JP2018119207A - MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET EXCELLENT IN BURRING PROPERTY AND METHOD FOR MANUFACTURING THE SAME - Google Patents

MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET EXCELLENT IN BURRING PROPERTY AND METHOD FOR MANUFACTURING THE SAME Download PDF

Info

Publication number
JP2018119207A
JP2018119207A JP2017183900A JP2017183900A JP2018119207A JP 2018119207 A JP2018119207 A JP 2018119207A JP 2017183900 A JP2017183900 A JP 2017183900A JP 2017183900 A JP2017183900 A JP 2017183900A JP 2018119207 A JP2018119207 A JP 2018119207A
Authority
JP
Japan
Prior art keywords
steel sheet
hot
rolling
molten
equivalent ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017183900A
Other languages
Japanese (ja)
Inventor
真也 植杉
Shinya Uesugi
真也 植杉
健太郎 平田
Kentaro Hirata
健太郎 平田
藤原 進
Susumu Fujiwara
進 藤原
智治 重富
Tomoharu Shigetomi
智治 重富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Publication of JP2018119207A publication Critical patent/JP2018119207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-strength molten Zn-Al-Mg-based plated steel sheet excellent in burring property and excellent in surface appearance of a plated surface.SOLUTION: The high-strength molten Zn-Al-Mg-based steel sheet has a chemical composition containing, by mass%, C: 0.005 to 0.080%, Si:0 to 0.80%, Mn:0.10 to 1.80%, Ti:0.020 to 0.200%, B:0.0005 to 0.010%, P:0.005 to 0.050%, S:0.0005 to 0.020%, Nb:0 to 0.100%, V:0 to 0.100%, Al:0.010 to 0.100%, and the balance Fe with inevitable impurities, provided that (Ti/48)/(C/12) is 0.40 to 2.00, has a molten Zn-Al-Mg-based plating layer on the surface of a base material steel sheet having a bainitic ferrite phase, an area ratio of cementite of 3% or less and a dislocation density of not more than 1×10cm/cm, and has a tensile strength in a direction perpendicular to a rolling direction of 400 MPa or more.SELECTED DRAWING: Figure 1

Description

本発明は、バーリング性(穴拡げ性)に優れる高強度溶融Zn−Al−Mg系めっき鋼板、およびその製造方法に関する。   The present invention relates to a high-strength molten Zn—Al—Mg-based plated steel sheet excellent in burring properties (hole expansibility) and a method for producing the same.

近年、自動車や建材に用いられる鋼板には軽量化および省資源化を目的とした高強度化が求められている。また、これらの用途に用いられる鋼板にはプレス加工、伸びフランジ加工など種々の加工に耐え得る優れた特性が要求される。そのような耐加工成形性を評価する特性として「バーリング性」が挙げられる。バーリング性は打抜き加工等により形成された穴がその後の成形過程においてどの程度まで亀裂なく成形可能であるかを示す特性である。   In recent years, steel sheets used for automobiles and building materials have been required to have high strength for the purpose of weight reduction and resource saving. Moreover, the steel plate used for these uses is required to have excellent characteristics that can withstand various processes such as press working and stretch flange working. “Burring property” is an example of a characteristic for evaluating such work-resistant formability. The burring property is a characteristic indicating to what extent a hole formed by punching or the like can be formed without a crack in the subsequent forming process.

一方、自動車や建材の用途で優れた耐食性を発揮する表面処理として溶融Zn−Al−Mg系めっきが知られており、近年では従来の溶融亜鉛めっきとともに広く適用されるに至っている。   On the other hand, hot-dip Zn—Al—Mg-based plating is known as a surface treatment that exhibits excellent corrosion resistance in applications such as automobiles and building materials, and has recently been widely applied together with conventional hot-dip galvanizing.

特許文献1には、バーリング性(穴拡げ性)に優れた高強度鋼板が記載されている。穴拡げ性を向上させるためにはセメンタイトの生成を抑制することが有効である。特許文献1ではオーステナイトフォーマーであるMnを低減してα域を広げることによって、熱延仕上げ圧延完了から巻取開始までの冷却中の炭化物(TiC)析出を促進させ、それによる析出強化を図るとともに、セメンタイト生成を抑制させ、バーリング性(穴拡げ性)を向上させている(特許文献1の段落0007)。しかし、本発明者らの検討によれば、特許文献1の手法で得られた熱延鋼板を素材に用いて溶融Zn−Al−Mg系めっき鋼板を製造すると、炭化物(TiC)の析出が高温で開始するため粒径が粗大となり、高強度を得ることが容易でないことがわかった。   Patent Document 1 describes a high-strength steel plate that is excellent in burring properties (hole expandability). In order to improve hole expansibility, it is effective to suppress the formation of cementite. In Patent Document 1, by reducing Mn, which is an austenite former, and expanding the α region, carbide (TiC) precipitation during cooling from the completion of hot rolling finish rolling to the start of winding is promoted, thereby enhancing precipitation strengthening. At the same time, the formation of cementite is suppressed, and the burring property (hole expanding property) is improved (paragraph 0007 of Patent Document 1). However, according to the study by the present inventors, when a hot-rolled steel sheet obtained by the method of Patent Document 1 is used as a raw material to produce a molten Zn—Al—Mg-based steel sheet, the precipitation of carbide (TiC) is high. It was found that the particle size becomes coarse because it starts with, and it is not easy to obtain high strength.

特許文献2には、熱間圧延、酸洗、軽圧下処理、連続溶融めっきラインでの焼鈍および溶融Zn−Al−Mgめっきを順次行う工程において軽圧下処理での圧下率を規定することでめっき表面外観およびバーリング性を両立する溶融Zn−Al−Mg系めっき鋼板の製造方法が開示されている。しかしながら、熱間圧延工程での仕上げ圧延完了から巻取りまでの冷却速度が過剰に低下するとセメンタイト量の増加によりバーリング性が低下するという問題があった。一方、冷却速度が過剰に増加した場合、転位密度の増加に伴うTSの増加によりバーリング性が低下する場合があることが明らかとなった。   In Patent Document 2, plating is performed by defining a rolling reduction ratio in a light rolling process in a process of sequentially performing hot rolling, pickling, light rolling treatment, annealing in a continuous hot dipping plating line, and hot-dip Zn-Al-Mg plating. A method for producing a hot-dip Zn—Al—Mg-based plated steel sheet having both surface appearance and burring properties is disclosed. However, when the cooling rate from the completion of finish rolling in the hot rolling process to winding is excessively reduced, there is a problem that the burring property is reduced due to an increase in the amount of cementite. On the other hand, when the cooling rate is excessively increased, it has been clarified that the burring property may be deteriorated due to an increase in TS accompanying an increase in the dislocation density.

特開平10−287949号公報JP 10-287949 A 特開2016−160499公報Japanese Patent Laid-Open No. 2006-160499

中島孝一、外4名、「X線回折を利用した転位密度の評価法」、材料とプロセス(一般社団法人日本鉄鋼協会)、Vol.17(2004)、p.396−399Koichi Nakajima, 4 others, “Method of evaluating dislocation density using X-ray diffraction”, Materials and Processes (Japan Iron and Steel Institute), Vol. 17 (2004), p. 396-399

本発明は、高強度であり、安定して優れたバーリング性を呈し、かつめっきの表面外観にも優れる高強度溶融Zn−Al−Mg系めっき鋼板を提供することを目的とする。   An object of this invention is to provide the high intensity | strength molten Zn-Al-Mg type plated steel plate which is high intensity | strength, exhibits the outstanding burring property stably, and is excellent also in the surface appearance of plating.

上記目的を達成するために、本明細書では以下の発明を開示する。
[1]質量%で、C:0.005〜0.080%、Si:0〜0.80%、Mn:0.10〜1.80%、Ti:0.020〜0.200%、B:0.0005〜0.010%、残部Feおよび不可避的不純物からなり、下記(1)式で定義されるTi/C当量比が0.40〜2.00である化学組成を有し、ベイニティックフェライト単相またはベイニティックフェライトとフェライト双方の組織を主相とし、セメンタイトの面積率が3%以下である金属組織を有する基材鋼板の表面に、溶融Zn−Al−Mg系めっき層を有し、圧延直角方向の引張強さが400MPa以上であり、前記引張強さTS(MPa)と穴拡げ率λ(%)の積TS×λの値が40000MPa・%以上であるバーリング性に優れる高強度溶融Zn−Al−Mg系めっき鋼板。
Ti/C当量比=(Ti/48)/(C/12) …(1)
ただし、(1)式右辺の元素記号の箇所にはそれぞれの元素の質量%で表される鋼中含有量の値が代入される。
[2]基材鋼板の化学組成が、さらに質量%で、P:0.005〜0.050%、S:0.0005〜0.020%、Nb:0〜0.100%、V:0〜0.100%、Al:0.010〜0.100%の含有量を満たすものである上記[1]に記載の溶融Zn−Al−Mg系めっき鋼板。
[3]質量%で、C:0.005〜0.080%、Si:0〜0.80%、Mn:0.10〜1.80%、Ti:0.020〜0.200%、B:0.0005〜0.010%、P:0.005〜0.050%、S:0.0005〜0.020%、Nb:0〜0.100%、V:0〜0.100%、Al:0.010〜0.100%、残部Feおよび不可避的不純物からなり、下記(1)式で定義されるTi/C当量比が0.40〜2.00である化学組成を有し、ベイニティックフェライト単相またはベイニティックフェライトとフェライト双方の組織を主相とし、セメンタイトの面積率が3%以下である金属組織を有し、転位密度が1×1014cm/cm3以下である基材鋼板の表面に、溶融Zn−Al−Mg系めっき層を有し、圧延直角方向の引張強さが400MPa以上であるバーリング性に優れる高強度溶融Zn−Al−Mg系めっき鋼板。
Ti/C当量比=(Ti/48)/(C/12) …(1)
ただし、(1)式右辺の元素記号の箇所にはそれぞれの元素の質量%で表される鋼中含有量の値が代入される。
[4]前記溶融Zn−Al−Mg系めっき層は、質量%で、Al:3.0〜22.0%、Mg:0.05〜10.0%、Si:0〜2.0%、Ti:0〜0.10%、B:0〜0.05%、Fe:0〜2.0%、残部Znおよび不可避的不純物からなる組成を有する上記[1]〜[3]のいずれかに記載の溶融Zn−Al−Mg系めっき鋼板。
[5]仕上げ圧延出側温度が830〜940℃となる条件で熱間圧延を施した後、仕上げ圧延完了から巻取開始までの平均冷却速度R(℃/s)が下記(2)式を満足するように冷却し、巻取温度を500〜650℃として熱延鋼板を得る工程、
前記熱延鋼板に酸洗を施す工程、
前記酸洗後に圧下率1.5〜8.0%の軽圧下圧延を施す工程、
前記冷間圧延後に、還元性雰囲気下で550〜750℃の焼鈍を施したのち溶融Zn−Al−Mg系めっきを施す工程、
を有する上記[1]〜[4]のいずれかに記載の溶融Zn−Al−Mg系めっき鋼板の製造方法。
R≧−6×[Ti/C当量比]+18 …(2)
ただし、(2)式右辺の[Ti/C当量比]の箇所には前記(1)式により定まるTi/C当量比の値が代入される。
[6]前記熱延鋼板を得る工程において、平均冷却速度R(℃/s)が、さらに下記(3)式を満たすように冷却する、上記[5]に記載の溶融Zn−Al−Mg系めっき鋼板の製造方法。
R<50 …(3)
In order to achieve the above object, the present invention discloses the following invention.
[1] By mass%, C: 0.005 to 0.080%, Si: 0 to 0.80%, Mn: 0.10 to 1.80%, Ti: 0.020 to 0.200%, B And a chemical composition having a Ti / C equivalent ratio defined by the following formula (1) of 0.40 to 2.00, consisting of 0.0005 to 0.010%, the balance Fe and inevitable impurities, A molten Zn—Al—Mg-based plating layer is formed on the surface of a base steel sheet having a metal structure in which the area of cementite is 3% or less, the main phase of which is a single phase of nitrite ferrite or a structure of both bainitic ferrite and ferrite. In the burring property, the tensile strength in the direction perpendicular to the rolling is 400 MPa or more, and the product TS × λ of the tensile strength TS (MPa) and the hole expansion ratio λ (%) is 40000 MPa ·% or more. Excellent high-strength molten Zn-Al-Mg-based plated steel sheet.
Ti / C equivalent ratio = (Ti / 48) / (C / 12) (1)
However, the value of the content in steel represented by mass% of each element is substituted for the element symbol on the right side of the formula (1).
[2] The chemical composition of the base steel sheet is further mass%, P: 0.005 to 0.050%, S: 0.0005 to 0.020%, Nb: 0 to 0.100%, V: 0. The hot-dip Zn—Al—Mg-based plated steel sheet according to the above [1], which satisfies the content of ˜0.100% and Al: 0.010 to 0.100%.
[3] By mass%, C: 0.005 to 0.080%, Si: 0 to 0.80%, Mn: 0.10 to 1.80%, Ti: 0.020 to 0.200%, B : 0.0005 to 0.010%, P: 0.005 to 0.050%, S: 0.0005 to 0.020%, Nb: 0 to 0.100%, V: 0 to 0.100%, Al: 0.0010 to 0.100%, balance Fe and inevitable impurities, having a chemical composition having a Ti / C equivalent ratio defined by the following formula (1) of 0.40 to 2.00, The main phase is a bainitic ferrite single phase or a structure of both bainitic ferrite and ferrite, and has a cementite area ratio of 3% or less, and a dislocation density of 1 × 10 14 cm / cm 3 or less. It has a molten Zn-Al-Mg plating layer on the surface of a certain base steel plate, and has a tensile strength of 400M in the direction perpendicular to the rolling direction. High-strength hot-dip Zn-Al-Mg plated steel sheet having excellent burring properties is more than a.
Ti / C equivalent ratio = (Ti / 48) / (C / 12) (1)
However, the value of the content in steel represented by mass% of each element is substituted for the element symbol on the right side of the formula (1).
[4] The molten Zn—Al—Mg-based plating layer is, by mass, Al: 3.0 to 22.0%, Mg: 0.05 to 10.0%, Si: 0 to 2.0%, Any of the above [1] to [3] having a composition comprising Ti: 0 to 0.10%, B: 0 to 0.05%, Fe: 0 to 2.0%, the balance Zn and inevitable impurities The hot-dip Zn-Al-Mg-based plated steel sheet described.
[5] The average cooling rate R (° C./s) from the completion of finish rolling to the start of winding after the hot rolling is performed under the condition that the finish rolling delivery temperature is 830 to 940 ° C. Cooling to be satisfied, obtaining a hot-rolled steel sheet at a coiling temperature of 500 to 650 ° C.,
Pickling the hot-rolled steel sheet,
A step of performing light rolling at a rolling reduction of 1.5 to 8.0% after the pickling,
A step of performing hot-dip Zn-Al-Mg-based plating after annealing at 550 to 750 ° C in a reducing atmosphere after the cold rolling;
The manufacturing method of the hot-dip Zn-Al-Mg system plated steel plate in any one of said [1]-[4] which has these.
R ≧ −6 × [Ti / C equivalent ratio] +18 (2)
However, the value of the Ti / C equivalent ratio determined by the above equation (1) is substituted into the [Ti / C equivalent ratio] position on the right side of the equation (2).
[6] In the step of obtaining the hot-rolled steel sheet, the molten Zn—Al—Mg system according to the above [5], wherein the cooling is performed so that the average cooling rate R (° C./s) further satisfies the following formula (3): Manufacturing method of plated steel sheet.
R <50 (3)

本発明によれば、バーリング性が良好で、かつ不めっきなどのめっき欠陥が極めて少ない表面外観に優れた高強度溶融Zn−Al−Mg系めっき鋼板が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the high intensity | strength fusion | melting Zn-Al-Mg type plated steel plate excellent in the surface external appearance with favorable burring property and very few plating defects, such as non-plating, can be provided.

No.8(本発明例)の金属組織を例示するSEM写真。The SEM photograph which illustrates the metal structure of No. 8 (invention example). No.16(比較例)の金属組織を例示するSEM写真。The SEM photograph which illustrates the metal structure of No. 16 (comparative example). No.20(比較例)の金属組織を例示するSEM写真。The SEM photograph which illustrates the metal structure of No. 20 (comparative example). 不めっきが存在しないめっき面の外観を例示する写真。The photograph which illustrates the appearance of the plating surface where there is no unplating. 不めっきが存在するめっき面の外観を例示する写真。The photograph which illustrates the external appearance of the plating surface where non-plating exists.

以下、鋼組成およびめっき組成における「%」は特に断らない限り「質量%」を意味する。   Hereinafter, “%” in the steel composition and plating composition means “mass%” unless otherwise specified.

〔基材鋼板の鋼組成〕
Cは、Ti系炭化物(主としてTiC)を形成し、マトリックスであるベイニィティックフェライト相またはそれ以外のフェライト相(以下、これらを単にフェライト相と呼ぶ。)中に微細析出することで、鋼の強度を確保する役割を担う元素である。自動車部材や建材等の用途で部材の軽量化を狙うためには圧延直角方向の引張強さが例えば400MPa以上といった強度レベルが望まれる。そのためには、C含有量を0.005%以上とする必要があり、0.010%以上とすることがより好ましい。ただし、C含有量が0.080%を超えると析出物の粗大化やセメンタイト(Fe3C)の形成が生じて、バーリング性が低下しやすくなる。また、後述のTi/C当量比が0.40〜2.00となるように、C含有量を調整する必要がある。
[Steel composition of base steel sheet]
C forms a Ti-based carbide (mainly TiC) and finely precipitates in a bainitic ferrite phase that is a matrix or other ferrite phase (hereinafter simply referred to as a ferrite phase). It is an element that plays a role of ensuring strength. In order to reduce the weight of the member in applications such as automobile members and building materials, a strength level such that the tensile strength in the direction perpendicular to the rolling direction is 400 MPa or more is desired. For that purpose, the C content needs to be 0.005% or more, and more preferably 0.010% or more. However, if the C content exceeds 0.080%, coarsening of precipitates and formation of cementite (Fe 3 C) occur, and the burring property tends to decrease. Moreover, it is necessary to adjust C content so that the below-mentioned Ti / C equivalent ratio may be set to 0.40-2.00.

Siは、固溶強化に有効な元素であり、必要に応じて含有させることができる。例えば0.05%以上のSi含有量を確保することがより効果的である。ただし、Si含有量が多くなると連続溶融めっきラインでの焼鈍時に、鋼板表面に酸化物が形成されやすくなり、めっき性を阻害する要因となる。Si含有量は0.80%以下に制限される。   Si is an element effective for solid solution strengthening, and can be contained as necessary. For example, it is more effective to secure a Si content of 0.05% or more. However, when the Si content is increased, an oxide is easily formed on the surface of the steel sheet during annealing in the continuous hot dipping line, which becomes a factor that impairs the plateability. The Si content is limited to 0.80% or less.

Mnは、高強度化に有効な元素である。圧延直角方向の引張強さが例えば400MPa以上といった強度レベルを得るためにはMn含有量を0.10%以上とする必要がある。0.45%以上、あるいは更に0.55%以上のMn含有量を確保することがより効果的である。また、Mn含有量を十分に確保することは、A3変態点の過度な上昇を防止する上で有効である。この場合、熱延温度や焼鈍温度を多少高温で行ってもTi系炭化物の粗大化が抑制でき、良好なバーリング性を得るための製造条件の自由度が広がる。ただし、多量にMnを含有させると、鋼中でのMnの偏析によって、バーリンク性が低下する。種々検討の結果、Mn含有量は1.80%以下に制限される。 Mn is an element effective for increasing the strength. In order to obtain a strength level in which the tensile strength in the direction perpendicular to the rolling is, for example, 400 MPa or more, the Mn content needs to be 0.10% or more. It is more effective to secure a Mn content of 0.45% or more, or even 0.55% or more. Moreover, securing a sufficient Mn content is effective in preventing an excessive increase in the A 3 transformation point. In this case, even if the hot rolling temperature and the annealing temperature are performed at a slightly high temperature, the coarsening of the Ti-based carbide can be suppressed, and the degree of freedom of manufacturing conditions for obtaining good burring properties is expanded. However, if Mn is contained in a large amount, the burlinkability is lowered due to segregation of Mn in the steel. As a result of various studies, the Mn content is limited to 1.80% or less.

Pは、固溶強化に有効な元素である。また、結晶粒界に偏析して、溶接時の溶融金属脆化割れを抑制するうえでも有効に作用する。これらの作用を十分に得るために、ここでは0.005%以上のP含有量を確保する。ただし、多量にPを含有させると、偏析が過剰に生じてバーリンク性が低下する。種々検討の結果、P含有量は0.050%以下に制限される。   P is an element effective for solid solution strengthening. In addition, it segregates at the grain boundaries and effectively acts to suppress molten metal embrittlement cracking during welding. In order to obtain these effects sufficiently, a P content of 0.005% or more is secured here. However, when P is contained in a large amount, segregation occurs excessively and the bar-linkability decreases. As a result of various studies, the P content is limited to 0.050% or less.

Sは、TiやMnと硫化物を形成しやく、これらの硫化物は鋼板のバーリング性を低下させる。種々検討の結果、Sは0.020%以下とする必要がある。ただし、過剰な脱硫は製鋼負荷を増大させるため、ここでは0.0005%以上のS含有量とすればよい。   S easily forms sulfides with Ti and Mn, and these sulfides reduce the burring properties of the steel sheet. As a result of various studies, S needs to be made 0.020% or less. However, excessive desulfurization increases the steelmaking load, so here the S content should be 0.0005% or more.

Tiは、Cと結合して微細なTi系炭化物(主としてTiC)を形成し、高強度化に寄与する。またTiはNとの親和性が高いので、鋼中のNをTiNとして固定することにより、添加したBがBNとして消費されることを抑制する上でも有効である。これらの作用を十分得るためには0.020%以上のTi含有が必要である。ただし、多量のTi含有は加工性の低下を招く。ここでは、Ti含有量は0.200%以下に制限される。また、後述のTi/C当量比が0.40〜2.00となるように、Ti含有量を調整する必要がある。   Ti combines with C to form fine Ti-based carbides (mainly TiC), contributing to high strength. Moreover, since Ti has a high affinity with N, fixing N in the steel as TiN is also effective in suppressing consumption of added B as BN. In order to sufficiently obtain these effects, Ti content of 0.020% or more is necessary. However, a large amount of Ti causes a decrease in workability. Here, the Ti content is limited to 0.200% or less. Further, it is necessary to adjust the Ti content so that the Ti / C equivalent ratio described later is 0.40 to 2.00.

NbおよびVは、鋳片加熱および熱間圧延中のオーステナイト結晶粒の粗大化を防止し、冷却後のフェライト結晶粒の微細化に有効な元素である。また、Tiと同様に、Cと化合物を形成して強度上昇にも寄与する。このためNb、Vの1種以上を必要に応じて含有させることができる。Nbを含有させる場合は、Nb含有量を0.010%以上とすることがより効果的である。Vを含有させる場合は、V含有量を0.010%以上とすることがより効果的である。ただし、過剰のNb含有、V含有はともに不経済となる。ここではNb含有量を0.100%以下、V含有量を0.100%以下にそれぞれ制限する。   Nb and V are elements that prevent the austenite crystal grains from coarsening during slab heating and hot rolling, and are effective for refining ferrite crystal grains after cooling. Moreover, like Ti, it forms a compound with C and contributes to an increase in strength. For this reason, 1 or more types of Nb and V can be contained as needed. When Nb is contained, it is more effective to make the Nb content 0.010% or more. When V is contained, it is more effective to set the V content to 0.010% or more. However, excessive Nb content and V content are both uneconomical. Here, the Nb content is limited to 0.100% or less, and the V content is limited to 0.100% or less.

Bは、鋼のオーステナイト−フェライト変態を抑制させる作用を有する元素である。その作用により、Ti系炭化物の析出温度が低温化するので、Ti系炭化物の微細化には極めて有利となる。またBは、耐溶融金属脆化割れ性の向上にも有効である。種々検討の結果、これらの作用を十分得るために、B含有量は0.0005%以上を確保する必要がある。0.0025%以上とすることがより効果的である。ただし、多量にBを含有させるとホウ化物の生成によって加工性が劣化する。ここではB含有量を0.010%以下に制限する。   B is an element having an action of suppressing the austenite-ferrite transformation of steel. Due to this action, the precipitation temperature of the Ti-based carbide is lowered, which is extremely advantageous for the refinement of the Ti-based carbide. B is also effective in improving the resistance to molten metal embrittlement cracking. As a result of various studies, in order to obtain these effects sufficiently, it is necessary to ensure that the B content is 0.0005% or more. It is more effective to set it to 0.0025% or more. However, if a large amount of B is contained, the workability deteriorates due to the formation of borides. Here, the B content is limited to 0.010% or less.

Alは、製鋼時に脱酸材として添加される。その作用を得るためには0.010%以上のAl含有が望まれる。ただし、多量のAl含有は加工性の低下を招く要因となる。Al含有量は0.100%以下に制限される。   Al is added as a deoxidizer during steelmaking. In order to obtain the action, it is desired that Al content is 0.010% or more. However, a large amount of Al is a factor that causes a decrease in workability. The Al content is limited to 0.100% or less.

下記(1)式で定義されるTi/C当量比は、鋼中に含有されるTiとCのモル比に相当する。
Ti/C当量比=(Ti/48)/(C/12) …(1)
ここで、(1)式右辺の元素記号の箇所にはそれぞれの元素の質量%で表される鋼中含有量の値が代入される。
The Ti / C equivalent ratio defined by the following formula (1) corresponds to the molar ratio of Ti and C contained in the steel.
Ti / C equivalent ratio = (Ti / 48) / (C / 12) (1)
Here, the value of the content in steel represented by mass% of each element is substituted for the element symbol on the right side of the formula (1).

上記のTi/C当量比はバーリング性や延性に影響する重要な指標である。本発明者らの検討によれば、Ti/C当量比が0.40以上に調整されている鋼を、後述の製造方法に適用することによって、セメンタイトの存在量が非常に少ない(例えば面積率で3.0以下である)鋼板を安定して得ることが可能となることがわかった。セメンタイトの量を安定して低減できることは、バーリング性を安定して改善するために極めて重要である。一方、Ti/C当量比が過大になると転位密度の増加により延性が低下するようになる。種々検討の結果、Ti/C当量比は2.00以下に制限される。1.50%以下であることがより好ましい。   The Ti / C equivalent ratio is an important index that affects burring properties and ductility. According to the study by the present inventors, the abundance of cementite is very small (for example, the area ratio) by applying a steel whose Ti / C equivalent ratio is adjusted to 0.40 or more to a production method described later. It was found that the steel sheet can be stably obtained. The ability to stably reduce the amount of cementite is extremely important for stably improving burring properties. On the other hand, when the Ti / C equivalent ratio is excessive, the ductility decreases due to an increase in the dislocation density. As a result of various studies, the Ti / C equivalent ratio is limited to 2.00 or less. More preferably, it is 1.50% or less.

〔金属組織〕
本発明に従う溶融Zn−Al−Mg系めっき鋼板は、基材鋼板のマトリックス(金属素地)がフェライト相からなるものであることが好ましい。ここで、フェライト相は、「ベイニティックフェライト相」および「それ以外のフェライト相」の、双方またはいずれか一方で構成されていればよい。特に、ベイニティックフェライト相は転位密度が低く、バーリング性および延性の向上に有利な相である。従って、フェライト相中には、ベイニティックフェライト相が混在していることがより好ましい。
[Metal structure]
In the hot-dip Zn—Al—Mg-based plated steel sheet according to the present invention, the matrix (metal substrate) of the base steel sheet is preferably composed of a ferrite phase. Here, the ferrite phase may be constituted by either or any one of “bainitic ferrite phase” and “other ferrite phases”. In particular, the bainitic ferrite phase has a low dislocation density and is an advantageous phase for improving burring properties and ductility. Therefore, it is more preferable that the bainitic ferrite phase is mixed in the ferrite phase.

基材鋼板中のセメンタイトは穴拡げ加工での割れの起点となりやすいので、セメンタイト量は少ないことが望ましい。例えば、セメンタイトの存在量が面積率で3.0%以下である金属組織であることが好ましい。セメンタイトの面積率の測定は、圧延方向および板厚方向に平行な断面(L断面)について無作為に設定した視野をSEM観察することによって定めることができる。その際、観察視野の合計面積は0.05mm2以上となるようにする。 Since cementite in the base steel sheet tends to be a starting point of cracking in the hole expanding process, it is desirable that the amount of cementite is small. For example, it is preferable that the abundance of cementite is a metal structure having an area ratio of 3.0% or less. The measurement of the area ratio of cementite can be determined by observing a field of view randomly set for a cross section (L cross section) parallel to the rolling direction and the plate thickness direction. At that time, the total area of the observation visual field is set to 0.05 mm 2 or more.

〔転位密度〕
発明者らの研究によれば、溶融めっきラインで焼鈍された高強度鋼板のバーリング性(穴拡げ性)を安定して向上させるためには、その鋼板の転位密度を低くコントロールすることが極めて有効であることがわかった。強度レベルが高い溶融Zn−Al−Mg系めっき鋼板であっても、転位密度が低くコントロールされている場合には優れたバーリング性が維持され、引張強さTS(MPa)と穴拡げ率λ(%)の積で表されるTS×λの値が高い「強度−バーリング性バランス」に優れる高強度めっき鋼板を実現することができる。種々検討の結果、X線回折ピークの半価幅に基づいて定まる転位密度が1×1014cm/cm3以下に低減されているとき、引張強さ400MPa以上の高強度を有しながら、TS×λ値が例えば55000MPa・%以上という優れた「強度−バーリング性バランス」を安定して実現することができる。転位密度の下限は、引張強さ400MPa以上の高強度が得られる限り特に制限する必要はないが、例えば1×1013cm/cm3以上において良好な「強度−バーリング性バランス」が得られることを確認している。転位密度は以下の手法により求めることができる。
[Dislocation density]
According to the researches of the inventors, in order to stably improve the burring property (hole expansibility) of a high-strength steel sheet annealed in a hot dipping line, it is extremely effective to control the dislocation density of the steel sheet to be low. I found out that Even in the case of a hot-dip Zn-Al-Mg plated steel sheet having a high strength level, when the dislocation density is controlled to be low, excellent burring properties are maintained, and the tensile strength TS (MPa) and the hole expansion ratio λ ( %)), A high strength plated steel sheet having a high value of TS × λ and excellent in “strength-burring balance” can be realized. As a result of various studies, when the dislocation density determined based on the half-value width of the X-ray diffraction peak is reduced to 1 × 10 14 cm / cm 3 or less, TS has a high strength of 400 MPa or more while having a tensile strength of 400 MPa or more. An excellent “strength-burring balance” with a value of xλ of, for example, 55000 MPa ·% or more can be stably realized. The lower limit of the dislocation density is not particularly limited as long as a high strength having a tensile strength of 400 MPa or more is obtained. For example, a good “strength-burring property balance” can be obtained at 1 × 10 13 cm / cm 3 or more. Have confirmed. The dislocation density can be determined by the following method.

(転位密度の求め方)
転位密度は、めっき鋼板を構成する基材(めっき層を除いた鋼板部分)について、ディフラクトメーター法によりX線回折パターンを測定し、(110)面、(211)面、および(220)面それぞれのX線回折ピークの半価幅β(°)を測定することによって求めることができる。具体的には、非特許文献1に示される「Williamson−Hall法」を利用し、以下のようにして求めることができる。(110)面、(211)面、および(220)面についての回折角θ(°)および半価幅β(°)から、sinθ/λ(nm-1)とβcosθ/λ(nm-1)の関係を直交座標にプロットし、それらのプロットを用いて最小二乗法で近似直線を求め、その直線の傾きと切片から下記(5)式に示される歪εおよび結晶子サイズD(nm)を定める。λはX線の波長(nm)である。
βcosθ/λ=0.9/D+2εsinθ/λ …(5)
上記の歪εと、バーガースベクトルb(=25nm)を下記(6)式に代入することにより、転位密度ρ(nm-2=cm/cm3)が求まる。
ρ=14.4ε2-2 …(6)
(How to find dislocation density)
The dislocation density is determined by measuring an X-ray diffraction pattern by a diffractometer method for a base material (a steel plate portion excluding a plating layer) constituting the plated steel plate, and (110) plane, (211) plane, and (220) plane. It can be determined by measuring the half width β (°) of each X-ray diffraction peak. Specifically, using the “Williamson-Hall method” shown in Non-Patent Document 1, it can be obtained as follows. From the diffraction angle θ (°) and the half-value width β (°) for the (110) plane, the (211) plane, and the (220) plane, sin θ / λ (nm −1 ) and β cos θ / λ (nm −1 ) Are plotted on Cartesian coordinates, an approximate straight line is obtained by the least square method using these plots, and the strain ε and crystallite size D (nm) shown in the following equation (5) are calculated from the slope and intercept of the straight line. Determine. λ is the wavelength (nm) of X-rays.
βcos θ / λ = 0.9 / D + 2εsin θ / λ (5)
By substituting the strain ε and Burgers vector b (= 25 nm) into the following equation (6), the dislocation density ρ (nm −2 = cm / cm 3 ) is obtained.
ρ = 14.4ε 2 b −2 (6)

上記のような金属組織および転位密度は、上述の鋼組成を採用し、かつ後述の製造工程を適用することによって実現することができる。   The metal structure and dislocation density as described above can be realized by adopting the above steel composition and applying the manufacturing process described later.

〔熱間圧延工程〕
一般的な熱間圧延設備を用いて熱延鋼板を製造することができる。まず、上記の化学組成を有する鋼のスラブ(例えば連続鋳造スラブ)をスラブ加熱炉に入れて加熱する。スラブ加熱温度は1150〜1300℃、上記温度範囲での保持時間は60〜180分の範囲で設定すればよい。加熱後のスラブを炉から取り出し、複数パスでの熱間圧延を施す。その際、仕上げ圧延出側温度を830〜940℃の範囲とする。仕上げ圧延出側温度は、仕上熱間圧延機の最終圧延ロールを出た直後の鋼板表面温度を測定することにより把握できる。上記化学組成の鋼の場合、仕上げ圧延出側温度が830℃を下回ると、少なくとも熱延最終パスでは二相温度域での圧延となる。この場合、熱延鋼板のフェライト組織は、結晶粒が不均一に展伸した形態を呈し、バーリング性が低下する。一方、仕上げ圧延出側温度が940℃を超えると結晶粒が粗大化しやすく、強度が低下する場合がある。
[Hot rolling process]
A hot-rolled steel sheet can be manufactured using a general hot rolling facility. First, a steel slab (for example, a continuously cast slab) having the above chemical composition is placed in a slab heating furnace and heated. The slab heating temperature may be set in the range of 1150 to 1300 ° C., and the holding time in the above temperature range may be set in the range of 60 to 180 minutes. The heated slab is taken out of the furnace and subjected to hot rolling in multiple passes. At that time, the finish rolling delivery temperature is set to a range of 830 to 940 ° C. The finish rolling exit temperature can be grasped by measuring the surface temperature of the steel sheet immediately after leaving the final rolling roll of the finishing hot rolling mill. In the case of steel having the above chemical composition, when the finish rolling outlet temperature is lower than 830 ° C., at least in the final hot rolling pass, rolling is performed in a two-phase temperature range. In this case, the ferrite structure of the hot-rolled steel sheet exhibits a form in which crystal grains are spread unevenly, and the burring property is lowered. On the other hand, when the finish rolling exit temperature exceeds 940 ° C., the crystal grains are likely to be coarsened, and the strength may be lowered.

熱間圧延を施した後、仕上げ圧延完了から巻取開始までの平均冷却速度R(℃/s)が下記(2)式を満たすように冷却する。
R≧−6×[Ti/C当量比]+18 …(2)
ここで、(2)式右辺の[Ti/C当量比]の箇所には上述の(1)式により定まるTi/C当量比の値が代入される。
After hot rolling, cooling is performed so that the average cooling rate R (° C./s) from the completion of finish rolling to the start of winding satisfies the following expression (2).
R ≧ −6 × [Ti / C equivalent ratio] +18 (2)
Here, the value of the Ti / C equivalent ratio determined by the above equation (1) is substituted into the [Ti / C equivalent ratio] on the right side of the equation (2).

熱延仕上げ圧延完了から巻取開始までの冷却速度は、セメンタイトの生成量に大きく影響する。この冷却速度が遅いほど、仕上げ圧延完了から巻取開始までの間で実際にオーステナイト−フェライト変態が起こる温度は、平衡状態でのオーステナイト−フェライト変態温度(A3点)に近づくので、フェライト相が高温で多量に生じるようになる。Cの拡散速度はオーステナイト相中よりもフェライト相中の方が大きいので、高温でフェライト相が多量に生成するほど、セメンタイトの析出が促進される。セメンタイトはバーリング性を低下させる原因となる。 The cooling rate from the completion of hot rolling finish rolling to the start of winding greatly affects the amount of cementite produced. The higher the cooling rate is slow, actually austenite between the finish rolling completion until the start of winding - temperature ferrite transformation occurs, the austenite at equilibrium - so closer to ferrite transformation temperature (A 3 points), ferrite phase A large amount is generated at high temperatures. Since the diffusion rate of C is higher in the ferrite phase than in the austenite phase, the more ferrite phase is generated at a higher temperature, the more the precipitation of cementite is promoted. Cementite causes a reduction in burring properties.

セメンタイトの生成量は、鋼の化学組成にも影響される。具体的には、上述(1)式で表されるTi/C当量比が小さくなるほど、セメンタイトの生成量は増加するようになる。発明者らの詳細な検討によれば、Ti/C当量比に応じて熱延仕上げ圧延完了から巻取開始までの平均冷却速度の下限を設定し、その下限以上の平均冷却速度となるように冷却条件をコントロールすることによって、鋼板中のセメンタイト量をバーリング性に問題が生じない範囲(3.0体積%以下)に抑制できることがわかった。その下限値を表す指標が(2)式右辺である。   The amount of cementite produced is also affected by the chemical composition of the steel. Specifically, the amount of cementite generated increases as the Ti / C equivalent ratio represented by the above formula (1) decreases. According to the detailed examination by the inventors, the lower limit of the average cooling rate from the completion of hot rolling finish rolling to the start of winding is set according to the Ti / C equivalent ratio so that the average cooling rate is equal to or higher than the lower limit. It was found that by controlling the cooling conditions, the amount of cementite in the steel sheet can be suppressed to a range (3.0% by volume or less) in which no problem occurs in burring properties. The index representing the lower limit is the right side of equation (2).

一方、熱延仕上げ圧延完了から巻取開始までの平均冷却速度R(℃/s)が過大になるとアシキュラーな金属組織となり、転位密度が増大する。その場合、溶融めっきラインでの焼鈍を終えても転位密度が高い組織状態が維持され、これがバーリング性を低下させる要因となりやすいことがわかった。詳細な検討の結果、熱延仕上げ圧延完了から巻取開始までの平均冷却速度Rを50℃/s未満に管理することによって、基材鋼板の転位密度が1×1014cm/cm3以下である高強度溶融Zn−Al−Mg系めっき鋼板を得ることができ、転位密度の増加に起因するバーリング性の低下は回避される。従って、引張強さTSが400MPa以上で、かつ引張強さTS(MPa)と穴拡げ率λ(%)の積で表されるTS×λの値が例えば55000MPa・%以上という、優れた「強度−バーリング性バランス」を安定して実現するためには、熱延仕上げ圧延完了から巻取開始までの平均冷却速度R(℃/s)が前記(2)式を満たすことに加え、下記(3)式をも満たすように冷却することが極めて重要となる。
R<50 …(3)
On the other hand, when the average cooling rate R (° C./s) from the completion of hot rolling finish rolling to the start of winding becomes excessive, an acicular metal structure is formed and the dislocation density increases. In that case, it was found that even when the annealing in the hot dipping line was finished, a structure state having a high dislocation density was maintained, which was likely to cause a reduction in burring properties. As a result of detailed examination, by controlling the average cooling rate R from the completion of hot rolling finish rolling to the start of winding to less than 50 ° C./s, the dislocation density of the base steel sheet is 1 × 10 14 cm / cm 3 or less. A certain high-strength molten Zn—Al—Mg-based plated steel sheet can be obtained, and a reduction in burring properties due to an increase in dislocation density is avoided. Therefore, an excellent “strength that the tensile strength TS is 400 MPa or more and the value of TS × λ represented by the product of the tensile strength TS (MPa) and the hole expansion ratio λ (%) is, for example, 55000 MPa ·% or more. In order to stably realize “-burring balance”, the average cooling rate R (° C./s) from the completion of hot rolling finish rolling to the start of winding satisfies the above formula (2), and the following (3 It is extremely important to cool so as to satisfy the formula (1).
R <50 (3)

熱間圧延後の巻取温度は、500〜650℃の範囲とする。この巻取温度は微細なTi系炭化物(主としてTiC)を多量に析出させる上で重要である。コイル状に巻き取られた熱延鋼板が自然に冷却される時間帯を利用して、Ti系炭化物の微細析出を図るのである。巻取温度が500℃を下回ると、Ti系炭化物の析出量が不足して強度向上が不十分となりやすい。550℃以上とすることがより好ましい。巻取温度が650℃を超えるとTi系炭化物が粗大化してバーリング性の低下を招きやすい。また強度も低下しやすい。   The coiling temperature after hot rolling is in the range of 500 to 650 ° C. This coiling temperature is important for precipitating a large amount of fine Ti carbide (mainly TiC). The fine precipitation of the Ti-based carbide is achieved by utilizing a time zone during which the hot-rolled steel sheet wound in a coil shape is naturally cooled. When the coiling temperature is less than 500 ° C., the amount of Ti-based carbide deposited is insufficient and the strength improvement tends to be insufficient. More preferably, the temperature is set to 550 ° C. or higher. When the coiling temperature exceeds 650 ° C., the Ti-based carbides are coarsened and the burring property is liable to be lowered. In addition, the strength tends to decrease.

以上のようにして、フェライト相からなるマトリックス中にTi系炭化物が十分に微細分散し、かつセメンタイトが例えば3.0体積%以下と極めて少なく、転位密度が低く抑えられた組織状態を有する熱延鋼板を得ることができる。熱延鋼板の板厚は例えば2.0〜5.0mmの範囲で調整すればよい。   As described above, hot rolling has a microstructure in which a Ti-based carbide is sufficiently finely dispersed in a matrix composed of a ferrite phase, cementite is extremely small, for example, 3.0% by volume or less, and the dislocation density is kept low. A steel plate can be obtained. What is necessary is just to adjust the plate | board thickness of a hot-rolled steel plate in the range of 2.0-5.0 mm, for example.

〔酸洗工程〕
上記のようにして得られた熱延鋼板に、常法により酸洗を施し、表面の酸化スケールを除去する。
[Pickling process]
The hot-rolled steel sheet obtained as described above is pickled by a conventional method to remove the oxide scale on the surface.

〔軽圧下圧延工程〕
上記酸洗後の鋼板に、圧延率1.5〜8.0%の軽圧下での冷間圧延を施す。この軽圧下圧延は、板厚減少を主目的とした通常の冷間圧延とは異なり、酸洗後の鋼板表面に存在することがあるスマットと呼ばれる異物を、表面から脱離させることを主目的として行うものである。スマットは酸洗過多となった部位などに生じるとされる微粉末状の黒色物質である。スマットが表面に残存した状態で溶融めっきに供すると、その部分に「不めっき」が生じやすい。従って、特に熱延鋼板をめっき原板に用いて溶融めっき鋼板を製造する際には、スマットに起因した不めっきの発生が問題となりやすい。上記の化学組成を有する熱延鋼板をめっき原板として、溶融Zn−Al−Mg系めっきを施す場合には、酸洗後に、軽圧下の冷間圧延を施すことによってスマットを効果的に離脱させることができ、不めっきの発生を顕著に抑制できることが確認された。
[Light rolling process]
The steel plate after the pickling is subjected to cold rolling under a light pressure at a rolling rate of 1.5 to 8.0%. This light rolling is different from ordinary cold rolling mainly aimed at reducing the sheet thickness, and is mainly intended to desorb foreign matter called smut that may be present on the surface of the steel sheet after pickling. Is what you do. The smut is a fine powdery black substance which is supposed to be generated in a portion where pickling is excessive. If the smut remains on the surface and is subjected to hot dipping, “non-plating” tends to occur in that portion. Therefore, when producing a hot-dip plated steel sheet using a hot-rolled steel sheet as a plating original sheet, the occurrence of non-plating due to smut tends to be a problem. When hot-rolled steel sheet having the above chemical composition is used as a plating base plate and hot-dip Zn-Al-Mg-based plating is applied, smut can be effectively detached by performing cold rolling under light pressure after pickling. It was confirmed that the occurrence of non-plating can be remarkably suppressed.

圧下率が1.5%未満ではスマットに加わる圧力が小さいため、スマットの破砕および鋼板表面からの離脱が十分に起こらない場合があり、スマットに起因した不めっきの発生が効果的に防止できない。圧下率が8.0%を超えると鋼板の加工硬化が生じ、バーリング性が低下する。この軽圧下圧延は酸洗ライン内に設けた調質圧延装置を用いて行ってもよい。通常、1パスでの圧延で十分であるが、複数パスとすることもできる。複数パスの場合は、圧下率1.5〜8.0%の圧下を少なくとも1パス実施し、トータル圧延率を8.0%以下とすることが望ましい。なお、ある圧延パスでの圧下率は下記(4)式によって定まる。
圧下率(%)=(t0−t1)/t0×100 …(4)
ここで、t0は当該圧延パス前の板厚(mm)、t1は当該圧延パス後の板厚(mm)である。
If the rolling reduction is less than 1.5%, the pressure applied to the smut is small, so that the smut may not be sufficiently crushed and detached from the surface of the steel sheet, and the occurrence of non-plating due to the smut cannot be effectively prevented. When the rolling reduction exceeds 8.0%, the work hardening of the steel sheet occurs, and the burring property decreases. This light reduction rolling may be performed using a temper rolling apparatus provided in the pickling line. Usually, rolling in one pass is sufficient, but multiple passes can also be used. In the case of a plurality of passes, it is desirable to carry out at least one pass of reduction at a reduction rate of 1.5 to 8.0% and a total rolling rate of 8.0% or less. In addition, the rolling reduction in a certain rolling pass is determined by the following equation (4).
Reduction ratio (%) = (t 0 −t 1 ) / t 0 × 100 (4)
Here, t 0 is the plate thickness (mm) before the rolling pass, and t 1 is the plate thickness (mm) after the rolling pass.

〔焼鈍および溶融めっき工程〕
上記の軽圧下圧延を終えた熱延鋼板を、還元性雰囲気での焼鈍が可能な焼鈍設備を備える溶融めっきラインに通板して、溶融Zn−Al−Mg系めっき鋼板を製造する。焼鈍の雰囲気は、水素を含有する還元性雰囲気とすることが好ましい。例えば水素含有量25〜35体積%の水素−窒素混合ガスが挙げられる。アンモニア分解ガスを利用してもよい。
[Annealing and hot dipping process]
The hot-rolled steel sheet that has been subjected to the above-described light rolling is passed through a hot dipping line equipped with an annealing facility that can be annealed in a reducing atmosphere to produce a hot-dip Zn—Al—Mg-based plated steel sheet. The annealing atmosphere is preferably a reducing atmosphere containing hydrogen. For example, a hydrogen-nitrogen mixed gas having a hydrogen content of 25 to 35% by volume is mentioned. Ammonia decomposition gas may be used.

焼鈍温度が低すぎると鋼板表面の還元(活性化)が不十分となり、不めっきなどのめっき欠陥が発生しやすい。ここでは焼鈍温度を550℃以上とする必要がある。670℃を超える高温(例えば675℃以上)にすることがより効果的である。ただし、焼鈍温度が高くなるとTi系炭化物が粗大化し、バーリング性および強度が低下するようになる。種々検討の結果、焼鈍温度は750℃以下に制限される。焼鈍時間については、鋼板の表面温度が所定の焼鈍温度に到達したのち、直ちに冷却を開始するか、あるいはその温度での保持時間を60秒以内として冷却を開始すればよい。   If the annealing temperature is too low, the reduction (activation) of the steel sheet surface becomes insufficient, and plating defects such as non-plating are likely to occur. Here, the annealing temperature needs to be 550 ° C. or higher. It is more effective to set the temperature higher than 670 ° C. (for example, 675 ° C. or higher). However, when the annealing temperature is increased, the Ti-based carbide is coarsened, and burring properties and strength are lowered. As a result of various studies, the annealing temperature is limited to 750 ° C. or less. As for the annealing time, after the surface temperature of the steel sheet reaches a predetermined annealing temperature, the cooling is started immediately or the holding time at that temperature may be set within 60 seconds to start the cooling.

上記の還元焼鈍を終えたのち、常法に従い、鋼板表面が大気に触れないようにして溶融Zn−Al−Mg系めっき浴に浸漬する手法を適用する。溶融めっき浴は、質量%で、Al:3.0〜22.0%、Mg:0.05〜10.0%、Si:0〜2.0%、Ti:0〜0.10%、B:0〜0.05%、Fe:0〜2.0%、残部Znおよび不可避的不純物からなる組成範囲で設定することが好ましい。めっき浴組成は、めっき鋼板のめっき組成にほぼそのまま反映される。めっき付着量は鋼板の片面当たり例えば30〜300g/m2とすればよい。めっき鋼板の最終板厚は例えば1.9〜4.9mmである。 After finishing the above-described reduction annealing, a method of immersing in a molten Zn—Al—Mg plating bath is applied in accordance with a conventional method so that the steel sheet surface is not exposed to the atmosphere. The hot dipping bath is in mass%, Al: 3.0 to 22.0%, Mg: 0.05 to 10.0%, Si: 0 to 2.0%, Ti: 0 to 0.10%, B : 0 to 0.05%, Fe: 0 to 2.0%, the balance is preferably set within the composition range consisting of Zn and inevitable impurities. The plating bath composition is almost directly reflected in the plating composition of the plated steel sheet. The plating adhesion amount may be, for example, 30 to 300 g / m 2 per one side of the steel plate. The final plate thickness of the plated steel plate is, for example, 1.9 to 4.9 mm.

表1に示す各鋼を溶製し、そのスラブを1250℃に加熱した後、表2に示す仕上げ圧延出側温度、平均冷却速度R、および巻取温度にて熱間圧延し、板厚2.6mm熱延鋼帯を得た。平均冷却速度Rは、仕上げ圧延完了から巻取開始までの平均冷却速度を意味する。熱延鋼帯を酸洗した後、その酸洗ラインの後段に設置された調質圧延機にて1パスの軽圧下圧延を表2に示す圧下率にて施した。圧下率0%の表示はこの軽圧下圧延を施していないことを意味する。その後、各鋼帯について、連続溶融めっきラインにて、水素含有量約30体積%の水素−窒素混合ガス雰囲気中で表2に示す温度での還元焼鈍を行い、平均冷却速度5℃/sで約420℃まで冷却し、鋼板表面が大気に触れない状態のまま溶融Zn−Al−Mg系めっき浴中に浸漬したのち引き上げ、ガスワイピング法でめっき付着量を片面当たり90g/m2に調整して、溶融Zn−Al−Mg系めっき鋼板を得た。焼鈍時間(鋼板表面が所定の焼鈍温度に到達した後の保持時間)は約50秒であった。めっき浴組成は以下の通りとした(各例共通)。
(めっき浴組成)
質量%で、Al:6.0%、Mg:3.0%、Ti:0.002%、B:0.0005%、Si:0.01%、Fe:0.1%、残部Zn。
After melting each steel shown in Table 1 and heating the slab to 1250 ° C., it was hot-rolled at the finish rolling exit temperature, average cooling rate R, and coiling temperature shown in Table 2, and the thickness 2 A 0.6 mm hot rolled steel strip was obtained. The average cooling rate R means the average cooling rate from the completion of finish rolling to the start of winding. After pickling the hot-rolled steel strip, 1-pass light rolling was performed at a rolling reduction shown in Table 2 using a temper rolling mill installed at the latter stage of the pickling line. The indication of a rolling reduction of 0% means that this light rolling is not performed. Thereafter, each steel strip was subjected to reduction annealing at a temperature shown in Table 2 in a hydrogen-nitrogen mixed gas atmosphere having a hydrogen content of about 30% by volume in a continuous hot dipping line, and an average cooling rate of 5 ° C./s. Cool to about 420 ° C, soak the steel plate surface in a molten Zn-Al-Mg plating bath without touching the atmosphere, pull it up, and adjust the coating weight to 90 g / m 2 per side by gas wiping. Thus, a molten Zn—Al—Mg-based plated steel sheet was obtained. The annealing time (the holding time after the steel sheet surface reached the predetermined annealing temperature) was about 50 seconds. The plating bath composition was as follows (common to each example).
(Plating bath composition)
In mass%, Al: 6.0%, Mg: 3.0%, Ti: 0.002%, B: 0.0005%, Si: 0.01%, Fe: 0.1%, balance Zn.

得られた溶融Zn−Al−Mg系めっき鋼板を供試鋼板として、以下のことを調べた。
(セメンタイトの面積率)
供試鋼板から採取したサンプルの圧延方向および板厚方向に平行な断面(L断面)を研磨したのち、ピクラール試薬にてエッチングし、SEMにより組織観察を行い、観察像の画像解析によってセメンタイトの面積率を求めた。
The following was investigated by using the obtained molten Zn—Al—Mg-based plated steel sheet as a test steel sheet.
(Cementite area ratio)
After polishing the cross section (L cross section) parallel to the rolling direction and thickness direction of the sample taken from the test steel plate, etching with Picral reagent, observation of the structure with SEM, and the area of cementite by image analysis of the observed image The rate was determined.

(転位密度)
供試鋼板から採取したサンプルを板厚1/4位置まで機械研磨したのち、化学研磨を施して機械研磨による歪の影響がない表面を有する試料を作製した。上記試料の表面についてX線回折装置(株式会社リガク製;RINT2500)にてX線回折パターンを測定し、(110)面、(211)面、(220)面のX線回折ピークの半価幅を求めた。測定条件は、Co−Kα線(λ=0.17889nm)、管電圧40kV、管電流100mA、測定範囲51〜54°((110)面)、98〜102°((211)面)、122〜126°((220)面)とした。上記半価幅の測定データに基づき、前掲の「転位密度の求め方」に従う方法で転位密度を求めた。
(Dislocation density)
A sample taken from the test steel plate was mechanically polished to a thickness of 1/4 position, and then subjected to chemical polishing to prepare a sample having a surface free from the influence of mechanical polishing strain. The X-ray diffraction pattern of the surface of the sample was measured with an X-ray diffractometer (manufactured by Rigaku Corporation; RINT2500), and the half width of the X-ray diffraction peaks on the (110) plane, (211) plane, and (220) plane Asked. The measurement conditions are Co-Kα ray (λ = 0.17889 nm), tube voltage 40 kV, tube current 100 mA, measurement range 51 to 54 ° ((110) surface), 98 to 102 ° ((211) surface), 122 to It was set to 126 ° ((220) plane). Based on the measurement data of the half width, the dislocation density was determined by the method according to the above-mentioned “How to determine the dislocation density”.

図1にNo.8(本発明例)、図2にNo.16(比較例)、図3にNo.20(比較例)について上記組織観察のSEM写真をそれぞれ例示する。図1〜図3の写真は、いずれも横幅(長辺の長さ)が20μmに相当する。白く見える粒状の相がセメンタイトである。これらは同一組成の鋼であるが、図1に比べて図2のものは粒状のセメンタイトが目立ち、セメンタイトの面積率が大きい(表3参照)。これは、図2のNo.16では(2)式を満たさない熱延条件を採用したことによる。また、図1に比べて図3のものはアシキュラーな金属組織となっており、転位密度が高い(表3参照)。これは、図3のNo.20では熱延仕上げ圧延完了から巻取開始までの平均冷却速度Rが上記(3)式を満たさない熱延条件を採用したことによる。   FIG. 1 illustrates SEM photographs of the above-described tissue observation for No. 8 (example of the present invention), FIG. 2 for No. 16 (comparative example), and FIG. Each of the photographs in FIGS. 1 to 3 corresponds to a lateral width (long side length) of 20 μm. The granular phase that appears white is cementite. Although these are steels having the same composition, granular cementite is conspicuous in FIG. 2 compared to FIG. 1, and the area ratio of cementite is large (see Table 3). This is because No. 16 in FIG. 2 employs hot rolling conditions that do not satisfy the formula (2). 3 has an acicular metal structure, and has a higher dislocation density (see Table 3). This is because No. 20 in FIG. 3 employs a hot rolling condition in which the average cooling rate R from the completion of hot rolling finish rolling to the start of winding does not satisfy the above formula (3).

(引張特性)
試験片の長手方向が圧延直角方向になるように採取したJIS5号試験片を用いて、JIS Z2241:2011に従い引張強さTSおよび破断時全伸びT.Elを求めた。
(Tensile properties)
Tensile strength TS and total elongation at break T.El were determined according to JIS Z2241: 2011 using a JIS No. 5 test piece collected so that the longitudinal direction of the test piece was in the direction perpendicular to the rolling direction.

(バーリング性)
供試鋼板から70×70mmのサンプルを採取し、このサンプルの中央にポンチとダイスを用いて打抜き穴を開けた。ポンチの直径D0は10.0mm、ダイスはクリアランスが板厚の12%となるものを選んだ。打ち抜きままの穴に、バリの反対側から頂角60°のポンチを押し込み、初期穴を拡大した。その際、ポンチの移動速度は10mm/minとした。鋼板の穴が拡大して板厚方向に割れが貫通した時点でポンチを止め、穴の内径Dbを測定した。そして、(Db−D0)/D0×100で定義される穴拡げ率λ(%)を求めた。前記引張強さTS(MPa)と穴拡げ率λ(%)の積TS×λの値が40000MPa・%以上であれば、自動車部材や建材等の用途で部材の軽量化を図るうえで極めて有用な強度・バーリング性バランスを有していると評価できる。そこで、TS×λの値が40000MPa・%以上のものを合格と判定した。なかでも、上記引張強さTSが400MPa以上で、かつTS×λ値が55000MPa・%以上のものは、特に優れた「強度−バーリング性バランス」を有していると評価できる。
(Burring properties)
A 70 × 70 mm sample was taken from the test steel plate, and a punched hole was formed in the center of the sample using a punch and a die. A punch having a diameter D 0 of 10.0 mm and a die having a clearance of 12% of the plate thickness was selected. A punch having an apex angle of 60 ° was pushed into the punched hole from the opposite side of the burr to enlarge the initial hole. At that time, the moving speed of the punch was set to 10 mm / min. Stopped punch when cracks in the thickness direction to expand the hole of the steel sheet was penetrated was measured internal diameter D b of the hole. Then, a hole expansion ratio λ (%) defined by (D b −D 0 ) / D 0 × 100 was obtained. If the value of the product TS x λ of the tensile strength TS (MPa) and hole expansion ratio λ (%) is 40000 MPa ·% or more, it is extremely useful for reducing the weight of the member in applications such as automobile members and building materials. Can be evaluated as having a good balance between strength and burring. Therefore, a sample having a value of TS × λ of 40000 MPa ·% or more was determined to be acceptable. Among them, those having a tensile strength TS of 400 MPa or more and a TS × λ value of 55000 MPa ·% or more can be evaluated as having a particularly excellent “strength-burring balance”.

(めっき表面外観)
各供試鋼板から採取した切り板から、無作為に200mm×200mmのサンプルを3枚採取した。サンプルの両面を観察し、それぞれのめっき面に「不めっき」が存在するかどうかを調べた。各供試鋼板につき3枚×両面=計6面のめっき面を調べ、6面のすべてにおいて不めっきが存在しない供試鋼板を○(不めっきなし)、6面のうち1面でも不めっきが存在する供試鋼板を×(不めっきあり)と評価し、○評価のものを合格と判定した。
(Plating surface appearance)
Three 200 mm × 200 mm samples were randomly collected from the cut plates collected from each test steel plate. Both sides of the sample were observed to examine whether “non-plating” exists on each plated surface. 3 sheets for each test steel plate x double-sided = total 6 plating surfaces were examined. Test steel plates with no unplating on all 6 surfaces were ○ (no plating), and one of the 6 surfaces was unplated The existing test steel sheet was evaluated as x (with non-plating), and the one evaluated as ○ was determined to be acceptable.

図4に、不めっきが存在しないNo.4のサンプル表面の外観写真を例示する。図5に、不めっきが存在するNo.30のサンプル表面の外観写真を例示する。図4、図5の写真はいずれも横幅(長辺長さが)が50mmに相当する。図5において、破線で示した部分などに「不めっき」が観察される。これらの不めっきは酸洗工程で生成したスマットに起因するものである。   In FIG. 4, the external appearance photograph of the sample surface of No. 4 in which non-plating does not exist is illustrated. In FIG. 5, the external appearance photograph of the sample surface of No. 30 in which non-plating exists is illustrated. 4 and 5 each have a width (long side length) of 50 mm. In FIG. 5, “non-plating” is observed in a portion indicated by a broken line. These non-plating results from the smut generated in the pickling process.

以上の調査結果を表3に示す。各例における転位密度(cm/cm3)は、表3の転位密度の欄に記載されている数値に1013を乗じた値となる。例えばNo.1の転位密度は5.5×1013cm/cm3であり、No.18の転位密度は1.2×1014である。 The above survey results are shown in Table 3. The dislocation density (cm / cm 3 ) in each example is a value obtained by multiplying the numerical value described in the column of dislocation density in Table 3 by 10 13 . For example, the dislocation density of No. 1 is 5.5 × 10 13 cm / cm 3 , and the dislocation density of No. 18 is 1.2 × 10 14 .

本発明例の溶融Zn−Al−Mg系めっき鋼板は、引張強さ400MPa以上の高強度を有し、TS×λ値で表される「強度−バーリング性バランス」にも優れる。   The hot-dip Zn—Al—Mg plated steel sheet of the example of the present invention has a high strength with a tensile strength of 400 MPa or more and is also excellent in “strength-burring balance” represented by TS × λ value.

これに対し、No.15〜17は熱延仕上げ圧延完了から巻取開始までの平均冷却速度Rが(2)式を外れて遅いためセメンタイト量が多くなり、TS×λ値が低かった。No.18〜20は仕上げ圧延完了から巻取開始までの平均冷却速度Rが大きかったことに起因して、溶融めっき後における基材鋼板の転位密度が高くなった例である。これらの例に見られるように、転位密度が高いと優れた強度−バーリング性バランスを安定して実現することが難しい。No.21は熱延仕上げ圧延出側温度が高いので結晶粒が粗大化し、強度が低くなった。No.22は熱延仕上げ圧延出側温度が低いのでフェライト結晶粒が不均一に展伸した組織状態となり、TS×λ値が低かった。No.23は熱間圧延後の巻取温度が高いのでTi系炭化物(主としてTiC)が巻き取られたコイルの降温中に粗大化し、TS×λ値が低くなった。No.24は熱間圧延後の巻取温度が低いので巻き取られたコイルの降温中にTi系炭化物の析出量が十分に確保できず、強度が低かった。No.25はめっきラインでの還元焼鈍温度が高いのでTi系炭化物が粗大化し、TS×λ値が低くなった。No.26、27はTi/C当量比が低い鋼を使用したため熱延仕上げ圧延完了から巻取開始までの間にセメンタイトの生成量が多くなり、TS×λ値が低かった。No.28、29は酸洗後の軽圧下圧延における圧下率が高いため加工硬化が生じ、TS×λ値が低くなった。No.30、31は酸洗後の軽圧下圧延を行っていないのでスマットに起因する不めっきが発生した。   On the other hand, in Nos. 15 to 17, since the average cooling rate R from the completion of hot rolling finish rolling to the start of winding deviates from the formula (2) and is slow, the amount of cementite increases and the TS × λ value is low. Nos. 18 to 20 are examples in which the dislocation density of the base steel sheet after hot dipping was high due to the high average cooling rate R from the completion of finish rolling to the start of winding. As seen in these examples, when the dislocation density is high, it is difficult to stably realize an excellent strength-burring balance. No. 21 had high hot rolling finish rolling temperature, so the crystal grains became coarse and the strength was low. Since No. 22 had a low hot rolling finish rolling temperature, the ferrite crystal grains were unevenly expanded and the TS × λ value was low. Since No. 23 had a high winding temperature after hot rolling, it became coarse during the temperature drop of the coil wound with Ti carbide (mainly TiC), and the TS × λ value was lowered. In No. 24, since the coiling temperature after hot rolling was low, the precipitation amount of the Ti-based carbide could not be sufficiently ensured during the temperature decrease of the coil wound, and the strength was low. In No. 25, the reduction annealing temperature in the plating line was high, so the Ti-based carbide was coarsened and the TS × λ value was low. In Nos. 26 and 27, steel with a low Ti / C equivalent ratio was used, so the amount of cementite produced increased from the completion of hot rolling finish rolling to the start of winding, and the TS × λ value was low. In Nos. 28 and 29, work reduction occurred because the rolling reduction in the light rolling after pickling was high, and the TS × λ value was low. Nos. 30 and 31 were not subjected to light rolling after pickling, and thus non-plating due to smut occurred.

Claims (6)

質量%で、C:0.005〜0.080%、Si:0〜0.80%、Mn:0.10〜1.80%、Ti:0.020〜0.200%、B:0.0005〜0.010%、残部Feおよび不可避的不純物からなり、下記(1)式で定義されるTi/C当量比が0.40〜2.00である化学組成を有し、ベイニティックフェライト単相またはベイニティックフェライトとフェライト双方の組織を主相とし、セメンタイトの面積率が3%以下である金属組織を有する基材鋼板の表面に、溶融Zn−Al−Mg系めっき層を有し、圧延直角方向の引張強さTSが400MPa以上であり、前記引張強さTS(MPa)と穴拡げ率λ(%)の積TS×λの値が40000MPa・%以上であるバーリング性に優れる高強度溶融Zn−Al−Mg系めっき鋼板。
Ti/C当量比=(Ti/48)/(C/12) …(1)
ただし、(1)式右辺の元素記号の箇所にはそれぞれの元素の質量%で表される鋼中含有量の値が代入される。
By mass%, C: 0.005-0.080%, Si: 0-0.80%, Mn: 0.10-1.80%, Ti: 0.020-0.200%, B: 0.0. Bainitic ferrite having a chemical composition consisting of 0005 to 0.010%, balance Fe and inevitable impurities, and having a Ti / C equivalent ratio of 0.40 to 2.00 defined by the following formula (1) It has a molten Zn-Al-Mg-based plating layer on the surface of a base steel sheet that has a single phase or a microstructure of both bainitic ferrite and ferrite as a main phase and has a cementite area ratio of 3% or less. The tensile strength TS in the direction perpendicular to the rolling is 400 MPa or more, and the product TS × λ of the tensile strength TS (MPa) and the hole expansion ratio λ (%) is 40,000 MPa ·% or more. High-strength Zn-Al-Mg-based plated steel sheet.
Ti / C equivalent ratio = (Ti / 48) / (C / 12) (1)
However, the value of the content in steel represented by mass% of each element is substituted for the element symbol on the right side of the formula (1).
基材鋼板の化学組成が、さらに質量%で、P:0.005〜0.050%、S:0.0005〜0.020%、Nb:0〜0.100%、V:0〜0.100%、Al:0.010〜0.100%の含有量を満たすものである請求項1に記載の溶融Zn−Al−Mg系めっき鋼板。   The chemical composition of the base steel sheet is further mass%, P: 0.005 to 0.050%, S: 0.0005 to 0.020%, Nb: 0 to 0.100%, V: 0 to 0.00. The hot-dip Zn—Al—Mg-based plated steel sheet according to claim 1, satisfying a content of 100%, Al: 0.010 to 0.100%. 質量%で、C:0.005〜0.080%、Si:0〜0.80%、Mn:0.10〜1.80%、Ti:0.020〜0.200%、B:0.0005〜0.010%、P:0.005〜0.050%、S:0.0005〜0.020%、Nb:0〜0.100%、V:0〜0.100%、Al:0.010〜0.100%、残部Feおよび不可避的不純物からなり、下記(1)式で定義されるTi/C当量比が0.40〜2.00である化学組成を有し、ベイニティックフェライト単相またはベイニティックフェライトとフェライト双方の組織を主相とし、セメンタイトの面積率が3%以下である金属組織を有し、転位密度が1×1014cm/cm3以下である基材鋼板の表面に、溶融Zn−Al−Mg系めっき層を有し、圧延直角方向の引張強さが400MPa以上であるバーリング性に優れる高強度溶融Zn−Al−Mg系めっき鋼板。
Ti/C当量比=(Ti/48)/(C/12) …(1)
ただし、(1)式右辺の元素記号の箇所にはそれぞれの元素の質量%で表される鋼中含有量の値が代入される。
By mass%, C: 0.005-0.080%, Si: 0-0.80%, Mn: 0.10-1.80%, Ti: 0.020-0.200%, B: 0.0. 0005 to 0.010%, P: 0.005 to 0.050%, S: 0.0005 to 0.020%, Nb: 0 to 0.100%, V: 0 to 0.100%, Al: 0 It has a chemical composition having a Ti / C equivalent ratio defined by the following formula (1) of 0.40 to 2.00, consisting of 0.010 to 0.100%, the balance Fe and inevitable impurities, and bainitic A base material having a ferrite single phase or a microstructure of both bainitic ferrite and ferrite as a main phase, a cementite area ratio of 3% or less, and a dislocation density of 1 × 10 14 cm / cm 3 or less It has a molten Zn-Al-Mg plating layer on the surface of the steel plate, and the tensile strength in the direction perpendicular to the rolling is 400 MPa or more. High-strength hot-dip Zn-Al-Mg plated steel sheet having excellent burring properties is.
Ti / C equivalent ratio = (Ti / 48) / (C / 12) (1)
However, the value of the content in steel represented by mass% of each element is substituted for the element symbol on the right side of the formula (1).
前記溶融Zn−Al−Mg系めっき層は、質量%で、Al:3.0〜22.0%、Mg:0.05〜10.0%、Si:0〜2.0%、Ti:0〜0.10%、B:0〜0.05%、Fe:0〜2.0%、残部Znおよび不可避的不純物からなる組成を有する請求項1〜3のいずれか1項に記載の溶融Zn−Al−Mg系めっき鋼板。   The molten Zn—Al—Mg-based plating layer is mass%, Al: 3.0 to 22.0%, Mg: 0.05 to 10.0%, Si: 0 to 2.0%, Ti: 0. The molten Zn according to any one of claims 1 to 3, which has a composition comprising: -0.10%, B: 0-0.05%, Fe: 0-2.0%, the balance Zn and unavoidable impurities. -Al-Mg plated steel sheet. 仕上げ圧延出側温度が830〜940℃となる条件で熱間圧延を施した後、仕上げ圧延完了から巻取開始までの平均冷却速度R(℃/s)が下記(2)式を満足するように冷却し、巻取温度を500〜650℃として熱延鋼板を得る工程、
前記熱延鋼板に酸洗を施す工程、
前記酸洗後に圧下率1.5〜8.0%の軽圧下圧延を施す工程、
前記冷間圧延後に、還元性雰囲気下で550〜750℃の焼鈍を施したのち溶融Zn−Al−Mg系めっきを施す工程、
を有する請求項1〜4のいずれか1項に記載の溶融Zn−Al−Mg系めっき鋼板の製造方法。
R≧−6×[Ti/C当量比]+18 …(2)
ただし、(2)式右辺の[Ti/C当量比]の箇所には前記(1)式により定まるTi/C当量比の値が代入される。
The average cooling rate R (° C./s) from the completion of finish rolling to the start of winding after satisfying the following equation (2) after hot rolling under conditions where the finish rolling exit temperature is 830 to 940 ° C. To obtain a hot-rolled steel sheet at a coiling temperature of 500 to 650 ° C.,
Pickling the hot-rolled steel sheet,
A step of performing light rolling at a rolling reduction of 1.5 to 8.0% after the pickling,
A step of performing hot-dip Zn-Al-Mg-based plating after annealing at 550 to 750 ° C in a reducing atmosphere after the cold rolling;
The manufacturing method of the hot-dip Zn-Al-Mg-based plated steel sheet according to any one of claims 1 to 4.
R ≧ −6 × [Ti / C equivalent ratio] +18 (2)
However, the value of the Ti / C equivalent ratio determined by the above equation (1) is substituted into the [Ti / C equivalent ratio] position on the right side of the equation (2).
前記熱延鋼板を得る工程において、平均冷却速度R(℃/s)が、さらに下記(3)式を満たすように冷却する、請求項5に記載の溶融Zn−Al−Mg系めっき鋼板の製造方法。
R<50 …(3)
The manufacturing of the hot-dip Zn-Al-Mg-based plated steel sheet according to claim 5, wherein in the step of obtaining the hot-rolled steel sheet, cooling is performed so that the average cooling rate R (° C / s) further satisfies the following formula (3). Method.
R <50 (3)
JP2017183900A 2017-01-25 2017-09-25 MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET EXCELLENT IN BURRING PROPERTY AND METHOD FOR MANUFACTURING THE SAME Pending JP2018119207A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017011722 2017-01-25
JP2017011722 2017-01-25

Publications (1)

Publication Number Publication Date
JP2018119207A true JP2018119207A (en) 2018-08-02

Family

ID=63044852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017183900A Pending JP2018119207A (en) 2017-01-25 2017-09-25 MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET EXCELLENT IN BURRING PROPERTY AND METHOD FOR MANUFACTURING THE SAME

Country Status (1)

Country Link
JP (1) JP2018119207A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084926A1 (en) * 2021-11-12 2023-05-19 日本製鉄株式会社 Hot-rolled steel sheet, hot-dip plated steel sheet, and method for manufacturing hot-rolled steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302992A (en) * 2006-04-11 2007-11-22 Nippon Steel Corp High strength hot rolled steel sheet and galvanized steel sheet having excellent stretch flange formability and method for producing them
JP2013133534A (en) * 2011-12-27 2013-07-08 Nippon Steel & Sumitomo Metal Corp High strength hot rolled steel sheet and method of manufacturing the same
WO2015093596A1 (en) * 2013-12-19 2015-06-25 日新製鋼株式会社 Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same
JP2016160499A (en) * 2015-03-03 2016-09-05 日新製鋼株式会社 METHOD OF MANUFACTURING HOT-DIP Zn-Al-Mg-BASED PLATED STEEL SHEET HAVING EXCELLENT PLATED SURFACE APPEARANCE AND BURRING PROPERTY

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302992A (en) * 2006-04-11 2007-11-22 Nippon Steel Corp High strength hot rolled steel sheet and galvanized steel sheet having excellent stretch flange formability and method for producing them
JP2013133534A (en) * 2011-12-27 2013-07-08 Nippon Steel & Sumitomo Metal Corp High strength hot rolled steel sheet and method of manufacturing the same
WO2015093596A1 (en) * 2013-12-19 2015-06-25 日新製鋼株式会社 Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same
JP2016160499A (en) * 2015-03-03 2016-09-05 日新製鋼株式会社 METHOD OF MANUFACTURING HOT-DIP Zn-Al-Mg-BASED PLATED STEEL SHEET HAVING EXCELLENT PLATED SURFACE APPEARANCE AND BURRING PROPERTY

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084926A1 (en) * 2021-11-12 2023-05-19 日本製鉄株式会社 Hot-rolled steel sheet, hot-dip plated steel sheet, and method for manufacturing hot-rolled steel sheet

Similar Documents

Publication Publication Date Title
JP6237900B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5967319B2 (en) High strength steel plate and manufacturing method thereof
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP6315044B2 (en) High strength steel plate and manufacturing method thereof
JP5967320B2 (en) High strength steel plate and manufacturing method thereof
JPWO2018124157A1 (en) High strength galvanized steel sheet and manufacturing method thereof
JP6315160B1 (en) High strength steel plate and manufacturing method thereof
JPWO2021019947A1 (en) High-strength steel plate and its manufacturing method
WO2016021198A1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
WO2020170542A1 (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
WO2018151023A1 (en) High-strength steel plate and method for manufacturing same
JPWO2016021193A1 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP6274360B2 (en) High-strength galvanized steel sheet, high-strength member, and method for producing high-strength galvanized steel sheet
JP6787535B1 (en) High-strength steel sheet and its manufacturing method
JP7120461B2 (en) steel plate
KR102544884B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP2009263752A (en) Manufacturing method of high-strength steel sheet excellent in balance of hole expandability and ductility, and manufacturing method of galvanized steel sheet
JP2008056993A (en) High strength hot dip galvanized steel sheet having excellent elongation and corrosion resistance, and its production method
CN111902553A (en) Steel sheet and method for producing same
JPWO2019130713A1 (en) High strength steel sheet and method for manufacturing the same
JPWO2019159771A1 (en) High strength steel sheet and method for producing the same
EP3705592A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods therefor
JP2013014828A (en) Hot-dip plated cold-rolled steel sheet
JP7136335B2 (en) High-strength steel plate and its manufacturing method
JP2013231216A (en) High strength cold rolled steel sheet having excellent chemical conversion property and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200305

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210706