JP2018120952A - Capacitor and method for manufacturing the same - Google Patents

Capacitor and method for manufacturing the same Download PDF

Info

Publication number
JP2018120952A
JP2018120952A JP2017011178A JP2017011178A JP2018120952A JP 2018120952 A JP2018120952 A JP 2018120952A JP 2017011178 A JP2017011178 A JP 2017011178A JP 2017011178 A JP2017011178 A JP 2017011178A JP 2018120952 A JP2018120952 A JP 2018120952A
Authority
JP
Japan
Prior art keywords
foil
capacitor
capacitor element
electrode foil
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017011178A
Other languages
Japanese (ja)
Other versions
JP6880772B2 (en
Inventor
賢一 桑田
Kenichi Kuwata
賢一 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2017011178A priority Critical patent/JP6880772B2/en
Publication of JP2018120952A publication Critical patent/JP2018120952A/en
Application granted granted Critical
Publication of JP6880772B2 publication Critical patent/JP6880772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a wound element improved in formability by pressing and increased in reliability by using an electrode foil subjected to high-magnification enlargement-of-area processing and chemical synthesis processing.SOLUTION: A method for manufacturing a capacitor which uses a capacitor element 2 arranged by a winding anode foil 8 comprises the steps of: forming a plurality of parting portions in a processed range 18 of a part of an etching layer of the anode foil 8 or the whole thereof; and pressing the element from its periphery to shape the element in such a form that a winding face has, as a part thereof, a curved portion 6 which is larger than the other portion in curvature.SELECTED DRAWING: Figure 1

Description

本発明は、電解コンデンサなど巻回素子を用いたコンデンサの製造技術に関する。
The present invention relates to a technique for manufacturing a capacitor using a winding element such as an electrolytic capacitor.

電解コンデンサなどのコンデンサでは、電極箔の表面積が静電容量の大小に繋がる。コンデンサは、電極箔を巻回して作成するコンデンサ素子を用いることがある。   In a capacitor such as an electrolytic capacitor, the surface area of the electrode foil leads to the magnitude of the capacitance. The capacitor may be a capacitor element formed by winding an electrode foil.

また、コンデンサには、たとえば搭載させる機器や装置などの設置スペースなどに応じて円柱形状以外の形状として、素子の巻回面の形状を楕円状にした偏平形状のコンデンサ素子を用いるものがある。このようにコンデンサ素子を変形させるには、たとえば筒状に巻回したコンデンサ素子を外周側から押圧する手法が取られる。   In addition, some capacitors use a flat capacitor element in which the shape of the winding surface of the element is an ellipse as a shape other than the cylindrical shape depending on the installation space of the equipment or device to be mounted. In order to deform the capacitor element in this way, for example, a method of pressing the capacitor element wound in a cylindrical shape from the outer peripheral side is taken.

このようなコンデンサに関し、電極箔を楕円状に巻回したコンデンサ素子を用いるコンデンサがある(たとえば、特許文献1、2、3)   Regarding such a capacitor, there is a capacitor using a capacitor element in which an electrode foil is wound in an elliptical shape (for example, Patent Documents 1, 2, and 3).

特開昭59−18628号公報JP 59-18628 特開昭59−194420号公報JP 59-194420 A 特開2003−309041号公報JP 2003-309041 A

ところで、電解コンデンサに用いられる電極箔には、アルミニウムや銅などの弁金属箔が用いられる。この弁金属箔の表面に拡面化処理によりエッチング層が形成され、その上に化成処理により誘電体酸化皮膜が形成されている。たとえば、アルミニウムを用いた電極箔ではアルミニウム自体は延伸性や柔軟性に優れるが、誘電体酸化皮膜は硬く、電極箔の延伸性や柔軟性が低下する。特に、近年、電解コンデンサの高容量化、小型化、軽量化などの要請に応えるため、より高倍率の拡面化処理を施し、電極箔の表面積を拡大させているが、それに伴い誘電体酸化皮膜の面積も拡大し、結果として、電極箔の脆弱化や硬化が進み、素材自体が持つ柔軟性が極度に低下する。
このような電極箔を巻回してコンデンサ素子を形成した後、偏平形状になるようにコンデンサ素子の一部を押圧すると、大きく屈曲する湾曲部が形成される。このような湾曲部には、電極箔に大きな曲げ応力が作用する。このとき電極箔には、箔表面にクラックや破断などを生じるおそれがある。また、コンデンサ素子は、斯かる曲げ応力に追従することができず、元の円形形状に戻ろうとする復元力が作用するほか、追従性が低いために巻回時や押圧による成形時に、積層された電極箔同士の間に隙間が生じるおそれがある。このように電極箔間の隙間が大きくなることで、コンデンサの等価直列抵抗(ESR:Equivalent Series Resistance)が大きくなるという課題がある。
By the way, valve metal foils, such as aluminum and copper, are used for the electrode foil used for an electrolytic capacitor. An etching layer is formed on the surface of the valve metal foil by a surface enlargement process, and a dielectric oxide film is formed thereon by a chemical conversion process. For example, in an electrode foil using aluminum, the aluminum itself is excellent in stretchability and flexibility, but the dielectric oxide film is hard and the stretchability and flexibility of the electrode foil is lowered. In particular, in recent years, in order to meet the demands for higher capacity, smaller size, and lighter electrolytic capacitors, the surface area of the electrode foil has been increased by increasing the surface area at a higher magnification. The area of the film also increases, and as a result, the electrode foil becomes more brittle and hardened, and the flexibility of the material itself is extremely reduced.
When a capacitor element is formed by winding such an electrode foil, when a part of the capacitor element is pressed so as to have a flat shape, a curved portion that is largely bent is formed. A large bending stress acts on the electrode foil in such a curved portion. At this time, the electrode foil may be cracked or broken on the foil surface. In addition, the capacitor element cannot follow such bending stress and acts as a restoring force to return to the original circular shape. In addition, since the followability is low, the capacitor element is laminated at the time of winding or molding by pressing. There is a possibility that a gap may be formed between the electrode foils. Thus, there exists a subject that the equivalent series resistance (ESR: Equivalent Series Resistance) of a capacitor | condenser becomes large because the clearance gap between electrode foils becomes large.

斯かる課題について、特許文献1、2、3には開示や示唆はなく、それらの構成では斯かる課題を解決することができない。   Patent Documents 1, 2, and 3 do not disclose or suggest such a problem, and such a structure cannot be solved with those configurations.

そこで、本発明の目的は、上記課題に鑑み、高倍率の拡面化処理、化成処理が施された電極箔を用いる巻回素子について、押圧による成形性を向上させ、コンデンサの信頼性を高めることにある。
Therefore, in view of the above-mentioned problems, the object of the present invention is to improve the formability by pressing and improve the reliability of the capacitor with respect to the wound element using the electrode foil that has been subjected to the surface enlargement treatment and chemical conversion treatment at a high magnification. There is.

上記目的を達成するため、本発明のコンデンサの製造方法の一側面は、電極箔が巻回された素子を用いるコンデンサの製造方法であって、前記電極箔のエッチング層の一部または全部に、複数の分断部を形成する工程と、前記素子を外周側から押圧し、巻回面の一部に他の部分よりも曲率を大きくした湾曲部を備える形状に成形する工程とを含む。   In order to achieve the above object, one aspect of a method for producing a capacitor according to the present invention is a method for producing a capacitor using an element in which an electrode foil is wound, and a part or all of an etching layer of the electrode foil is used. A step of forming a plurality of divided portions, and a step of pressing the element from the outer peripheral side and forming the curved portion having a curved portion having a larger curvature than the other portions on a part of the winding surface.

上記コンデンサの製造方法において、前記電極箔は、箔芯部を残して複数の分断部を備えてよい。   In the method for manufacturing a capacitor, the electrode foil may include a plurality of divided portions, leaving a foil core portion.

上記目的を達成するため、本発明のコンデンサの一側面は、電極箔が巻回された素子を用いるコンデンサであって、前記素子は、巻回面の一部に他の部分よりも曲率を大きく形成された湾曲部を備える形状であり、少なくとも前記湾曲部の前記電極箔のエッチング層の一部または全部に、複数の分断部を備える。   In order to achieve the above object, one aspect of the capacitor of the present invention is a capacitor using an element on which an electrode foil is wound, and the element has a larger curvature than a part of the winding surface in other parts. It is a shape provided with the formed curved part, and a plurality of divided parts are provided at least in part or all of the etching layer of the electrode foil of the curved part.

上記コンデンサにおいて、前記電極箔は、箔芯部を残して複数の前記分断部を備えてよい。
In the above capacitor, the electrode foil may include a plurality of the divided portions, leaving a foil core portion.

本発明によれば、次のいずれかの効果が得られる。   According to the present invention, any of the following effects can be obtained.

(1) 電極箔の一部または全部に分断部を形成することで、コンデンサ素子を押圧して成形する時に、電極箔の破損を防止できる。   (1) By forming the dividing portion in part or all of the electrode foil, it is possible to prevent the electrode foil from being damaged when the capacitor element is pressed and molded.

(2) 分断部の形成により、押圧に対する電極箔の復元力が抑えられ、コンデンサ素子の成形性が向上する。   (2) By forming the dividing portion, the restoring force of the electrode foil against pressing is suppressed, and the moldability of the capacitor element is improved.

(3) 電極箔に分断部が形成されることで、巻回時の電極箔の追従性が向上し、積層された電極箔同士の間に隙間が生じるのを防止でき、コンデンサの等価直列抵抗の増加を防止できる。
(3) By forming a split part in the electrode foil, the followability of the electrode foil during winding can be improved, and a gap can be prevented from being formed between the laminated electrode foils, and the equivalent series resistance of the capacitor Can be prevented.

一実施の形態に係るコンデンサ素子の巻回面を示す図である。It is a figure which shows the winding surface of the capacitor | condenser element which concerns on one embodiment. 電極箔の構成例を示す図である。It is a figure which shows the structural example of electrode foil. 電極箔の巻回処理の一例を示す図である。It is a figure which shows an example of the winding process of electrode foil. コンデンサ素子の成形工程の一例を示す図である。It is a figure which shows an example of the shaping | molding process of a capacitor | condenser element. 分断部を備えない電極箔を利用したコンデンサ素子の一例を示す図である。It is a figure which shows an example of the capacitor | condenser element using the electrode foil which is not provided with a parting part. コンデンサ素子の成形状態の比較例を示す図である。It is a figure which shows the comparative example of the shaping | molding state of a capacitor | condenser element. 分断部が形成された電極箔の柔軟性を示す実験例の図である。It is a figure of the experimental example which shows the softness | flexibility of the electrode foil in which the part part was formed.

〔一実施の形態〕   [One embodiment]

図1は、一実施の形態に係るコンデンサ素子の巻回面を示している。図1に示す構成は一例であり、本発明が係る構成に限定されない。   FIG. 1 shows a winding surface of a capacitor element according to an embodiment. The configuration illustrated in FIG. 1 is an example and is not limited to the configuration according to the present invention.

このコンデンサ素子2は、たとえば電解コンデンサなどのコンデンサに用いられる素子の一例であり、横長帯状に形成された電極箔を巻回して積層状態に形成されている。コンデンサ素子2は、巻回面の一部について、少なくとも巻回された電極箔の一部の曲率を大きくした湾曲部を含む形状に形成される。このコンデンサ素子2は、たとえば図1に示すように、曲率が小さい平坦部4と曲率が大きい湾曲部6を含む楕円状の巻回面を持つ、所謂、偏平形状に形成される。巻回面の形状は、たとえば楕円の長軸方向からみて、平坦部4の長さが両側の湾曲部6の長さよりも長く、または同等になるように形成すればよい。   The capacitor element 2 is an example of an element used for a capacitor such as an electrolytic capacitor, and is formed in a laminated state by winding an electrode foil formed in a horizontally long strip shape. Capacitor element 2 is formed in a shape including a curved portion in which the curvature of at least a part of the wound electrode foil is increased with respect to a part of the winding surface. For example, as shown in FIG. 1, the capacitor element 2 is formed in a so-called flat shape having an elliptical winding surface including a flat portion 4 having a small curvature and a curved portion 6 having a large curvature. The shape of the winding surface may be formed such that, for example, the length of the flat portion 4 is longer than or equal to the length of the curved portions 6 on both sides when viewed from the major axis direction of the ellipse.

コンデンサ素子2は、電極箔として、陽極箔8と陰極箔10とが備えられ、この間に幅広なセパレータ12を介在して巻回されている。セパレータ12は、たとえば陽極箔8と陰極箔10との間のみならず、巻回したコンデンサ素子2の最も内側や最も外側に配置するように積層してもよい。   The capacitor element 2 includes an anode foil 8 and a cathode foil 10 as electrode foils, and is wound with a wide separator 12 interposed therebetween. For example, the separator 12 may be laminated so as to be disposed not only between the anode foil 8 and the cathode foil 10 but also on the innermost side or the outermost side of the wound capacitor element 2.

コンデンサ素子2には、電極箔の巻回部分の内部に、タブ14、16が挟み込まれている。タブ14、16は、コンデンサを図示しない電子機器などに対して電気的に接続するための端子部品の一例であり、たとえば電極箔に接続されている。タブ14は、たとえば陽極箔8に接続されて陽極端子となる。また、タブ16はたとえば陰極箔10に接続されて陰極端子となる。   In the capacitor element 2, tabs 14 and 16 are sandwiched inside the wound portion of the electrode foil. The tabs 14 and 16 are examples of terminal components for electrically connecting the capacitor to an electronic device (not shown), and are connected to, for example, an electrode foil. The tab 14 is connected to, for example, the anode foil 8 and becomes an anode terminal. Further, the tab 16 is connected to the cathode foil 10 to become a cathode terminal, for example.

このコンデンサ素子2は、たとえば少なくとも陽極箔8の箔表面に表面加工が施されている。表面加工された陽極箔8には、電極箔表面に形成されたエッチング層に対し、複数の分断部20(図2)が形成される。この表面加工は、たとえばコンデンサ素子2を形成する陽極箔8の一部または全部に施せばよい。このうち、陽極箔8の一部に表面加工する場合の加工範囲18は、少なくとも湾曲部6となる部分、または湾曲部6と平坦部4との境界となる部分の両方またはいずれかを含めばよい。すなわち、電極箔に対する加工範囲18は、コンデンサ素子2に加工されたときに、特に曲げ応力を受け易い部分またはその周囲が含まれる。   The capacitor element 2 is subjected to surface processing on at least the foil surface of the anode foil 8, for example. In the surface-processed anode foil 8, a plurality of dividing portions 20 (FIG. 2) are formed with respect to the etching layer formed on the electrode foil surface. This surface processing may be performed, for example, on part or all of the anode foil 8 forming the capacitor element 2. Among these, the processing range 18 in the case where the surface processing is performed on a part of the anode foil 8 includes at least a part to be the curved part 6 and / or a part to be a boundary between the curved part 6 and the flat part 4. Good. That is, the processing range 18 for the electrode foil includes a portion that is particularly susceptible to bending stress when the capacitor element 2 is processed or the periphery thereof.

この電極箔に対する表面加工は、陽極箔8のみならず、陽極箔8とともに陰極箔10に行ってもよい。   The surface treatment on the electrode foil may be performed not only on the anode foil 8 but also on the cathode foil 10 together with the anode foil 8.

<電極箔の表面加工処理>   <Surface treatment of electrode foil>

図2は、電極箔の表面状態の一例を示す。図2に示す表面状態は一例である。   FIG. 2 shows an example of the surface state of the electrode foil. The surface state shown in FIG. 2 is an example.

陽極箔8には、たとえば図2のAに示すように、電極箔の短辺方向に沿って線状の分断部20が形成される。この分断部20は、たとえば長さや、それぞれの形成間隔を任意に設定すればよく、またはその形成手法に応じて線方向が決まればよい。
なお、分断部20の形成方向は、電極箔の長辺方向に沿う場合や、電極箔の短辺方向、または斜め方向に形成してもよい。
For example, as shown in FIG. 2A, the anode foil 8 is formed with a linear dividing portion 20 along the short side direction of the electrode foil. For example, the dividing portion 20 may be arbitrarily set in length and formation interval, or the line direction may be determined in accordance with the forming method.
In addition, you may form the formation direction of the parting part 20 in the case where it follows the long side direction of electrode foil, or the short side direction of electrode foil, or the diagonal direction.

陽極箔8は、図2のBに示すように、厚み方向中心に所定厚さの芯部22と、その両端側にエッチング層24が形成されている。分断部20は、陽極箔8のうちのエッチング層24に形成されている。そして陽極箔8は、エッチング層24および分断部20の表面に誘電体酸化皮膜25が形成されている。芯部22の厚みは、たとえば20〜60〔μm〕であり、エッチング層24の厚みが両面合わせて40〜200〔μm〕の範囲とすればよい。   As shown in FIG. 2B, the anode foil 8 has a core portion 22 having a predetermined thickness at the center in the thickness direction and an etching layer 24 formed on both ends thereof. The dividing part 20 is formed in the etching layer 24 of the anode foil 8. In the anode foil 8, a dielectric oxide film 25 is formed on the surfaces of the etching layer 24 and the dividing portion 20. The thickness of the core part 22 is, for example, 20 to 60 [μm], and the thickness of the etching layer 24 may be in the range of 40 to 200 [μm] in total.

分断部20は、たとえば陽極箔8の表面から芯部22に向けて所定の深さでエッチング層24を分断することで形成される。分断部20の形成深さは、芯部22を分断させないようにすればよく、たとえば電極箔の厚み方向に対し、エッチング層24の深さと同じ程度にすればよい。全ての分断部20の深さを一定の値に揃える必要はない。分断部20の形成では、たとえばエッチング層24を厚み方向にひび割れさせるほか、所定の治具を利用して電極箔表面を裂き、切り込み、切り欠き、または彫り込む手法を用いればよい。ひび割れを形成するには、たとえば拡面化処理した陽極箔8に対し、設定した電極箔表面に対して所定量の圧力や張力を付加する手法を用いてもよい。   The dividing part 20 is formed, for example, by dividing the etching layer 24 at a predetermined depth from the surface of the anode foil 8 toward the core part 22. The formation depth of the dividing portion 20 may be set so as not to divide the core portion 22, and may be, for example, about the same as the depth of the etching layer 24 in the thickness direction of the electrode foil. It is not necessary to make the depths of all the dividing portions 20 uniform. In the formation of the dividing portion 20, for example, the etching layer 24 may be cracked in the thickness direction, and a method of tearing, cutting, notching, or carving the electrode foil surface using a predetermined jig may be used. In order to form a crack, for example, a method of applying a predetermined amount of pressure or tension to the set electrode foil surface with respect to the anode foil 8 subjected to surface enlargement treatment may be used.

分断部20の開口幅は、たとえば陽極箔8を平坦状にした際に、0〜50〔μm〕以下となるように形成すればよい。また、分断部20は、箔両面のエッチング層24に形成する場合に限らず、陽極箔8の巻回方向やコンデンサ素子2の成形処理によって変形や押圧を受ける面側のみに形成してもよい。分断部20は、複数の切り込みが形成されることで、陽極箔8の表面を所謂、蛇腹状にしている。分断部20の形成位置や範囲、形成数やその形成間隔は、たとえばコンデンサ素子2に加えられる押圧力や変形による曲げ応力の大きさなどに応じて設定してもよい。本実施の形態では、隣接する分断部20の間隔を平均ピッチ220〔μm〕とした。   What is necessary is just to form the opening width of the parting part 20 so that it may become 0-50 [micrometers] or less, when the anode foil 8 is made flat, for example. Further, the dividing portion 20 is not limited to being formed in the etching layer 24 on both sides of the foil, but may be formed only on the surface side that is subjected to deformation or pressing by the winding direction of the anode foil 8 or the molding process of the capacitor element 2. . The dividing portion 20 has a so-called bellows shape on the surface of the anode foil 8 by forming a plurality of cuts. The formation position and range, the number of formations, and the formation interval of the divided portions 20 may be set according to, for example, the pressing force applied to the capacitor element 2 or the magnitude of bending stress due to deformation. In the present embodiment, the interval between the adjacent divided portions 20 is set to an average pitch of 220 [μm].

このように分断部20が形成された陽極箔8は、たとえば図2のCに示すように、箔表面が屈曲状態となった場合、屈曲の外周面側の分断部20aが拡開状態となることで曲げにより生じる応力が開放され、箔表面に伝搬されない。また、屈曲の内周側の分断部20bが閉塞状態、または分断部20b同士が圧着状態となることで、屈曲の内周側に加わる曲げ応力などを吸収する。このように、分断部20が形成された陽極箔8は、高容量化により硬質化、脆弱化した場合であっても、巻回による屈曲処理に対してエッチング層24を破断させずに巻回形状に追従することができる。   As shown in FIG. 2C, for example, when the foil surface is in a bent state, the anode foil 8 in which the dividing portion 20 is formed in this manner is in an expanded state at the dividing portion 20a on the outer peripheral surface side of the bending. Thus, the stress caused by bending is released and is not propagated to the foil surface. Moreover, the bending stress etc. which are added to the inner peripheral side of a bend are absorbed because the dividing part 20b of the inner peripheral side of a bending | tightening is a closed state, or the divided parts 20b will be in a crimping state. As described above, the anode foil 8 formed with the dividing portion 20 is wound without breaking the etching layer 24 with respect to the bending treatment by winding even when the anode foil 8 is hardened and weakened by increasing the capacity. It can follow the shape.

さらに、分断部20が形成された陽極箔8の箔表面に対して押圧力が加えられた場合、係る押圧力は、たとえば押圧位置に近い位置の分断部20の切れ目から外部に分散される。これにより押圧力が箔表面に伝搬して、箔の端面部分などにクラックなどが発生するのを防止できる。   Furthermore, when a pressing force is applied to the foil surface of the anode foil 8 on which the dividing portion 20 is formed, the pressing force is dispersed to the outside from the cut of the dividing portion 20 at a position close to the pressing position, for example. As a result, it is possible to prevent the pressing force from propagating to the foil surface and causing cracks or the like in the end face portion of the foil.

また、分断部20が形成されることで、コンデンサ素子2を成形した際に、この成形時に付加する応力が分散され、成形に対する陽極箔8の追従性が向上する。これにより成形したコンデンサ素子2に復元力が生じるのを防止できる。   Moreover, when the capacitor | condenser element 2 is shape | molded by forming the parting part 20, the stress added at the time of this shaping | molding is disperse | distributed, and the followable | trackability of the anode foil 8 with respect to shaping | molding improves. Thereby, it is possible to prevent a restoring force from being generated in the molded capacitor element 2.

<コンデンサの製造処理>   <Capacitor manufacturing process>

次に、コンデンサの製造処理の一例を示す。図3は、電極箔の巻回処理の一例を示す。図3に示す処理は、本開示のコンデンサの製造方法の一例である。なお、図3に示す処理手順、処理工程は一例であり、本発明が係る構成に限定されない。   Next, an example of a capacitor manufacturing process will be described. FIG. 3 shows an example of an electrode foil winding process. The process illustrated in FIG. 3 is an example of a method for manufacturing a capacitor according to the present disclosure. Note that the processing procedure and processing steps shown in FIG. 3 are merely examples, and the present invention is not limited to the configuration according to the present invention.

(A) コンデンサの製造処理では、たとえば陽極箔8の分断部20を形成する処理を含む電極箔の形成処理、積層した陽極箔8や陰極箔10、セパレータ12を巻回してコンデンサ素子2を形成する処理、巻回したコンデンサ素子2を押圧して偏平形状に成形する処理を含む。   (A) In the capacitor manufacturing process, for example, an electrode foil forming process including a process of forming the dividing portion 20 of the anode foil 8, the laminated anode foil 8, cathode foil 10, and separator 12 are wound to form the capacitor element 2. And a process of pressing the wound capacitor element 2 to form a flat shape.

陽極箔8や陰極箔10は、たとえばアルミニウム箔などを用いる。陽極箔8の表面に拡面化処理によるエッチング層24を形成後、陽極箔8表面の所定の位置に分断部20を形成する。分断部20を形成した後、その分断部20の表面に化成処理による誘電体酸化皮膜25を形成する。   As the anode foil 8 and the cathode foil 10, for example, an aluminum foil is used. After forming the etching layer 24 by the surface enlargement process on the surface of the anode foil 8, the dividing portion 20 is formed at a predetermined position on the surface of the anode foil 8. After the dividing portion 20 is formed, a dielectric oxide film 25 is formed on the surface of the dividing portion 20 by chemical conversion treatment.

コンデンサ素子2の巻回処理では、たとえば図3に示すように、最外周側に配置されたセパレータ12に対して陽極箔8が載置され、その上にセパレータ12を介在させて陰極箔10が積層される。陽極箔8の箔面には、少なくとも巻回によって加工範囲18に配置される部分に分断部20が形成されればよい。この分断部20は、陽極箔8の箔幅に合わせた長さであって、箔短方向に所定の長さで形成される。これによりコンデンサ素子2の湾曲部6となる加工範囲18の範囲に分断部20が形成される。
なお、陰極箔10に分断部20を形成する場合には、陽極箔8に形成する場合と同等に、加工範囲18に配置される部分に合わせて箔表面に分断部20を形成すればよい。
In the winding process of the capacitor element 2, for example, as shown in FIG. 3, the anode foil 8 is placed on the separator 12 disposed on the outermost peripheral side, and the cathode foil 10 is placed with the separator 12 interposed therebetween. Laminated. On the foil surface of the anode foil 8, it is sufficient that the dividing portion 20 is formed at least in a portion disposed in the processing range 18 by winding. The dividing portion 20 has a length corresponding to the foil width of the anode foil 8 and is formed with a predetermined length in the foil short direction. Thereby, the dividing part 20 is formed in the range of the processing range 18 which becomes the curved part 6 of the capacitor element 2.
In addition, when forming the dividing part 20 in the cathode foil 10, what is necessary is just to form the dividing part 20 on the foil surface according to the part arrange | positioned in the process range 18, similarly to the case where it forms in the anode foil 8. FIG.

コンデンサ素子2は、たとえば図示しない治具などを利用して、巻回中心26を中心に、陽極箔8、陰極箔10、セパレータ12を巻回していく。   Capacitor element 2 winds anode foil 8, cathode foil 10, and separator 12 around winding center 26 using, for example, a jig (not shown).

そのほか、コンデンサ素子2には、陽極箔8および陰極箔10の電極箔面上にそれぞれタブ14またはタブ16を接続させる。タブ14、16は、たとえば偏平部28と箔表面とがステッチ接続方法や冷間圧接方法によって接続される。これによりコンデンサ素子2には、同一端面側にリード端子29が突出するようにタブ14、16が接続される。   In addition, a tab 14 or a tab 16 is connected to the capacitor element 2 on the electrode foil surfaces of the anode foil 8 and the cathode foil 10, respectively. In the tabs 14 and 16, for example, the flat portion 28 and the foil surface are connected by a stitch connection method or a cold welding method. Thus, the tabs 14 and 16 are connected to the capacitor element 2 so that the lead terminals 29 protrude from the same end face side.

(B) コンデンサ素子2の成形処理として、たとえば外部側からコンデンサ素子2を所定方向に押圧し、押しつぶして平坦部4と湾曲部6を備える偏平形状に成形する。   (B) As the forming process of the capacitor element 2, for example, the capacitor element 2 is pressed from the outside in a predetermined direction and is crushed to be formed into a flat shape including the flat portion 4 and the curved portion 6.

コンデンサ素子2は、たとえば図4のAに示すように、巻回中心26を基準に電極箔を巻回することで、その巻回面が円形の円柱形状となっている。このときのコンデンサ素子2の直径W1は、陽極箔8、陰極箔10、セパレータ12を含む電極箔の厚さや、その巻回回数、さらに巻回処理の締付け力などによって決まる。このときコンデンサ素子2には、少なくとも巻回中心26を介して両端側に、加工範囲18として、分断部20が形成された陽極箔8が積層されている。   For example, as shown in FIG. 4A, the capacitor element 2 is formed by winding an electrode foil with the winding center 26 as a reference, so that the winding surface has a circular cylindrical shape. The diameter W1 of the capacitor element 2 at this time is determined by the thickness of the electrode foil including the anode foil 8, the cathode foil 10, and the separator 12, the number of windings, and the tightening force of the winding process. At this time, the capacitor element 2 is laminated with the anode foil 8 in which the dividing portion 20 is formed as the processing range 18 on both ends via at least the winding center 26.

そしてコンデンサ素子2の成形工程では、この加工範囲18に対して湾曲部6を形成するために、コンデンサ素子2の外周側を押圧する。この押圧位置は、たとえば図4のBに示すように、コンデンサ素子2の加工範囲18の位置から巻回中心26を基準に、所定角度として、たとえば90度変位した方向が設定されればよい。   In the step of forming the capacitor element 2, the outer peripheral side of the capacitor element 2 is pressed to form the curved portion 6 with respect to the processing range 18. For example, as shown in FIG. 4B, the pressing position may be set to a direction displaced by 90 degrees, for example, from the position of the machining range 18 of the capacitor element 2 with respect to the winding center 26 as a predetermined angle.

このときコンデンサ素子2には、たとえば巻回中心26を介して両側から所定の押圧力F1が加えられる。この押圧力F1は、たとえば電極箔の強度等に基づいて設定されればよい。そしてこの押圧により、コンデンサ素子2は、押圧方向に押し潰され、巻回面の形状が楕円などの偏平形状に成形される。この時の巻回面の短辺側の幅W2は、押圧力F1の大きさにより決まる。従って、コンデンサ素子2に対する押圧力F1は、たとえば図示しないケースの開口幅に対してコンデンサ素子2が収納可能な幅に成るように設定してもよい。   At this time, a predetermined pressing force F <b> 1 is applied to the capacitor element 2 from both sides via, for example, the winding center 26. This pressing force F1 may be set based on, for example, the strength of the electrode foil. By this pressing, the capacitor element 2 is crushed in the pressing direction, and the shape of the winding surface is formed into a flat shape such as an ellipse. The width W2 on the short side of the winding surface at this time is determined by the magnitude of the pressing force F1. Therefore, the pressing force F1 for the capacitor element 2 may be set so that the capacitor element 2 can be accommodated with respect to the opening width of the case (not shown), for example.

(C) 成形処理の後、コンデンサ素子2は、たとえば図示しないケース内に電解液とともに収納されると、封口体によってケースの開口部が封止される。封口体は、たとえばケース外装側から溶接、または押圧による加締め処理が施される。   (C) After the forming process, for example, when the capacitor element 2 is housed together with the electrolyte in a case (not shown), the opening of the case is sealed by the sealing body. The sealing body is subjected to a caulking process by welding or pressing, for example, from the case exterior side.

<一実施の形態の効果>   <Effect of one embodiment>

係る構成によれば、以下のような効果が得られる。   According to such a configuration, the following effects can be obtained.

(1) 高容量化した陽極箔8の一部または全部に分断部20を形成することで、コンデンサ素子2の成形処理において電極箔の破損を抑制できる。   (1) By forming the dividing portion 20 in a part or all of the anode foil 8 having a high capacity, it is possible to suppress the electrode foil from being damaged in the molding process of the capacitor element 2.

(2) 分断部20の形成により、押圧に対する電極箔の復元力が抑えられ、コンデンサ素子2を意図した形状に成形できる。   (2) By forming the dividing portion 20, the restoring force of the electrode foil against pressing can be suppressed, and the capacitor element 2 can be formed into the intended shape.

(3) 電極箔に分断部20を形成することで、巻回時の電極箔の追従性が向上する。これにより積層された電極箔同士の間に隙間が生じるのを防止し、コンデンサの等価直列抵抗の増加を防止できる。   (3) By forming the dividing portion 20 in the electrode foil, the followability of the electrode foil during winding is improved. Thereby, it is possible to prevent a gap from being formed between the laminated electrode foils and to prevent an increase in the equivalent series resistance of the capacitor.

(4) 電極箔の成形性が向上することで、さらなる電極箔の芯部22を薄型化でき、電極箔を高容量化することができる。   (4) Since the moldability of the electrode foil is improved, the core portion 22 of the electrode foil can be further reduced in thickness, and the electrode foil can be increased in capacity.

(5) 電極箔の破損を抑制することで、電極箔およびコンデンサの信頼性を向上することができる。   (5) By suppressing the damage of the electrode foil, the reliability of the electrode foil and the capacitor can be improved.

(6) 電極箔に柔軟性を持たせることで電極箔の加工精度の向上が図れるとともに、不適合品の発生確率を減らすことができる。   (6) By providing flexibility to the electrode foil, the processing accuracy of the electrode foil can be improved and the probability of occurrence of nonconforming products can be reduced.

(7) 成形処理による電極箔の損傷を防止することで、コンデンサのショート(短絡)発生を回避できる。   (7) By preventing the electrode foil from being damaged by the molding process, it is possible to avoid the occurrence of a short circuit of the capacitor.

〔比較例〕   [Comparative Example]

図5は、分断部を備えない電極箔を利用してコンデンサ素子30を形成した場合を示している。図6は、コンデンサ素子30の成形状態の比較例を示している。   FIG. 5 shows a case where the capacitor element 30 is formed using an electrode foil that does not include a dividing portion. FIG. 6 shows a comparative example of the molded state of the capacitor element 30.

コンデンサ素子30は、拡面化処理した陽極箔32、陰極箔34を巻回して形成された場合を示している。既述のように、拡面化処理や化成処理された陽極箔32は、脆弱化や硬化が進み、素材自体が持つ柔軟性が極度に低下している。そのため係る陽極箔32を巻回したコンデンサ素子30は、たとえば図5に示すように、巻回部分のうち、屈曲率が大きい湾曲部6において、陽極箔32が巻回形状に追従することができず、隙間36が多数発生している。また、係る湾曲部6に配置された陽極箔32は、たとえばコンデンサ素子30の成形処理において外部から押圧されたことにより、曲率が大きくなるため、過大な曲げ応力が作用する。これにより陽極箔32の表面に割れやヒビなどのクラックが生じるおそれがある。このようなクラックは、たとえばコンデンサの容量の低下、ESR(等価直列抵抗)の増加などに繋がり、コンデンサの特性低下に繋がるおそれがある。   The capacitor element 30 shows a case where the anode foil 32 and the cathode foil 34 subjected to the surface enlargement treatment are wound. As described above, the anode foil 32 that has been subjected to the surface enlargement process or the chemical conversion process has become more brittle and hardened, and the flexibility of the material itself has been extremely reduced. Therefore, in the capacitor element 30 wound with the anode foil 32, the anode foil 32 can follow the winding shape in the curved portion 6 having a large bending rate, as shown in FIG. 5, for example. A large number of gaps 36 are generated. In addition, the anode foil 32 disposed in the curved portion 6 has an increased curvature due to, for example, being pressed from the outside during the molding process of the capacitor element 30, so that an excessive bending stress acts. This may cause cracks such as cracks and cracks on the surface of the anode foil 32. Such a crack may lead to a decrease in the capacitance of the capacitor, an increase in ESR (equivalent series resistance), and the like, which may lead to a decrease in the characteristics of the capacitor.

これに対し、本発明のコンデンサ素子2は、少なくとも曲率が大きくなる湾曲部6に形成される加工範囲18内に、分断部20が形成された陽極箔8を配置することで、箔表面のクラックの発生を回避できる。また、陽極箔8は、分断部20の形成によりコンデンサ素子2の成形に対する追従性が高められることで、巻回したコンデンサ素子2内の隙間の発生を防止できる。   On the other hand, the capacitor element 2 of the present invention arranges the anode foil 8 in which the dividing portion 20 is formed in the processing range 18 formed at least in the curved portion 6 where the curvature is large, so that cracks on the foil surface can be obtained. Can be avoided. Moreover, the anode foil 8 can prevent the formation of a gap in the wound capacitor element 2 by improving the followability to the forming of the capacitor element 2 by forming the dividing portion 20.

また、本開示のコンデンサ素子2と、分断部を備えない陽極箔32を巻回したコンデンサ素子30とを押圧して成形する場合を比較する。コンデンサ素子2、30は、たとえば図6のAに示すように、所定の押圧力F1をかけると、共に押圧中は一定形状を維持し、短辺側の幅W3が同じ値となる。そして、成形処理後に、押圧力F1の付加を解除すると、コンデンサ素子30は、陽極箔32に作用する復元力F2が押圧方向と反対方向に作用する。これによりコンデンサ素子30の短辺側の幅W4は加圧時の幅W3よりも大幅に大きくなる。   Moreover, the case where the capacitor | condenser element 2 of this indication and the capacitor | condenser element 30 which wound the anode foil 32 which does not have a parting part are pressed and shape | molded is compared. For example, as shown in FIG. 6A, the capacitor elements 2 and 30 maintain a constant shape while being pressed together when a predetermined pressing force F1 is applied, and the width W3 on the short side becomes the same value. Then, when the application of the pressing force F1 is released after the forming process, the restoring force F2 acting on the anode foil 32 acts on the capacitor element 30 in the direction opposite to the pressing direction. As a result, the width W4 on the short side of the capacitor element 30 is significantly larger than the width W3 during pressurization.

これに対し、本開示のコンデンサ素子2は、多少の復元力が生じるが、分断部20によって加圧による変形への追従性の向上により、コンデンサ素子30よりも復元量は少ない。   On the other hand, the capacitor element 2 of the present disclosure generates some restoring force, but the amount of restoration is smaller than that of the capacitor element 30 due to the improved followability to deformation caused by pressurization by the dividing portion 20.

〔実験例1〕   [Experimental Example 1]

次に、分断部20の形成による陽極箔8の柔軟性について説明する。この陽極箔8の柔軟性を示す指標として、エリクセン値を示す。陽極箔8として、分断部20の平均ピッチを70〔μm〕、220〔μm〕、950〔μm〕、2100〔μm〕、3100〔μm〕に設定したものと、比較例として分断部を形成していない陽極箔を用意し、各陽極箔に対してエリクセン試験を行った。エリクセン試験では、内径33〔mm〕を有するダイスと、しわ押えを用いて各陽極箔8及び分断部20を形成していない陽極箔を10〔kN〕で挟み込み、たがね状を有するポンチで押し込んだ。たがね状のポンチは、幅30〔mm〕で、先端が断面視φ4〔mm〕の球面である。電極箔の短辺方向に沿って、ポンチのたがね部位を押し込んだ。ポンチの押し込み速度は0.5〔mm/min〕とした。   Next, the flexibility of the anode foil 8 by forming the dividing portion 20 will be described. An Erichsen value is shown as an index indicating the flexibility of the anode foil 8. As the anode foil 8, an average pitch of the divided part 20 is set to 70 [μm], 220 [μm], 950 [μm], 2100 [μm], 3100 [μm], and a divided part is formed as a comparative example. An anode foil was prepared, and an Eriksen test was performed on each anode foil. In the Eriksen test, a die having an inner diameter of 33 [mm] and an anode foil 8 and an anode foil not forming the dividing portion 20 are sandwiched by 10 [kN] using a crease presser, and a punch having a chisel shape is used. I pushed it in. The chisel-shaped punch is a spherical surface having a width of 30 [mm] and a tip of φ4 [mm]. The chisel part of the punch was pushed in along the short side direction of the electrode foil. The pushing speed of the punch was 0.5 [mm / min].

このエリクセン試験の結果を図7に示す。図7は、横軸を分断部20の平均ピッチ、縦軸をエリクセン値としたグラフである。図7に示すように、比較例のエリクセン値が1.4〔mm〕であったのに対し、分断部20の平均ピッチを3100〔μm〕に設定した陽極箔8のエリクセン値は1.5〔mm〕となっていた。すなわち、分断部20を設けることで巻回時の曲げ応力が分散し、陽極箔8の柔軟性が付与されることがわかる。   The results of this Eriksen test are shown in FIG. FIG. 7 is a graph in which the horizontal axis represents the average pitch of the divided portions 20 and the vertical axis represents the Erichsen value. As shown in FIG. 7, the Erichsen value of the comparative example was 1.4 [mm], whereas the Eriksen value of the anode foil 8 in which the average pitch of the divided portions 20 was set to 3100 [μm] was 1.5. [Mm]. That is, it can be seen that by providing the dividing portion 20, the bending stress during winding is dispersed and the flexibility of the anode foil 8 is imparted.

また、分断部20の平均ピッチを2100〔μm〕以下とすると、エリクセン値は1.7〔mm〕以上となり、分断部20が未形成であった比較例と比べて明確な差が生じた。すなわち、平均ピッチ2100〔μm〕以下で分断部20を設けることで巻回時の曲げ応力が良好に分散し、陽極箔8に良好な柔軟性が付与されることがわかる。   Further, when the average pitch of the divided portions 20 was 2100 [μm] or less, the Erichsen value was 1.7 [mm] or more, and a clear difference was generated as compared with the comparative example in which the divided portions 20 were not formed. That is, it can be seen that by providing the dividing portion 20 with an average pitch of 2100 [μm] or less, the bending stress during winding is well dispersed, and the anode foil 8 is given good flexibility.

特に、分断部20の平均ピッチを950〔μm〕以下とすると、エリクセン値は2.0〔mm〕以上となり、分断部20が未形成であった比較例と比べて飛躍的に優れた結果となった。すなわち、平均ピッチ950〔μm〕以下で分断部20を設けることで巻回時の曲げ応力が極めて良好に分散し、陽極箔8に極めて良好な柔軟性が付与されることがわかる。   In particular, when the average pitch of the divided portion 20 is 950 [μm] or less, the Erichsen value is 2.0 [mm] or more, and the result is significantly superior to the comparative example in which the divided portion 20 is not formed. became. That is, it can be seen that by providing the dividing portion 20 at an average pitch of 950 [μm] or less, the bending stress during winding is very well dispersed, and the anode foil 8 is given very good flexibility.

〔実験例2〕   [Experimental example 2]

コンデンサ素子2の押圧成形に対する復元状態についての実験例を示す。
この実験例では、分断部20が形成された陽極箔8を用いたコンデンサ素子2と、分断部が形成されていない陽極箔32を用いたコンデンサ素子30の復元状態を測定した。それぞれ3個ずつ形成して、側面から押圧して偏平形状に成形し、その後、押圧状態を解除して、コンデンサ素子の復元量を測定した。なお、分断部20以外を備える点以外は、構成材料も製造方法も同じである。
An experimental example of the restored state with respect to the pressure molding of the capacitor element 2 is shown.
In this experimental example, the restoration state of the capacitor element 2 using the anode foil 8 in which the dividing portion 20 was formed and the capacitor element 30 using the anode foil 32 in which the dividing portion was not formed was measured. Three each were formed, pressed from the side and formed into a flat shape, and then the pressed state was released, and the amount of restoration of the capacitor element was measured. The constituent materials and the manufacturing method are the same except that the parts other than the dividing part 20 are provided.

この実験では、巻回時のコンデンサ素子の直径を7〔mm〕とし、直径が5.2〔mm〕になるまでコンデンサ素子を潰している。そして押圧解除後のコンデンサ素子の変形率を測定する。実験結果は、以下の表示1に示す通りである。   In this experiment, the diameter of the capacitor element at the time of winding is set to 7 [mm], and the capacitor element is crushed until the diameter reaches 5.2 [mm]. Then, the deformation rate of the capacitor element after releasing the pressure is measured. The experimental results are as shown in Display 1 below.

Figure 2018120952
Figure 2018120952

結果は、表1に示すように、分断部20が形成された電極箔を用いたコンデンサ素子2の方が、分断部が形成されていない電極箔を用いたコンデンサ素子30(比較例)よりも、押圧方向の素子幅が小さくなっている。押圧時の素子の厚さ5.2〔mm〕からの戻り率(復元率)は、分断部20を設けない場合が平均で113.2〔%〕となり、分断部20を設けた場合が平均で110.8〔%〕となった。このように実験結果からも電極箔に分断部20を設けることで、押圧による成形後の復元率を少なくでき、偏平形状に成形する際に優位であることが示された。   As shown in Table 1, the result is that the capacitor element 2 using the electrode foil in which the dividing portion 20 is formed is more than the capacitor element 30 (comparative example) using the electrode foil in which the dividing portion is not formed. The element width in the pressing direction is reduced. The return rate (restoration rate) from the element thickness of 5.2 [mm] at the time of pressing is 113.2 [%] on average when the dividing portion 20 is not provided, and is average when the dividing portion 20 is provided. It was 110.8 [%]. Thus, it was shown from the experimental results that by providing the dividing portion 20 on the electrode foil, the restoration rate after molding by pressing can be reduced, which is advantageous when molding into a flat shape.

〔他の実施の形態〕   [Other Embodiments]

以上説明した実施の形態について、変形例を以下に列挙する。   Examples of modifications described above are listed below.

(1) 上記実施の形態では、電極箔の表面に形成する分断部20について、直線形状、または一部に屈曲部を持つ線形状の場合を示したがこれに限らない。分断部20は、たとえば曲線形状、または複数の線を交差させた形状であってもよい。   (1) In the above-described embodiment, the dividing part 20 formed on the surface of the electrode foil has been shown to have a linear shape or a linear shape having a bent part at a part thereof. However, the present invention is not limited to this. The dividing part 20 may be, for example, a curved shape or a shape in which a plurality of lines are intersected.

(2) 上記実施の形態では、電極箔の前面と裏面の両面に分断部20を形成した場合であって、分断部20が電極箔の芯部22を介して対向する位置に形成される場合を示したが、これに限らない。分断部20は、たとえば前面と裏面とで異なる位置に形成してもよい。   (2) In the above embodiment, when the dividing portions 20 are formed on both the front and back surfaces of the electrode foil, the dividing portions 20 are formed at positions facing each other via the core portion 22 of the electrode foil. However, the present invention is not limited to this. For example, the dividing portion 20 may be formed at different positions on the front surface and the back surface.

(3) 上記実施の形態では、巻回面の形状が偏平形状となるコンデンサ素子2として、楕円形状の場合を示したがこれに限らない。コンデンサ素子2は、少なくとも一部に曲率が大きい湾曲部6が形成される形状であればよい。そして、陽極箔8には、係る湾曲部6に配置される部分に分断部20を形成する加工範囲18が設定されればよい。   (3) In the above embodiment, the capacitor element 2 having a flat winding surface has been shown to be elliptical, but the invention is not limited thereto. The capacitor element 2 may have any shape as long as the curved portion 6 having a large curvature is formed at least in part. And the processing range 18 which forms the parting part 20 in the part arrange | positioned at the curved part 6 should just be set to the anode foil 8. FIG.

(4) 上記実施の形態では、湾曲部6側に分断部20が形成される場合を示したが、これに限らない。係る湾曲部6に加えて、コンデンサ素子2の成型処理で押圧される部分、押圧部分の周縁のいずれかまたは両方に分断部20を形成する加工範囲18を設定してもよい。これにより、成型工程で加圧される押圧力F1に対し、分断部20によって押圧力が開放でき、陽極箔8の箔面で押圧力F1が伝搬するのを防止できる。そして、係る押圧力F1によってたとえば陽極箔8の破断発生を防止できる。   (4) Although the case where the dividing part 20 is formed on the curved part 6 side has been described in the above embodiment, the present invention is not limited to this. In addition to the bending portion 6, a processing range 18 in which the dividing portion 20 is formed may be set on either or both of the portion pressed by the molding process of the capacitor element 2 and the periphery of the pressing portion. Accordingly, the pressing force F1 pressed in the molding process can be released by the dividing portion 20, and the pressing force F1 can be prevented from propagating on the foil surface of the anode foil 8. Then, for example, the rupture of the anode foil 8 can be prevented by the pressing force F1.

(5) 上記実施の形態では、コンデンサ素子2の加工範囲18、またはコンデンサ素子2の全体において、巻回により積層された陽極箔8の全てに分断部20を備える場合を示したが、これに限らない。陽極箔8は、たとえばコンデンサ素子2の巻回中心26から所定の厚さまでの間に配置される部分に分断部20を形成してもよい。巻回素子は、その巻回中心26に向かう程に曲率が大きくなり、逆に巻回素子から離れる程、曲率は小さくなる。すなわち、巻回中心側の方が陽極箔8に係る曲げ応力が大きくなる。そこで、コンデンサ素子2では、たとえば陽極箔8の箔表面の曲げ応力への耐性に応じて、巻回中心26に近い部分にのみ分断部20を備えるようにしてもよい。なお、箔の曲げ応力への耐性は、たとえば陽極箔8の表面の硬化度合いや脆弱度合いに基づいて判断すればよい。   (5) In the above embodiment, the case where the dividing range 20 is provided in all of the anode foils 8 laminated by winding in the processing range 18 of the capacitor element 2 or the entire capacitor element 2 is shown. Not exclusively. For example, the anode foil 8 may form the dividing portion 20 at a portion disposed between the winding center 26 of the capacitor element 2 and a predetermined thickness. The curvature of the winding element increases toward the winding center 26, and conversely, the curvature decreases as the distance from the winding element increases. That is, the bending stress related to the anode foil 8 becomes larger on the winding center side. Therefore, the capacitor element 2 may be provided with the dividing portion 20 only in a portion close to the winding center 26 in accordance with, for example, resistance to bending stress on the foil surface of the anode foil 8. In addition, what is necessary is just to judge the tolerance to the bending stress of foil, for example based on the hardening degree and weakness degree of the surface of the anode foil 8. FIG.

以上説明したように、本発明の最も好ましい実施形態等について説明したが、本発明は、上記記載に限定されるものではなく、特許請求の範囲に記載され、又は明細書に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能であることは勿論であり、斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
As described above, the most preferable embodiment of the present invention has been described. However, the present invention is not limited to the above description, and is described in the claims or disclosed in the specification. It goes without saying that various modifications and changes can be made by those skilled in the art based on the gist, and such modifications and changes are included in the scope of the present invention.

本発明のコンデンサおよびその製造方法によれば、巻回され、かつ偏平形状に成形される陽極箔8の一部または全部に表面層を分断した分断部を形成することで、巻回や成形による箔表面の割れやヒビなどのクラックの発生を防止できるとともに、積層された電極箔間に隙間を生じさせないことで、ESRの低下を防止するなど、有用である。
According to the capacitor of the present invention and the method for manufacturing the same, by forming a cut portion by dividing the surface layer in a part or all of the anode foil 8 that is wound and shaped into a flat shape, It is useful to prevent the occurrence of cracks such as cracks and cracks on the foil surface and to prevent the ESR from being lowered by not forming a gap between the laminated electrode foils.

2、30 コンデンサ素子
4 平坦部
6 湾曲部
8、32 陽極箔
10、34 陰極箔
12 セパレータ
14、16 タブ
18 加工範囲
20、20a、20b 分断部
22 芯部
24 エッチング層
25 誘電体酸化皮膜
26 巻回中心
28 偏平部
29 リード端子
36 隙間

2, 30 Capacitor element 4 Flat part 6 Curved part 8, 32 Anode foil 10, 34 Cathode foil 12 Separator 14, 16 Tab 18 Processing range 20, 20a, 20b Dividing part 22 Core part 24 Etching layer 25 Dielectric oxide film 26 Winding Center of rotation 28 Flat part 29 Lead terminal 36 Clearance

Claims (4)

電極箔が巻回された素子を用いるコンデンサの製造方法であって、
前記電極箔のエッチング層の一部または全部に、複数の分断部を形成する工程と、
前記素子を外周側から押圧し、巻回面の一部に他の部分よりも曲率を大きくした湾曲部を備える形状に成形する工程と、
を含むことを特徴とするコンデンサの製造方法。
A capacitor manufacturing method using an element in which an electrode foil is wound,
Forming a plurality of divided portions in a part or all of the etching layer of the electrode foil;
The step of pressing the element from the outer peripheral side, and forming the curved part having a larger curvature than the other part in a part of the winding surface,
A method for producing a capacitor, comprising:
前記電極箔は、箔芯部を残して複数の分断部を備えることを特徴とする請求項1に記載のコンデンサの製造方法。   The method of manufacturing a capacitor according to claim 1, wherein the electrode foil includes a plurality of divided portions, leaving a foil core portion. 電極箔が巻回された素子を用いるコンデンサであって、
前記素子は、巻回面の一部に他の部分よりも曲率を大きく形成された湾曲部を備える形状であり、
少なくとも前記湾曲部の前記電極箔のエッチング層の一部または全部に、複数の分断部を備えることを特徴とする、コンデンサ。
A capacitor using an element in which an electrode foil is wound,
The element has a shape including a curved portion formed in a part of the winding surface with a larger curvature than the other part,
A capacitor comprising a plurality of divided portions at least in part or all of the etching layer of the electrode foil of the curved portion.
前記電極箔は、箔芯部を残して複数の前記分断部を備えることを特徴とする、請求項3に記載のコンデンサ。


The capacitor according to claim 3, wherein the electrode foil includes a plurality of the dividing portions except for a foil core portion.


JP2017011178A 2017-01-25 2017-01-25 Capacitors and their manufacturing methods Active JP6880772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017011178A JP6880772B2 (en) 2017-01-25 2017-01-25 Capacitors and their manufacturing methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017011178A JP6880772B2 (en) 2017-01-25 2017-01-25 Capacitors and their manufacturing methods

Publications (2)

Publication Number Publication Date
JP2018120952A true JP2018120952A (en) 2018-08-02
JP6880772B2 JP6880772B2 (en) 2021-06-02

Family

ID=63045363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017011178A Active JP6880772B2 (en) 2017-01-25 2017-01-25 Capacitors and their manufacturing methods

Country Status (1)

Country Link
JP (1) JP6880772B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152123A (en) * 1981-03-13 1982-09-20 Matsushita Electric Ind Co Ltd Method of producing metallized film capacitor
JPS61156720A (en) * 1984-12-27 1986-07-16 日本ケミコン株式会社 Manufacture of electrolytic capacitor element
US6424518B1 (en) * 1998-09-22 2002-07-23 Epcos Ag Aluminum electrolytic capacitor
JP2003109869A (en) * 2001-09-28 2003-04-11 Nippon Chemicon Corp Electrolytic capacitor and method of manufacturing the same
JP2013153024A (en) * 2012-01-24 2013-08-08 Nichicon Corp Electrolytic capacitor and manufacturing method of the same
WO2017171028A1 (en) * 2016-03-31 2017-10-05 日本ケミコン株式会社 Electrode foil, winding capacitor, electrode foil manufacturing method, and winding capacitor manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152123A (en) * 1981-03-13 1982-09-20 Matsushita Electric Ind Co Ltd Method of producing metallized film capacitor
JPS61156720A (en) * 1984-12-27 1986-07-16 日本ケミコン株式会社 Manufacture of electrolytic capacitor element
US6424518B1 (en) * 1998-09-22 2002-07-23 Epcos Ag Aluminum electrolytic capacitor
JP2003109869A (en) * 2001-09-28 2003-04-11 Nippon Chemicon Corp Electrolytic capacitor and method of manufacturing the same
JP2013153024A (en) * 2012-01-24 2013-08-08 Nichicon Corp Electrolytic capacitor and manufacturing method of the same
WO2017171028A1 (en) * 2016-03-31 2017-10-05 日本ケミコン株式会社 Electrode foil, winding capacitor, electrode foil manufacturing method, and winding capacitor manufacturing method

Also Published As

Publication number Publication date
JP6880772B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
JP6338000B2 (en) Electrode foil, wound capacitor, electrode foil manufacturing method, and wound capacitor manufacturing method
JP7287428B2 (en) capacitor
JP2019204836A (en) Ceramic electronic component and manufacturing method thereof
JP2006108274A (en) Solid electrolytic capacitor and its manufacturing method
CN105469995B (en) Solid electrolytic capacitor
JP6880772B2 (en) Capacitors and their manufacturing methods
KR20190072506A (en) Lead wire terminal for electrolytic capacitor, method for manufacturing electrolytic capacitor and electrolytic capacitor
JP7039848B2 (en) Capacitors and their manufacturing methods
JP2011014663A (en) Solid electrolytic capacitor
KR20190134624A (en) Electrode foil, wound type capacitor, manufacturing method of electrode foil, and manufacturing method of wound type capacitor
JP2014022586A (en) Capacitor and manufacturing method therefor
WO2015147286A1 (en) Lead terminal for capacitor
JP7443949B2 (en) Capacitor manufacturing method and capacitor
JP2020194978A (en) Manufacturing method of lead wire terminal, chip type electrolytic capacitor and semifinished product of lead wire terminal
JP2019067939A (en) Capacitor and method for manufacturing the same
JP6952272B2 (en) Electrolytic capacitors and their manufacturing methods
WO2023127928A1 (en) Electrolytic capacitor and production method for same
TWI761138B (en) Lead terminal of chip-type electrolytic capacitor, and method for producing chip-type electrolytic capacitor
JP2022163617A (en) Capacitor and manufacturing method thereof
KR20200112723A (en) Capacitor case with bottom-bulging suppressing structure and processing apparatus for the same
JP2016189384A (en) Capacitor and method of manufacturing the same
JP2013004930A (en) Capacitor and manufacturing method therefor
JP2007335825A (en) Distribution constant type noise filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R150 Certificate of patent or registration of utility model

Ref document number: 6880772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150