JP2018119364A - Steel plate earthquake-resisting wall, earthquake proof frame, and building including the same - Google Patents

Steel plate earthquake-resisting wall, earthquake proof frame, and building including the same Download PDF

Info

Publication number
JP2018119364A
JP2018119364A JP2017013082A JP2017013082A JP2018119364A JP 2018119364 A JP2018119364 A JP 2018119364A JP 2017013082 A JP2017013082 A JP 2017013082A JP 2017013082 A JP2017013082 A JP 2017013082A JP 2018119364 A JP2018119364 A JP 2018119364A
Authority
JP
Japan
Prior art keywords
steel plate
wall
frame
earthquake
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017013082A
Other languages
Japanese (ja)
Other versions
JP6669088B2 (en
Inventor
植木 卓也
Takuya Ueki
卓也 植木
隼平 安永
Jumpei Yasunaga
隼平 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017013082A priority Critical patent/JP6669088B2/en
Publication of JP2018119364A publication Critical patent/JP2018119364A/en
Application granted granted Critical
Publication of JP6669088B2 publication Critical patent/JP6669088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Load-Bearing And Curtain Walls (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel plate earthquake-resisting wall capable of simply joining a building frame.SOLUTION: A steel plate earthquake-resisting wall comprises a steel plate wall 20 that is configured with a steel plate 22 and buckling stiffeners 24 erected on the steel plate 22, a frame material 30 that is welded to four peripheral edge parts of the steel plate wall 20, and junctions 40 that are installed at four corner parts of the frame material 30 and can be supported by pins.SELECTED DRAWING: Figure 1

Description

本発明は、鋼板耐震壁に関し、特に建物の耐震性を高める鋼板耐震壁に関する。   The present invention relates to a steel plate earthquake resistant wall, and more particularly to a steel plate earthquake resistant wall that enhances the earthquake resistance of a building.

従来の一般的な鋼板壁を用いた耐震フレームは、座屈補剛材(スチフナ)などで座屈補剛された鋼板壁を、建物の柱(間柱)と梁で構成される建物のフレームに配置し、前記鋼板壁の四周縁部を、柱、間柱や梁に設置した接合部材を介して建物のフレームに溶接接合あるいはボルト接合することで作製されている。   Conventional seismic frames that use steel plate walls are made of steel plates that have been buckled and stiffened by buckling stiffeners (stiffeners), etc., to building frames that are composed of building columns (intercolumns) and beams. It arrange | positions and it is produced by welding joining or bolt joining to the flame | frame of a building via the joining member installed in the pillar, a stud, and a beam.

図4は、かかる従来の鋼板壁を用いた耐震フレームの一例を示す立面図であり、図5は、前記耐震フレームにおける鋼板壁と建物のフレームとの接合部の詳細を示す部分水平断面図である。   FIG. 4 is an elevational view showing an example of such a conventional earthquake-resistant frame using a steel plate wall, and FIG. 5 is a partial horizontal sectional view showing details of a joint portion between the steel plate wall and the building frame in the earthquake-resistant frame. It is.

図4に示される耐震フレーム100は、鋼板壁50が、建物の柱2(間柱3)と梁4で構成される建物のフレームにボルト接合されて構成されている。前記鋼板壁50は、一枚板の鋼板52と、前記鋼板52の表面及び裏面に、前記鋼板52と直交するように立設された座屈補剛材(スチフナ)54とから構成されている。前記鋼板壁50の四周縁部には、建物のフレームとの接合部材(鋼板壁50側のガセットプレート56)が設けられている(図4、図5)。また、前記建物のフレームの内周には、鋼板壁50との接合部材(建物フレーム側のガセットプレート60)が設けられている。   The seismic frame 100 shown in FIG. 4 is configured such that a steel plate wall 50 is bolted to a building frame composed of a column 2 (intermediate column 3) and a beam 4 of the building. The steel plate wall 50 is composed of a single steel plate 52 and a buckling stiffener (stiffener) 54 erected on the front and back surfaces of the steel plate 52 so as to be orthogonal to the steel plate 52. . Joining members (gusset plates 56 on the steel plate wall 50 side) to the frame of the building are provided on the four peripheral edges of the steel plate wall 50 (FIGS. 4 and 5). In addition, a joining member (building frame side gusset plate 60) to the steel plate wall 50 is provided on the inner periphery of the building frame.

図5に示されるように、鋼板壁50を前記建物のフレームに接合する際には、鋼板壁50側のガセットプレート56と、建物フレーム側のガセットプレート60を、スプライスプレート70で挟み、このスプライスプレート70を介して、前記ガセットプレート56とガセットプレート60を複数の高力ボルト72で締め付けることで、鋼板壁50を前記建物のフレームに接合する。   As shown in FIG. 5, when the steel plate wall 50 is joined to the building frame, the gusset plate 56 on the steel plate wall 50 side and the gusset plate 60 on the building frame side are sandwiched between the splice plates 70, The steel plate wall 50 is joined to the frame of the building by fastening the gusset plate 56 and the gusset plate 60 with a plurality of high strength bolts 72 via the plate 70.

上記のような鋼板壁の接合方法では、柱や梁に生じる軸力や曲げ変形が鋼板壁に伝達し、鋼板壁の性能を低下させる場合がある。そこで、柱や梁に生じる軸力や曲げ変形が鋼板壁に伝達するのを抑制するようにした鋼板壁の接合方法が提案されている。   In the steel plate wall joining method as described above, the axial force and bending deformation generated in the columns and beams may be transmitted to the steel plate wall, which may deteriorate the performance of the steel plate wall. Therefore, a method for joining steel plate walls has been proposed in which axial force and bending deformation generated in columns and beams are prevented from being transmitted to the steel plate wall.

例えば、非特許文献1には、鋼板壁を格子状に配置することで、柱や梁の曲げ変形が鋼板壁に伝達することを抑制する方法が提案されている。   For example, Non-Patent Document 1 proposes a method of suppressing the transmission of bending deformation of columns and beams to a steel plate wall by arranging the steel plate walls in a lattice shape.

特許文献1には、波形鋼板を用い、その折り筋を水平方向に向けるように建物のフレームに接合することで、柱軸力が鋼板壁に伝達するのを抑制する方法が提案されている。   Patent Document 1 proposes a method of suppressing transmission of column axial force to a steel plate wall by using a corrugated steel plate and joining it to a building frame so that its crease is directed in the horizontal direction.

特開2006−37586号公報JP 2006-37586 A

木原ら、「極低降伏点鋼を用いた制振鋼板壁の設計」、鋼構造年次論文報告集、1997年11月、第5巻、pp.523-530Kihara et al., “Design of damping steel plate wall using ultra-low yield point steel”, Annual Report of Steel Structure, November 1997, Vol. 5, pp.523-530

上記従来の鋼板壁を用いた耐震フレームでは、鋼板壁を設置する柱(間柱)および梁にあらかじめ接合部材を溶接接合などで取り付けておき、さらに現場で相当数量の高力ボルトをスプライスプレートを介して締め付けて、前記鋼板壁を建物のフレームに接合する必要があった。   In the conventional seismic frame using steel plate walls, joint members are attached in advance to the columns (inter-columns) and beams on which the steel plate walls are installed by welding, and a considerable number of high-strength bolts are installed on the site via splice plates. It was necessary to join the steel plate wall to the building frame.

このようなボルト接合におけるボルト孔の精度は、一般的にボルト径±2mm以内とされる必要があり、このクリアランス内で全てのボルトを締め付けるために、建物の据付に高い精度が要求されていた。   The accuracy of the bolt hole in such a bolt joint generally needs to be within a bolt diameter of ± 2 mm. In order to tighten all the bolts within this clearance, high accuracy is required for building installation. .

また、鋼板壁に軸力が導入されると、純せん断力に対する保有耐力および変形性能に比べて鋼板壁の性能が低下する傾向にある。そのため、施工時の鋼板壁への軸力導入を出来る限り抑えるために、1次締めで鋼板壁を建物のフレームに取り付けた後、周辺の耐震フレームの施工をある程度完了させてから本締めを行って鋼板壁を建物のフレームに接合する必要があり、この施工作業は非常に手間がかかるものであった。   Moreover, when axial force is introduced into the steel plate wall, the performance of the steel plate wall tends to be lower than the retained yield strength and deformation performance against the pure shear force. Therefore, in order to suppress the introduction of axial force to the steel plate wall during construction as much as possible, after the steel plate wall is attached to the building frame by primary tightening, the construction of the surrounding seismic frame is completed to some extent and then final fastening is performed. Therefore, it was necessary to join the steel plate wall to the building frame, and this construction work was very time-consuming.

一方、鋼板壁を溶接接合にて建物のフレームに接合する場合は、上記のようなボルト孔の精度やボルト締めに掛かる工数を減らすことが可能となる。しかし、重量のある鋼板壁を吊った状態で溶接位置を仮固定する必要があり、さらには現場での横向き溶接などの熟練した技術を要する。結果として、溶接費、副資材費、検査費などの多くの費用が掛かり、品質管理や工期といった別の問題も生じるため、採用される事例は少ない。   On the other hand, when the steel plate wall is joined to the building frame by welding, it is possible to reduce the accuracy of the bolt holes and the number of man-hours required for bolting. However, it is necessary to temporarily fix the welding position in a state where a heavy steel plate wall is suspended, and further, a skillful technique such as lateral welding at the site is required. As a result, many costs such as welding costs, secondary material costs, and inspection costs are incurred, and other problems such as quality control and work schedules occur.

本発明は、かかる事情に鑑みてなされたものであり、建物のフレームに簡易に接合できる鋼板耐震壁を提供することを目的とする。   This invention is made | formed in view of this situation, and it aims at providing the steel plate earthquake-resistant wall which can be easily joined to the flame | frame of a building.

鋼板壁全体にせん断変形を生じさせるためには、鋼板壁の四周縁部を、所定の面外剛性を有する部材と連続的に接合する必要がある。そのため、従来の鋼板壁では、鋼板壁の四周縁部を、建物の柱(間柱)や梁に接合していた。   In order to cause shear deformation in the entire steel plate wall, it is necessary to continuously join the four peripheral portions of the steel plate wall with a member having a predetermined out-of-plane rigidity. Therefore, in the conventional steel plate wall, the four peripheral portions of the steel plate wall are joined to the pillars (intercolumns) and beams of the building.

本発明では、鋼板壁の四周縁部を、柱(間柱)や梁とは別の部材である枠材に接合した鋼板耐震壁とすることにより、この鋼板耐震壁を建物のフレームと切り離して事前に工場で製作できるようにした。これにより鋼板壁の縁部の接合を簡易な下向き溶接接合とし、鋼板耐震壁を簡易に作製することが可能となった。   In the present invention, the steel plate seismic wall is separated from the building frame in advance by making the four peripheral edges of the steel plate wall into a steel plate seismic wall joined to a frame material which is a member different from a pillar (intercolumn) or beam. Can be manufactured at the factory. As a result, the edge of the steel plate wall can be joined by simple downward welding, and the steel plate seismic wall can be easily produced.

さらに、本発明では、鋼板耐震壁を建物のフレームに接合する際の接合部材を、拘束材(枠材)で囲まれた鋼板耐震壁の角部に設置したピン支持可能な接合部とすることで、施工現場で、前記接合部を柱あるいは梁に設置された接合部材とピン支持により接合するだけで、特殊な技術を要することなく、鋼板耐震壁を建物のフレームに簡易に接合できるようにした。   Furthermore, in this invention, the joining member when joining the steel plate earthquake resistant wall to the frame of the building is a pin supportable joint portion installed at the corner of the steel plate earthquake resistant wall surrounded by the restraint material (frame material). At the construction site, the steel plate seismic wall can be easily joined to the building frame by simply joining the joint with a joint member installed on a column or beam with pin support. did.

本発明は、以下の構成を有する。
[1]鋼板と、該鋼板に立設された座屈補剛材とで構成される鋼板壁と、前記鋼板壁の四周縁部に溶接された枠材と、前記枠材の4つの角部に設置されたピン支持可能な接合部と、を備える鋼板耐震壁。
[2]柱と梁で構成される建物のフレームに、[1]に記載の鋼板耐震壁がピン支持で接合された、耐震フレーム。
[3][2]に記載の耐震フレームを備えた建物。
The present invention has the following configuration.
[1] A steel plate wall composed of a steel plate and a buckling stiffener provided upright on the steel plate, a frame member welded to the four peripheral edges of the steel plate wall, and four corners of the frame member A steel plate earthquake-resistant wall comprising: a pin-supportable joint installed on the steel plate.
[2] An earthquake resistant frame in which a steel frame earthquake resistant wall according to [1] is joined to a frame of a building composed of columns and beams by pin support.
[3] A building provided with the earthquake-resistant frame according to [2].

本発明によれば、建物のフレームに簡易に設置できる鋼板耐震壁を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the steel plate earthquake-resistant wall which can be easily installed in the flame | frame of a building can be provided.

図1は、本発明の耐震フレームの一実施形態を示す立面図である。FIG. 1 is an elevation view showing an embodiment of the seismic frame of the present invention. 図2は、図1の耐震フレームの部分断面図であり、(a)は、鋼板耐震壁と建物のフレームとの接合部の詳細を示す縦方向の部分断面図、(b)は、前記接合部以外の箇所の水平方向の部分断面図である。2 is a partial cross-sectional view of the seismic frame of FIG. 1, (a) is a vertical partial cross-sectional view showing details of a joint between a steel plate seismic wall and a building frame, and (b) is the joint. It is a fragmentary sectional view of the horizontal direction of locations other than a part. 図3は、図1の耐震フレームの接合部の詳細を説明する説明図(部分立面図)である。FIG. 3 is an explanatory diagram (partial elevation view) for explaining details of a joint portion of the seismic frame shown in FIG. 1. 図4は、従来の鋼板壁を用いた耐震フレームの一例を示す立面図である。FIG. 4 is an elevation view showing an example of a conventional earthquake-resistant frame using a steel plate wall. 図5は、図4の耐震フレームにおける鋼板壁と建物のフレームとの接合部の詳細を示す部分水平断面図である。FIG. 5 is a partial horizontal cross-sectional view illustrating details of a joint portion between a steel plate wall and a building frame in the seismic frame of FIG. 4.

以下、本発明の一実施形態について図面を参照しながら説明する。ただし、本発明は、以下に示す実施形態に限定されない。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments shown below.

図1は、本発明の耐震フレーム1を示す立面図である。   FIG. 1 is an elevation view showing a seismic frame 1 of the present invention.

耐震フレーム1は、柱2と梁4で構成される建物のフレームに、鋼板耐震壁10がピン支持で接合されて構成されている。   The seismic frame 1 is constituted by a steel frame seismic wall 10 joined to a building frame composed of columns 2 and beams 4 with pin support.

前記鋼板耐震壁10は、鋼板壁20と、前記鋼板壁20の四周縁部に溶接された枠材30と、前記枠材30の4つの角部に設置されたピン支持可能な接合部40とを備える。   The steel plate earthquake resistant wall 10 includes a steel plate wall 20, a frame member 30 welded to the four peripheral edges of the steel plate wall 20, and a pin supportable joint portion 40 installed at four corners of the frame member 30. Is provided.

前記鋼板壁20は、一枚板の鋼板22と、該鋼板22の表面及び裏面に、該鋼板22と直交するように立設された座屈補剛材(スチフナ)24とで構成されている。   The steel plate wall 20 is composed of a single steel plate 22 and a buckling stiffener (stiffener) 24 erected on the front and back surfaces of the steel plate 22 so as to be orthogonal to the steel plate 22. .

前記枠材30は、前記鋼板壁20の上下の縁部に溶接された横枠部材32と、前記鋼板壁20の左右の縁部に溶接された縦枠部材34と、4つの角部に溶接された角枠部材36とから構成されている。前記枠材30(横枠部材32、縦枠部材34、角枠部材36)は、鋼部材で構成され、それぞれの全体座屈耐力は、鋼板壁20の全体座屈耐力より大きくされている。   The frame member 30 is welded to four corners, a horizontal frame member 32 welded to the upper and lower edges of the steel plate wall 20, a vertical frame member 34 welded to the left and right edges of the steel plate wall 20. It is comprised from the square frame member 36 made. The frame member 30 (the horizontal frame member 32, the vertical frame member 34, and the square frame member 36) is made of a steel member, and the overall buckling strength of each is larger than the overall buckling strength of the steel plate wall 20.

上記枠材30の大きさは、接合される建物のフレームの大きさ等に応じて、適宜に設定される。上記枠材30の幅は、特に限定されないが、鋼板耐震壁10を建物のフレームに接合した際に、その面外方向の幅が、柱2の面外方向の柱幅W以下で、かつ、梁4の面外方向の梁幅W以下とされる。好ましくは、柱幅W未満で、かつ、梁幅W未満とされる(図2(a)、(b))。 The size of the frame member 30 is appropriately set according to the size of the frame of the building to be joined. The width of the frame member 30 is not particularly limited, but when the steel plate earthquake resistant wall 10 is joined to the building frame, the width in the out-of-plane direction is equal to or less than the column width W 2 in the out-of-plane direction of the column 2 and The beam width W4 in the out-of-plane direction of the beam 4 is set to be equal to or smaller than 4 . Preferably, the width is less than the column width W 2 and less than the beam width W 4 (FIGS. 2A and 2B).

また、本実施形態では、上記枠材30として、小径の角形鋼管を用いているが、所定の耐力を有していれば、円形鋼管を用いても良いし、面外方向を強軸とするH鋼を用いても良い。また、横枠部材32と、縦枠部材34との形状は、同じでもよいし異なってもよい。   In the present embodiment, a small-diameter rectangular steel pipe is used as the frame member 30, but a circular steel pipe may be used as long as it has a predetermined proof stress, and the out-of-plane direction is a strong axis. H steel may be used. Moreover, the shape of the horizontal frame member 32 and the vertical frame member 34 may be the same or different.

前記角枠部材36は、横枠部材32、縦枠部材34の面内および面外耐力以上の耐力を有するものとする。本実施形態では、角枠部材36として、鋳鋼品を想定しており、前記角枠部材36を、ピン支持可能な接合部40(以下、単に、「接合部40」という)をネジ止めできる構造としている。   The square frame member 36 has a proof strength greater than the in-plane and out-of-plane proof strength of the horizontal frame member 32 and the vertical frame member 34. In the present embodiment, the square frame member 36 is assumed to be a cast steel product, and the square frame member 36 can be screwed to a joint 40 that can be pin-supported (hereinafter simply referred to as “joint 40”). It is said.

前記接合部40は、前記角枠部材36に設置されている。図2(a)は、鋼板耐震壁10と建物のフレームとの接合部の詳細を示す縦方向の部分断面図である。図2(a)に示されるように、本実施形態において、接合部40は、クレビス42で構成され、前記クレビス42はネジ部44により前記角枠部材36に螺着されている。クレビス42としては、特に限定されないが、鋳鋼品等を用いることができる。   The joint 40 is installed on the square frame member 36. Fig.2 (a) is the fragmentary sectional view of the vertical direction which shows the detail of the junction part of the steel plate earthquake-resistant wall 10 and the flame | frame of a building. As shown in FIG. 2A, in the present embodiment, the joint portion 40 is constituted by a clevis 42, and the clevis 42 is screwed to the square frame member 36 by a screw portion 44. The clevis 42 is not particularly limited, but a cast steel product or the like can be used.

図1に示されるように、前記柱2と梁4で構成される建物のフレームの内周には、鋼板耐震壁10の接合部40(クレビス42)と対応する位置に、ピン接合用のガセットプレート6が溶接されている。本実施形態では、ガセットプレート6は、建物のフレーム内周の四隅と中央付近に溶接されているが、これに限定されず、例えば前記四隅に溶接されたガセットプレート6を、柱2との間に隙間を設けて梁4だけに溶接したり、これとは逆に、梁4との間に隙間を設けて柱2だけに溶接するようにしてもよい。   As shown in FIG. 1, a pin joint gusset is provided at a position corresponding to the joint 40 (clevis 42) of the steel plate earthquake resistant wall 10 on the inner periphery of the building frame composed of the pillar 2 and the beam 4. The plate 6 is welded. In this embodiment, the gusset plate 6 is welded to the four corners of the inner periphery of the building and the vicinity of the center. However, the present invention is not limited to this. For example, the gusset plate 6 welded to the four corners is connected to the pillar 2. Alternatively, a gap may be provided between the beam 4 and the beam 4 may be welded to the beam 4.

前記ガセットプレート6には、ピン接合用の孔が形成されている。図3は、耐震フレームの接合部の詳細を説明する説明図(部分立面図)である。本実施形態においては、前記ピン接合用の孔が長孔6aとされている。前記長孔6aは、柱軸方向を長径とし、柱軸方向に対して、軸力による変形分に相当するクリアランスをもって形成されている。   The gusset plate 6 has holes for pin connection. FIG. 3 is an explanatory diagram (partial elevation) for explaining details of a joint portion of the earthquake-resistant frame. In the present embodiment, the hole for pin connection is a long hole 6a. The long hole 6a has a major axis in the column axis direction and is formed with a clearance corresponding to a deformation due to an axial force with respect to the column axis direction.

本発明の耐震フレーム1の施工方法を説明する。   The construction method of the seismic frame 1 of the present invention will be described.

本発明の耐震フレーム1の施工方法の一例としては、鋼板耐震壁10を作製する鋼板耐震壁10の作製工程と、前記作製工程で作製した鋼板耐震壁10を、柱と梁で構成される建物のフレームにピン支持で接合する鋼板耐震壁10の接合工程とを有する。   As an example of the construction method of the seismic frame 1 of the present invention, a steel plate seismic wall 10 production process for producing a steel plate seismic wall 10, and a steel plate seismic wall 10 produced in the production process are constructed of columns and beams. A steel plate seismic wall 10 to be joined to the frame by pin support.

(鋼板耐震壁10の作製工程)
鋼板耐震壁10の作製工程は、鋼板壁20を作製する工程と、枠材30を作製する工程と、前記枠材30の内周に前記鋼板壁20を接合する工程とを有する。
(Production process of steel plate earthquake resistant wall 10)
The manufacturing process of the steel plate seismic wall 10 includes a process of manufacturing the steel plate wall 20, a process of manufacturing the frame member 30, and a process of joining the steel plate wall 20 to the inner periphery of the frame member 30.

鋼板壁20を作製する工程では、はじめに、地震力に応じた建物の必要保有水平耐力に応じて、一枚板の鋼板22の鋼種や板厚を決定する。さらに所定の剪断変形量に対して前記鋼板22が面外に全体座屈しないように前記鋼板22に立設する座屈補剛材(スチフナ)24の間隔、板厚、高さを決定する。そして、前記鋼板22の表面及び裏面に、座屈補剛材24を、前記鋼板22に対して直交するように溶接接合して鋼板壁20を作製する。図1に示されるように、座屈補剛材24は、鋼板22の表面に縦方向、鋼板22の裏面に横方向に溶接接合した形式(片面交差形式)で設置されるのが好ましい。ただし、所定の耐力が得られる限り座屈補剛の形式はこれに限定されない。   In the process of producing the steel plate wall 20, first, the steel type and thickness of the single steel plate 22 are determined according to the required horizontal strength of the building according to the seismic force. Further, the interval, thickness, and height of buckling stiffeners (stiffeners) 24 standing on the steel plate 22 are determined so that the steel plate 22 does not buckle out of plane with respect to a predetermined shear deformation amount. And the steel plate wall 20 is produced by welding the buckling stiffener 24 to the front surface and the back surface of the steel plate 22 so as to be orthogonal to the steel plate 22. As shown in FIG. 1, the buckling stiffener 24 is preferably installed in a form (single-sided crossing form) in which the steel plate 22 is welded in the vertical direction on the surface of the steel plate 22 and in the horizontal direction on the back surface of the steel plate 22. However, the type of buckling stiffening is not limited to this as long as a predetermined yield strength can be obtained.

枠材30を作製する工程では、鋼板壁20の四周縁部の面外変形を拘束するための枠部材(横枠部材32、縦枠部材34、角枠部材36)を、鋼板壁20を取り囲むような形状で溶接接合して、枠材30を作製する。   In the step of manufacturing the frame member 30, frame members (horizontal frame member 32, vertical frame member 34, square frame member 36) for restraining out-of-plane deformation of the four peripheral edges of the steel plate wall 20 are surrounded by the steel plate wall 20. The frame material 30 is produced by welding and joining in such a shape.

枠材30の内周に前記鋼板壁20を接合する工程では、上記工程で作製された枠材30の内周に、鋼板壁20を溶接接合にて接合する。この際、鋼板壁20の四周縁部に開先を設けておき、裏当て金を用いた完全溶け込み溶接とする。ただし、所定の溶接耐力が得られれば、両面開先による完全溶け込み溶接や、隅肉溶接などで、枠材30に鋼板壁20を接合してもよい。上記鋼板壁20の溶接接合は、簡易な下向き溶接で行うことが可能である。   In the step of joining the steel plate wall 20 to the inner periphery of the frame member 30, the steel plate wall 20 is joined to the inner periphery of the frame member 30 produced in the above step by welding. At this time, a groove is provided at the four peripheral edges of the steel plate wall 20, and complete penetration welding is performed using a backing metal. However, if a predetermined welding strength is obtained, the steel plate wall 20 may be joined to the frame member 30 by complete penetration welding using a double-sided groove or fillet welding. The steel plate wall 20 can be welded by simple downward welding.

次に、枠材30の角枠部材36に、接合部40をネジ止めして、鋼板耐震壁10を作製する。   Next, the joining portion 40 is screwed to the square frame member 36 of the frame member 30 to produce the steel plate earthquake resistant wall 10.

以上の鋼板耐震壁10の作製工程は、全て工場内で実施することが可能であり、鋼板耐震壁10を工場内で簡易に作製することができる。なお、前記作製工程の一部を現場で実施することも任意である。   All of the manufacturing steps of the steel plate earthquake resistant wall 10 described above can be performed in the factory, and the steel plate earthquake resistant wall 10 can be easily manufactured in the factory. Note that it is optional to perform part of the manufacturing process on site.

(鋼板耐震壁10の接合工程)
鋼板耐震壁10の接合工程では、上記鋼板耐震壁10の作製工程で作製した鋼板耐震壁10を、現場に搬送し、柱と梁で構成される建物のフレームにピン支持で接合して設置する。その際、図2(a)に示されるように、建物のフレーム内にあらかじめ設置されたガセットプレート6を挟み込むように、鋼板耐震壁10の接合部40(クレビス42)を合わせてピンPを差し込むことで、簡易に上記建物のフレームに鋼板耐震壁10を設置することができる。なお、前記ピンPとしては、特に限定されず、鋼板耐震壁10の接合部40(クレビス42)と前記ガセットプレート6のピン接合用の孔に挿入し、鋼板耐震壁10と建物のフレームとをピン支持で接合できるものであればよい。
(Joint process of steel plate earthquake resistant wall 10)
In the joining process of the steel plate seismic wall 10, the steel plate seismic wall 10 produced in the production process of the steel plate seismic wall 10 is transported to the work site and joined to the building frame composed of columns and beams with a pin support. . At that time, as shown in FIG. 2A, the pin P is inserted by aligning the joint portion 40 (clevis 42) of the steel shear wall 10 so as to sandwich the gusset plate 6 installed in advance in the building frame. Thus, the steel plate earthquake resistant wall 10 can be easily installed on the frame of the building. In addition, it does not specifically limit as said pin P, It inserts in the joining part 40 (clevis 42) of the steel plate earthquake-resistant wall 10, and the hole for pin joining of the said gusset plate 6, and the steel plate earthquake-resistant wall 10 and the frame of a building are attached. Any material that can be joined by pin support may be used.

本実施形態においては、鋼板耐震壁10を、横にずらして建物のフレーム内に配置し、鋼板耐震壁10を水平移動させることで、鋼板耐震壁10の接合部40(クレビス42)を前記建物のフレーム内に設置されたガセットプレート6にはめ込むことが可能であり、鋼板耐震壁10の位置決め等が容易で施工が簡易である。   In this embodiment, the steel plate seismic wall 10 is shifted laterally and placed in the frame of the building, and the steel plate seismic wall 10 is horizontally moved, so that the joint 40 (clevis 42) of the steel plate seismic wall 10 is connected to the building. It is possible to fit in the gusset plate 6 installed in the frame, and positioning of the steel plate earthquake resistant wall 10 is easy and construction is simple.

耐震フレーム1は、図1に示されるように、鋼板耐震壁10がその4つの角部に設置された接合部40により建物のフレームに接合されることで、鋼板耐震壁10と梁4との間に間隙を有している。また、鋼板耐震壁10と柱2との間にも間隙を有している。さらに、本実施形態においては、建物のフレームの内周に、2つの鋼板耐震壁10を水平方向に離間して接合し、前記鋼板耐震壁10同士の間にも間隙を有している。これにより、柱2、梁4の曲げ変形が鋼板耐震壁10に伝達するのをより抑制することができる。   As shown in FIG. 1, the seismic frame 1 is formed by joining the steel plate seismic wall 10 and the beam 4 by joining the steel plate seismic wall 10 to the building frame by the joints 40 installed at the four corners thereof. There is a gap between them. Further, there is a gap between the steel plate earthquake resistant wall 10 and the column 2. Furthermore, in this embodiment, the two steel plate earthquake resistant walls 10 are joined to the inner periphery of the building frame so as to be separated in the horizontal direction, and there is a gap between the steel plate earthquake resistant walls 10. Thereby, it can suppress more that the bending deformation of the pillar 2 and the beam 4 transmits to the steel plate earthquake-resistant wall 10. FIG.

以上説明したように、本発明によれば、鋼板壁の四周縁部を連続拘束する部材として、柱や梁とは別の部材である枠材を用いることにより、鋼板壁の四周縁部と枠材との接合を含めた鋼板耐震壁の製作を工場内で可能とした。本発明の鋼板耐震壁は、特殊な技術が不要な下向きの溶接接合により作製することが可能である。   As described above, according to the present invention, by using a frame member that is a member different from a column or a beam as a member that continuously restrains the four peripheral edges of the steel plate wall, the four peripheral edges and the frame of the steel plate wall are used. Steel-wall seismic walls including joints with materials can be manufactured in the factory. The steel plate earthquake-resistant wall of the present invention can be produced by downward welding that does not require a special technique.

本発明によれば、鋼板耐震壁と建物のフレームとの接合をピン接合とすることで、工数や精度が必要となるボルト接合を不要とし、かつ、特殊な横向き溶接での接合を不要とした。本発明の鋼板耐震壁を建物のフレームに接合する際には、ピン接合位置での相対位置関係について精度を確保すればよく、現場での鋼板耐震壁の設置が簡易かつ短工期で可能となる。   According to the present invention, the joining of the steel plate shear wall and the building frame is a pin joining, so that the bolt joining that requires man-hours and accuracy is unnecessary, and the joining by special lateral welding is unnecessary. . When joining the steel shear wall of the present invention to the frame of the building, it is only necessary to ensure the accuracy of the relative positional relationship at the pin joint position, and the installation of the steel shear wall on the site is simple and possible in a short construction period. .

また、本発明によれば、建物のフレームに設置したガセットプレートのピン接合用の孔を、柱軸方向に対して軸力による変形に相当するクリアランスを持った長孔とすることで、鋼板耐震壁への軸力の導入を抑制することができ、鋼板耐震壁の有する純せん断力に対する保有耐力、変形性能を維持できる。   In addition, according to the present invention, the gusset plate pin connection hole installed in the building frame is a long hole having a clearance corresponding to deformation due to axial force in the column axis direction, so that The introduction of axial force to the wall can be suppressed, and the retained strength and deformation performance against the pure shear force of the steel plate seismic wall can be maintained.

さらに、梁が長い場合等には、梁がせん断変形することにより曲げ変形が卓越することが想定されるが、本発明では、鋼板耐震壁と梁との接合部が連続的でなく、該接合部を建物のフレームの梁の端部あるいは中央部付近としたため、鋼板耐震壁の曲げ変形を抑制することができ、鋼板耐震壁の有する純せん断力に対する保有耐力、変形性能を維持できる。   Furthermore, when the beam is long, etc., it is assumed that the bending deformation is dominant due to the shear deformation of the beam. However, in the present invention, the joint between the steel plate shear wall and the beam is not continuous, and the joint Since the portion is the end of the beam or near the center of the building frame, the bending deformation of the steel plate shear wall can be suppressed, and the retained strength and deformation performance against the pure shear force of the steel plate earthquake wall can be maintained.

また、本発明によれば、鋼板耐震壁の角部に設置する接合部をネジ式とすることで、ネジの回転量に応じて長さを調整することが可能となり、現場での建て方精度に応じた微調整が可能となる。   In addition, according to the present invention, it is possible to adjust the length according to the amount of rotation of the screw by using a screw-type joint at the corner of the steel plate earthquake-resistant wall, so that the construction accuracy in the field It is possible to make fine adjustments according to.

さらに、地震被災後等に、鋼板耐震壁を取り替える必要が生じた場合には、接合部を取り外す、あるいは切断することで容易に建物のフレームから取り外すことが可能となり、交換や復旧が容易となる。   Furthermore, when it is necessary to replace the steel plate seismic wall after an earthquake, etc., it is possible to easily remove it from the building frame by removing or cutting the joint, which makes it easy to replace and restore. .

本発明の鋼板耐震壁の座屈荷重をFEM(有限要素法)解析により解析し、従来の鋼板壁を用いた耐震フレームの座屈荷重と比較した。   The buckling load of the steel shear wall of the present invention was analyzed by FEM (finite element method) analysis, and compared with the buckling load of a conventional earthquake resistant frame using a steel plate wall.

本実施例においては、枠材の剛性に着目し、座屈補剛材を設けていない鋼板耐震壁をシェル要素とし、四周の枠材を梁要素とした解析モデルで弾性座屈解析を行った。鋼板耐震壁は1640mm×1640mm×12mmの正方形鋼板とし、梁要素の面外曲げ剛性Ix、面内剛性Iy、ねじり剛性Jを変えながら、せん断荷重を与えた。   In this example, paying attention to the rigidity of the frame material, elastic buckling analysis was performed with an analysis model using a steel plate earthquake resistant wall without a buckling stiffener as a shell element and a frame material around the four circumferences as a beam element. . The steel plate seismic wall was a 1640 mm × 1640 mm × 12 mm square steel plate, and a shear load was applied while changing the out-of-plane bending rigidity Ix, in-plane rigidity Iy, and torsional rigidity J of the beam element.

その結果、J=1.0×10(mm)、Iy≒0(mm)のとき、Ix=1.0×10(mm)以上の面外剛性があれば、図4に示される従来の鋼板壁を用いた耐震フレームを模擬して、四周の境界条件を面外回転固定としたときの弾性座屈耐力に達することが確認できた。この断面性能を保有するH形鋼としては、H−150×150×7×10で足りる。これは、建物の設計条件によるが、一般的に用いられる柱や梁の断面より十分小さいと言える。このことから、本発明の鋼板耐震壁において、従来の鋼板壁を用いた耐震フレームと同等の座屈荷重を確保できることがわかる。 As a result, J = 1.0 × 10 5 ( mm 4), when Iy ≒ 0 in (mm 4), if Ix = 1.0 × 10 7 (mm 4) or out-of-plane stiffness, in FIG. 4 By simulating an earthquake-resistant frame using the conventional steel plate wall shown, it was confirmed that the elastic buckling strength was reached when the boundary condition of the four rounds was fixed out-of-plane. H-150 × 150 × 7 × 10 is sufficient as the H-section steel having this cross-sectional performance. Although this depends on the design conditions of the building, it can be said that it is sufficiently smaller than the cross section of a commonly used column or beam. From this, it can be seen that the steel plate earthquake resistant wall of the present invention can ensure a buckling load equivalent to that of the conventional earthquake resistant frame using the steel plate wall.

1、100 耐震フレーム
2 柱
3 間柱
4 梁
6 ガセットプレート
6a 長孔
10 鋼板耐震壁
20、50 鋼板壁
22、52 鋼板
24、54 座屈補剛材
30 枠材
32 横枠部材
34 縦枠部材
36 角枠部材
40 ピン支持可能な接合部
42 クレビス
44 ネジ部
56 ガセットプレート(鋼板側)
60 ガセットプレート(建物のフレーム側)
70 スプライスプレート
72 高力ボルト
P ピン
DESCRIPTION OF SYMBOLS 1,100 Seismic frame 2 Column 3 Interstitial column 4 Beam 6 Gusset plate 6a Long hole 10 Steel plate earthquake resistant wall 20, 50 Steel plate wall 22, 52 Steel plate 24, 54 Buckling stiffener 30 Frame member 32 Horizontal frame member 34 Vertical frame member 36 Square frame member 40 Pin supportable joint part 42 Clevis 44 Screw part 56 Gusset plate (steel plate side)
60 Gusset plate (building frame side)
70 Splice plate 72 High strength bolt P Pin

Claims (3)

鋼板と、該鋼板に立設された座屈補剛材とで構成される鋼板壁と、
前記鋼板壁の四周縁部に溶接された枠材と、
前記枠材の4つの角部に設置されたピン支持可能な接合部と、を備える鋼板耐震壁。
A steel plate wall composed of a steel plate and a buckling stiffener provided upright on the steel plate;
A frame member welded to the four peripheral edges of the steel plate wall;
A steel plate earthquake-resistant wall comprising: pin-supported joints installed at four corners of the frame member.
柱と梁で構成される建物のフレームに、請求項1に記載の鋼板耐震壁がピン支持で接合された耐震フレーム。   A seismic frame in which a steel plate seismic wall according to claim 1 is joined to a frame of a building composed of columns and beams by pin support. 請求項2に記載の耐震フレームを備えた建物。   A building comprising the earthquake-resistant frame according to claim 2.
JP2017013082A 2017-01-27 2017-01-27 Steel plate shear walls, frames and buildings equipped with them Active JP6669088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017013082A JP6669088B2 (en) 2017-01-27 2017-01-27 Steel plate shear walls, frames and buildings equipped with them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017013082A JP6669088B2 (en) 2017-01-27 2017-01-27 Steel plate shear walls, frames and buildings equipped with them

Publications (2)

Publication Number Publication Date
JP2018119364A true JP2018119364A (en) 2018-08-02
JP6669088B2 JP6669088B2 (en) 2020-03-18

Family

ID=63043080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017013082A Active JP6669088B2 (en) 2017-01-27 2017-01-27 Steel plate shear walls, frames and buildings equipped with them

Country Status (1)

Country Link
JP (1) JP6669088B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114016757A (en) * 2021-10-21 2022-02-08 广东二十冶建设有限公司 Construction method for assembling and welding steel plate shear wall on site
CN115012553A (en) * 2022-06-10 2022-09-06 天元建设集团有限公司 Steel sheet shear force wall is consolidated to existing building antidetonation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217854A (en) * 1983-05-25 1984-12-08 ナショナル住宅産業株式会社 Structure of durable wall panel attaching part
JPH04213645A (en) * 1990-12-10 1992-08-04 Natl House Ind Co Ltd Fitting structure of external wall panel
JP2003172040A (en) * 2001-12-03 2003-06-20 Mitsui Constr Co Ltd Vibration damping wall
JP2010095989A (en) * 2008-09-17 2010-04-30 Kozo Zairyo Kenkyukai:Kk Anisotropic reinforcing metal plate
JP2011006966A (en) * 2009-06-26 2011-01-13 Takenaka Komuten Co Ltd Steel earthquake resisting wall, and building with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217854A (en) * 1983-05-25 1984-12-08 ナショナル住宅産業株式会社 Structure of durable wall panel attaching part
JPH04213645A (en) * 1990-12-10 1992-08-04 Natl House Ind Co Ltd Fitting structure of external wall panel
JP2003172040A (en) * 2001-12-03 2003-06-20 Mitsui Constr Co Ltd Vibration damping wall
JP2010095989A (en) * 2008-09-17 2010-04-30 Kozo Zairyo Kenkyukai:Kk Anisotropic reinforcing metal plate
JP2011006966A (en) * 2009-06-26 2011-01-13 Takenaka Komuten Co Ltd Steel earthquake resisting wall, and building with the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114016757A (en) * 2021-10-21 2022-02-08 广东二十冶建设有限公司 Construction method for assembling and welding steel plate shear wall on site
CN114016757B (en) * 2021-10-21 2022-11-18 广东二十冶建设有限公司 Construction method for assembling and welding steel plate shear wall on site
CN115012553A (en) * 2022-06-10 2022-09-06 天元建设集团有限公司 Steel sheet shear force wall is consolidated to existing building antidetonation
CN115012553B (en) * 2022-06-10 2023-09-15 天元建设集团有限公司 Existing building anti-seismic reinforced steel plate shear wall

Also Published As

Publication number Publication date
JP6669088B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
US9506239B2 (en) Gusset plate connection in bearing of beam to column
US10094103B2 (en) Gusset plate connection of beam to column
JP6394239B2 (en) Connecting pillar
WO2015182714A1 (en) Structure and method for joining column and beam
JP6669088B2 (en) Steel plate shear walls, frames and buildings equipped with them
JP2006316611A (en) Column and beam joint structure
JP2016065403A (en) Column base structure of steel frame column and erection method of steel frame column
JP2020037774A (en) Column-beam joining structure and building having column-beam joining structure
JP6752599B2 (en) Seismic structure and seismic retrofitting method
JP2015068005A (en) Welding joining continuous beam structure
JP5400283B2 (en) Building unit connection structure and unit building
JP2014101655A (en) Brace aseismic reinforcement structure
JP3852195B2 (en) Steel shear wall
JP2018105036A (en) Joint structure of beam
JP2019157598A (en) Steel plate earthquake resistant wall, and steel plate earthquake resistant wall structure comprising the same
JP2005264516A (en) Bolt connection structure between steel column and steel beam
JP4713291B2 (en) Split structure and assembly method of large steel H-beam
JP7495309B2 (en) Ladder-type load-bearing wall structure and portal structure
JP7456413B2 (en) Steel shear walls, buildings equipped with them, and installation methods for steel shear walls
JP2018127825A (en) Joining method of column and beam
JP6518446B2 (en) Column and beam construction method
JP2010216075A (en) Joint structure of reinforced concrete column and steel frame beam
JP2008255713A (en) Wooden building and its seismic reinforcement method
KR101693360B1 (en) combination structure of steel-frame structure with column and beam
JP2022043840A (en) Vibration control panel and building

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180824

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200210

R150 Certificate of patent or registration of utility model

Ref document number: 6669088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250