JP2018123191A - Ethylene furanoate-based polyester resin composition - Google Patents

Ethylene furanoate-based polyester resin composition Download PDF

Info

Publication number
JP2018123191A
JP2018123191A JP2017014217A JP2017014217A JP2018123191A JP 2018123191 A JP2018123191 A JP 2018123191A JP 2017014217 A JP2017014217 A JP 2017014217A JP 2017014217 A JP2017014217 A JP 2017014217A JP 2018123191 A JP2018123191 A JP 2018123191A
Authority
JP
Japan
Prior art keywords
resin composition
ethylene
pef
polymer component
based polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017014217A
Other languages
Japanese (ja)
Other versions
JP6969105B2 (en
Inventor
山田 俊樹
Toshiki Yamada
俊樹 山田
小林 祐介
Yusuke Kobayashi
祐介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Group Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Group Holdings Ltd filed Critical Toyo Seikan Group Holdings Ltd
Priority to JP2017014217A priority Critical patent/JP6969105B2/en
Publication of JP2018123191A publication Critical patent/JP2018123191A/en
Application granted granted Critical
Publication of JP6969105B2 publication Critical patent/JP6969105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ethylene furanoate-based polyester resin composition that uses an ethylene furanoate-based polyester, which can be produced only from biomass, without modification, with its moldability effectively improved.SOLUTION: A resin composition contains an ethylene furanoate-based polyester as a main polymer component (A), and contains, as a sub-polymer component (B), at least one selected from the group consisting of an ethylene-(meth) acrylic acid copolymer-based ionomer (B1), polybutylene succinate (B2) and a reactive compound-containing non-crystalline polyester (B3).SELECTED DRAWING: None

Description

本発明は、エチレンフラノエート系ポリエステルを主成分として含む樹脂組成物に関するものであり、より詳細には、延伸成形性が改善されたエチレンフラノエート系ポリエステル樹脂組成物に関する。   The present invention relates to a resin composition containing ethylene furanoate-based polyester as a main component, and more particularly to an ethylene furanoate-based polyester resin composition with improved stretch moldability.

エチレンフラノエート系ポリエステルは、バイオ由来の糖質原料から製造されるフランジカルボン酸と、やはりバイオ由来のエチレングリコールとの重合により得られるポリマーであり、化石資源を使用せず、100%バイオ由来により合成できる樹脂として知られている。   Ethylene furanoate-based polyester is a polymer obtained by polymerization of furandicarboxylic acid produced from bio-derived saccharide raw materials and bio-derived ethylene glycol, and does not use fossil resources. It is known as a resin that can be synthesized.

このようなエチレンフラノエート系ポリエステル(以下、PEFと呼ぶことがある)は、ポリエチレンテレフタレート(PET)と同等の透明性を有しているばかりか、PETと比較しても著しく高いガスバリア性を有しており(酸素バリア性が10倍程度、水蒸気バリア性が2倍程度)、各種用途への実用化が検討されている。
例えば、特許文献1には、ピロメリット酸二無水物やペンタエリスリトールなどを連鎖構造に組み込んだPEFコポリマーを用いて成形された容器用プリフォームや、該プリフォームから得られた容器などが提案されている。
Such an ethylene furanoate polyester (hereinafter sometimes referred to as PEF) has not only transparency equivalent to that of polyethylene terephthalate (PET), but also extremely high gas barrier properties compared to PET. (Oxygen barrier property is about 10 times and water vapor barrier property is about twice), and practical application to various applications is being studied.
For example, Patent Document 1 proposes a container preform formed using a PEF copolymer in which pyromellitic dianhydride or pentaerythritol is incorporated in a chain structure, and a container obtained from the preform. ing.

特表2016−531186号Special table 2016-531186

しかしながら、上記の特許文献1において、PEFコポリマーを用いてプリフォーム等を成形していることからも理解されるように、エチレンフラノエート系ポリエステル(PEF)は優れた強度特性を有しているものの、例えば、延伸成形を行う際に、高い加工応力が必要となるという欠点があった。このような欠点は、PEFに共重合単位を導入することにより改善し得ると考えられるが、共重合単位の導入は、100%バイオマスというPEFの利点を損なうばかりか、PEFの製造工程の大幅な変更をもたらしてしまう。   However, as can be understood from the above-mentioned Patent Document 1 in which a preform or the like is molded using a PEF copolymer, the ethylene furanoate-based polyester (PEF) has excellent strength characteristics. For example, there has been a drawback that a high processing stress is required when performing stretch molding. It is considered that such disadvantages can be improved by introducing copolymerized units into PEF. However, the introduction of copolymerized units not only impairs the advantage of PEF of 100% biomass, but also significantly increases the PEF production process. Will bring about changes.

従って、本発明の目的は、バイオマス100%で製造し得るエチレンフラノエート系ポリエステルをそのまま使用し、その成形性が有効に改善されたエチレンフラノエート系ポリエステル樹脂組成物を提供することにある。   Accordingly, an object of the present invention is to provide an ethylene furanoate-based polyester resin composition in which an ethylene furanoate-based polyester that can be produced with 100% biomass is used as it is and its moldability is effectively improved.

本発明によれば、主ポリマー成分(A)としてエチレンフラノエート系ポリエステルを含み、
副ポリマー成分(B)として、エチレン−(メタ)アクリル酸共重合体系アイオノマー(B1)、ポリブチレンサクシネート(B2)および反応性化合物含有非結晶性ポリエステル(B3)からなる群より選択された少なくとも1種を含有することを特徴とする樹脂組成物が提供される。
本発明の上記樹脂組成物は、これを用いての延伸成形により、延伸成形体として使用に供される。
According to the present invention, the main polymer component (A) includes an ethylene furanoate-based polyester,
At least selected from the group consisting of ethylene- (meth) acrylic acid copolymer ionomer (B1), polybutylene succinate (B2) and reactive compound-containing amorphous polyester (B3) as the secondary polymer component (B) A resin composition characterized by containing 1 type is provided.
The resin composition of the present invention is used as a stretch-molded product by stretch molding using the resin composition.

本発明の樹脂組成物においては、
(1)前記主ポリマー成分(A)100質量部あたり、前記副ポリマー成分(B)を5〜40質量部の量で含有していること、
が好適である。
In the resin composition of the present invention,
(1) The subpolymer component (B) is contained in an amount of 5 to 40 parts by mass per 100 parts by mass of the main polymer component (A).
Is preferred.

本発明の樹脂組成物は、主ポリマー成分(A)としてエチレンフラノエート系ポリエステルを含むものであるが、このような主ポリマー成分(A)に対して、エチレン−(メタ)アクリル酸共重合体系アイオノマー(B1)、ポリブチレンサクシネート(B2)および反応性化合物含有非結晶性ポリエステル(B3)から選択された少なくとも1種が副ポリマー成分(B)として配合されている点を重要な特徴とする。このような副ポリマー成分(B)は、エチレンフラノエート系ポリエステルの成形性を向上させる改質材として機能する。   The resin composition of the present invention contains an ethylene furanoate-based polyester as the main polymer component (A), but the ethylene- (meth) acrylic acid copolymer ionomer (for the main polymer component (A) ( An important feature is that at least one selected from B1), polybutylene succinate (B2) and reactive compound-containing amorphous polyester (B3) is blended as a subpolymer component (B). Such a subpolymer component (B) functions as a modifier that improves the moldability of the ethylene furanoate-based polyester.

即ち、後述する実施例に示されているように、エチレンフラノエート系ポリエステルを用いての射出成形により得られた試験片について、ダンベル引張試験を行うと、その最大応力は101.7MPaと大きな値を示すが(比較例1)、本発明にしたがい、上記の副ポリマー(B1)、(B2)、(B3)或いは及び上記のような副ポリマー成分(B)がエチレンフラノエート系ポリエステルに配合された樹脂組成物を用いて同様の引張試験を行うと、その最大応力は、約15〜30%低下する。
このことから理解されるように、本発明の樹脂組成物は、エチレンフラノエート系ポリエステル単体に比して、低い加工応力で成形が可能であり、この結果、成形不良等の不都合を生じることなく、延伸成形を行うことが可能となる。このように、本発明によれば、エチレンフラノエート系ポリエステルの延伸成形性の大幅な改善がもたらされる。
That is, as shown in Examples described later, when a dumbbell tensile test is performed on a test piece obtained by injection molding using ethylene furanoate polyester, the maximum stress is a large value of 101.7 MPa. (Comparative Example 1), according to the present invention, the subpolymer (B1), (B2), (B3) or the subpolymer component (B) as described above is blended with the ethylene furanoate polyester. When the same tensile test is performed using the obtained resin composition, the maximum stress decreases by about 15 to 30%.
As understood from this, the resin composition of the present invention can be molded with a lower processing stress than the ethylene furanoate polyester alone, and as a result, there is no inconvenience such as molding failure. It becomes possible to perform stretch molding. Thus, according to the present invention, the stretch formability of the ethylene furanoate-based polyester is greatly improved.

<主ポリマー成分(A)>
本発明において、主ポリマー成分(A)として使用されるエチレンフラノエート系ポリエステル(PEF)は、下記式で表される構造を有する。
式中、nは、正の整数である。
<Main polymer component (A)>
In the present invention, the ethylene furanoate-based polyester (PEF) used as the main polymer component (A) has a structure represented by the following formula.
In the formula, n is a positive integer.

即ち、このPEFは、先にも述べたように、フランジカルボン酸とエチレングリコールとのエステル重合により得られるものであり、フランジカルボン酸及びエチレングリコールの何れもバイオ由来に得ることができる原料である。   That is, as described above, this PEF is obtained by ester polymerization of furandicarboxylic acid and ethylene glycol, and both furancarboxylic acid and ethylene glycol are raw materials that can be obtained from biotechnology. .

本発明において、上記の構造を有するPEFは、原理的には、その優れた特性、例えば透明性やガスバリア性が損なわれない範囲において、少量の共重合単位(例えば、多価アルコールや多塩基酸類)が導入されていてもよいが、このようなコモノマー単位の導入は、PEF本来の優れた特性を損なうこととなる。従って、本発明の利点を最大限に活かすためには、このような共重合単位が導入されていない100%バイオ由来のPEFを主ポリマー成分(A)として用いることが好適である。
尚、かかるPEFは、フィルムを形成するに足る分子量を有していればよいが、成形性等の観点から、通常、その重量平均分子量は10,000〜100,000程度の範囲にあることが好適である。
In the present invention, in principle, the PEF having the above structure has a small amount of copolymerized units (for example, polyhydric alcohols and polybasic acids within the range in which transparency and gas barrier properties are not impaired. ) May be introduced, but the introduction of such a comonomer unit impairs the original excellent properties of PEF. Therefore, in order to make the most of the advantages of the present invention, it is preferable to use 100% bio-derived PEF into which such copolymerized units are not introduced as the main polymer component (A).
Such a PEF may have a molecular weight sufficient to form a film, but from the viewpoint of moldability and the like, the weight average molecular weight is usually in the range of about 10,000 to 100,000. Is preferred.

<副ポリマー成分(B)>
本発明においては、主ポリマー(A)として使用されるPEFの成形性を向上させるために、エチレン−(メタ)アクリル酸共重合体系アイオノマー(B1)、ポリブチレンサクシネート(B2)および反応性化合物含有非結晶性ポリエステル(B3)の少なくとも1種を副ポリマー成分(B)として使用する。これらの副ポリマー成分(B)は、何れもPEFとの親和性に優れ、均一に分散することができ、これにより、低い応力での成形が可能となる。
<Sub-polymer component (B)>
In the present invention, ethylene- (meth) acrylic acid copolymer ionomer (B1), polybutylene succinate (B2) and reactive compound are used to improve the moldability of PEF used as the main polymer (A). At least one of the containing amorphous polyester (B3) is used as the secondary polymer component (B). These sub-polymer components (B) are all excellent in affinity with PEF and can be uniformly dispersed, thereby enabling molding with low stress.

副ポリマー成分(B1);
エチレン−(メタ)アクリル酸共重合体系アイオノマー(B1)は、エチレンとメタクリル酸或いはアクリル酸との共重合体の分子間を金属イオンで架橋した構造を有するものであり、金属イオンとしては、Naイオン、Kイオン等のアルカリ金属イオンや、Znイオン、Alイオンなどを挙げることができる。
かかるアイオノマー(B1)は、通常、エチレンと(メタ)アクリル酸との共重合体(通常、カルボン酸単位を1〜30モル%含む)を製造した後、カルボン酸の一部もしくは全部を上記金属イオンで中和することにより製造されるものであり、一定量のカルボン酸単位が保持されている限り、他のビニルモノマーが共重合されていてもよい。このようなアイオノマー(B1)は、例えば三井・デュポンポリケミカル株式会社よりハイミランの商品名で市販されており、特に、エチレン−メタクリル酸共重合体のアイオノマーが好適である。
Minor polymer component (B1);
The ethylene- (meth) acrylic acid copolymer system ionomer (B1) has a structure in which the molecules of a copolymer of ethylene and methacrylic acid or acrylic acid are cross-linked with a metal ion. Examples thereof include alkali metal ions such as ions and K ions, Zn ions and Al ions.
Such an ionomer (B1) is usually prepared by producing a copolymer of ethylene and (meth) acrylic acid (usually containing 1 to 30 mol% of carboxylic acid units), and then partially or entirely carboxylic acid. Other vinyl monomers may be copolymerized as long as they are produced by neutralization with ions and a certain amount of carboxylic acid units are retained. Such an ionomer (B1) is commercially available, for example, under the trade name of High Milan from Mitsui DuPont Polychemical Co., Ltd., and an ionomer of an ethylene-methacrylic acid copolymer is particularly suitable.

副ポリマー成分(B2);
また、ポリブチレンサクシネート(B2)は、コハク酸と1,4−ブタンジオールとのポリエステルであり、一般に、重量平均分子量が50,000〜400,000程度のものである。PEFと同じく、バイオ由来の原料から製造することもできる。かかるポリブチレンサクシネート(B2)は、例えば三菱化学株式会社より、Bio PBSの名称で市販されている。
Minor polymer component (B2);
The polybutylene succinate (B2) is a polyester of succinic acid and 1,4-butanediol, and generally has a weight average molecular weight of about 50,000 to 400,000. Like PEF, it can also be produced from bio-derived raw materials. Such polybutylene succinate (B2) is commercially available, for example, from Mitsubishi Chemical Corporation under the name Bio PBS.

副ポリマー成分(B3);
さらに、反応性化合物含有非結晶性ポリエステル(B3)は、非晶質ポリエステルと反応性化合物とを含むものである。
Minor polymer component (B3);
Furthermore, the reactive compound-containing amorphous polyester (B3) includes an amorphous polyester and a reactive compound.

この非晶性ポリエステルは、所謂共重合ポリエステルであり、例えば、テレフタル酸やイソフタル酸に代表されるC数が8〜14の芳香族ジカルボン酸と、エチレングリコールやジエチレングリコール、プロパンジオール、シクロヘキサンジオールに代表される脂肪族もしくは脂環族グリコールとからなるエステル単位とを含み、さらに、必要により、トリメリット酸、ピロメリット酸、グリセリンなどのエステル形成性官能基を3個以上含む多価官能性化合物を用いて導入されたエステル単位を含む共重合ポリエステルであり、一般に、0.4〜1.50dl/gの還元粘度を有している。   This non-crystalline polyester is a so-called copolymer polyester, for example, an aromatic dicarboxylic acid having 8 to 14 carbon atoms represented by terephthalic acid or isophthalic acid, and ethylene glycol, diethylene glycol, propanediol, or cyclohexanediol. A polyfunctional compound containing 3 or more ester-forming functional groups such as trimellitic acid, pyromellitic acid, and glycerin, if necessary. It is a copolyester containing ester units introduced by use, and generally has a reduced viscosity of 0.4 to 1.50 dl / g.

また、反応性化合物は、エステルと反応性の官能基を有するビニル系共重合体或いはエポキシ化合物であり、通常、200〜500,000、特に7000〜40,000の重量平均分子量を有する。
エステルと反応性の官能基としては、グリシジル基、イソシアネート基、カルボキシル基、カルボン酸金属塩基、エステル基、ヒドロキシル基、アミノ基、カルボジイミド基などが代表的であり、特に、グリシジル基が好適である。
このような反応性化合物において、ビニル系共重合体としては、スチレン等のビニル芳香族単位、グリシジルアルキル(メタ)アクリレート単位、及び必要に応じてアルキル(メタ)アクリレート単位を含む共重合体、例えばスチレン/メチルメタクリレート/グリシジルメタクリレート共重合体を例示することができる。また、エポキシ化合物としては、ビスフェノールA型、クレゾールノボラック型或いはフェノールノボラック型のエポキシ化合物を挙げることができる。
かかる反応性化合物は、一般に、前記非晶性ポリエステル100質量部当り0.1〜20質量部の量で含まれる。
The reactive compound is a vinyl copolymer or epoxy compound having a functional group reactive with an ester, and usually has a weight average molecular weight of 200 to 500,000, particularly 7000 to 40,000.
Typical functional groups reactive with esters include glycidyl groups, isocyanate groups, carboxyl groups, carboxylate metal bases, ester groups, hydroxyl groups, amino groups, carbodiimide groups, etc., and glycidyl groups are particularly preferred. .
In such a reactive compound, examples of the vinyl-based copolymer include a copolymer containing a vinyl aromatic unit such as styrene, a glycidylalkyl (meth) acrylate unit, and an alkyl (meth) acrylate unit as necessary, for example, A styrene / methyl methacrylate / glycidyl methacrylate copolymer can be exemplified. Examples of the epoxy compound include bisphenol A type, cresol novolac type, and phenol novolac type epoxy compounds.
Such reactive compounds are generally included in an amount of 0.1 to 20 parts by weight per 100 parts by weight of the amorphous polyester.

上述した反応性化合物含有非結晶性ポリエステル(B3)は、特許第3962998号により公知であり、例えば東洋紡株式会社よりバイロンRFの商品名で市販されている。   The above-mentioned reactive compound-containing non-crystalline polyester (B3) is known from Japanese Patent No. 396998 and is commercially available from Toyobo Co., Ltd. under the trade name Byron RF.

上述した各種の副ポリマー成分(B1)〜(B3)は、それぞれ単独または2種以上を組み合わせて使用されるが、良好な成形性を確保するという点で、このような副ポリマー成分(B)は、その種類によっても異なるが、通常、前記PEF(主ポリマー成分(A))100質量部当り5〜40質量部、特に10〜30質量部の量で使用されることが好適である。即ち、この量が少ないと、目的とするPEFの成形性の向上が不満足となり、過剰に使用すると、それ以上の成形性の向上が望めないばかりか、PEFが有するガスバリア性や透明性などの優れた特性が損なわれるおそれがある。   The above-mentioned various subpolymer components (B1) to (B3) are used alone or in combination of two or more, but such subpolymer components (B) are used in terms of ensuring good moldability. Although it varies depending on the type, it is usually preferred to be used in an amount of 5 to 40 parts by mass, particularly 10 to 30 parts by mass, per 100 parts by mass of the PEF (main polymer component (A)). That is, if this amount is small, the improvement of the moldability of the target PEF is unsatisfactory, and if it is used excessively, it is not possible to improve the moldability further, and the PEF has excellent gas barrier properties and transparency. The characteristics may be impaired.

また、上述した各種の副ポリマー成分(B1)〜(B3)は、それぞれ異なる特性を有している。
例えば、後述する引張試験において、最大応力をより大きく低下させ、PEFの延伸成形性を大きく向上させるという点では、アイオノマー(B1)及びポリブチレンサクシネート(B2)が好適であり、特にアイオノマー(B1)が最適である。
また、PEFが有する透明性に与える影響が小さく、その透明性を維持するという点では、反応性化合物含有非結晶性ポリエステル(B3)が好適である。
さらに、バイオマスという観点では、ポリブチレンサクシネート(B2)が好適であり、バイオマス100%というPEFの利点を最大限に活かす上で、この副ポリマー成分(B2)は最適である。
さらに、食品容器などへの適用性という点では、アイオノマー(B1)及びポリブチレンサクシネート(B2)が好適であり、特にアイオノマー(B1)は最適である。
このように、上述した副ポリマー成分(B1)〜(B3)は、この樹脂組成物により得られる成形体の用途を考慮し、それぞれの特性を考慮して、PEFの改質材である副ポリマー(B)として使用される。
The various subpolymer components (B1) to (B3) described above have different characteristics.
For example, in the tensile test described later, ionomer (B1) and polybutylene succinate (B2) are preferable in that the maximum stress is greatly reduced and the stretch moldability of PEF is greatly improved. In particular, ionomer (B1) ) Is optimal.
Moreover, the reactive compound containing amorphous polyester (B3) is suitable at the point which has little influence on the transparency which PEF has, and maintains the transparency.
Furthermore, from the viewpoint of biomass, polybutylene succinate (B2) is suitable, and this subpolymer component (B2) is optimal in order to maximize the advantage of PEF of 100% biomass.
Furthermore, ionomer (B1) and polybutylene succinate (B2) are preferable in terms of applicability to food containers and the like, and ionomer (B1) is particularly optimal.
As described above, the subpolymer components (B1) to (B3) described above are subpolymers that are PEF modifiers in consideration of the properties of the molded product obtained from the resin composition. Used as (B).

<他の配合剤>
上述したPEFを主ポリマー成分(A)として含み且つ改質材である副ポリマー成分(B)を含む本発明の樹脂組成物では、PEFの優れた特性を損なわず且つ副ポリマー(B)による成形性向上効果を損なわない範囲で、PET等の他の樹脂が適宜の量でブレンドされていてもよいし、それ自体公知の各種配合剤、例えば滑剤、顔料、酸化防止剤、界面活性剤、紫外線吸収剤等が配合されていてもよい。
<Other ingredients>
In the resin composition of the present invention containing the above-mentioned PEF as the main polymer component (A) and the modifying sub-polymer component (B), molding with the sub-polymer (B) without impairing the excellent properties of PEF. Other resins such as PET may be blended in an appropriate amount within a range not impairing the property improving effect, and various known compounding agents such as lubricants, pigments, antioxidants, surfactants, ultraviolet rays An absorbent or the like may be blended.

<用途>
上述した本発明の樹脂組成物は、PEFの成形性が改善されており、延伸成形に際しての成形不良が有効に抑制されているため、それ自体公知の延伸成形を行い、延伸成形体として種々の用途に適用される。
<Application>
The above-described resin composition of the present invention has improved moldability of PEF, and molding defects during stretch molding are effectively suppressed. Applicable for use.

例えば、本発明の樹脂組成物を使用し、押出成形等により、フィルムを成形し、これを延伸して延伸フィルムとして使用することができる。また、押出成形、射出成形、圧縮成形等により、チューブ形状、シート形状或いは試験管形状のプリフォームを成形し、このプリフォームの形状に応じて、ダイレクトブロー成形、プラグアシスト成形、二軸延伸ブロー成形を行い、ボトル形状、トレイ形状、カップ形状の延伸成形体として使用される。
このような延伸成形体は、包装分野において、特に容器として好適に使用される。
For example, using the resin composition of the present invention, a film can be formed by extrusion molding or the like, and then stretched to be used as a stretched film. Also, tube-shaped, sheet-shaped, or test-tube shaped preforms are formed by extrusion molding, injection molding, compression molding, etc., and direct blow molding, plug assist molding, biaxial stretch blowing are performed according to the preform shape. It is molded and used as a bottle-shaped, tray-shaped or cup-shaped stretched molded body.
Such a stretch-molded body is particularly suitably used as a container in the packaging field.

以下本発明について例を用いて説明するが、本発明はその構成要件を満たす限りこれらの実施例によってなんら限定されるものではない。
実験に使用した材料、各種測定方法については次の通りである。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples as long as the structural requirements are satisfied.
The materials used in the experiment and various measurement methods are as follows.

<材料>
(1)主ポリマー成分(A):
ポリエチレンフラノエート(PEF)樹脂(A90A:Avantium 製)
(2)副ポリマー成分(B)(改質材):
副ポリマー(B1);
エチレン−(メタ)アクリル酸共重合体系アイオノマー
ハイミラン1706:三井・デュポンポリケミカル(株)製
副ポリマー(B2);
ポリブチレンサクシネート(FZ71PM:三菱化学(株)製)
副ポリマー(B3);
反応性化合物含有非結晶性ポリエステル樹脂
(バイロンRF100−C01:東洋紡(株)製)
<Material>
(1) Main polymer component (A):
Polyethylene furanoate (PEF) resin (A90A: manufactured by Avantium)
(2) Subpolymer component (B) (modifier):
Secondary polymer (B1);
Ethylene- (meth) acrylic acid copolymer ionomer
High Milan 1706: Mitsui DuPont Polychemical Co., Ltd. subsidiary polymer (B2);
Polybutylene succinate (FZ71PM: manufactured by Mitsubishi Chemical Corporation)
Secondary polymer (B3);
Reactive compound-containing amorphous polyester resin
(Byron RF100-C01: manufactured by Toyobo Co., Ltd.)

<射出成形>
乾燥済みのPEF樹脂、またはPEF樹脂と副ポリマーを所定の比率で混合したドライブレンド物を射出成形機(NN75JS:(株)新潟鐵工所製)のホッパーへ供給し、バレル設定温度を250℃に設定してダンベル型試験片(JIS K 7139、タイプA1)を射出成形した。
<引張試験>
引張試験機(テンシロンUCT−5T:オリエンテック製)を用いて、初期のチャック間距離を80mm、引張速度を20mm/分に設定して、試験温度25℃にて前記ダンベル型試験片の引張試験を行い、応力−ひずみ曲線の最大値を最大応力(MPa)とした。
<Injection molding>
Dry PEF resin or a dry blend of PEF resin and secondary polymer mixed at a specified ratio is supplied to the hopper of an injection molding machine (NN75JS: Niigata Steel Co., Ltd.), and the barrel set temperature is 250 ° C. A dumbbell-shaped test piece (JIS K 7139, type A1) was injection molded.
<Tensile test>
Using a tensile tester (Tensilon UCT-5T: manufactured by Orientec), the initial distance between chucks is set to 80 mm, the tensile speed is set to 20 mm / min, and the tensile test of the dumbbell-shaped test piece at a test temperature of 25 ° C. The maximum value of the stress-strain curve was taken as the maximum stress (MPa).

<実施例1>
主ポリマー成分(A)であるPEF樹脂100質量部に対し、エチレン−(メタ)アクリル酸共重合体系アイオノマー(副ポリマー(B1))を25質量部ドライブレンドし、この樹脂組成物を用いて、前記の方法によって射出成形を行い、ダンベル型試験片を成形し、引張試験を行った。最大応力を表1に示す。尚、試供サンプルを7個とし、各サンプルについて最大応力を測定し、その平均値を表1に示した。
<Example 1>
25 parts by mass of ethylene- (meth) acrylic acid copolymer ionomer (subpolymer (B1)) is dry blended with respect to 100 parts by mass of the PEF resin as the main polymer component (A), and this resin composition is used. Injection molding was performed by the method described above, a dumbbell-shaped test piece was molded, and a tensile test was performed. The maximum stress is shown in Table 1. In addition, the test sample was made into seven pieces, the maximum stress was measured about each sample, and the average value was shown in Table 1.

<実施例2、3>
副ポリマー(B)として、それぞれ、ポリブチレンサクシネート(副ポリマー(B2))、反応性化合物含有非結晶性ポリエステル樹脂(副ポリマー(B3))を用いた以外は、実施例1と同様の方法で射出成形と引張試験を行い、最大応力を測定し、その結果を表1に示した。
<Examples 2 and 3>
The same method as in Example 1 except that polybutylene succinate (subpolymer (B2)) and reactive compound-containing amorphous polyester resin (subpolymer (B3)) were used as the subpolymer (B). Were subjected to injection molding and a tensile test, the maximum stress was measured, and the results are shown in Table 1.

<比較例1>
副ポリマー成分(B)を使用せず、PEF樹脂のみを用いた以外は、実施例1と同様の方法で射出成形と引張試験を行い、最大応力を求め、その結果を表1に示した。
<Comparative Example 1>
Except that the subpolymer component (B) was not used and only the PEF resin was used, injection molding and a tensile test were performed in the same manner as in Example 1, the maximum stress was determined, and the results are shown in Table 1.

Claims (3)

主ポリマー成分(A)としてエチレンフラノエート系ポリエステルを含み、
副ポリマー成分(B)として、エチレン−(メタ)アクリル酸共重合体系アイオノマー(B1)、ポリブチレンサクシネート(B2)および反応性化合物含有非結晶性ポリエステル(B3)からなる群より選択された少なくとも1種を含有することを特徴とする樹脂組成物。
Including ethylene furanoate-based polyester as the main polymer component (A),
At least selected from the group consisting of ethylene- (meth) acrylic acid copolymer ionomer (B1), polybutylene succinate (B2) and reactive compound-containing amorphous polyester (B3) as the secondary polymer component (B) 1 type of resin composition characterized by the above-mentioned.
前記主ポリマー成分(A)100質量部あたり、前記副ポリマー成分(B)を5〜40質量部の量で含有している請求項1に記載の樹脂組成物。   The resin composition of Claim 1 which contains the said subpolymer component (B) in the quantity of 5-40 mass parts per 100 mass parts of said main polymer components (A). 請求項1に記載の樹脂組成物からなる延伸成形体。   A stretch molded article comprising the resin composition according to claim 1.
JP2017014217A 2017-01-30 2017-01-30 Ethylene furanoate-based polyester resin composition Active JP6969105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017014217A JP6969105B2 (en) 2017-01-30 2017-01-30 Ethylene furanoate-based polyester resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017014217A JP6969105B2 (en) 2017-01-30 2017-01-30 Ethylene furanoate-based polyester resin composition

Publications (2)

Publication Number Publication Date
JP2018123191A true JP2018123191A (en) 2018-08-09
JP6969105B2 JP6969105B2 (en) 2021-11-24

Family

ID=63110115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017014217A Active JP6969105B2 (en) 2017-01-30 2017-01-30 Ethylene furanoate-based polyester resin composition

Country Status (1)

Country Link
JP (1) JP6969105B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110204687A (en) * 2019-05-20 2019-09-06 华南理工大学 A kind of thermally conductive poly butylene succinate ionomer and its preparation method and application
CN112961472A (en) * 2021-02-08 2021-06-15 昌亚新材料科技有限公司 Modified polyethylene glycol furan dicarboxylate and preparation method and application thereof
EP4177039A4 (en) * 2020-07-01 2024-02-28 Kirin Holdings Kk Polyethylene furanoate, highly-viscous polyethylene furanoate manufacturing method, polyester composition, polyester bottle, polyester bottle manufacturing method, and beverage product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328208A (en) * 2000-05-19 2001-11-27 Toyo Seikan Kaisha Ltd Resin-coated metal panel, metal can, and can lid
JP2006045477A (en) * 2003-08-13 2006-02-16 Toyobo Co Ltd Modifier for crystalline polyester resin and molded article using the same
JP2011520005A (en) * 2008-05-08 2011-07-14 ノバモント・ソシエタ・ペル・アチオニ Fat-aromatic biodegradable polyester
CN104072954A (en) * 2014-07-16 2014-10-01 中国科学院长春应用化学研究所 Poly-2,5-furandicarboxylic acid glycol ester composite material and preparation method thereof
JP2015506389A (en) * 2011-12-29 2015-03-02 ナチュラ コスメティコス ソシエダッド アノニマ Process for the production of poly (ethylene 2,5-furandicarboxylate) from 2,5-furandicarboxylic acid, its use, its polyester compounds and blends
WO2016200653A1 (en) * 2015-06-11 2016-12-15 E I Du Pont De Nemours And Company Enhanced barrier performance via blends of poly(ethylene furandicarboxylate) and poly(ethylene terephthalate)

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328208A (en) * 2000-05-19 2001-11-27 Toyo Seikan Kaisha Ltd Resin-coated metal panel, metal can, and can lid
JP2006045477A (en) * 2003-08-13 2006-02-16 Toyobo Co Ltd Modifier for crystalline polyester resin and molded article using the same
JP2011520005A (en) * 2008-05-08 2011-07-14 ノバモント・ソシエタ・ペル・アチオニ Fat-aromatic biodegradable polyester
JP2015506389A (en) * 2011-12-29 2015-03-02 ナチュラ コスメティコス ソシエダッド アノニマ Process for the production of poly (ethylene 2,5-furandicarboxylate) from 2,5-furandicarboxylic acid, its use, its polyester compounds and blends
CN104072954A (en) * 2014-07-16 2014-10-01 中国科学院长春应用化学研究所 Poly-2,5-furandicarboxylic acid glycol ester composite material and preparation method thereof
WO2016200653A1 (en) * 2015-06-11 2016-12-15 E I Du Pont De Nemours And Company Enhanced barrier performance via blends of poly(ethylene furandicarboxylate) and poly(ethylene terephthalate)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110204687A (en) * 2019-05-20 2019-09-06 华南理工大学 A kind of thermally conductive poly butylene succinate ionomer and its preparation method and application
EP4177039A4 (en) * 2020-07-01 2024-02-28 Kirin Holdings Kk Polyethylene furanoate, highly-viscous polyethylene furanoate manufacturing method, polyester composition, polyester bottle, polyester bottle manufacturing method, and beverage product
CN112961472A (en) * 2021-02-08 2021-06-15 昌亚新材料科技有限公司 Modified polyethylene glycol furan dicarboxylate and preparation method and application thereof

Also Published As

Publication number Publication date
JP6969105B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
JP3210702B2 (en) Polyester resin composition for blow molding and molded article thereof
JP6969105B2 (en) Ethylene furanoate-based polyester resin composition
GB2489103A (en) Bio-resins
RU2623261C2 (en) Composition based on polyester resin, process for its preparation and moulding product using such compositions
JPWO2011016373A1 (en) Polyester resin composition
CN109553807A (en) Resin combination and its resin-formed body
JP5423519B2 (en) Heat-resistant polyester stretch-molded container
TW201305275A (en) Inorganic filler-reinforced polybutylene terephthalate resin composition, and injection molded product formed by molding said resin composition
JP6018050B2 (en) Polybutylene terephthalate resin composition, and injection-molded article comprising the resin composition
JP2009030029A (en) Polyester resin composition
EP2459646A2 (en) Toughened polytrimethylene terephthalate resin composition
JP6365728B1 (en) Resin composition and resin molded body
JP6302072B2 (en) Release agent for use in molding polybutylene terephthalate resin composition and method for improving release property
JP2010150484A (en) Polybutylene terephthalate series resin composition and molding
WO2003042299A1 (en) Moldable resin composition based on copolyester elastomers
JP2008143988A (en) Thermoplastic resin composition for extrusion molding comprising recycled pet and molded product
JP2011084616A (en) Modified recycled polyester resin and molded article using the same
US20040077772A1 (en) Process for forming molded articles, particularly by blow molding, utilizing compositions that include calcium reactants in blends containing copolyether ester elastomers and ethylene(meth)acrylate/unsaturated epoxide copolymers
JP3593436B2 (en) Polyester resin composition and method for producing the same
JP4962268B2 (en) Polylactic acid-based resin laminate sheet and molded body comprising the same
JP2019006993A (en) Thermoplastic elastomer resin and molding thereof
JP6445820B2 (en) Polybutylene terephthalate resin composition
JP3336083B2 (en) Saturated polyester resin composition
KR102208846B1 (en) Polymer resin composition and resin molded article
Wiphanurat et al. Properties of HDPE/biodegradable polymer blends using modified rubber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R150 Certificate of patent or registration of utility model

Ref document number: 6969105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150