a center axis of the rotation means. The whole lamination reaction field is formed to be rotatable in a rotational direction of the rotation means by rotation force of the rotation means.SELECTED DRAWING: Figure 1

Description

本発明は、小型で測定精度に優れた液体の成分測定が可能な各種液体成分計測用の反応場提供体と、それを用いた反応システムに関する。   The present invention relates to a reaction field provider for measuring various liquid components capable of measuring a liquid component with a small size and excellent measurement accuracy, and a reaction system using the reaction field provider.

近年、各種の液体の成分測定の要請が多くなっており、特に感染症の水際防止や健康状態の簡易的な把握の要請から、病院以外の場所でも手軽に血液などの体液の成分分析を行うことができる検査キットの開発が種々行われている。
このような検査キットは、通常液体を何らかの反応媒体と反応し得る状態として、反応の有無や程度を見ることで検査項目の判定を行うものである。
そのため反応場を如何に設計するかは反応の効率化や測定の精度向上のために重要な要素であり、種々提案がなされている。
例えば、特許文献1〜3には、精密で安価な臨床検査や血液又は尿検査用のチップとして、以下の樹脂成型品が提案されている。
(a)基板上へのレジスト層の形成、(b)マスクとレジスト層のギャップを設定、(c)マスクを用いたレジスト層の露光、(d)レジスト層の現像を行い、所望のレジストパターンを形成する、レジストパターン形成ステップと、前記レジストパターンにしたがって、前記基板上に金属構造体をメッキにより堆積させる金属構造体形成ステップと、前記金属構造体を型として、樹脂成形品を形成する成形品形成ステップによって製造される、樹脂成型品(特許文献1)。
凹凸面を有するNi構造体を準備し、Ni構造体の凹凸面上にレジストを付着してレジスト層を形成し、レジスト層をリソグラフィー処理し、Ni構造体の凹凸面上の凹部に形成されたレジスト層を、凹凸面の凸部上のレジスト上面と凹部上のレジスト上面との距離がNi構造体の凹凸の深さよりも大きくなるように除去した後、Ni構造体の凹凸面上に、めっき処理によって金属を付着し、樹脂成形品を製造するための型用の金属構造体を得、これを用いて成形された樹脂成形体(特許文献2)。
基板1上にめっき種層を付着し、その上に、第1のレジストパターンを形成し、めっき処理によって露出した種層上にNi金属層を形成し、その上に、第2のレジストパターンを形成し、基板上にめっき種層を付着させ、基板をめっき処理し、めっき種層上にNi金属層が形成され得られる型用金属構造体を使用して射出成形してなる樹脂チップ(特許文献3)。
In recent years, there has been an increasing demand for measuring the components of various liquids. In particular, it is easy to analyze the components of body fluids such as blood even in places other than hospitals, especially in response to the prevention of infectious diseases and the simple understanding of health conditions. Various test kits that can be used have been developed.
Such a test kit determines a test item by checking whether or not there is a reaction in a state where a normal liquid can react with some reaction medium.
Therefore, how to design the reaction field is an important factor for improving the efficiency of the reaction and improving the accuracy of the measurement, and various proposals have been made.
For example, Patent Documents 1 to 3 propose the following resin molded products as chips for precise and inexpensive clinical tests and blood or urine tests.
(A) formation of a resist layer on the substrate, (b) setting of a gap between the mask and the resist layer, (c) exposure of the resist layer using the mask, (d) development of the resist layer, and a desired resist pattern Forming a resist pattern, forming a metal structure on the substrate by plating in accordance with the resist pattern, and forming a resin molded product using the metal structure as a mold A resin molded product manufactured by the product forming step (Patent Document 1).
A Ni structure having a concavo-convex surface was prepared, a resist was deposited on the concavo-convex surface of the Ni structure, a resist layer was formed, and the resist layer was lithographically processed to be formed in a recess on the concavo-convex surface of the Ni structure. After removing the resist layer so that the distance between the resist upper surface on the convex portion of the concave and convex surface and the resist upper surface on the concave portion is larger than the depth of the concave and convex portions of the Ni structure, plating is performed on the concave and convex surface of the Ni structure. A metal structure for a mold for producing a resin molded article is obtained by attaching a metal by treatment, and a resin molded body molded using the metal structure (Patent Document 2).
A plating seed layer is deposited on the substrate 1, a first resist pattern is formed thereon, a Ni metal layer is formed on the seed layer exposed by the plating process, and a second resist pattern is formed thereon. Resin chip formed by injection molding using a metal structure for a mold that can be formed, a plating seed layer is deposited on the substrate, the substrate is plated, and a Ni metal layer is formed on the plating seed layer (patent Reference 3).

特開2004−195730号公報JP 2004-195730 A 特開2004−148693号公報JP 2004-148893 A 特開2004−148519号公報JP 2004-148519 A

しかしながら上述の提案に係る樹脂成型品等の従来の反応場として用いるための成形品では未だ十分な反応性が得られておらず、より早く精度よく反応を完了させて精度の高い測定を行うことが可能な反応場提供体の開発が要望されている。   However, a molded product for use as a conventional reaction field such as a resin molded product according to the above proposal has not yet obtained sufficient reactivity, and the reaction can be completed quickly and accurately to perform a highly accurate measurement. There is a demand for the development of a reaction field provider capable of

したがって、本発明の目的は、より早く精度よく反応を完了させて精度の高い測定を行うことが可能な反応場提供体及び反応システムを提供することにある。   Accordingly, an object of the present invention is to provide a reaction field provider and a reaction system that can complete a reaction faster and more accurately and perform highly accurate measurement.

本発明者らは、上記課題を解消するため鋭意検討した結果、反応場を3次元的に形成すると共に回転軸と固定軸とを異なるものとすることにより、上記目的を達成し得ることを知見した。
本発明は上記知見に基づいてなされたものであり、下記発明を提供するものである。
1.反応用板を、積層した積層反応場と
該積層反応場の一端に設けられた回転手段と
上記積層反応場及び上記回転手段を連結する連結手段とを具備し、
上記反応用板が、表裏両面に反応用の流路が形成されており、
上記連結手段は、上記積層反応場及び上記回転手段の中心軸を外した部位において、上記反応用板を貫通して上記回転手段に連結されており、上記回転手段の回転力により積層反応場全体が該回転手段の回転方向に回転可能に形成されている、
反応場提供体。
2.上記反応用板が、その表面に複数の凸部が形成されて、各凸部の間に上記流路が形成されている
ことを特徴とする1記載の反応場提供体。
3.1記載の反応場提供体を用いた反応システムであって、
複数の上記3次元反応体を収納する収納部を複数有する反応器と、
上記回転手段が磁性体からなる磁性体板であり、該回転手段に回転力を付与する1又は複数の回転駆動手段とを、更に具備する
反応システム。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above object can be achieved by forming a reaction field three-dimensionally and making the rotating shaft and the fixed shaft different. did.
The present invention has been made based on the above findings, and provides the following invention.
1. The reaction plate comprises a stacked stacked reaction field, a rotating means provided at one end of the stacked reaction field, and a connecting means for connecting the stacked reaction field and the rotating means,
The reaction plate has reaction channels formed on both front and back sides,
The connecting means is connected to the rotating means through the reaction plate at a portion where the central axis of the stacked reaction field and the rotating means is removed, and the entire stacked reaction field is rotated by the rotational force of the rotating means. Is formed to be rotatable in the rotation direction of the rotating means,
Reaction field provider.
2. The reaction field provider according to 1, wherein the reaction plate has a plurality of convex portions formed on a surface thereof, and the flow path is formed between the convex portions.
A reaction system using the reaction field provider according to 3.1,
A reactor having a plurality of storage units for storing a plurality of the three-dimensional reactants;
A reaction system, wherein the rotating means is a magnetic plate made of a magnetic material, and further includes one or a plurality of rotational driving means for applying a rotational force to the rotating means.

本発明の反応場提供体によれば、より早く精度よく反応を完了させて精度の高い測定を行うことが可能である。
また、本発明の反応システムによれば、精度の高い測定を行うことが可能である。
According to the reaction field provider of the present invention, it is possible to complete the reaction faster and more accurately and perform highly accurate measurement.
Moreover, according to the reaction system of this invention, it is possible to perform a highly accurate measurement.

図1は本発明の反応場提供体の斜視図である。FIG. 1 is a perspective view of a reaction field provider according to the present invention. 図2は図1に示す反応場提供体の分解斜視図である。2 is an exploded perspective view of the reaction field provider shown in FIG. 図3は図1に示す反応場提供体における反応用板の一面を拡大して示す一部拡大図である。FIG. 3 is a partially enlarged view showing, on an enlarged scale, one surface of the reaction plate in the reaction field provider shown in FIG. 図4は本発明の反応システムの1実施形態を示す概要図であり、(a)は全体を示す斜視図、(b)はその一部拡大図、(c)はさらに(b)の一部拡大図である。FIG. 4 is a schematic view showing one embodiment of the reaction system of the present invention, where (a) is a perspective view showing the whole, (b) is a partially enlarged view, and (c) is a part of (b). It is an enlarged view.

以下、本発明の反応場提供体及び反応システムについて詳述する。
本発明の反応場提供体1は、図1及び2に示すように、
円盤状の反応用板20を、積層した積層反応場2と
積層されてほぼ円柱状に形成された積層反応場の一端に設けられた回転手段としての磁性体(マグネット)製の円板4と
積層反応場2及び回転手段4を連結する連結手段としての2本の連結棒6,6とを具備する。
以下、更に詳細に説明する。
Hereinafter, the reaction field provider and the reaction system of the present invention will be described in detail.
The reaction field provider 1 of the present invention, as shown in FIGS.
A disk 20 made of a magnetic material (magnet) as a rotating means provided at one end of a stacked reaction field 20 formed in a substantially cylindrical shape by stacking the disk-shaped reaction plate 20 with the stacked stacked reaction field 2; Two connecting rods 6 and 6 as connecting means for connecting the stacked reaction field 2 and the rotating means 4 are provided.
This will be described in more detail below.

<積層反応場>
積層反応場2は、円盤状の反応用板20を積層してなる。本実施形態においては反応用板20は、5枚、互いに直接接触するように積層されている。また、各反応用板20はいずれも同形状の円盤状である。
本実施形態において、反応用板20の大きさは直径5mmであり、厚さは0.5mmであるが、これに制限されず、用途に応じて適宜適当な直径及び厚さとすることができる。このような大きさ意の反応用板を積層してなるので本実施形態における積層反応場は、直径5mmで高さ3mmとなっている。また、各反応用板20はそれぞれプラスチック材により形成することができ、また通常のプラスチック加工法を特に制限なく採用して成形を行うことができる。
反応用板20については後述する。
<Laminated reaction field>
The stacked reaction field 2 is formed by stacking disc-shaped reaction plates 20. In the present embodiment, five reaction plates 20 are laminated so as to be in direct contact with each other. Each reaction plate 20 has a disk shape of the same shape.
In the present embodiment, the reaction plate 20 has a diameter of 5 mm and a thickness of 0.5 mm, but is not limited to this, and can have an appropriate diameter and thickness depending on the application. Since the reaction plates having such a size are laminated, the laminated reaction field in this embodiment has a diameter of 5 mm and a height of 3 mm. Each reaction plate 20 can be formed of a plastic material, and can be molded by employing a normal plastic processing method without any particular limitation.
The reaction plate 20 will be described later.

<回転手段>
回転手段としてのマグネット製の円板4は、積層反応場2の一端側において、この一端に位置する反応用板20に接して設けられている。また円板4は、反応用板と同じ直径であり、厚さは0.5mmである。ただし、この直径や厚さもこれに制限されるものではなく、反応用板とは異なる直径とし、厚さも適宜変更可能であるが、本実施形態のように反応用板と同じ厚さとするのが回転効率を高くし、反応精度や測定精度を高める点で好ましい。円板4は通常のマグネットシートを特に制限なく用いて形成することができる。
<Rotating means>
A magnet disk 4 as a rotating means is provided on one end side of the stacked reaction field 2 in contact with a reaction plate 20 located at one end. The disk 4 has the same diameter as the reaction plate and a thickness of 0.5 mm. However, the diameter and thickness are not limited to this, and the diameter and thickness may be different from those of the reaction plate, and the thickness may be changed as appropriate, but the same thickness as the reaction plate as in the present embodiment is used. This is preferable in that the rotational efficiency is increased and the reaction accuracy and measurement accuracy are increased. The disc 4 can be formed using a normal magnet sheet without any particular limitation.

<連結手段>
連結手段としての連結棒6は、積層反応場2及び円板4の中心軸を外した部位において、反応用板20を貫通して円板4に連結されている。すなわち、本実施形態においては、積層反応場2を構成する各反応用板20は、その中心から所定間隔を空けた部位にこの中心をもって対称の位置に貫通穴28(図2参照)が設けられており、この貫通穴28を通して連結手段としての連結棒6が設けられている。本実施形態においては各反応用板20に回転力が効率よく伝達されるように各貫通穴の内径と連結棒の外形とは一致するように形成されている。連結棒6は、本実施形態においては、反応用板20の外周縁近くに配されている。連結棒6は金属、及びプラスチック材等により形成することができる。
また、連結棒6の一端は円板4に固着されている。固着手段は特に制限されず、接着剤による固着、融着等種々の手段を用いることができる。また連結棒6の他端は積層反応場6の他端(上方端部)よりも上方に突出するようになされているが、積層反応場が外れないように突出した部分を貫通穴の内径よりも大きな外径を有するようにしてもよい。
このように形成されていることにより、円板4に回転力が加わった際に、円板が回転するのに伴って、円板の回転力が積層反応場全体に伝達されて、円板4が回転する方向に、円板4と共に積層反応場が回転する。
<Connecting means>
The connecting rod 6 as a connecting means penetrates through the reaction plate 20 and is connected to the disc 4 at a portion where the central axes of the stacked reaction field 2 and the disc 4 are removed. That is, in this embodiment, each reaction plate 20 constituting the stacked reaction field 2 is provided with a through hole 28 (see FIG. 2) at a symmetrical position with respect to the center at a predetermined distance from the center. The connecting rod 6 as a connecting means is provided through the through hole 28. In the present embodiment, the inner diameter of each through hole and the outer shape of the connecting rod are formed so as to coincide with each other so that the rotational force is efficiently transmitted to each reaction plate 20. In this embodiment, the connecting rod 6 is disposed near the outer peripheral edge of the reaction plate 20. The connecting rod 6 can be formed of metal, plastic material, or the like.
One end of the connecting rod 6 is fixed to the disc 4. The fixing means is not particularly limited, and various means such as fixing with an adhesive and fusion can be used. Further, the other end of the connecting rod 6 protrudes upward from the other end (upper end) of the stacked reaction field 6, but the protruding portion is set so as not to be detached from the inner diameter of the through hole. May have a large outer diameter.
By being formed in this way, when a rotational force is applied to the disc 4, the rotational force of the disc is transmitted to the entire stacked reaction field as the disc rotates, and the disc 4 The stacking reaction field rotates together with the disc 4 in the direction in which the disk rotates.

<反応用板>
反応用板20は、その表裏両面に反応用の流路が形成されている。本実施形態においては、図3に示すように、反応用板20の表面(裏面も同様である)に、複数の凸部22が形成されて、各凸部22間に流路が24形成されている。本実施形態においては、凸部22は円盤状であり、直径は、50μm、厚さ(高さ)は、10μm、ピッチは10μmとなっているが、これに制限されず、直径は、10〜100μm、厚さは、1〜50μm、ピッチは5〜50mmの範囲で、反応対象物及び測定対象に応じて適宜選択可能である。
また、反応用板20の中央には中央開口26(図1及び2参照)が設けられて外周方向に向けて反応液が向かう(循環する)ように形成されている。中央開口直径は1〜2mmとするのが好ましい。
<Reaction plate>
The reaction plate 20 has reaction channels formed on both front and back surfaces. In the present embodiment, as shown in FIG. 3, a plurality of convex portions 22 are formed on the front surface (the same applies to the back surface) of the reaction plate 20, and 24 flow paths are formed between the convex portions 22. ing. In the present embodiment, the convex portion 22 has a disk shape, the diameter is 50 μm, the thickness (height) is 10 μm, and the pitch is 10 μm. The thickness is 100 μm, the thickness is 1 to 50 μm, and the pitch is 5 to 50 mm, which can be appropriately selected according to the reaction object and the measurement object.
Further, a central opening 26 (see FIGS. 1 and 2) is provided at the center of the reaction plate 20 so that the reaction solution is directed (circulated) toward the outer periphery. The central opening diameter is preferably 1 to 2 mm.

<反応システム>
本実施形態の反応システム100は、上述の反応場提供体を用いた反応システムであって、図4に示すように、複数の反応場積層体の収納部112を複数有する反応器110と、磁性体からなる回転手段としての円板4に回転力を付与する回転駆動手段としてのマグネットスターラー120とを具備する。
反応器110は、図4(a)に示すように、平板状の板の表面に多数の円柱状の凹部が形成されてなり、この凹部が収納部112を形成している。本実施形態において、収納部112は96個設けられている。
収納部112には、図4(b)に示すように、反応場提供体1の円板4が収納部112の底に接するように収納されており、更に所定の反応対象の液体が投入されている。したがって、収納部112の直径及び深さは反応場提供体よりも大きく形成されている。そして、反応器110の下に設置されているマグネットスターラー120は、各収納部に対応しており、各収納部112に収納された円板4を回転させることができるように96個の小さなスターラーが配置されてなる。
<Reaction system>
The reaction system 100 of the present embodiment is a reaction system using the above-described reaction field provider, and as shown in FIG. 4, a reactor 110 having a plurality of storage sections 112 of a plurality of reaction field stacks, and a magnetic field And a magnetic stirrer 120 as a rotational drive means for applying a rotational force to the disk 4 as a rotational means comprising a body.
As shown in FIG. 4A, the reactor 110 has a number of cylindrical recesses formed on the surface of a flat plate, and the recesses form a storage portion 112. In the present embodiment, 96 storage units 112 are provided.
As shown in FIG. 4 (b), the disc 4 of the reaction field provider 1 is accommodated in the accommodating portion 112 so as to contact the bottom of the accommodating portion 112, and a predetermined liquid to be reacted is added. ing. Therefore, the diameter and the depth of the storage part 112 are formed larger than the reaction field provider. The magnet stirrer 120 installed under the reactor 110 corresponds to each storage unit, and 96 small stirrers are provided so that the disc 4 stored in each storage unit 112 can be rotated. Is arranged.

<作用効果>
本実施形態の反応場提供体及び反応システムを使用するには、まず、図4(a)に示すように、反応器110の各収納部112に反応場提供体1をそれぞれ投入する。それと同時に反応用の試料液を投入する。この際用いることのできる試料液は対象とするターゲット生体分子(たとえば人IgA等)の種類に応じて任意である。
次に図4(b)に示すようにマグネットスターラー120を回転させて収納部120内部の反応場提供体1を回転させ、内部の試料液200を撹拌させる。この際、反応場提供体1における各反応用板20に中央開口が設けられているので、回転による遠心力によって、中央開口内部の試料液200が、各反応用板20に流路を通って反応場提供体の外へと流れる。即ち、試料液200が中央開口から各反応用板20の隙間を通過して反応場提供体の外部へと流れ、また中央開口へと循環する。これは流路の存在により各反応用板間に隙間が設けられているためである。
このように流路を通過することで、(c)に示すように、流路24において反応対象物(図中の赤丸で示す生体分子)が矢印方向に移動して凸部22にぶつかり、その結果止まった状態となり、そこを反応の試料液200が通過することで効果的に反応対象物の反応を行うことができる。
このように試料液200を循環させて各反応用板の表面全面を反応場として利用することができるので、従来の分析用ウェル表面の表面積より数10倍から数百倍大きくすることができ、効率よく反応を行うことができる。このため、例えば、反応用板の流路に事前に検査用抗体をコーティングして、被験者の試料を上記の試料液として利用して、この試料液を滴下しつつ、反応場提供体を回転させることにより、流路表面の検査用抗体と資料との反応が迅速に進む。
<Effect>
In order to use the reaction field provider and the reaction system of the present embodiment, first, the reaction field provider 1 is put into each storage part 112 of the reactor 110 as shown in FIG. At the same time, a sample solution for reaction is added. The sample solution that can be used at this time is arbitrary depending on the type of target biomolecule (for example, human IgA).
Next, as shown in FIG. 4B, the magnetic stirrer 120 is rotated to rotate the reaction field provider 1 inside the storage unit 120, thereby stirring the sample solution 200 inside. At this time, since each reaction plate 20 in the reaction field provider 1 is provided with a central opening, the sample solution 200 inside the central opening passes through each reaction plate 20 through a flow path by centrifugal force due to rotation. It flows out of the reaction field provider. That is, the sample solution 200 flows from the central opening through the gaps between the reaction plates 20 to the outside of the reaction field provider and circulates to the central opening. This is because a gap is provided between the reaction plates due to the presence of the flow path.
By passing through the flow path in this way, as shown in (c), the reaction object (the biomolecule indicated by a red circle in the figure) moves in the direction of the arrow in the flow path 24 and hits the convex portion 22. As a result, the reaction is stopped, and the reaction sample liquid 200 passes therethrough, so that the reaction object can be effectively reacted.
Since the sample solution 200 can be circulated and the entire surface of each reaction plate can be used as a reaction field, the surface area of the conventional well surface for analysis can be increased by several tens to several hundred times. The reaction can be performed efficiently. For this reason, for example, a test antibody is coated on the flow path of the reaction plate in advance, and the reaction field provider is rotated while dropping the sample liquid using the sample of the subject as the sample liquid. As a result, the reaction between the test antibody on the flow channel surface and the material proceeds rapidly.

なお、本発明は上述した実施形態に何ら制限されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形可能である。
たとえば、中央開口に代えて中央凸部を設けてもよい。


The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, a central convex portion may be provided instead of the central opening.


Claims (3)

反応用板を、積層した積層反応場と
該積層反応場の一端に設けられた回転手段と
上記積層反応場及び上記回転手段を連結する連結手段とを具備し、
上記反応用板が、表裏両面に反応用の流路が形成されており、
上記連結手段は、上記積層反応場及び上記回転手段の中心軸を外した部位において、上記反応用板を貫通して上記回転手段に連結されており、上記回転手段の回転力により積層反応場全体が該回転手段の回転方向に回転可能に形成されている、
反応場提供体。
The reaction plate comprises a stacked stacked reaction field, a rotating means provided at one end of the stacked reaction field, and a connecting means for connecting the stacked reaction field and the rotating means,
The reaction plate has reaction channels formed on both front and back sides,
The connecting means is connected to the rotating means through the reaction plate at a portion where the central axis of the stacked reaction field and the rotating means is removed, and the entire stacked reaction field is rotated by the rotational force of the rotating means. Is formed to be rotatable in the rotation direction of the rotating means,
Reaction field provider.
上記反応用板が、その表面に複数の凸部が形成されて、各凸部の間に上記流路が形成されている
ことを特徴とする請求項1記載の反応場提供体。
The reaction field provider according to claim 1, wherein the reaction plate has a plurality of convex portions formed on a surface thereof, and the flow path is formed between the convex portions.
請求項1記載の反応場提供体を用いた反応システムであって、
複数の上記3次元反応体を収納する収納部を複数有する反応器と、
上記回転手段が磁性体からなる磁性体板であり、該回転手段に回転力を付与する1又は複数の回転駆動手段とを、更に具備する
反応システム。

A reaction system using the reaction field provider according to claim 1,
A reactor having a plurality of storage units for storing a plurality of the three-dimensional reactants;
A reaction system, wherein the rotating means is a magnetic plate made of a magnetic material, and further includes one or a plurality of rotational driving means for applying a rotational force to the rotating means.

JP2017014068A 2017-01-30 2017-01-30 Reaction field donor and reaction system using it Active JP6843429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017014068A JP6843429B2 (en) 2017-01-30 2017-01-30 Reaction field donor and reaction system using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017014068A JP6843429B2 (en) 2017-01-30 2017-01-30 Reaction field donor and reaction system using it

Publications (2)

Publication Number Publication Date
JP2018124077A true JP2018124077A (en) 2018-08-09
JP6843429B2 JP6843429B2 (en) 2021-03-17

Family

ID=63108836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017014068A Active JP6843429B2 (en) 2017-01-30 2017-01-30 Reaction field donor and reaction system using it

Country Status (1)

Country Link
JP (1) JP6843429B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142823A (en) * 1989-10-27 1991-06-18 Fujitsu Ltd Vapor growth device
US20030170733A1 (en) * 2002-03-04 2003-09-11 University Of Chicago. Device and method for multiparallel synthesis and screening
JP2013168680A (en) * 2013-05-28 2013-08-29 Toshiba Corp Semiconductor light-emitting element and method of manufacturing the same
JP2015213465A (en) * 2014-05-09 2015-12-03 東洋鋼鈑株式会社 Genetic screening apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142823A (en) * 1989-10-27 1991-06-18 Fujitsu Ltd Vapor growth device
US20030170733A1 (en) * 2002-03-04 2003-09-11 University Of Chicago. Device and method for multiparallel synthesis and screening
JP2013168680A (en) * 2013-05-28 2013-08-29 Toshiba Corp Semiconductor light-emitting element and method of manufacturing the same
JP2015213465A (en) * 2014-05-09 2015-12-03 東洋鋼鈑株式会社 Genetic screening apparatus

Also Published As

Publication number Publication date
JP6843429B2 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
Padash et al. Microfluidics by additive manufacturing for wearable biosensors: A review
Tsao Polymer microfluidics: Simple, low-cost fabrication process bridging academic lab research to commercialized production
US10058864B2 (en) Microfluidic structure, microfluidic device having the same and method of controlling the microfluidic device
WO2011078115A1 (en) DEVICE HAVING SOLID-LIQUID SEPARATION FUNCTION, μ-TAS DEVICE, AND SOLID-LIQUID SEPARATION METHOD
JP4753672B2 (en) Manufacturing method of resin microchannel array and blood measurement method using the same
JP4217619B2 (en) Manufacturing method of resin molded product and manufacturing method of mold
JP2003130883A (en) Microchannel structure, method of manufacturing the same, and use of the same
Yousuff et al. Study on the optimum cutting parameters of an aluminum mold for effective bonding strength of a PDMS microfluidic device
TW200808958A (en) Cell culture vessel and method for culturing cell
Liedert et al. Roll-to-roll manufacturing of integrated immunodetection sensors
Nguyen et al. Multilayer soft photolithography fabrication of microfluidic devices using a custom-built wafer-scale PDMS slab aligner and cost-efficient equipment
Cao et al. Dry film resist laminated microfluidic system for electrical impedance measurements
WO2018105608A1 (en) Particle capture device
Burger et al. Siphon-induced droplet break-off for enhanced mixing on a centrifugal platform
WO2024145224A1 (en) Compositions, methods, and systems for high resolution spatial analysis
JP6843429B2 (en) Reaction field donor and reaction system using it
Martínez-López et al. Characterization of soft tooling photopolymers and processes for micromixing devices with variable cross-section
Watts et al. Centrifugal microfluidics with integrated sensing microdome optodes for multiion detection
Chen et al. Fabrication of a metal micro mold by using pulse micro electroforming
Martínez-López et al. Rapid fabrication of disposable micromixing arrays using xurography and laser ablation
Liu et al. A rapid prototyping technique for microfluidics with high robustness and flexibility
Shiba et al. 3D microlithography using an integrated system of 5-mm uv-leds with a tilt-rotational sample holder
Pysz et al. 3D Printed Customizable Microsampling Devices for Neuroscience Applications
Anshori et al. Versatile and low-cost fabrication of modular lock-and-key microfluidics for integrated connector mixer using a stereolithography 3D printing
Qiu et al. 3D printing of individualized microfluidic chips with DLP-based printer

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210216

R150 Certificate of patent or registration of utility model

Ref document number: 6843429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250