JP2018121582A - Method for inhibiting growth of filamentous algae that coexist with water-immersed plants - Google Patents

Method for inhibiting growth of filamentous algae that coexist with water-immersed plants Download PDF

Info

Publication number
JP2018121582A
JP2018121582A JP2017016775A JP2017016775A JP2018121582A JP 2018121582 A JP2018121582 A JP 2018121582A JP 2017016775 A JP2017016775 A JP 2017016775A JP 2017016775 A JP2017016775 A JP 2017016775A JP 2018121582 A JP2018121582 A JP 2018121582A
Authority
JP
Japan
Prior art keywords
filamentous algae
algae
growth
filamentous
salinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017016775A
Other languages
Japanese (ja)
Other versions
JP6558597B2 (en
Inventor
稲森 悠平
Yuhei Inamori
悠平 稲森
隆平 稲森
Ryuhei Inamori
隆平 稲森
弘禧 町井
Hiroyoshi Machii
弘禧 町井
靖 村上
Yasushi Murakami
靖 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RUTECH CO Ltd
Original Assignee
RUTECH CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RUTECH CO Ltd filed Critical RUTECH CO Ltd
Priority to JP2017016775A priority Critical patent/JP6558597B2/en
Publication of JP2018121582A publication Critical patent/JP2018121582A/en
Application granted granted Critical
Publication of JP6558597B2 publication Critical patent/JP6558597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Seaweed (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for effectively inhibiting growth of filamentous algae that coexist with water-immersed plants.SOLUTION: A method of inhibiting growth of filamentous algae involves providing an aquatic ecosystem in which the filamentous algae that coexist with the water-immersed plants, a predatory organism of the filamentous algae and an aquatic animal coexist such that the salinity of the ecosystem exhibits favourable growth conditions for the water-immersed plant, the predatory organism of the filamentous algae, and the aquatic animal, but exhibits inhibitory action on the filamentous algae. By making the salinity of the ecosystem 500 mg/l to 3500 mg/l the growth of the water-immersed plant, the predatory organism of the filamentous algae, and the aquatic animal is not impeded, while weakening of the filamentous algae due to the salinity, and predation thereof by the predatory organism of the filamentous algae and the aquatic animal effectively inhibits the growth of the filamentous algae.SELECTED DRAWING: Figure 8

Description

本発明は、ホザキノフサモ等の沈水植物と共存する糸状藻類、糸状藻類捕食生物及び水生動物が共存する水圏生態系における糸状藻類の増殖を抑制する方法に関する。   The present invention relates to a method for suppressing the growth of filamentous algae in an aquatic ecosystem where filamentous algae, filamentous algae predators and aquatic animals coexist with submerged plants such as Hozakinofusamo.

近年、自然の浄化力を活用し、低コストで水を処理する水質浄化手法として、植物を使った試みがなされており、特に水質改善効果が高いとされる沈水植物が注目されている。沈水植物は水面下で成長し、水中の栄養塩の取り込み、底泥の巻上げ防止、ミジンコなどの動物プランクトンや付着微生物の隠れ家(増加)、魚類の産卵場、稚魚の揺り籠、餌場、隠れ家になるなど様々な役割があり、水質浄化効果があることが知られている。河川、湖沼、濠等の水質改善や生物多様性保全の観点から、このような効果を持つ沈水植物を生育又は、再生させる技術が研究されている。   In recent years, attempts have been made to use plants as a water purification method that uses natural purification power to treat water at a low cost, and submerged plants that are particularly effective in improving water quality are attracting attention. Submerged plants grow under the surface of the water, take up nutrients in the water, prevent rolling up of the bottom mud, hideout (increase) of zooplankton and attached microorganisms such as daphnia, fish spawning ground, fry cradle, feeding ground, hideout It is known that it has a variety of roles and has a water purification effect. From the viewpoint of improving the water quality of rivers, lakes, lakes, etc. and preserving biodiversity, research has been conducted on techniques for growing or regenerating submerged plants having such effects.

例えば特許文献1には、沈水植物の生育について基盤の栄養と植物の根の活着という面から、沈水植物の生育に適用した植栽基盤に関する技術が開示されている。本発明によると、沈水植物の根がしっかりと張った植栽基盤となるため、波浪の影響をうける場所でも沈水植物の生育が可能であるとされている。また、特許文献2には、水域に固有な衰退または消失した沈水植物を再生または復元し、かつ該水域の水質改善が図れる浅い湖沼における沈水植物の再生又は復元方法が開示されている。   For example, Patent Document 1 discloses a technique related to a planting base applied to the growth of a submerged plant in terms of the nutrition of the base for the growth of the submerged plant and the establishment of plant roots. According to the present invention, since the roots of the submerged plant are firmly planted, it is said that the submerged plant can be grown even in a place affected by waves. Patent Document 2 discloses a method for regenerating or restoring a submerged plant in a shallow lake that can regenerate or restore a submerged plant that has declined or disappeared unique to a water area and improve the water quality of the water area.

特開2007−259790号公報JP 2007-259790 A 特開2007−6819号公報JP 2007-6819 A

特許文献1又は2に開示されているように、沈水植物を生育又は再生させる技術は研究されており、沈水植物が持つ水質浄化効果を利用した取り組みは多くなされているが、一方で沈水植物と共存する糸状藻類が繁殖している弊害については対策がなされていない。   As disclosed in Patent Document 1 or 2, techniques for growing or regenerating submerged plants have been studied, and many efforts have been made using the water purification effect of submerged plants. No countermeasures have been taken against the harmful effects of coexisting filamentous algae.

沈水植物と共存する糸状藻類は、水面付近にマット状に増殖し続けるため、河川、湖沼、濠等の景観の悪化が問題となっている。特に、観光客が多い皇居外苑濠では、糸状藻類の存在による景観の悪化の解決が必要とされている。また、琵琶湖では、外来種の沈水植物(コカナダモなど)が増殖するとともに水面付近などにマット状に糸状藻類が増殖し続けているため、景観悪化はもとより船の航路障害となっている。更に、糸状藻類が沈水植物に絡まって増殖することで、動物プランクトンや付着微生物、魚類の隠れ家、産卵場が制限されてしまい、それらの生物が生育できない原因となる。そのため、沈水植物と共存する糸状藻類の増殖を抑制することが望まれる。   Filamentous algae that coexist with submerged plants continue to grow in the form of a mat near the surface of the water, so the deterioration of landscapes such as rivers, lakes, and corals is a problem. In particular, the Imperial Palace Bund with many tourists needs to resolve the deterioration of the landscape due to the presence of filamentous algae. In Lake Biwa, foreign species of submerged plants (such as Cocanadamo) multiply and filamentous algae continue to grow near the surface of the water. Furthermore, the growth of filamentous algae entangled with submerged plants restricts zooplankton, adhering microorganisms, fish hideouts and spawning grounds, which can cause these organisms to fail to grow. Therefore, it is desirable to suppress the growth of filamentous algae that coexist with submerged plants.

本発明は、上記課題に鑑み、沈水植物と共存する糸状藻類の増殖を効果的に抑制する方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a method for effectively suppressing the growth of filamentous algae coexisting with a submerged plant.

本発明は、上記の目的を達成するため、沈水植物と共存する糸状藻類、糸状藻類捕食生物及び水生動物が共存する水圏生態系において、前記沈水植物と前記糸状藻類捕食生物及び水生動物に対しては好適な生育条件を示すが、前記糸状藻類に対しては抑制作用を示す塩分濃度を前記生態系に付与することを特徴とする糸状藻類の増殖抑制方法を提供する。
前記沈水植物は、アリノトウグサ科、マツモ科、トチカガミ科、ヒルムシロ科の植物であってもよい。
前記糸状藻類は、ホシミドロ科、シオグサ科、サヤミドロ科、ヒビミドロ科の藻類であってもよい。
前記糸状藻類捕食生物は、モノアラガイ科、イシガイ科の生物で、前記水生動物は、コイ科、ハゼ科の動物であってもよい。
抑制作用を示す前記塩分濃度は、500mg/l以上3500mg/l以下とすることができる。
また、前記生態系の水温は、13℃〜35℃とすることができる。
In order to achieve the above object, the present invention provides an aquatic ecosystem in which a filamentous algae, a filamentous algae predatory organism, and an aquatic animal coexisting with a submerged plant. Provides suitable growth conditions, but provides a method for inhibiting the growth of filamentous algae, wherein the ecosystem is imparted with a salinity concentration exhibiting an inhibitory action against the filamentous algae.
The submerged plant may be a plant of the Arinophoraceae family, the Pinaceae family, the Trichogidae family, or the Hymenoptera family.
The filamentous algae may be algae belonging to the family Hosimidroaceae, Pleurotusaceae, Sayamidroaceae, and Hibidomidae.
The filamentous algae predatory organism may be a monoaragaid or musselid organism, and the aquatic animal may be a cyprinid or goby family.
The salt concentration exhibiting the inhibitory action can be 500 mg / l or more and 3500 mg / l or less.
Further, the water temperature of the ecosystem can be set to 13 ° C to 35 ° C.

本発明の方法によると、沈水植物と共存する糸状藻類の増殖を効果的に抑制することができる。それにより、河川、湖沼、濠などの景観を改善や、船の航路障害の除去、動物プランクトンや付着微生物、魚類の生息の保護などの効果がある。   According to the method of the present invention, it is possible to effectively suppress the growth of filamentous algae that coexist with submerged plants. As a result, there are effects such as improving landscapes of rivers, lakes, and corals, removing obstructions of ships, protecting zooplankton, attached microorganisms, and fish.

ホザキノフサモと、共存する糸状藻類、糸状藻類捕食生物及び水生動物を模式的に示した説明図である。It is explanatory drawing which showed typically the filamentous algae, the filamentous algae predator, and the aquatic animal which coexist with Hozakinofusamo. 試験槽の断面模式図であり、(a)はホザキノフサモと糸状藻類のみを入れた試験槽、(b)はホザキノフサモと糸状藻類と糸状藻類捕食生物及び水生動物を入れた試験槽である。It is a cross-sectional schematic diagram of a test tank, (a) is a test tank containing only Hozakinofusamo and filamentous algae, and (b) is a test tank containing Hozakinofusamo, filamentous algae, filamentous algae predators and aquatic animals. ホザキノフサモと糸状藻類の試験槽を複数設置した実験系を示す説明図である。It is explanatory drawing which shows the experimental system which installed multiple test tanks of Hozakinofusamo and filamentous algae. 実験に使用した試験槽の水質を示すグラフであり、(a)水素イオン濃度指数(pH)、(b)溶存酸素量(DO)を示す。It is a graph which shows the water quality of the test tank used for experiment, and shows (a) hydrogen ion concentration index (pH), (b) dissolved oxygen amount (DO). 実験開始1カ月後の試験槽の水質を示すデータである。It is the data which shows the water quality of the test tank 1 month after an experiment start. 試験槽における糸状藻類の占有面積を求める方法を示す説明図である。It is explanatory drawing which shows the method of calculating | requiring the occupation area of the filamentous algae in a test tank. ホザキノフサモと糸状藻類のみを入れた試験槽の実験結果を示すグラフである。It is a graph which shows the experimental result of the test tank which put only Hozakinofusamo and filamentous algae. ホザキノフサモと糸状藻類と糸状藻類捕食生物及び水生動物を入れた試験槽の実験結果を示すグラフである。It is a graph which shows the experimental result of the test tank which put the Hozakinofusamo, the filamentous algae, the filamentous algae predatory organism, and the aquatic animal.

以下、本発明の実施例を図面に基づいて説明する。以下の図において、共通する部分には同一の符号を付しており、同一符号の部分に対して重複した説明を省略する。なお、以下に説明する実施例では、沈水植物の一例としてアリノトウグサ科のホザキノフサモを挙げて説明しているが、それ以外の沈水植物、例えばマツモ(マツモ科)、オオカナダモ(トチカガミ科)、ガシャモク(ヒルムシロ科)、コウガイモ(トチカガミ科)、ササバモ(ヒルムシロ科)、インバモ(ヒルムシロ科)、などあらゆる沈水植物に適用できる。また、糸状藻類としてアオミドロ(ホシミドロ科)、シオグサ(シオグサ科)、サヤミドロ(サヤミドロ科)、ホシミドロ(ホシミドロ科)、及びヒビミドロ(ヒビミドロ科)、糸状藻類捕食生物として、モノアラガイ(モノアラガイ科)、ドブガイ(イシガイ科)、沈水植物と共存する水生動物(以下、共存水生動物と記す)として、バラタナゴ(コイ科)、ヨシノボリ(ハゼ科)を例に挙げて説明するが、本発明に係る方法は、これに限らず、あらゆる糸状藻類、糸状藻類捕食生物、共存水生動物に適用できるものである。   Embodiments of the present invention will be described below with reference to the drawings. In the following drawings, common parts are denoted by the same reference numerals, and duplicate descriptions for the same reference numerals are omitted. In the examples described below, Hosakinofusamo of the Arinopodaceae family is taken as an example of a submerged plant. However, other submerged plants, for example, Matsumo (Pinusceae), Greater Crested Prunus (Prunus), Gashamoku (Hirumushiro) Family), potato (Coleaceae), Sasabamo (Ciraceae), inbamo (Ciraceae), and other submerged plants. In addition, as the filamentous algae, Aomidoro (Hoshimidae), Shiogusa (Shiogusaidae), Sayamidro (Hyamidroidae), Hoshimidro (Hoshimidoidae), and Hibimidro (Hibimidroidae), and as a filamentous algae predatory organism, As aquatic animals coexisting with submerged plants (hereinafter referred to as coexisting aquatic animals), explanation will be given by taking, for example, batanago (Cyprinidae) and Yoshinobori (Camelidae), but the method according to the present invention is The present invention is not limited to this, and can be applied to all filamentous algae, filamentous algae predators, and coexisting aquatic animals.

図1は、河川、湖沼、濠などの水面下に生育するホザキノフサモと、それと共存する糸状藻類、及び糸状藻類捕食生物・共存水生動物を模式的に示した説明図である。図1に示すように、水面下のホザキノフサモ1に糸状藻類2が絡まって増殖しており、水面付近では糸状藻類2がマット状に増殖している。また、水面下のホザキノフサモ1には、糸状藻類捕食生物・共存水生動物3が付着、又は近辺に生息している。このように増殖した糸状藻類2が河川、湖沼、濠等の景観悪化の原因となっている。   FIG. 1 is an explanatory diagram schematically showing Hosakinofusamo that grows under the surface of rivers, lakes, lakes, and the like, filamentous algae that coexist therewith, and filamentous algae predatory organisms / coexisting aquatic animals. As shown in FIG. 1, filamentous algae 2 are tangled and proliferated in Hozakinofusamo 1 below the surface of the water, and the filamentous algae 2 are grown in a mat shape near the surface of the water. Moreover, the filamentous algae predatory organisms / coexisting aquatic animals 3 are attached to or inhabit the vicinity of Hozakinofusamo 1 under the surface of the water. The filamentous algae 2 thus proliferated causes the deterioration of landscapes such as rivers, lakes, and corals.

〔実験方法〕
次に実験方法について、図2、図3を参照して説明する。図2は、ホザキノフサモ1と、共存する糸状藻類2、糸状藻類捕食生物・共存水生動物3の実験の試験槽10の断面を模式的に示した説明図である。図2(a)は、ホザキノフサモ1と糸状藻類2のみを入れた試験槽10であり、(b)は、ホザキノフサモ1と糸状藻類2と糸状藻類捕食生物・共存水生動物3を入れた試験槽10である。実験に使用する試験槽10は、例えば横350〜450mm、縦500〜600mm、高さ150〜200mm程度で、40リットル程の大きさの容器を複数使用する。
〔experimental method〕
Next, an experimental method will be described with reference to FIGS. FIG. 2 is an explanatory diagram schematically showing a cross section of the test tank 10 of the experiment of Hozakinofusamo 1, the coexisting filamentous algae 2, the filamentous algae predatory organism / coexisting aquatic animal 3. FIG. 2 (a) shows a test tank 10 containing only Hozakinofusamo 1 and filamentous algae 2, and FIG. 2 (b) shows a test tank 10 containing Hozakinofusamo 1, filamentous algae 2 and filamentous algae predatory organisms / coexisting aquatic animals 3. It is. The test tank 10 used for the experiment uses, for example, a plurality of containers having a width of about 350 to 450 mm, a length of 500 to 600 mm, a height of about 150 to 200 mm, and a size of about 40 liters.

皇居外苑濠(桜田濠、及び凱旋濠)から環境省皇居外苑管理事務所の許可の下にホザキノフサモ1と、共存する糸状藻類(アオミドロ、シオグサ、サヤミドロ、ホシミドロ、及びヒビミドロ)2を採取し、試験槽10に入れる。その際、皇居外苑濠と同様な環境にするため、底土には有機堆肥と黒ぼく土壌4を混合した土を充填し、そこにホザキノフサモ1を植栽した。その上に糸状藻類2を被覆し、糸状藻類捕食生物・共存水生動物3(モノアラガイ、ドブガイ、バラタナゴ、ヨシノボリ)を添加しない系(図2(a))と、添加する系(図2(b))を設定した。   Hozakinofusamo 1 and coexisting filamentous algae (Aomidoro, Shiogusa, Sayamidro, Hoshimidro) 2 with the permission of the Imperial Palace Bund Administration Office of the Ministry of the Environment from the Imperial Palace Bund (Sakurada clan and Arc de Triomphe) were collected and tested. Place in tank 10. At that time, in order to make an environment similar to that of the Imperial Palace Bund, the bottom soil was filled with soil mixed with organic compost and black soil 4, and Hozakinofusamo 1 was planted there. A system in which the filamentous algae 2 is coated thereon and the filamentous algae predatory organisms / coexisting aquatic animals 3 are not added (monoaragai, dobugai, balanago, yoshinobori) (FIG. 2 (a)), and an addition system (FIG. 2 (b)) )It was set.

さらに、上記の試験槽内10の塩分濃度(cl濃度)が、0、500、1000、2000、4000、5000(mg/l)となるように、試験槽10を各6個、計12個設置した。図3は、ホザキノフサモ1と糸状藻類2のみの試験槽10を塩分濃度別に6個設置した実験系を示す説明図である。各塩分濃度の試験槽10には、同量の糸状藻類2が添加されている。同様に、ホザキノフサモ1と糸状藻類2に糸状藻類捕食生物・共存水生動物3を添加した試験槽10も塩分濃度別に6個設置する(図示せず)。なお、塩分濃度は、上記の値に限定せず、例えば1500(mg/l)や3000(mg/l)などの値にして試験槽10を更に設置してもよい。これらの試験槽10を3〜5カ月程度に渡り定期的に観察し、塩分濃度と、ホザキノフサモ1、糸状藻類2及び糸状藻類捕食生物・共存水生動物3との関係を調べた。   Furthermore, 6 test tanks 10 are installed in total, 12 in total so that the salinity concentration (cl concentration) in the test tank 10 is 0, 500, 1000, 2000, 4000, 5000 (mg / l). did. FIG. 3 is an explanatory diagram showing an experimental system in which six test tanks 10 of only Hozakinofusamo 1 and filamentous algae 2 are installed according to salt concentration. The same amount of filamentous algae 2 is added to each salt concentration test tank 10. Similarly, six test tanks 10 in which filamentous algae predatory organisms / coexisting aquatic animals 3 are added to Hozakinofusamo 1 and filamentous algae 2 are also installed for each salinity concentration (not shown). Note that the salt concentration is not limited to the above value, and the test tank 10 may be further set to a value such as 1500 (mg / l) or 3000 (mg / l), for example. These test tanks 10 were regularly observed over about 3 to 5 months, and the relationship between the salinity concentration and Hozakinofusamo 1, filamentous algae 2, and filamentous algae predators / coexisting aquatic animals 3 was examined.

まず、実験開始後のホザキノフサモ1と塩分濃度との関係を調べた。各塩分濃度の試験槽10においてホザキノフサモ1の生長を1カ月間にわたり定期的に観察した結果、塩分濃度が0〜2000(mg/l)においては良好に生育し、成長阻害等の影響は見られなかった。塩分濃度が4000(mg/l)では、2000(mg/l)以下と比較すると成長量は低下したが、新芽の生長が確認されたため、生育可能であることがわかった。塩分濃度が5000(mg/l)では、2000(mg/l)以下と比較して、成長はほとんど認められなかった。   First, the relationship between Hozakinofusamo 1 and the salt concentration after the start of the experiment was examined. As a result of regularly observing the growth of Hozakinofusamo 1 for 1 month in the test tank 10 of each salinity, it grows well when the salinity is 0 to 2000 (mg / l), and there is an effect such as growth inhibition. There wasn't. When the salinity was 4000 (mg / l), the amount of growth was lower than that of 2000 (mg / l) or less, but the growth of new shoots was confirmed. When the salinity was 5000 (mg / l), almost no growth was observed compared to 2000 (mg / l) or less.

図4、図5は、実験に使用した試験槽の昼の水質を示すグラフとデータである。図4(a)は、試験期間中(約3カ月)の各塩分濃度における水素イオン濃度指数(pH)を表し、図4(b)は、各塩分濃度における溶存酸素量(DO)(mg/l)を示す。また、図5は、実験開始1カ月後の試験槽の水質を示すデータである。ここで、T−N(mg/l)は、総窒素量を表し、T−P(mg/l)は総リン量を表す。図4、5から塩分濃度が、4000〜5000(mg/l)で、pHとDOの値が減少し、ホザキノフサモの生育量の少なさが反映される結果となった。   4 and 5 are graphs and data showing the daytime water quality of the test tank used in the experiment. FIG. 4 (a) shows the hydrogen ion concentration index (pH) at each salinity concentration during the test period (about 3 months), and FIG. 4 (b) shows the amount of dissolved oxygen (DO) (mg / mg) at each salinity concentration. l). FIG. 5 is data showing the water quality of the test tank one month after the start of the experiment. Here, TN (mg / l) represents the total nitrogen amount, and TP (mg / l) represents the total phosphorus amount. 4 and 5, the salt concentration was 4000 to 5000 (mg / l), and the pH and DO values decreased, reflecting the low growth of Hozakinofusamo.

次に糸状藻類2と塩分濃度との関係を調べた。各塩分濃度の試験槽10における糸状藻類2の減少は、試験槽10における水面全体の面積に対する糸状藻類2の占有面積の割合(水面占有率)を計算することで評価した。占有面積は、既存のソフトウエアの1つである「Foxit J−Reader」を用いて算出した。別のソフトウエアを使用して占有面積を計算してもよい。「Foxit J−Reader」は、PDFファイルを対象とした読み込みソフトの一つであり、PDFファイルの地図等があれば、距離、外周、面積等を簡易に推定可能である。図6は、試験槽10における糸状藻類2の占有面積を「Foxit J−Reader」を用いて求める方法を示す説明図である。図6に示すように、試験槽10の水面全体と、糸状藻類2の占有部分を線分(図において太線で表示)で囲むことで、糸状藻類2の水面占有率を算出した。   Next, the relationship between the filamentous algae 2 and the salt concentration was examined. The decrease of the filamentous algae 2 in the test tank 10 at each salinity was evaluated by calculating the ratio of the occupied area of the filamentous algae 2 to the total area of the water surface in the test tank 10 (water surface occupation ratio). The occupied area was calculated using “Foxit J-Reader” which is one of existing software. Another software may be used to calculate the occupied area. “Foxit J-Reader” is one of reading software for PDF files. If there is a map of the PDF file, the distance, outer circumference, area, etc. can be estimated easily. FIG. 6 is an explanatory diagram showing a method of obtaining the occupation area of the filamentous algae 2 in the test tank 10 using “Foxit J-Reader”. As shown in FIG. 6, the water surface occupation rate of the filamentous algae 2 was calculated by surrounding the entire water surface of the test tank 10 and the occupied portion of the filamentous algae 2 with a line segment (indicated by a thick line in the figure).

各塩分濃度の試験槽10内における糸状藻類2の水面占有率(%)は、初期の水面占有率を70%に設定した。実験10日目と約1カ月後の糸状藻類2の水面占有率(%)の結果は、以下の表1の通りであった。   The water surface occupancy (%) of the filamentous algae 2 in the test tank 10 at each salinity was set to 70% of the initial water surface occupancy. The results of the water surface occupancy (%) of the filamentous algae 2 on the 10th day and about 1 month after the experiment were as shown in Table 1 below.

表1からわかるように、10日後の糸状藻類2の水面占有率は、塩分濃度が500、1000、2000(mg/l)の試験槽においても初期に比べて大きく減少していた。1カ月後の糸状藻類2の水面占有率は、塩分濃度が500、1000、2000(mg/l)の試験槽10においては10日後よりも著しく減少していた。塩分濃度が4000(mg/l)と5000(mg/l)の試験槽10では、細胞質の抜けた細胞壁のみの糸状藻類2の割合が増え、水面は褐色の死骸で覆われていた。これらは、塩分による阻害効果と推測される。   As can be seen from Table 1, the water surface occupancy of the filamentous algae 2 after 10 days was greatly reduced in the test tanks having salinity concentrations of 500, 1000, and 2000 (mg / l) compared to the initial stage. The water surface occupancy of the filamentous algae 2 after one month was significantly reduced in the test tank 10 having a salinity of 500, 1000, and 2000 (mg / l) than after 10 days. In the test tank 10 having a salinity of 4000 (mg / l) and 5000 (mg / l), the ratio of the filamentous algae 2 having only the cell wall from which the cytoplasm was lost increased, and the water surface was covered with brown carcasses. These are presumed to be an inhibitory effect due to salinity.

また、塩分濃度が500〜2000(mg/l)の試験槽10では、1カ月後の糸状藻類2は、10日後と比較して顕著な減少が見られた。その原因は、塩分による糸状藻類2の弱体化とモノアラガイ等の糸状藻類捕食生物・共存水生動物3による捕食などによるものと考えられる。モノアラガイ等はこの実験系では添加されていなかったが、種の存在で発生して増殖していた。   Further, in the test tank 10 having a salinity of 500 to 2000 (mg / l), the filamentous algae 2 after 1 month showed a marked decrease compared to that after 10 days. The cause is considered to be due to weakening of the filamentous algae 2 by salt and predation by the filamentous algae predatory organisms such as monoaragai and the coexisting aquatic animals 3. Monoaragai and the like were not added in this experimental system, but were generated and proliferated in the presence of species.

図7は、塩分濃度が0、500、5000(mg/l)の試験槽10において、ホザキノフサモ1と糸状藻類2のみを入れた場合の約3カ月間の実験結果を示すグラフである。図7に示すように、糸状藻類2の水面占有率は、いずれの試験槽10においても初期の70%から数日後を経て減少しているが、塩分濃度が500(mg/l)では減少量は著しく、約2カ月後以降に完全な消滅が確認された。その主な原因は、前述のように、塩分による糸状藻類2の弱体化と種の存在で発生した糸状藻類捕食生物・共存水生動物3による捕食によるものと考えられる。   FIG. 7 is a graph showing experimental results for about three months when only Hozakinofusamo 1 and filamentous algae 2 are put in the test tank 10 having a salinity of 0, 500, and 5000 (mg / l). As shown in FIG. 7, the water surface occupancy rate of the filamentous algae 2 decreases after 70 days from the initial 70% in any test tank 10, but decreases when the salinity is 500 (mg / l). It was remarkable that complete disappearance was confirmed after about two months. As described above, the main cause is considered to be due to the weakening of the filamentous algae 2 by salt and the predation by the filamentous algae predatory organisms / coexisting aquatic animals 3 generated by the presence of species.

また、塩分濃度が0(mg/l)においても、糸状藻類2の水面占有率の減少が確認できた。その原因は、塩分による糸状藻類2の弱体化はないものの、種として存在し発生した糸状藻類捕食生物・共存水生動物3の中でモノアラガイ等による捕食によるものと考えられる。塩分濃度5000(mg/l)の試験槽10では、細胞質の抜けた細胞壁のみの糸状藻類2の割合が増え、糸状藻類捕食生物・共存水生動物3は塩分により生息できないため、糸状藻類2の水面占有率は殆ど減少しない結果となった。   Further, even when the salinity concentration was 0 (mg / l), it was confirmed that the water surface occupation ratio of the filamentous algae 2 was decreased. The cause is thought to be due to predation by monoaragai among the algae predatory organisms / coexisting aquatic animals 3 that exist as seeds and occur, although there is no weakening of the filamentous algae 2 by salinity. In the test tank 10 having a salinity of 5000 (mg / l), the ratio of the filamentous algae 2 with only the cell wall from which the cytoplasm has been lost increases, and the algae predatory organisms / coexisting aquatic animals 3 cannot inhabit due to salinity. The occupancy rate almost did not decrease.

次にホザキノフサモ1と糸状藻類2に糸状藻類捕食生物・共存水生動物3を添加した試験槽10において、塩分濃度との関係を調べた。各試験槽10を観察した結果、糸状藻類捕食生物・共存水生動物3のうち、モノアラガイは、塩分濃度が4000(mg/l)までは生存、増殖が可能であった。ドブガイ、バラタナゴ、ヨシノボリは、塩分濃度が4000(mg/l)においては生息できず、2000(mg/l)以下においては生息可能であることが明らかになった。実験約1カ月後の糸状藻類2の水面占有率(%)の結果は、以下の表2の通りであった。   Next, in the test tank 10 in which the filamentous algae predatory organisms / coexisting aquatic animals 3 were added to Hozakinofusamo 1 and filamentous algae 2, the relationship with the salinity concentration was examined. As a result of observing each test tank 10, among the algae predatory organisms / coexisting aquatic animals 3, monoaragai was able to survive and grow up to a salt concentration of 4000 (mg / l). It has been clarified that Dobugai, Bharatanago and Yoshinobori cannot live at a salt concentration of 4000 (mg / l) and can live at 2000 (mg / l) or less. The results of the water surface occupancy (%) of the filamentous algae 2 about one month after the experiment were as shown in Table 2 below.

表2から、糸状藻類2の水面占有率は、塩分濃度が500〜2000(mg/l)の範囲で顕著な減少が見られた。また、糸状藻類捕食生物・共存水生動物3を添加していない系の結果(表1)と比べると、塩分濃度が0(mg/l)において糸状藻類2の水面占有率が減少している。このことから、モノアラガイ等の糸状藻類捕食生物・共存水生動物3の捕食作用が、糸状藻類2の減少に大きく寄与していることがわかる。塩分濃度が5000(mg/l)では、糸状藻類捕食生物・共存水生動物3が生育できないため、糸状藻類2は死滅してマット状を形成して減少せず、残存した。   From Table 2, the water surface occupation rate of the filamentous algae 2 showed a remarkable reduction | decrease in the range whose salt concentration is 500-2000 (mg / l). Moreover, compared with the result (Table 1) of the system which does not add the filamentous algae predatory organism / coexisting aquatic animal 3, the water surface occupancy rate of the filamentous algae 2 is decreased at a salt concentration of 0 (mg / l). From this, it can be seen that the predatory action of the filamentous algae predatory organisms and coexisting aquatic animals 3 such as monoaraga greatly contributes to the decrease of the filamentous algae 2. When the salinity was 5000 (mg / l), the filamentous algae predatory organisms / coexisting aquatic animals 3 could not grow, so the filamentous algae 2 died and formed a mat shape and did not decrease and remained.

図8は、塩分濃度が0、500、5000(mg/l)の試験槽10において、ホザキノフサモ1と糸状藻類2に糸状藻類捕食生物・共存水生動物3を添加した場合の約3カ月間の実験結果を示すグラフである。塩分濃度が5000(mg/l)では糸状藻類2が残存し続けたが、塩分濃度が0(mg/l)では実験開始後約2カ月後で糸状藻類2はモノアラガイ等の捕食作用でほとんど消滅した。塩分濃度が500(mg/l)では、実験開始後1カ月余りで糸状藻類2は消滅した。このことから、適度な塩分濃度は、糸状藻類2の弱体化を通して、糸状藻類捕食生物・共存水生動物3の捕食作用を加速させ糸状藻類2の消失速度を速めることがわかった。表3は実験開始約1カ月後のホザキノフサモ1と糸状藻類2と糸状藻類捕食生物・共存水生動物3の生育結果を示した表である。   FIG. 8 shows an experiment of about three months when the fungal algae predatory organism / coexisting aquatic animal 3 is added to Hozakinofusamo 1 and filamentous algae 2 in a test tank 10 having a salinity of 0, 500, 5000 (mg / l). It is a graph which shows a result. When the salinity is 5000 (mg / l), the filamentous algae 2 continue to remain, but when the salinity is 0 (mg / l), the filamentous algae 2 almost disappears due to the predatory action of monoaragai about two months after the start of the experiment. did. When the salinity was 500 (mg / l), the filamentous algae 2 disappeared about one month after the start of the experiment. From this, it was found that an appropriate salinity concentration accelerates the predatory action of the filamentous algae predatory organisms / coexisting aquatic animals 3 through the weakening of the filamentous algae 2 and accelerates the disappearance rate of the filamentous algae 2. Table 3 is a table showing the growth results of Hosakinofusamo 1, filamentous algae 2, and filamentous algae predatory organisms / coexisting aquatic animals 3 about one month after the start of the experiment.

表3において、「○」が生息可能を示し、「×」が生息不可能を示している。前述のように、塩分濃度が500〜2000(mg/l)では、糸状藻類捕食生物・共存水生動物3のモノアラガイ、ドブガイ、バラタナゴ、ヨシノボリが生息でき、塩分により弱体化した糸状藻類2を捕食することにより、糸状藻類2を消滅させることが可能である。モノアラガイは塩分濃度が4000(mg/l)まで生息でき、糸状藻類2を捕食することができた。また、塩分濃度が5000(mg/l)になると、ホザキノフサモ1、糸状藻類2は生育できずに枯れ、モノアラガイも生息できず、枯れた糸状藻類2はマット状に表面などに残存した。   In Table 3, “◯” indicates that the animal can live, and “X” indicates that it cannot live. As described above, when the salinity is 500 to 2000 (mg / l), the filamentous algae predatory / coexisting aquatic animals 3 can be inhabited by monoaragai, dolphin, scallops, and reeds, and prey on the filamentous algae 2 weakened by salt. Thus, the filamentous algae 2 can be eliminated. Monoaragae could live up to a salt concentration of 4000 (mg / l) and could prey on the filamentous algae 2. When the salinity was 5000 (mg / l), Hosakinofusamo 1 and filamentous algae 2 could not grow and withered, and monoaraga could not live, and the dried filamentous algae 2 remained on the surface in a mat shape.

また、その後の実験により、更に塩分濃度が3000〜3500(mg/l)の試験槽10においても糸状藻類2の塩分による弱体化と糸状藻類捕食生物・共存水生動物3による捕食により、糸状藻類2をほぼ完全に消滅可能であることがわかった。   Further, in the subsequent experiment, even in the test tank 10 having a salinity of 3000 to 3500 (mg / l), the filamentous algae 2 is weakened by the salinity of the filamentous algae 2 and preyed by the filamentous algae predatory organisms / coexisting aquatic animals 3. Was found to be almost completely extinct.

なお、以上示した実験は、水温が13℃〜35℃の範囲で行った結果である。冬期は水温が4℃〜8℃程度に下がるが、その温度ではホザキノフサモ1と糸状藻類2は成長が著しく低下し、また、糸状藻類捕食生物・共存水生動物3は活性が著しく低下する。また、夏期に水温が上がり、35℃を超えると、ホザキノフサモ1と糸状藻類2は生息可能であるが、糸状藻類捕食生物・共存水生動物3は活性が著しく低下するため、上記の方法は適用可能であるが、生態系を適正に維持することが難しくなる。   In addition, the experiment shown above is the result of having performed water temperature in the range of 13 to 35 degreeC. In winter, the water temperature falls to about 4 ° C. to 8 ° C., but at that temperature, the growth of Hosakinofusamo 1 and filamentous algae 2 is remarkably reduced, and the activity of the filamentous algae predatory organisms / coexisting aquatic animals 3 is remarkably reduced. In addition, when the water temperature rises in summer and exceeds 35 ° C., Hozakinofusamo 1 and filamentous algae 2 can inhabit, but the activity of the filamentous algae predator / coexisting aquatic animal 3 is significantly reduced, so the above method is applicable. However, it becomes difficult to maintain the ecosystem properly.

以上説明したように、本発明の方法により、沈水植物と共存する糸状藻類の増殖を効果的に抑制することができる。それにより、河川、湖沼、濠等の景観の悪化を改善することができる。また、琵琶湖等における船の航路障害となっている外来種の沈水植物に付着する糸状藻類を効果的に除去することができる。更に、糸状藻類の増殖を防ぐことで、沈水植物を隠れ家、産卵場としている動物プランクトンや付着微生物、稚魚の揺り籠、魚類の生育を阻害することなく、沈水植物を増殖させることができる。   As described above, the method of the present invention can effectively suppress the growth of filamentous algae that coexist with submerged plants. Thereby, the deterioration of landscapes such as rivers, lakes, and corals can be improved. Moreover, the filamentous algae adhering to the alien submerged plant which has become a ship route obstacle in Lake Biwa etc. can be removed effectively. Furthermore, by preventing the growth of filamentous algae, the submerged plant can be propagated without hindering the growth of the zooplankton and attached microorganisms, fry of fish fowl, and fish that are used as a hideout and spawning ground.

なお、本実施例では、沈水植物として、アリノトウグサ科のホザキノフサモを挙げて説明しているが、それ以外の沈水植物、マツモ(マツモ科)、オオカナダモ(トチカガミ科)、ガシャモク(ヒルムシロ科)、コウガイモ(トチカガミ科)、ササバモ(ヒルムシロ科)、インバモ(ヒルムシロ科)などの沈水植物についても同様に適用可能である。それらの沈水植物の生育と、塩分濃度との関係は以下の通りである。   In this example, the submerged plant, Hosakinofusamo, is described as being a submerged plant. However, other submerged plants, pine (Pinus spp.), Squirrel prunus (Prunus spp.), Gaschamoku (Piraceae), bat ( The present invention can also be applied to submerged plants such as the mosquito family (Familyceae), Sasabamo (Hiroptera), and Invamo (Hiroptera). The relationship between the growth of these submerged plants and the salinity is as follows.

マツモは、塩分濃度4000(mg/l)まで生育可能であり、外来種のオオカナダモは9000(mg/l)まで生育可能であることがわかった。また、表4には記載していないが、上記の沈水植物は、3500mg/l程度までは生育可能であることが推察される。従って、これらの沈水植物に関しても、塩分濃度が500mg/l以上3500mg/l以下においては、沈水植物の生育を妨げることなく、沈水植物と共存する糸状藻類の増殖を効果的に抑制することができる。   Matsumoto can grow up to a salinity of 4000 (mg / l), and the alien species, Ocanadamo, can grow up to 9000 (mg / l). Moreover, although not described in Table 4, it is guessed that said submerged plant can grow to about 3500 mg / l. Therefore, also for these submerged plants, when the salinity is 500 mg / l or more and 3500 mg / l or less, the growth of filamentous algae coexisting with the submerged plant can be effectively suppressed without impeding the growth of the submerged plant. .

なお、上述した糸状藻類の増殖抑制方法は一例であり、その方法は、発明の趣旨を逸脱しない範囲で、適宜変更可能である。   The method for suppressing the growth of filamentous algae described above is an example, and the method can be appropriately changed without departing from the spirit of the invention.

1 沈水植物
2 糸状藻類
3 糸状藻類捕食生物・共存水生動物
4 土壌
10 試験槽
DESCRIPTION OF SYMBOLS 1 Submerged plant 2 Filamentous algae 3 Filamentous algae predatory organism, coexisting aquatic animal 4 Soil 10 Test tank

Claims (6)

沈水植物と共存する糸状藻類、糸状藻類捕食生物及び水生動物が共存する水圏生態系において、前記沈水植物と前記糸状藻類捕食生物及び前記水生動物に対しては好適な生育条件を示すが、前記糸状藻類に対しては抑制作用を示す塩分濃度を前記生態系に付与することを特徴とする糸状藻類の増殖抑制方法。   In the aquatic ecosystem where filamentous algae coexisting with submerged plants, filamentous algae predators and aquatic animals coexist, the filamentous algae, filamentous algae predators and aquatic animals exhibit suitable growth conditions, A method for inhibiting the growth of filamentous algae, comprising imparting to the ecosystem a salt concentration that exhibits an inhibitory action against algae. 前記沈水植物は、アリノトウグサ科、マツモ科、トチカガミ科、ヒルムシロ科の植物としたことを特徴とする請求項1に記載の糸状藻類の増殖抑制方法。   2. The method for inhibiting the growth of filamentous algae according to claim 1, wherein the submerged plant is a plant belonging to the family Arinophoraceae, Pinusceae, Dermataceae, or Hymenoptera. 前記糸状藻類は、ホシミドロ科、シオグサ科、サヤミドロ科、ヒビミドロ科の藻類としたことを特徴とする請求項1又は2に記載の糸状藻類の増殖抑制方法。   3. The method for inhibiting the growth of filamentous algae according to claim 1 or 2, wherein the filamentous algae are algae of the family Hosimidroaceae, Pleurotusaceae, Sayamidroaceae, and Himidoridae. 前記糸状藻類捕食生物は、モノアラガイ科、イシガイ科の生物とし、前記水生動物は、コイ科、ハゼ科の動物としたことを特徴とする請求項1〜3のいずれかに記載の糸状藻類の増殖抑制方法。   The filamentous algae growth according to any one of claims 1 to 3, wherein the filamentous algae predatory organisms are monoaragae and musselid organisms, and the aquatic animals are cyprinidae and gobyaceae animals. Suppression method. 前記塩分濃度は、500mg/l以上3500mg/l以下であることを特徴とする請求項1〜4のいずれかに記載の糸状藻類の増殖抑制方法。   The method for inhibiting the growth of filamentous algae according to any one of claims 1 to 4, wherein the salinity concentration is 500 mg / l or more and 3500 mg / l or less. 前記生態系の水温が、13℃〜35℃の範囲で行うことを特徴とする請求項1〜5のいずれかに記載の糸状藻類の増殖抑制方法。   The method for inhibiting the growth of filamentous algae according to any one of claims 1 to 5, wherein the water temperature of the ecosystem is in the range of 13 ° C to 35 ° C.
JP2017016775A 2017-02-01 2017-02-01 Method for inhibiting the growth of filamentous algae coexisting with submerged plants Active JP6558597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017016775A JP6558597B2 (en) 2017-02-01 2017-02-01 Method for inhibiting the growth of filamentous algae coexisting with submerged plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017016775A JP6558597B2 (en) 2017-02-01 2017-02-01 Method for inhibiting the growth of filamentous algae coexisting with submerged plants

Publications (2)

Publication Number Publication Date
JP2018121582A true JP2018121582A (en) 2018-08-09
JP6558597B2 JP6558597B2 (en) 2019-08-14

Family

ID=63108670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017016775A Active JP6558597B2 (en) 2017-02-01 2017-02-01 Method for inhibiting the growth of filamentous algae coexisting with submerged plants

Country Status (1)

Country Link
JP (1) JP6558597B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114294A (en) * 1975-03-22 1976-10-07 Shiga Prefecture Method of artificial seed collection of pearly freshhwater mussels
JPS61171597A (en) * 1985-01-11 1986-08-02 Tsutomu Arimizu Method for purifying water of lake and marsh by aquatic plant
JPH0724494A (en) * 1993-07-09 1995-01-27 Japan Organo Co Ltd Algae treating device for pond and the like
JPH10118680A (en) * 1996-10-22 1998-05-12 Toshio Sekiguchi Method and apparatus for wastewater treatment material production
JPH11137109A (en) * 1997-11-12 1999-05-25 Akan Cho Culture of aegagropila protonema
JP2001503268A (en) * 1996-10-31 2001-03-13 アクアティック バイオエンハンスメント システムズ How to cultivate fish using turf algae
JP3076760U (en) * 2000-10-04 2001-04-20 サカイオーベックス株式会社 Water-following plant growing structure
JP2003340482A (en) * 2002-05-29 2003-12-02 Seiji Yokokura Water quality improver and method for improving water quality
JP2012147717A (en) * 2011-01-18 2012-08-09 Ohbayashi Corp Method for inhibiting algae, and algae inhibitor
WO2014207841A1 (en) * 2013-06-26 2014-12-31 中国電力株式会社 Water purifying device
JP2017018060A (en) * 2015-07-14 2017-01-26 四十四 佐藤 Hydroponic cultivation method and hydroponic cultivator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114294A (en) * 1975-03-22 1976-10-07 Shiga Prefecture Method of artificial seed collection of pearly freshhwater mussels
JPS61171597A (en) * 1985-01-11 1986-08-02 Tsutomu Arimizu Method for purifying water of lake and marsh by aquatic plant
JPH0724494A (en) * 1993-07-09 1995-01-27 Japan Organo Co Ltd Algae treating device for pond and the like
JPH10118680A (en) * 1996-10-22 1998-05-12 Toshio Sekiguchi Method and apparatus for wastewater treatment material production
JP2001503268A (en) * 1996-10-31 2001-03-13 アクアティック バイオエンハンスメント システムズ How to cultivate fish using turf algae
JPH11137109A (en) * 1997-11-12 1999-05-25 Akan Cho Culture of aegagropila protonema
JP3076760U (en) * 2000-10-04 2001-04-20 サカイオーベックス株式会社 Water-following plant growing structure
JP2003340482A (en) * 2002-05-29 2003-12-02 Seiji Yokokura Water quality improver and method for improving water quality
JP2012147717A (en) * 2011-01-18 2012-08-09 Ohbayashi Corp Method for inhibiting algae, and algae inhibitor
WO2014207841A1 (en) * 2013-06-26 2014-12-31 中国電力株式会社 Water purifying device
JP2017018060A (en) * 2015-07-14 2017-01-26 四十四 佐藤 Hydroponic cultivation method and hydroponic cultivator

Also Published As

Publication number Publication date
JP6558597B2 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
Kathiresan Mangrove forests of India
Naish et al. An evaluation of the effects of conservation and fishery enhancement hatcheries on wild populations of salmon
Schallenberg et al. Ecosystem services of lakes
Stokes et al. Invasive species in Ireland
WO2008128654A3 (en) Use of fungicides for treating fish mycoses
Lotze et al. Lessons from historical ecology and management
Rowe et al. Biomanipulation of plants and fish to restore Lake Parkinson: a case study and its implications
Rahman Impact of climate change on Saint Martin's Island of Bangladesh
Makowski et al. Invasive species within south Florida coastal ecosystems: an example of a marginalized environmental resource base
JP6558597B2 (en) Method for inhibiting the growth of filamentous algae coexisting with submerged plants
Engström The occurrence of the Great Cormorant Phalacrocorax carbo in Sweden, with special emphasis on the recent population growth
Waknitz Review of potential impacts of Atlantic salmon culture on Puget Sound chinook salmon and Hood Canal summer-run chum salmon evolutionarily significant units
Mitchell African aquatic weeds and their management
Shanij et al. Tree climbing and temporal niche shifting: an anti-predatory strategy in the mangrove crab Parasesarma plicatum (Latreille, 1803)
Kathiresan Save the Sundarbans.
Morris et al. Wetland conceptual models: associations between wetland values, threats and management interventions
Long et al. California sea lion predation on chicks of the Common Murre (León Marino de California (Zalophus californianus) Depredando Sobre Pichones de Uria aalgae)
Hardi et al. Traditional polyculture as a mangrove restoration solution in Delta Mahakam, East Kalimantan Indonesia
Bolton et al. Re-colonisation and successful breeding of Masked Boobies Sula dactylatra on mainland St Helena, South Atlantic, in the presence of Feral Cats Felis catus
Omondi et al. Invasive Species and their Impacts on the Ecology of Lake Victoria: A Rapid Review
KR100429781B1 (en) Method for controlling algal bloom by using natural enemies
Howard Invasive species in water-dependent ecosystems
Tyler-Walters Bugulina turbinata. An erect bryozoan
Odom et al. Chemical eradication methods for aquarium strains of Chaetomorpha
HARLIOĞLU et al. RESTORATION, CONSERVATION AND GOVERNANCE OF NATIVE CRAYFISH POPULATIONS

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190703

R150 Certificate of patent or registration of utility model

Ref document number: 6558597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250