JP2018118260A - Method for production of molded article, and molded article - Google Patents

Method for production of molded article, and molded article Download PDF

Info

Publication number
JP2018118260A
JP2018118260A JP2017009516A JP2017009516A JP2018118260A JP 2018118260 A JP2018118260 A JP 2018118260A JP 2017009516 A JP2017009516 A JP 2017009516A JP 2017009516 A JP2017009516 A JP 2017009516A JP 2018118260 A JP2018118260 A JP 2018118260A
Authority
JP
Japan
Prior art keywords
molded product
metal plate
crystal grains
crystal
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017009516A
Other languages
Japanese (ja)
Other versions
JP6776908B2 (en
Inventor
雅寛 久保
Masahiro Kubo
雅寛 久保
嘉明 中澤
Yoshiaki Nakazawa
嘉明 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017009516A priority Critical patent/JP6776908B2/en
Publication of JP2018118260A publication Critical patent/JP2018118260A/en
Application granted granted Critical
Publication of JP6776908B2 publication Critical patent/JP6776908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a molded article production method capable of obtaining the molded article suppressing occurrence of rough surface and excellent in designability.SOLUTION: There is provided a method for production of a molded article comprising applying such fabrication that a biaxial tensile deformation is generated and at least a part of a metal plate becomes 10% or more but 30% or less in plate thickness decrement rate to the metal plate which has an fcc structure and satisfies the conditions of the following (a) or (b) on the surface of the metal plate: (a) the area fraction of a crystal grain having a crystal orientation within 15° from a (001) plane parallel to the surface of the metal plate is 0.20 or more but 0.35 or less; and (b) the area fraction of the crystal grain having the crystal orientation within 15° from the (001) plane parallel to the metal plate surface is 0.45 or less, and an average crystal grain size is 15 μm or less. A molded article satisfies the above (a) or (b).SELECTED DRAWING: None

Description

本発明は、成形品の製造方法、及び成形品に関する。   The present invention relates to a method for manufacturing a molded article and a molded article.

近年、自動車、航空機、船舶、建築材料、家電製品等の分野では、ユーザーのニーズに答えるため、デザイン性が重視されるようになってきている。その為、特に、外装部材の形状は複雑化する傾向にある。しかし、複雑な形状の成形品を金属板から成形するには、金属板に大きなひずみを与えることが必要であるが、加工量の増加に従いの成形品表面に微細な凹凸が生じやすく、肌荒れとなって外観上の美観を損ねるという問題がある。   In recent years, in the fields of automobiles, aircraft, ships, building materials, home appliances, etc., design has been emphasized in order to meet the needs of users. Therefore, in particular, the shape of the exterior member tends to be complicated. However, in order to mold a molded product with a complicated shape from a metal plate, it is necessary to give a large strain to the metal plate. However, fine irregularities are likely to occur on the surface of the molded product as the amount of processing increases, resulting in rough skin. There is a problem that the aesthetic appearance is impaired.

例えば、特許文献1には、圧延方向と平行に凹凸の縞模様が出る(リジング)に関することが開示されている。具体的には、特許文献1には、次のことが開示されている。成形加工が圧延幅方向を主ひずみ方向とする平面ひずみ変形であるとみなしたときの平均テイラー因子を制御して、耐リジング性に優れた成形加工用アルミニウム合金圧延板が得られる。集合組織中に存在する全ての結晶方位から算出される平均テイラー因子が耐リジング性に大きく関係している。平均テイラー因子の値が特定の条件を満たすように集合組織を制御することによって、耐リジング性を確実かつ安定して向上させ得る。   For example, Patent Document 1 discloses that an uneven stripe pattern appears in parallel with the rolling direction (riding). Specifically, Patent Document 1 discloses the following. By controlling the average Taylor factor when the forming process is considered to be plane strain deformation with the rolling width direction as the main strain direction, an aluminum alloy rolled sheet for forming process excellent in ridging resistance can be obtained. The average Taylor factor calculated from all crystal orientations present in the texture is greatly related to ridging resistance. By controlling the texture so that the value of the average Taylor factor satisfies a specific condition, the ridging resistance can be reliably and stably improved.

:特許第5683193号: Patent No. 5683193

しかし、特許文献1では、圧延幅方向を主ひずみ方向とする一軸引張変形が生じる金属板の成形加工において、リジングを抑制することが示されているのみである。そして、深絞り成形、張り出し成形等、二軸引張変形が生じる金属板の成形加工については何ら考慮されていない。   However, Patent Document 1 only shows that ridging is suppressed in a metal plate forming process in which uniaxial tensile deformation occurs with the rolling width direction as the main strain direction. Further, no consideration is given to the forming process of the metal plate in which biaxial tensile deformation occurs, such as deep drawing forming and stretch forming.

一方で、深絞り成形、張り出し成形等、二軸引張変形が生じる金属板の成形加工でも、近年の複雑な形状の成形品を製造することが要求されている。しかし、大きな加工量(金属板の板厚減少率10%以上となる加工量)で金属板を成形加工すると、成形品の表面に凹凸が発達し、肌荒れとなって外観上の美観を損ねるという問題が生じているのが現状である。
上記理由から,例えば、従来の自動車の外板の製品は、製品面に付与される歪量を金属板の板厚減少率10%未満となる加工量に制限して生産されている。すなわち肌荒れ発生を避けるため、加工条件に制約がある。しかしながら、より複雑な自動車の外板製品形状が要求されており,成形加工時の金属板の板厚減少率10%以上と肌荒れ抑制との両立できる方法が望まれている。
On the other hand, it is required to manufacture a molded product having a complicated shape in recent years also in the forming processing of a metal plate in which biaxial tensile deformation occurs, such as deep drawing forming and stretch forming. However, if a metal plate is molded with a large amount of processing (a processing amount at which the thickness reduction rate of the metal plate is 10% or more), unevenness develops on the surface of the molded product, which causes rough skin and impairs the appearance. The current situation is causing problems.
For the above reasons, for example, the products of conventional outer plates of automobiles are produced by limiting the amount of strain applied to the product surface to a processing amount that results in a metal plate thickness reduction rate of less than 10%. That is, there are restrictions on the processing conditions in order to avoid rough skin. However, more complex automotive outer plate product shapes are required, and there is a demand for a method that can achieve both a reduction in the thickness of the metal plate of 10% or more and the suppression of rough skin during forming.

そこで、本発明の課題は、上記事情に鑑み、fcc構造を有する金属板に対して、二軸引張変形が生じ、かつ金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施したときでも、肌荒れの発生が抑制され意匠性に優れた成形品が得られる成形品の製造方法を提供することである。
また、他の本発明の課題は、fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品であって、成形品の最大板厚をD1とし、成形品の最小板厚をD2としたとき、式:10≦(D1−D2)/D1×100≦30の条件、又は成形品の最大硬度をH1とし、成形品の最小硬度をH2としたとき、式:15≦(H1−H2)/H1×100≦40の条件を満たした成形品であっても、肌荒れの発生が抑制され意匠性に優れた成形品を提供することである。
Accordingly, in view of the above circumstances, the problem of the present invention is that biaxial tensile deformation occurs with respect to a metal plate having an fcc structure, and at least a part of the metal plate has a thickness reduction rate of 10% to 30%. An object of the present invention is to provide a method for producing a molded product in which the occurrence of rough skin is suppressed and a molded product having excellent design properties can be obtained even when molding is performed.
Another subject of the present invention is a molded product of a metal plate having an fcc structure and a shape in which biaxial tensile deformation occurs, wherein the maximum thickness of the molded product is D1, and the minimum thickness of the molded product is Where D2 is the formula: 10 ≦ (D1-D2) / D1 × 100 ≦ 30, or the maximum hardness of the molded product is H1, and the minimum hardness of the molded product is H2, the formula: 15 ≦ ( Even a molded product that satisfies the condition of (H1-H2) / H1 × 100 ≦ 40 is to provide a molded product that suppresses the occurrence of rough skin and is excellent in design.

発明者らは、近年の複雑な形状の成形品を製造するために、大きな加工量(金属板の板厚減少率10%以上となる加工量)で金属板を成形加工するときの表面性状を調査した。その結果、発明者らは、次の知見を得た。二軸引張変形下において、bcc構造を有する金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒が優先変形し、凹凸が発達する。そこで、発明者らは、金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の面積分率及び平均結晶粒径に着目した。その結果、発明者らは、これら結晶粒の面積分率及び平均結晶粒径によって、凹凸の発達を抑え、肌荒れの発生が抑制され意匠性に優れた成形品が得られることを見出した。   In order to manufacture a molded product having a complicated shape in recent years, the inventors have determined the surface properties when forming a metal plate with a large processing amount (processing amount that achieves a plate thickness reduction rate of 10% or more of the metal plate). investigated. As a result, the inventors obtained the following knowledge. Under biaxial tensile deformation, crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the metal plate having the bcc structure are preferentially deformed to develop irregularities. Therefore, the inventors focused on the area fraction and average crystal grain size of crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the metal plate. As a result, the inventors have found that a molded product having excellent design properties can be obtained by suppressing the development of irregularities and suppressing the occurrence of rough skin by the area fraction and average crystal grain size of these crystal grains.

さらに、発明者らは、次の知見を得た。二軸引張変形下において、bcc構造を有する金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒が優先変形し、凹凸が発達する。そこで、発明者らは、金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の面積分率に着目した。その結果、発明者らは、これら結晶粒の面積分率によって、凹凸の発達を抑え、肌荒れの発生が抑制され意匠性に優れた成形品が得られることを見出した。   Furthermore, the inventors obtained the following knowledge. Under biaxial tensile deformation, crystal grains other than crystal grains having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the metal plate having the bcc structure are preferentially deformed and unevenness is developed. Therefore, the inventors focused on the area fraction of crystal grains other than crystal grains having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the metal plate. As a result, the inventors have found that, by the area fraction of these crystal grains, it is possible to obtain a molded product that suppresses the development of unevenness, suppresses the occurrence of rough skin, and has an excellent design.

そして、発明者らは、fcc構造を有する金属板のすべり系を仮定し、数値解析によって、金属板の加工後の肌荒れに及ぼす結晶方位の影響を調査した。その結果、次の知見を得た。bcc構造を有する金属板と同様に、fcc構造を有する金属板も、二軸引張変形下において、金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒が優先変形し、凹凸が発達する。また、二軸引張変形下において、金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒が優先変形し、凹凸が発達する。
そこで、発明者らは、fcc構造を有する金属板においても、金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の面積分率、及び、金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の面積分率に着目した。その結果、発明者らは、これら結晶粒の面積分率によって、凹凸の発達を抑え、肌荒れの発生が抑制され意匠性に優れた成形品を得られることを見出した。
The inventors then assumed a slip system of a metal plate having an fcc structure, and investigated the influence of crystal orientation on the rough surface after processing of the metal plate by numerical analysis. As a result, the following knowledge was obtained. Similar to the metal plate having the bcc structure, the metal plate having the fcc structure is preferentially deformed by crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the metal plate under biaxial tensile deformation. And unevenness develops. Further, under biaxial tensile deformation, crystal grains other than crystal grains having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the metal plate are preferentially deformed, and irregularities develop.
Therefore, the inventors have also found that in the metal plate having the fcc structure, the area fraction of crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the metal plate, and the surface of the metal plate. Attention was paid to the area fraction of crystal grains other than crystal grains having a crystal orientation within 15 ° from the parallel {111} plane. As a result, the inventors have found that, by the area fraction of these crystal grains, it is possible to obtain a molded product that suppresses the development of unevenness and suppresses the occurrence of rough skin and has excellent design properties.

本発明の要旨は、以下の通りである。   The gist of the present invention is as follows.

<1>
fcc構造を有し、金属板の表面において下記(a)又は(b)の条件を満たす金属板に対して、二軸引張変形が生じ、かつ前記金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施し、成形品を製造する成形品の製造方法。
(a)前記金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の面積分率が0.20以上0.35以下である。
(b)前記金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の、面積分率が0.45以下、かつ平均結晶粒径が15μm以下である。
<2>
fcc構造を有し、金属板の表面において下記(A)又は(B)の条件を満たす金属板に対して、二軸引張変形が生じ、かつ前記金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施し、成形品を製造する成形品の製造方法。
(A)前記金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の面積分率が0.25以上0.55以下である。
(B)前記金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の、面積分率が0.55以下、かつ平均結晶粒径が15μm以下である。
<3>
fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品であって、
成形品の最大板厚をD1とし、成形品の最小板厚をD2としたとき、式:10≦(D1−D2)/D1×100≦30の条件を満たし、
かつ成形品の表面において下記(c)又は(d)の条件を満たす成形品。
(c)前記成形品の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の面積分率が0.20以上0.35以下である。
(d)前記成形品の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の、面積分率が0.45以下、かつ平均結晶粒径が15μm以下である。
<4>
fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品であって、
成形品の最大板厚をD1とし、成形品の最小板厚をD2としたとき、式:10≦(D1−D2)/D1×100≦30の条件を満たし、
かつ成形品の表面において下記(C)又は(D)の条件を満たす成形品。
(C)前記成形品の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の面積分率が0.25以上0.55以下である。
(D)前記成形品の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の、面積分率が0.55以下、かつ平均結晶粒径が15μm以下である。
<5>
fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品であって、
成形品の最大硬度をH1とし、成形品の最小硬度をH2としたとき、式:15≦(H1−H2)/H1×100≦40の条件を満たし、
かつ成形品の表面において下記(c)又は(d)の条件を満たす成形品。
(c)前記成形品の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の面積分率が0.20以上0.35以下である。
(d)前記成形品の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の、面積分率が0.45以下、かつ平均結晶粒径が15μm以下である。
<6>
fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品であって、
成形品の最大硬度をH1とし、成形品の最小硬度をH2としたとき、式:15≦(H1−H2)/H1×100≦40の条件を満たし、
かつ成形品の表面において下記(C)又は(D)の条件を満たす成形品。
(C)前記成形品の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の面積分率が0.25以上0.55以下である。
(D)前記成形品の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の、面積分率が0.55以下、かつ平均結晶粒径が15μm以下である。
<1>
Biaxial tensile deformation occurs with respect to a metal plate having an fcc structure and satisfying the following condition (a) or (b) on the surface of the metal plate, and at least a part of the metal plate has a thickness reduction rate of 10 The manufacturing method of the molded article which gives the shaping | molding process used as% or more and 30% or less, and manufactures a molded article.
(A) The area fraction of crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the metal plate is 0.20 or more and 0.35 or less.
(B) The crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the metal plate have an area fraction of 0.45 or less and an average crystal grain size of 15 μm or less.
<2>
Biaxial tensile deformation occurs with respect to a metal plate having an fcc structure and satisfying the following condition (A) or (B) on the surface of the metal plate, and at least a part of the metal plate has a thickness reduction rate of 10 The manufacturing method of the molded article which gives the shaping | molding process used as% or more and 30% or less, and manufactures a molded article.
(A) The area fraction of crystal grains other than crystal grains having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the metal plate is 0.25 or more and 0.55 or less.
(B) The area fraction of crystal grains other than crystal grains having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the metal plate is 0.55 or less and the average crystal grain size is 15 μm or less. is there.
<3>
A molded product of a metal plate having an fcc structure and a shape in which biaxial tensile deformation occurs,
When the maximum thickness of the molded product is D1 and the minimum thickness of the molded product is D2, the condition of the formula: 10 ≦ (D1−D2) / D1 × 100 ≦ 30 is satisfied,
A molded product that satisfies the following condition (c) or (d) on the surface of the molded product.
(C) The area fraction of crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the molded product is 0.20 or more and 0.35 or less.
(D) The crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the molded product have an area fraction of 0.45 or less and an average crystal grain size of 15 μm or less.
<4>
A molded product of a metal plate having an fcc structure and a shape in which biaxial tensile deformation occurs,
When the maximum thickness of the molded product is D1 and the minimum thickness of the molded product is D2, the condition of the formula: 10 ≦ (D1−D2) / D1 × 100 ≦ 30 is satisfied,
A molded product that satisfies the following condition (C) or (D) on the surface of the molded product.
(C) The area fraction of crystal grains other than crystal grains having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the molded product is 0.25 or more and 0.55 or less.
(D) The area fraction of crystal grains other than crystal grains having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the molded product is 0.55 or less and the average crystal grain size is 15 μm or less. is there.
<5>
A molded product of a metal plate having an fcc structure and a shape in which biaxial tensile deformation occurs,
When the maximum hardness of the molded product is H1 and the minimum hardness of the molded product is H2, the condition of the formula: 15 ≦ (H1−H2) / H1 × 100 ≦ 40 is satisfied,
A molded product that satisfies the following condition (c) or (d) on the surface of the molded product.
(C) The area fraction of crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the molded product is 0.20 or more and 0.35 or less.
(D) The crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the molded product have an area fraction of 0.45 or less and an average crystal grain size of 15 μm or less.
<6>
A molded product of a metal plate having an fcc structure and a shape in which biaxial tensile deformation occurs,
When the maximum hardness of the molded product is H1 and the minimum hardness of the molded product is H2, the condition of the formula: 15 ≦ (H1−H2) / H1 × 100 ≦ 40 is satisfied,
A molded product that satisfies the following condition (C) or (D) on the surface of the molded product.
(C) The area fraction of crystal grains other than crystal grains having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the molded product is 0.25 or more and 0.55 or less.
(D) The area fraction of crystal grains other than crystal grains having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the molded product is 0.55 or less and the average crystal grain size is 15 μm or less. is there.

本発明によれば、fcc構造を有する金属板に対して、二軸引張変形が生じ、かつ金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施したときでも、肌荒れの発生が抑制され意匠性に優れた成形品が得られる成形品の製造方法を提供することができる。
また、他の本発明によれば、fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品であって、成形品の最大板厚をD1とし、成形品の最小板厚をD2としたとき、式:10≦(D1−D2)/D1×100≦30の条件、又は、成形品の最大硬度をH1とし、成形品の最小硬度をH2としたとき、式:15≦(H1−H2)/H1×100≦30の条件を満たした成形品であっても、肌荒れの発生が抑制され意匠性に優れた成形品を提供することができる。
According to the present invention, even when a metal plate having an fcc structure is subjected to a forming process in which biaxial tensile deformation occurs and at least a part of the metal plate has a thickness reduction rate of 10% to 30%. In addition, it is possible to provide a method for producing a molded product in which the occurrence of rough skin is suppressed and a molded product having excellent design properties can be obtained.
According to another aspect of the present invention, a metal plate molded product having an fcc structure and having a biaxial tensile deformation, wherein the maximum thickness of the molded product is D1, and the minimum thickness of the molded product is D1. Where D2 is the formula: 10 ≦ (D1-D2) / D1 × 100 ≦ 30, or the maximum hardness of the molded product is H1, and the minimum hardness of the molded product is H2, the formula is 15 ≦ Even in the case of a molded product that satisfies the condition of (H1-H2) / H1 × 100 ≦ 30, it is possible to provide a molded product that is suppressed in occurrence of rough skin and has excellent design properties.

図1は、バルジ成形試験を行った後の金属板(bcc構造を持つ金属板)の表面を、SEMを用いて観察した図である。FIG. 1 is a view of the surface of a metal plate (metal plate having a bcc structure) after a bulge forming test is observed using an SEM. 図2は、バルジ成形試験を行った後、さらに電解研磨した金属板(bcc構造を持つ金属板)の表面を、SEMを用いて観察した図である。FIG. 2 is a view of the surface of a metal plate (metal plate having a bcc structure) that has been further electropolished after the bulge forming test was observed using an SEM. 図3Aは、バルジ成形試験後に凹凸の発達が少なった金属板(bcc構造を持つ金属板)の表面を、EBSD法によって解析した場合の模式図である。FIG. 3A is a schematic diagram when the surface of a metal plate (metal plate having a bcc structure) with less development of unevenness after a bulge forming test is analyzed by the EBSD method. 図3Bは、図3AのA1−A2断面における金属板(bcc構造を持つ金属板)の表面凹凸を示す模式図である。FIG. 3B is a schematic diagram showing surface irregularities of the metal plate (metal plate having a bcc structure) in the A1-A2 cross section of FIG. 3A. 図4Aは、バルジ成形試験後に凹凸の発達が多かった金属板(bcc構造を持つ金属板)の表面を、EBSD法によって解析した場合の模式図である。FIG. 4A is a schematic diagram when the surface of a metal plate (a metal plate having a bcc structure) with many unevenness development after the bulge forming test is analyzed by the EBSD method. 図4Bは、図4AのB1−B2断面における金属板(bcc構造を持つ金属板)の表面凹凸を示す模式図である。FIG. 4B is a schematic diagram showing surface irregularities of the metal plate (metal plate having a bcc structure) in the B1-B2 cross section of FIG. 4A. 図5Aは、バルジ成形試験後に凹凸の発達が多かった金属板(bcc構造を持つ金属板)の表面を、EBSD法によって解析した場合の模式図である。FIG. 5A is a schematic view when the surface of a metal plate (a metal plate having a bcc structure) with many unevenness development after a bulge forming test is analyzed by the EBSD method. 図5Bは、図5AのC1−C2断面における金属板(bcc構造を持つ金属板)の表面凹凸を示す模式図である。FIG. 5B is a schematic diagram showing surface irregularities of the metal plate (metal plate having a bcc structure) in the C1-C2 cross section of FIG. 5A. 「金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒」の定義を説明するための模式図である。It is a schematic diagram for demonstrating the definition of "the crystal grain which has a crystal orientation within 15 degrees from the {001} plane parallel to the surface of a metal plate." 図7Aは、張り出し成形加工の一例を示す模式図である。FIG. 7A is a schematic diagram illustrating an example of an overhang forming process. 図7Bは、図7Aに示す張り出し成形加工で得られる成形品の一例を示す模式図である。FIG. 7B is a schematic view showing an example of a molded product obtained by the stretch forming process shown in FIG. 7A. 図8Aは、絞り張り出し成形加工の一例を示す模式図である。FIG. 8A is a schematic diagram illustrating an example of drawing and forming. 図8Bは、図8Aに示す絞り張り出し成形加工で得られる成形品の一例を示す模式図である。FIG. 8B is a schematic diagram showing an example of a molded product obtained by the drawing and forming process shown in FIG. 8A. 図9は、平面ひずみ引張変形、二軸引張変形、及び一軸引張変形を説明するための模式図である。FIG. 9 is a schematic diagram for explaining plane strain tensile deformation, biaxial tensile deformation, and uniaxial tensile deformation. 図10は、EBSD法による解析結果から{001}結晶粒の平均結晶粒径を求める方法を図示した模式図である。FIG. 10 is a schematic diagram illustrating a method of obtaining the average crystal grain size of {001} crystal grains from the analysis result by the EBSD method. 図11は、参考例で作製した成形品を説明するための模式図である。FIG. 11 is a schematic diagram for explaining a molded product produced in the reference example. 図12は、鋼板を上部から観察した模式図である。FIG. 12 is a schematic view of the steel plate observed from above. 図13は、参考例対応の成形品No.2の断面ミクロ組織と表面凹凸を示す模式図である。13 shows a molded product No. corresponding to the reference example. It is a schematic diagram which shows 2 cross-sectional microstructures and surface irregularities. 図14は、参考例対応の成形品No.3の断面ミクロ組織と表面凹凸を示す模式図である。14 shows a molded product No. corresponding to the reference example. It is a schematic diagram which shows the cross-sectional microstructure of 3 and surface asperity. 図15は、比較参考例対応の成形品No.1の断面ミクロ組織と表面凹凸を示す模式図である。15 shows a molded product No. corresponding to the comparative reference example. It is a schematic diagram which shows 1 cross-sectional microstructure and surface unevenness | corrugation. 図16は、参考例対応の成形品No.102の断面ミクロ組織と表面凹凸を示す模式図である。16 shows a molded product No. corresponding to the reference example. It is a schematic diagram which shows the cross-sectional microstructure and surface unevenness | corrugation of 102. 図17は、参考例対応の成形品No.103の断面ミクロ組織と表面凹凸を示す模式図である。17 shows a molded product No. corresponding to the reference example. It is a schematic diagram which shows the cross-sectional microstructure of 103, and surface asperity. 図18は、比較参考例対応の成形品No.101の断面ミクロ組織と表面凹凸を示す模式図である。18 shows a molded product No. corresponding to the comparative reference example. It is a schematic diagram which shows the cross-sectional microstructure of 101, and surface asperity. 図19は、No.A1〜A10の成形シミュレーション後の仮想材について、Pa評価の結果と、{001}結晶粒の平均結晶粒径及び結晶粒径との関係を示す図である。FIG. It is a figure which shows the relationship between the result of Pa evaluation about the virtual material after the shaping | molding simulation of A1-A10, and the average crystal grain size and crystal grain size of a {001} crystal grain.

以下、図面を参照して、本発明を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。   Hereinafter, the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

(成形品の製造方法)
発明者らは、成形加工する金属板の組織について種々検討を行った。
まず、発明者らは、bcc構造を持つ金属板の組織について種々検討を行った。その結果、以下の知見を得た。
(Method for manufacturing molded products)
The inventors conducted various studies on the structure of the metal plate to be formed.
First, the inventors conducted various studies on the structure of a metal plate having a bcc structure. As a result, the following knowledge was obtained.

(1)bcc構造を持つ金属板では、{001}面の方が{111}面と比較して、等二軸引張変形および等二軸引張変形に近い不等二軸引張変形の応力に弱い。また、{101}面の方が{111}面と比較して、等二軸引張変形および等二軸引張変形に近い不等二軸引張変形の応力に弱い。そのため、大きな加工量(金属板の少なくとも一部が板厚減少率10%以上30%以下となる加工量)で、深絞り成形及び張り出し成形等、二軸引張変形が生じる金属板の成形加工を行うと、金属板の表面と平行な{001}面から15°の結晶方位を持つ結晶粒にひずみが集中する。   (1) In a metal plate having a bcc structure, the {001} plane is less susceptible to equal biaxial tensile deformation and unequal biaxial tensile deformation stress than the {111} plane. . In addition, the {101} plane is weaker than the {111} plane in terms of equal biaxial tensile deformation and unequal biaxial tensile deformation stress close to equal biaxial tensile deformation. Therefore, metal plate forming processing that causes biaxial tensile deformation, such as deep drawing and stretch forming, with a large processing amount (processing amount in which at least a part of the metal plate is 10% or more and 30% or less). As a result, strain concentrates on crystal grains having a crystal orientation of 15 ° from the {001} plane parallel to the surface of the metal plate.

(2)bcc構造を持つ金属板の表面と平行な{001}面から15°の結晶方位を持つ結晶粒に集中したひずみは、金属板の表面が発達し、表面性状を悪化させる(つまり肌荒れが生じさせる)。   (2) The strain concentrated on the crystal grains having a crystal orientation of 15 ° from the {001} plane parallel to the surface of the metal plate having the bcc structure develops the surface of the metal plate and deteriorates the surface properties (that is, rough skin). Is generated).

(3)bcc構造を持つ金属板の表面に発達した凹凸が連結すると、更に表面性状が悪化する(つまり肌荒れが顕著に生じる。)。   (3) When the developed irregularities are connected to the surface of the metal plate having the bcc structure, the surface properties are further deteriorated (that is, rough skin is remarkably generated).

(4)bcc構造を持つ金属板の表面と平行な{001}面から15°の結晶方位を持つ結晶粒が少なすぎても、金属板の表面と平行な{001}面に対して15°に近い結晶方位を持つ結晶粒(例えば{001}面に対して15°超え30°以下の範囲に結晶方位を持つ結晶粒)にも局所変形が分散する。そのため、金属板の表面の凹凸が発達する。   (4) Even if there are too few crystal grains having a crystal orientation of 15 ° from the {001} plane parallel to the surface of the metal plate having the bcc structure, it is 15 ° to the {001} plane parallel to the surface of the metal plate. Local deformation is also dispersed in crystal grains having a crystal orientation close to (for example, crystal grains having a crystal orientation in the range of 15 ° to 30 ° with respect to the {001} plane). Therefore, unevenness on the surface of the metal plate develops.

図1は、バルジ成形試験を行った後の金属板の表面の走査型電子顕微鏡(SEM)画像である。図2は、バルジ成形試験を行った後、さらに電解研磨した金属板の表面のSEM画像である。図1及び図2共に、観察箇所は、バルジ成形試験により山状に隆起した金属板の頂点部である。図1及び図2を参照して、金属板に対してバルジ成形試験を行うと、10〜20μm程度の凹部1及び凹部2が観察された。   FIG. 1 is a scanning electron microscope (SEM) image of the surface of a metal plate after performing a bulge forming test. FIG. 2 is an SEM image of the surface of the metal plate that was further electropolished after the bulge forming test. In both FIG. 1 and FIG. 2, the observation location is the apex portion of the metal plate raised in a mountain shape by the bulge forming test. With reference to FIG.1 and FIG.2, when the bulge forming test was performed with respect to the metal plate, the recessed part 1 and the recessed part 2 of about 10-20 micrometers were observed.

すなわち、金属板に張り出し成形加工を行うと、金属板のある点に応力が集中する。応力が集中した箇所では、金属板の表面に凹凸が発達する。また、発達した凹凸が連結して、更に凹凸が発達する。これらが肌荒れ発生の原因となる。   That is, when an overhang forming process is performed on a metal plate, stress is concentrated on a certain point of the metal plate. In places where stress is concentrated, irregularities develop on the surface of the metal plate. Further, the developed irregularities are connected to further develop irregularities. These cause rough skin.

図3A〜図5Aは、バルジ成形試験を行った後の金属板の表面を、EBSD(Electron BackScattering Diffraction)法により解析した場合の模式図である。図3Aは、バルジ成形による張り出し高さを40mmとした場合(金属板の少なくとも一部が板厚減少率25%となる成形加工に相当する場合)に、金属板の表面に凹凸の発達が少なかった金属板の模式図である。図4A及び図5Aは、バルジ成形による張り出し高さを40mmとした場合(金属板の少なくとも一部が板厚減少率25%となる成形加工に相当する場合)に、金属板の表面に凹凸の発達が多かった金属板の模式図である。   3A to 5A are schematic views when the surface of the metal plate after the bulge forming test is analyzed by an EBSD (Electron Backscattering Diffraction) method. FIG. 3A shows that when the overhang height by bulge forming is 40 mm (corresponding to a forming process in which at least a part of the metal plate has a plate thickness reduction rate of 25%), the surface of the metal plate has little unevenness. It is a schematic diagram of a metal plate. 4A and 5A show that when the overhang height by bulge forming is 40 mm (corresponding to forming processing in which at least a part of the metal plate has a plate thickness reduction rate of 25%), the surface of the metal plate is uneven. It is a schematic diagram of the metal plate with much development.

一方、図3B〜図5Bは、図3A〜図5Aの断面における金属板の表面凹凸を示す模式図である。つまり、図3Bは、金属板の表面に凹凸の発達が少なかった金属板の表面凹凸を示す断面模式図である。図4B及び図5Bは、金属板の表面に凹凸の発達が多かった金属板の模式図である。   On the other hand, FIG. 3B to FIG. 5B are schematic views showing surface irregularities of the metal plate in the cross sections of FIG. 3A to FIG. 5A. That is, FIG. 3B is a schematic cross-sectional view showing the surface unevenness of the metal plate with less development of unevenness on the surface of the metal plate. FIG. 4B and FIG. 5B are schematic views of a metal plate with a lot of unevenness on the surface of the metal plate.

ここで、図3A〜図5A中の結晶粒のうち、濃いグレー色の結晶粒3は、金属板の表面と平行な{001}面から15°以内の結晶方位を有する結晶粒である。以下、この結晶粒を「{001}結晶粒」ともいう。また、図3A〜図5A中の結晶粒のうち、薄いグレー色の結晶粒4は、金属板の表面と平行な{001}面に対して15°に近い結晶方位を持つ結晶粒(例えば{001}面に対して15°超え20°以下の範囲に結晶方位を持つ結晶粒)である。以下、この結晶粒を「{001}近傍結晶粒」ともいう。
なお、図3B〜図5B中、31は{001}結晶粒3が存在する金属板の表面を示している。また、41は{001}近傍結晶粒4が存在する金属板の表面を示している。
Here, among the crystal grains in FIGS. 3A to 5A, the dark gray crystal grains 3 are crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the metal plate. Hereinafter, this crystal grain is also referred to as “{001} crystal grain”. In addition, among the crystal grains in FIGS. 3A to 5A, the light gray crystal grains 4 are crystal grains having a crystal orientation close to 15 ° with respect to the {001} plane parallel to the surface of the metal plate (for example, { 001} plane and a crystal grain having a crystal orientation in a range of more than 15 ° and not more than 20 °. Hereinafter, this crystal grain is also referred to as “{001} vicinity crystal grain”.
3B to FIG. 5B, 31 indicates the surface of the metal plate on which the {001} crystal grains 3 are present. Reference numeral 41 denotes the surface of the metal plate on which {001} neighboring crystal grains 4 exist.

図3A及び図3Bを参照して、金属板の表面に凹凸の発達が少なかった金属板の表面では、{001}結晶粒3の面積分率が0.20以上0.35以下であった。   Referring to FIGS. 3A and 3B, the area fraction of {001} crystal grains 3 was 0.20 or more and 0.35 or less on the surface of the metal plate where the development of the unevenness was small on the surface of the metal plate.

図4A〜図5A及び図4B〜図5Bを参照して、金属板の表面に凹凸の発達が多かった金属板の表面では、{001}結晶粒3の面積分率が0.20より小さいか、又は0.35より大きかった。   With reference to FIGS. 4A to 5A and FIGS. 4B to 5B, is the surface fraction of {001} crystal grains 3 smaller than 0.20 on the surface of the metal plate where the surface of the metal plate has a lot of unevenness? Or greater than 0.35.

これは、{001}結晶粒3には、張り出し成形加工の際にひずみが集中するためである。そして、{001}結晶粒3に集中したひずみは、金属板の表面の凹凸を発達させる。さらに{001}結晶粒3の面積分率が高いと、{001}結晶粒3が互いに接する確率が高くなり、生じた凹凸が連結し易くなる。一方で、{001}結晶粒3の面積分率が低すぎると、{001}近傍結晶粒4にも局所変形が分散し、金属板の表面の凹凸を発達させる。   This is because strain is concentrated on the {001} crystal grains 3 during the stretch forming process. Then, the strain concentrated on the {001} crystal grains 3 develops irregularities on the surface of the metal plate. Further, when the area fraction of {001} crystal grains 3 is high, the probability that {001} crystal grains 3 are in contact with each other increases, and the generated irregularities are easily connected. On the other hand, if the area fraction of {001} crystal grains 3 is too low, local deformation is dispersed also in {001} neighboring crystal grains 4 and develops irregularities on the surface of the metal plate.

具体的には、{001}結晶粒3の面積分率が適切な範囲内にある場合、金属板の表面において、{001}近傍結晶粒4に局所変形が分散されない。それにより{001}結晶粒3でのみで局所変形が生じる。このため、{001}結晶粒3が存在する領域では深い凹部が形成されるが、他の結晶粒({001}近傍結晶粒4等)が存在する領域では平坦部が確保される(図3B参照)。これは、高い凹凸が形成されても、凹部が深く微細であれば、平坦部が確保されることを示している。
一方で、{001}結晶粒3の面積分率が低すぎる場合、金属板の表面において、{001}近傍結晶粒4に局所変形が分散する。それにより{001}結晶粒3と共に{001}近傍結晶粒4でも局所変形が生じる。このため、浅い凹部が形成される領域が大きくなり、平坦部が比較的少なくなる(図4B参照)。
また、{001}結晶粒3の面積分率が高すぎる場合、金属板の表面において、{001}結晶粒3局所変形が生じ、浅い凹部が形成される領域が大きくなり、平坦部が少なくなる(図5B)。
Specifically, when the area fraction of {001} crystal grains 3 is within an appropriate range, local deformation is not dispersed in {001} neighboring crystal grains 4 on the surface of the metal plate. As a result, local deformation occurs only at {001} crystal grains 3. Therefore, a deep recess is formed in the region where {001} crystal grains 3 are present, but a flat portion is secured in a region where other crystal grains (such as {001} neighboring crystal grains 4) exist (FIG. 3B). reference). This indicates that even if high unevenness is formed, a flat portion is secured if the recess is deep and fine.
On the other hand, when the area fraction of {001} crystal grains 3 is too low, local deformation is dispersed in {001} neighboring crystal grains 4 on the surface of the metal plate. As a result, local deformation occurs in the {001} crystal grains 4 as well as the {001} crystal grains 4. For this reason, the area | region where a shallow recessed part is formed becomes large, and a flat part becomes comparatively few (refer FIG. 4B).
In addition, when the area fraction of {001} crystal grains 3 is too high, {001} crystal grain 3 local deformation occurs on the surface of the metal plate, and a region where a shallow concave portion is formed is increased and a flat portion is decreased. (FIG. 5B).

そのため、{001}結晶粒3の面積分率が高すぎても、低すぎても、金属板の表面の凹凸が発達し、生じた凹凸が連結し易くなり、連結により凹凸が更に発達する。   Therefore, even if the area fraction of {001} crystal grains 3 is too high or too low, irregularities on the surface of the metal plate develop, the resulting irregularities are easily connected, and the irregularities are further developed by the connection.

したがって、発明者らは、次のことを考えた。bcc構造を有する金属板に二軸引張変形が生じる成形加工を施す場合、{001}結晶粒3の割合を所定範囲とすることで、加工中に生じる金属板の表面の凹凸の発達を抑制可能できる。つまり、凹凸の発達が抑制できれば、成形品の外観上の美観を損ねる肌荒れが抑制できる。   Therefore, the inventors considered the following. When forming a metal plate having a bcc structure to cause biaxial tensile deformation, the ratio of the {001} crystal grains 3 can be controlled within a predetermined range, thereby suppressing the development of irregularities on the surface of the metal plate that occurs during processing. it can. That is, if the development of irregularities can be suppressed, rough skin that impairs the appearance of the molded product can be suppressed.

一方で、発明者らは、次のことを考えた。{001}結晶粒3の割合が低い場合、{001}結晶粒3の大きさが十分小さければ、加工中に生じる金属板の表面の凹凸が発達しても、金属板の表面に発達した凹凸は目立たず、成形品の外観上の美観を損ねる肌荒れとして認識され難くなる。   On the other hand, the inventors considered the following. When the ratio of {001} crystal grains 3 is low, if the size of {001} crystal grains 3 is sufficiently small, the irregularities developed on the surface of the metal plate even if the irregularities on the surface of the metal plate generated during processing develop. Is not conspicuous and is difficult to recognize as rough skin that impairs the appearance of the molded product.

そして、発明者らは、bcc構造を有する金属板とfcc構造を有する金属板が持つ結晶構造のすべり系(すべり面及びすべり方向)に着目した。つまり、発明者らは、次のことに着目した。bcc構造を有する金属板が持つ結晶構造のすべり面と、fcc構造を有する金属板が持つ結晶構造のすべり方向とが、平行関係にある。bcc構造を有する金属板が持つ結晶構造のすべり方向と、fcc構造を有する金属板が持つ結晶構造のすべり面とが、平行関係にある。そして、fcc構造を有する金属板は、二軸引張変形における結晶方位毎の強度分布がbcc構造を有する金属板と同様になると推定した。(下記表1参照)。   The inventors have paid attention to the slip system (slip surface and slip direction) of the crystal structure of the metal plate having the bcc structure and the metal plate having the fcc structure. In other words, the inventors focused on the following. The slip surface of the crystal structure of the metal plate having the bcc structure and the slip direction of the crystal structure of the metal plate having the fcc structure are in a parallel relationship. The slip direction of the crystal structure of the metal plate having the bcc structure is parallel to the slip surface of the crystal structure of the metal plate having the fcc structure. The metal plate having the fcc structure was estimated to have the same strength distribution for each crystal orientation in the biaxial tensile deformation as the metal plate having the bcc structure. (See Table 1 below).


両者の結晶構造のすべり系に着目した発明者らは、fcc構造を有する金属板において、二軸変形場(等二軸変形場及び不等二軸引張変形場)における結晶粒の結晶方位と成形品の肌荒れとの関係を、結晶塑性有限要素解析法(R.BECKER, 「Effects of strain localization on surface roughening during sheet forming」, Acta Mater. Vol. 46.No. 4.pp. 1385-1401, 1998)により調査した。
具体的には、bcc構造を有する金属板の断面(例えば、図13〜図18)の結晶方位のすべり系をfcc構造を有する金属板のすべり系に変更し,金属板の表面の{001}結晶粒3の面積分率を変化させた。そのときの塑性ひずみによる金属板の表面荒れの影響を数値解析で調査した。
The inventors paying attention to the slip system of both crystal structures, in a metal plate having an fcc structure, the crystal orientation and forming of the crystal grains in a biaxial deformation field (equal biaxial deformation field and unequal biaxial tensile deformation field). The relationship between the surface roughness and the surface roughness of the product is analyzed by the finite element analysis method (R. BECKER, “Effects of strain localization on surface roughening during sheet forming”, Acta Mater. Vol. 46. No. 4.pp. 1385-1401, 1998. ).
Specifically, the slip system of the crystal orientation of the cross section of the metal plate having the bcc structure (for example, FIGS. 13 to 18) is changed to the slip system of the metal plate having the fcc structure, and {001} on the surface of the metal plate The area fraction of the crystal grains 3 was changed. The influence of the surface roughness of the metal plate due to the plastic strain was investigated by numerical analysis.

その結果、発明者らは、bcc構造を有する金属板と同様に、fcc構造を有する金属板も等二軸引張変形場および等二軸引張変形場に近い不等二軸引張変形場では、{001}結晶粒3にひずみが集中し、優先変形することを知見した。   As a result, the inventors, as well as the metal plate having the bcc structure, the metal plate having the fcc structure has the same biaxial tensile deformation field and the unequal biaxial tensile deformation field close to the equal biaxial tensile deformation field. It was found that strain concentrates on the 001} crystal grains 3 and preferentially deforms.

したがって、発明者らは、次のことを考えた。fcc構造を有する金属板に二軸引張変形が生じる成形加工を施す場合も、{001}結晶粒3の割合を所定範囲とすることで、加工中に生じる金属板の表面の凹凸の発達を抑制可能できる。つまり、凹凸の発達が抑制できれば、成形品の外観上の美観を損ねる肌荒れが抑制できる。
また、{001}結晶粒3の割合が低い場合、{001}結晶粒3の大きさが十分小さければ、加工中に生じる金属板の表面の凹凸が発達しても、金属板の表面に発達した凹凸は目立たず、成形品の外観上の美観を損ねる肌荒れとして認識され難くなる。
Therefore, the inventors considered the following. Even when the metal plate having the fcc structure is subjected to forming processing that causes biaxial tensile deformation, the ratio of the {001} crystal grains 3 is set within a predetermined range, thereby suppressing the development of unevenness on the surface of the metal plate that occurs during processing. Possible. That is, if the development of irregularities can be suppressed, rough skin that impairs the appearance of the molded product can be suppressed.
In addition, when the ratio of {001} crystal grains 3 is low, if the size of {001} crystal grains 3 is sufficiently small, the surface of the metal plate develops even when the surface irregularities of the metal plate develop during processing. Such irregularities are not conspicuous and are difficult to recognize as rough skin that impairs the appearance of the molded product.

以上の知見に基づいて完成した第一の本発明の成形品の製造方法は、fcc構造を有し、金属板の表面において下記(a)又は(b)の条件を満たす金属板に対して、二軸引張変形が生じ、かつ前記金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施し、成形品を製造する成形品の製造方法である。
(a)前記金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の面積分率が0.20以上0.35以下である。
(b)前記金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の、面積分率が0.45以下、かつ平均結晶粒径が15μm以下である。
The manufacturing method of the molded product of the first present invention completed based on the above knowledge has an fcc structure, and a metal plate that satisfies the following condition (a) or (b) on the surface of the metal plate: This is a method for manufacturing a molded product, in which biaxial tensile deformation occurs and at least a part of the metal plate is subjected to a molding process so that the plate thickness reduction rate is 10% or more and 30% or less.
(A) The area fraction of crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the metal plate is 0.20 or more and 0.35 or less.
(B) The crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the metal plate have an area fraction of 0.45 or less and an average crystal grain size of 15 μm or less.

そして、第一の本発明の成形品の製造方法では、fcc構造を有する金属板に対して、二軸引張変形が生じ、かつ金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施したときでも、肌荒れの発生が抑制され意匠性に優れた成形品が得られる。   And in the manufacturing method of the molded product of 1st this invention, with respect to the metal plate which has an fcc structure, biaxial tensile deformation arises, and at least one part of a metal plate is plate thickness reduction rate 10% or more and 30% or less Even when the forming process is performed, the occurrence of rough skin is suppressed, and a molded product excellent in design is obtained.

ここで、「金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒」とは、図6に示すように、{001}面3Aに対して、金属板の一方の面側に鋭角で15°傾斜した結晶方位3Bから、金属板の他方の面側に鋭角で15°傾斜した結晶方位3Cまでの範囲に、結晶方位を持つ結晶粒を意味する。つまり、結晶方位3Bと結晶方位3Cとが成す角度θの範囲に結晶方位を有する結晶粒を意味する。   Here, “a crystal grain having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the metal plate” means that one of the metal plates with respect to the {001} plane 3A as shown in FIG. Means a crystal grain having a crystal orientation in a range from a crystal orientation 3B inclined at an acute angle of 15 ° to the other surface side to a crystal orientation 3C inclined at an acute angle of 15 ° to the other surface side of the metal plate. That is, it means a crystal grain having a crystal orientation in the range of the angle θ formed by the crystal orientation 3B and the crystal orientation 3C.

一方、さらに、発明者らは、上記知見に基づいて、bcc構造を有する金属板の組織について検討を進めた。その結果、発明者らは、次のことを知見した。二軸引張変形場(特に平面ひずみ変形場に近い不等二軸引張変形場)では、{001}結晶粒3のみならず、金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒(以下「{111}結晶粒」とも称する)以外の結晶粒にもひずみが集中し、優先変形することを知見した。   On the other hand, the inventors further studied the structure of the metal plate having the bcc structure based on the above findings. As a result, the inventors have found the following. In a biaxial tensile deformation field (especially an unequal biaxial tensile deformation field close to a plane strain deformation field), not only {001} crystal grains 3 but crystals within 15 ° from a {111} plane parallel to the surface of the metal plate. It has been found that strain concentrates on crystal grains other than crystal grains having an orientation (hereinafter also referred to as “{111} crystal grains”) and preferentially deforms.

つまり、発明者らは、次のことを考えた。bcc構造を有する金属板に二軸引張変形が生じる成形加工を施す場合、{111}結晶粒以外の結晶粒の割合を所定範囲とすれば、加工中に生じる金属板の表面の凹凸の発達を抑制可能できる。つまり、凹凸の発達が抑制できれば、成形品の外観上の美観を損ねる肌荒れが抑制できる。   In other words, the inventors considered the following. When a metal plate having a bcc structure is subjected to a forming process in which biaxial tensile deformation occurs, if the ratio of crystal grains other than {111} crystal grains is set within a predetermined range, the unevenness of the surface of the metal plate generated during the process can be developed. Can be suppressed. That is, if the development of irregularities can be suppressed, rough skin that impairs the appearance of the molded product can be suppressed.

また、発明者らは、次のことを考えた。{111}結晶粒以外の結晶粒の割合が低い場合、{111}結晶粒以外の結晶粒の大きさが十分小さければ、加工中に生じる金属板の表面の凹凸が発達しても、金属板の表面に発達した凹凸は目立たず、成形品の外観上の美観を損ねる肌荒れとして認識され難くなる。   The inventors also considered the following. When the ratio of crystal grains other than {111} crystal grains is low, the metal plate can be developed even if the surface irregularities of the metal plate developed during processing develop if the size of the crystal grains other than {111} crystal grains is sufficiently small. The unevenness developed on the surface of the film is not conspicuous and is difficult to recognize as rough skin that impairs the appearance of the molded product.

そして、上記同様に、bcc構造を有する金属板とfcc構造を有する金属板が持つ結晶構造のすべり系に着目した発明者らは、fcc構造を有する金属板において、二軸変形場(等二軸変形場及び不等二軸引張変形場)における結晶粒の結晶方位と成形品の肌荒れとの関係を、結晶塑性有限要素解析法により調査した。   Similarly to the above, the inventors paying attention to the slip system of the crystal structure of the metal plate having the bcc structure and the metal plate having the fcc structure, the metal plate having the fcc structure has a biaxial deformation field (equal biaxial). The relationship between the crystal orientation of the crystal grains and the rough surface of the molded product in the deformation field and the unequal biaxial tensile deformation field was investigated by crystal plastic finite element analysis.

その結果、発明者らは、bcc構造を有する金属板と同様に、fcc構造を有する金属板も二軸引張変形場(特に平面ひずみ変形場に近い不等二軸引張変形場)では、{111}結晶粒以外の結晶粒にひずみが集中し、優先変形することを知見した。   As a result, the inventors, like the metal plate having the bcc structure, in the biaxial tensile deformation field (particularly the unequal biaxial tensile deformation field close to the plane strain deformation field), {111 } It was discovered that strain concentrates on crystal grains other than crystal grains and preferentially deforms.

したがって、発明者らは、次のことを考えた。fcc構造を有する金属板に二軸引張変形が生じる成形加工を施す場合も、{111}結晶粒以外の結晶粒の割合を所定範囲とすることで、加工中に生じる金属板の表面の凹凸の発達を抑制可能できる。つまり、凹凸の発達が抑制できれば、成形品の外観上の美観を損ねる肌荒れが抑制できる。
また、{111}結晶粒以外の結晶粒の割合が低い場合、{111}結晶粒以外の結晶粒の大きさが十分小さければ、加工中に生じる金属板の表面の凹凸が発達しても、金属板の表面に発達した凹凸は目立たず、成形品の外観上の美観を損ねる肌荒れとして認識され難くなる。
Therefore, the inventors considered the following. Even when the metal plate having the fcc structure is subjected to forming processing in which biaxial tensile deformation occurs, by setting the ratio of crystal grains other than {111} crystal grains within a predetermined range, unevenness on the surface of the metal plate generated during processing can be achieved. Development can be suppressed. That is, if the development of irregularities can be suppressed, rough skin that impairs the appearance of the molded product can be suppressed.
In addition, when the proportion of crystal grains other than {111} crystal grains is low, if the size of crystal grains other than {111} crystal grains is sufficiently small, even if the surface irregularities of the metal plate developed during processing develop, The unevenness developed on the surface of the metal plate is not conspicuous and is difficult to recognize as rough skin that impairs the appearance of the molded product.

以上の知見に基づいて完成した第二の本発明の成形品の製造方法は、fcc構造を有し、金属板の表面において下記(A)又は(B)の条件を満たす金属板に対して、二軸引張変形が生じ、かつ前記金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施し、成形品を製造する成形品の製造方法。
(A)前記金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の面積分率が0.25以上0.55以下である。
(B)前記金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の、面積分率が0.55以下、かつ平均結晶粒径が15μm以下である。
The manufacturing method of the molded product of the second invention completed based on the above knowledge has an fcc structure, and the metal plate satisfies the following condition (A) or (B) on the surface of the metal plate. A method for producing a molded product, wherein a biaxial tensile deformation occurs and at least a part of the metal plate is subjected to a molding process in which a plate thickness reduction rate is 10% or more and 30% or less to produce a molded product.
(A) The area fraction of crystal grains other than crystal grains having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the metal plate is 0.25 or more and 0.55 or less.
(B) The area fraction of crystal grains other than crystal grains having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the metal plate is 0.55 or less and the average crystal grain size is 15 μm or less. is there.

そして、第二の本発明の成形品の製造方法では、fcc構造を有する金属板に対して、二軸引張変形が生じ、かつ金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施したときでも、肌荒れの発生が抑制され意匠性に優れた成形品が得られる。   And in the manufacturing method of the molded article of the second aspect of the present invention, biaxial tensile deformation occurs with respect to the metal plate having the fcc structure, and at least a part of the metal plate has a plate thickness reduction rate of 10% or more and 30% or less. Even when the forming process is performed, the occurrence of rough skin is suppressed, and a molded product excellent in design is obtained.

ここで、「金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒」とは、{111}面に対して、金属板の一方の面側に鋭角で15°傾斜した結晶方位から、金属板の他方の面側に鋭角で15°傾斜した結晶方位までの範囲に、結晶方位を持つ結晶粒を意味する。つまり、この2つの結晶方位が成す角度θの範囲に結晶方位を有する結晶粒を意味する。   Here, “a crystal grain having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the metal plate” means an acute angle of 15 ° on one surface side of the metal plate with respect to the {111} plane. It means a crystal grain having a crystal orientation in the range from the tilted crystal orientation to the crystal orientation tilted at an acute angle of 15 ° to the other surface side of the metal plate. That is, it means a crystal grain having a crystal orientation in the range of the angle θ formed by these two crystal orientations.

(成形加工)
金属板には、二軸引張変形が生じる成形加工を施す。この成形加工としては、深絞り成形、張り出し成形、絞り張り出し成形、曲げ成形がある。具体的には、成形加工としては、例えば、図7Aに示すような、金属板10を張り出し成形加工する方法が挙げられる。この成形加工では、ダイス11と、ドロービード12Aが配されたホルダー12との間に金属板10の縁部を挟み込む。それにより、金属板10の縁部の表面にドロービード12Aに食い込ませて、金属板10を固定した状態とする。そして、この状態で、頂面が平坦のパンチ13を金属板10に押付けて、金属板10を張り出し成形加工する。ここで、図7Aに示す張り出し成形加工により得られる成形品の一例を図7Bに示す。
図7Aに示す張り出し成形加工では、例えば、パンチ10の頂面に位置する金属板10(成形品の天面)は、等二軸変形、又は比較的、等二軸変形に近い不等二軸引張変形が生じる。
(Molding)
The metal plate is subjected to a forming process that causes biaxial tensile deformation. As this forming process, there are deep drawing forming, stretch forming, drawing extending forming, and bending forming. Specifically, as the forming process, for example, a method of stretching and forming the metal plate 10 as shown in FIG. 7A can be mentioned. In this forming process, the edge of the metal plate 10 is sandwiched between the die 11 and the holder 12 on which the draw beads 12A are arranged. As a result, the draw bead 12A is bitten into the surface of the edge of the metal plate 10 and the metal plate 10 is fixed. In this state, the punch 13 having a flat top surface is pressed against the metal plate 10, and the metal plate 10 is stretched and formed. Here, FIG. 7B shows an example of a molded product obtained by the overhang forming process shown in FIG. 7A.
In the overhang forming process shown in FIG. 7A, for example, the metal plate 10 (the top surface of the molded product) positioned on the top surface of the punch 10 is unequal biaxially deformed or is relatively close to equal biaxial deformation. Tensile deformation occurs.

また、成形加工としては、例えば、図8Aに示すような、金属板10を絞り張り出し成形加工する方法が挙げられる。この成形加工では、ダイス11と、ドロービード12Aが配されたホルダー12との間に金属板10の縁部を挟み込む。それにより、金属板10の縁部の表面にドロービード12Aに食い込ませて、金属板10を固定した状態とする。そして、この状態で、頂面が略V字状に突出しているパンチ13を金属板10に押付けて、金属板10を絞り張り出し成形加工する。ここで、図8Aに示す絞り張り出し成形加工により得られる成形品の一例を図8Bに示す。
図8Aに示す絞り張り出し成形加工では、例えば、パンチ10の頂面に位置する金属板10(成形品の天面)は、比較的、平面ひずみ変形に近い不等二軸引張変形が生じる。
Moreover, as a shaping | molding process, the method of drawing and forming the metal plate 10 as shown to FIG. 8A is mentioned, for example. In this forming process, the edge of the metal plate 10 is sandwiched between the die 11 and the holder 12 on which the draw beads 12A are arranged. As a result, the draw bead 12A is bitten into the surface of the edge of the metal plate 10 and the metal plate 10 is fixed. In this state, the punch 13 whose top surface protrudes in a substantially V shape is pressed against the metal plate 10, and the metal plate 10 is drawn and formed. Here, FIG. 8B shows an example of a molded product obtained by the drawing and drawing process shown in FIG. 8A.
8A, for example, the metal plate 10 (the top surface of the molded product) located on the top surface of the punch 10 undergoes unequal biaxial tensile deformation that is relatively close to plane strain deformation.

ここで、図9に示すように、平面ひずみ引張変形は、ε1方向に伸び、ε2方向には変形が生じない変形である。また、二軸引張変形は、ε1方向に伸び、ε2方向にも伸びが生じる変形である。具体的には、平面ひずみ引張変形は、二軸方向のひずみを各々最大主ひずみε1および最小主ひずみε2としたとき、ひずみ比β(=ε2/ε1)がβ=0となる変形である。二軸引張変形は、ひずみ比β(=ε2/ε1)が0<β≦1となる変形である。なお、ひずみ比β(=ε2/ε1)が0<β<1となる変形が不等二軸変形であり、ひずみ比β(=ε2/ε1)がβ=1となる変形が等二軸変形である。ちなみに、一軸引張変形は、ε1方向に伸び、ε2方向に縮みが生じる変形であって、ひずみ比β(=ε2/ε1)が−0.5≦β<0となる変形である。   Here, as shown in FIG. 9, the plane strain tensile deformation is a deformation that extends in the ε1 direction and does not cause deformation in the ε2 direction. Biaxial tensile deformation is deformation that extends in the ε1 direction and also in the ε2 direction. Specifically, the plane strain tensile deformation is a deformation in which the strain ratio β (= ε2 / ε1) becomes β = 0 when the strains in the biaxial directions are respectively the maximum main strain ε1 and the minimum main strain ε2. Biaxial tensile deformation is deformation in which the strain ratio β (= ε2 / ε1) is 0 <β ≦ 1. Note that the deformation where the strain ratio β (= ε2 / ε1) is 0 <β <1 is unequal biaxial deformation, and the deformation where the strain ratio β (= ε2 / ε1) is β = 1 is equal biaxial deformation. It is. Incidentally, the uniaxial tensile deformation is a deformation that extends in the ε1 direction and contracts in the ε2 direction and has a strain ratio β (= ε2 / ε1) of −0.5 ≦ β <0.

ただし、上記ひずみ比βの範囲は、理論値であり、例えば、鋼板の表面に転写したスクライブドサークルにおける鋼板成形前後(鋼板変形前後)の形状変化から計測した最大主ひずみ及び最小主ひずみから算出される、各変形のひずみ比βの範囲は次の通りである。
・一軸引張変形: −0.5<β≦−0.1
・平面ひずみ引張変形: −0.1<β≦0.1
・不等二軸変形: 0.1<β≦0.8
・等二軸変形: 0.8<β≦1.0
However, the range of the strain ratio β is a theoretical value, for example, calculated from the maximum principal strain and the minimum principal strain measured from the shape change before and after forming the steel sheet (before and after deformation of the steel sheet) in the scribed circle transferred to the surface of the steel sheet. The range of the strain ratio β of each deformation is as follows.
Uniaxial tensile deformation: −0.5 <β ≦ −0.1
・ Plane strain tensile deformation: −0.1 <β ≦ 0.1
Unequal biaxial deformation: 0.1 <β ≦ 0.8
・ Equal biaxial deformation: 0.8 <β ≦ 1.0

一方、成形加工では、金属板の少なくとも一部が板厚減少率10%以上30%以下となる加工量で行う。板厚減少率10%未満の加工量では、{111}結晶粒以外の結晶粒(特に{001}結晶粒)へのひずみ集中が少なく、成形加工時に凹凸の発達が生じ難い傾向がある。そのため、金属板が上記(a)および(b)の条件又は上記(A)および(B)の条件を満たさなくても、成形品の肌荒れ自体が発生し難い。一方、板厚減少率30%を超えると、成形加工により金属板(成形品)の破断が生じる傾向が高まる。よって、成形加工の加工量は、上記範囲とする。   On the other hand, in the forming process, at least a part of the metal plate is processed with a processing amount such that the plate thickness reduction rate is 10% or more and 30% or less. If the processing amount is less than 10%, the strain concentration on crystal grains other than {111} crystal grains (especially {001} crystal grains) is small, and unevenness tends to hardly develop during forming. Therefore, even if the metal plate does not satisfy the above conditions (a) and (b) or the above conditions (A) and (B), the rough surface of the molded product itself hardly occurs. On the other hand, if the plate thickness reduction rate exceeds 30%, the tendency of the metal plate (molded product) to break due to the forming process increases. Therefore, the processing amount of the forming process is set to the above range.

成形加工は、金属板の少なくとも一部が板厚減少率10%以上30%以下となる加工量で行う。しかし、成形加工は、縁部(ダイスとホルダとで挟まれた部位)を除く金属板の全体が板厚減少率10%以上30%以下となる加工量で行ってもよい。成形する成形品の形状にもよるが、特に、成形加工は、パンチの頂面に位置する金属板の部位(金属板が二軸引張変形する部位)が板厚減少率10%以上30%以下となる加工量で行うことがよい。パンチの頂面に位置する金属板の部位は、成形品を外装部材として適用したとき、最も視線にさらされ易い部位となることが多い。このため、この金属板の部位を板厚減少率10%以上30%以下と多い加工量で成形加工したとき、凹凸の発達を抑えると、肌荒れ抑制効果が顕著となる。   The forming process is performed with a processing amount such that at least a part of the metal plate has a plate thickness reduction rate of 10% to 30%. However, the forming process may be performed with a processing amount such that the entire metal plate excluding the edge (a portion sandwiched between the die and the holder) has a plate thickness reduction rate of 10% to 30%. Although it depends on the shape of the molded product to be molded, in particular, in the molding process, the portion of the metal plate located on the top surface of the punch (the portion where the metal plate is biaxially tensile deformed) is 10% to 30% in thickness reduction rate. It is good to carry out with the processing amount which becomes. The portion of the metal plate located on the top surface of the punch is often the portion most easily exposed to the line of sight when the molded product is applied as an exterior member. For this reason, when this metal plate part is formed with a large amount of processing such as a plate thickness reduction rate of 10% or more and 30% or less, the effect of suppressing skin roughness becomes remarkable when the development of unevenness is suppressed.

なお、板厚減少率は、成形加工前の金属板の板厚をTiとし、成形加工後の金属板(成形品)の板厚をTaとしたとき、式:板厚減少率=(Ti−Ta)/Tiで示される。   The plate thickness reduction rate is expressed by the formula: plate thickness reduction rate = (Ti−), where Ti is the thickness of the metal plate before forming and Ta is the thickness of the metal plate (molded product) after forming. Ta) / Ti.

(金属板)
[種類]
金属板は、fcc構造(体心立方格子構造)を有する金属板である。fcc構造を有する金属板としては、γ−Fe(オーステナイト系ステンレス鋼)、Al、Cu、Au、Pt、Pb等の金属板が挙げられる。
(Metal plate)
[type]
The metal plate is a metal plate having an fcc structure (body-centered cubic lattice structure). Examples of the metal plate having the fcc structure include γ-Fe (austenitic stainless steel), Al, Cu, Au, Pt, and Pb.

金属板の厚みは、特に制限はないが、成形性の点から、3mm以下が好ましい。   The thickness of the metal plate is not particularly limited, but is preferably 3 mm or less from the viewpoint of formability.

[{001}結晶粒]
二軸引張変形が生じる成形加工を施す場合、fcc構造を有する金属板の表面において、金属板の表面に平行な{001}面から15°以内の結晶方位を有する結晶粒({001}結晶粒)は、次の(a)又は(b)を満たす。
(a){001}結晶粒の面積分率が0.20以上0.35以下である。
(b){001}結晶粒の、面積分率が0.45以下、かつ平均結晶粒径が15μm以下である。
[{001} crystal grains]
When a forming process causing biaxial tensile deformation is performed, a crystal grain ({001} crystal grain having a crystal orientation within 15 ° from a {001} plane parallel to the surface of the metal plate on the surface of the metal plate having the fcc structure. ) Satisfies the following (a) or (b).
(A) The area fraction of {001} crystal grains is 0.20 or more and 0.35 or less.
(B) The {001} crystal grains have an area fraction of 0.45 or less and an average crystal grain size of 15 μm or less.

上述のとおり、fcc構造を有する金属板の場合、{001}結晶粒が最も等二軸引張変形および等二軸引張変形に近い不等二軸引張変形の応力に弱い。したがって、大きな加工量(金属板の少なくとも一部が板厚減少率10%以上30%以下となる加工量)で、深絞り成形及び張り出し成形等、二軸引張変形が生じる金属板の成形加工を実施すれば、{001}結晶粒にひずみが集中しやすく、{001}結晶粒にて凹凸が発達しやすい。そして、{001}結晶粒の割合が多い場合、ひずみが集中しやすく、凹凸が発達しやすい。一方で、{001}結晶粒の割合が少ない場合、ひずみが集中する箇所が少なくなり、{001}近傍結晶粒にも局所変形が分散するため、逆に、凹凸が発達しやすくなる。ただし、{001}結晶粒の割合が少ない場合でも、{001}結晶粒の大きさが十分小さければ、{001}近傍結晶粒で局所変形する領域も小さくなり、凹凸が発達しても、微細となり、成形品の肌荒れとして認識され難くなる。   As described above, in the case of a metal plate having an fcc structure, {001} crystal grains are most vulnerable to stress of unequal biaxial tensile deformation that is close to equal biaxial tensile deformation and equal biaxial tensile deformation. Therefore, with a large amount of processing (a processing amount at which at least a part of the metal plate has a thickness reduction rate of 10% or more and 30% or less), the forming processing of the metal plate in which biaxial tensile deformation occurs, such as deep drawing and stretch forming. If implemented, the strain tends to concentrate on the {001} crystal grains, and the unevenness tends to develop on the {001} crystal grains. And when there are many ratios of {001} crystal grain, distortion tends to concentrate and an unevenness | corrugation tends to develop. On the other hand, when the ratio of {001} crystal grains is small, the number of locations where strain concentrates is small, and local deformation is dispersed also in crystal grains near {001}. However, even when the ratio of {001} crystal grains is small, if the size of {001} crystal grains is sufficiently small, the region that locally deforms in {001} neighboring crystal grains also becomes small, and even if unevenness develops, it is fine. It becomes difficult to be recognized as rough skin of the molded product.

よって、fcc構造を有する金属板が上記(a)を満たせば、成形加工による適度なひずみの集中が実現される。そのため、凹凸の発達が抑えられ、成形品の肌荒れの発生が抑制される。一方で、fcc構造を有する金属板が上記(b)を満たせば、{001}結晶粒の面積分率が0.20以上0.45以下の範囲では、成形加工による適度なひずみの集中が実現される。{001}結晶粒の面積分率が0.20未満の範囲では、凹凸が発達しても、成形品の肌荒れとして認識され難くなる。そのため、成形品の肌荒れの発生が抑制される。   Therefore, if the metal plate having the fcc structure satisfies the above (a), an appropriate concentration of strain by the forming process is realized. Therefore, the development of unevenness is suppressed, and the occurrence of rough skin on the molded product is suppressed. On the other hand, if the metal plate having the fcc structure satisfies the above (b), moderate strain concentration by forming is realized when the area fraction of {001} crystal grains is 0.20 or more and 0.45 or less. Is done. When the area fraction of the {001} crystal grains is less than 0.20, even if the unevenness develops, it becomes difficult to be recognized as rough skin of the molded product. Therefore, the occurrence of rough skin of the molded product is suppressed.

また、条件(b)において、{001}結晶粒の平均結晶粒径は、15μm以下であるが、肌荒れ抑制の点から、10μm以下が好ましい。{001}結晶粒の平均結晶粒径は、小さい程、肌荒れ抑制の点から好ましいが、1μm以上が好ましい。なぜなら、再結晶によって方位を制御しているため、結晶粒径の超微細化と方位制御の両立は難しいからである。   In the condition (b), the average crystal grain size of {001} crystal grains is 15 μm or less, but is preferably 10 μm or less from the viewpoint of suppressing rough skin. The smaller the average crystal grain size of {001} crystal grains, the better the skin roughness is suppressed, but 1 μm or more is preferable. This is because, since the orientation is controlled by recrystallization, it is difficult to achieve both ultrafine crystal grain size and orientation control.

{001}結晶粒の平均結晶粒径は次の方法で測定される。SEMを用いて、金属板の表面を観察し、測定領域を任意に選ぶ。EBSD法を用いて、それぞれの測定領域において、{001}結晶粒を選択する。選択した各{001}結晶粒に2本の試験線を引く。2本の試験線の算術平均を求めることにより、{001}結晶粒の平均結晶粒径が求まる。具体的には以下のとおりである。図10は、EBSD法による解析結果から平均結晶粒径を求める方法を図示した模式図である。図10を参照して、各{001}結晶粒3の重心を通る試験線5を、全ての{001}結晶粒3において同じ向きとなるように引く。さらに、試験線5と互いに直交するように、各{001}結晶粒3の重心を通る試験線6を引く。2本の試験線5及び6の長さの算術平均を、その結晶粒の結晶粒径とする。任意の測定領域における、全ての{001}結晶粒3の結晶粒径の算術平均を、平均結晶粒径とする。   The average crystal grain size of {001} crystal grains is measured by the following method. Using the SEM, the surface of the metal plate is observed and the measurement area is arbitrarily selected. Using the EBSD method, {001} crystal grains are selected in each measurement region. Two test lines are drawn for each selected {001} grain. By calculating the arithmetic average of the two test lines, the average crystal grain size of {001} crystal grains is determined. Specifically, it is as follows. FIG. 10 is a schematic diagram illustrating a method of obtaining the average crystal grain size from the analysis result by the EBSD method. Referring to FIG. 10, test line 5 passing through the center of gravity of each {001} crystal grain 3 is drawn so that all {001} crystal grains 3 have the same orientation. Further, a test line 6 passing through the center of gravity of each {001} crystal grain 3 is drawn so as to be orthogonal to the test line 5. The arithmetic average of the lengths of the two test lines 5 and 6 is defined as the crystal grain size of the crystal grains. The arithmetic average of the crystal grain sizes of all {001} crystal grains 3 in an arbitrary measurement region is defined as the average crystal grain size.

{001}結晶粒の面積分率は次の方法で測定される。SEMを用いて、金属板の断面(板厚方向に沿った切断面)を観察し、金属板の表面(板厚方向に対向する面)に該当する領域(線状の領域)を含む任意の測定領域を選ぶ。EBSD法を用いて、{001}結晶粒3を選択する。各視野において、金属板の表面(板厚方向に対向する面)に該当する領域における{001}結晶粒3の面積分率を算出することで、{001}結晶粒3の面積分率を求める。そして、任意の測定領域における{001}結晶粒3の面積分率の平均を{001}結晶粒の面積分率とする。
ここで、金属板の表面にめっき層等が形成されている場合、めっき層等と接触している金属板の表面に該当する領域(線状の領域)について、{001}結晶粒3の面積分率を測定する。
The area fraction of {001} crystal grains is measured by the following method. Using SEM, observe the cross section (cut surface along the plate thickness direction) of the metal plate, and include any region (linear region) corresponding to the surface of the metal plate (surface facing the plate thickness direction) Select the measurement area. {001} crystal grain 3 is selected using the EBSD method. In each field of view, the area fraction of {001} crystal grains 3 is obtained by calculating the area fraction of {001} crystal grains 3 in the region corresponding to the surface of the metal plate (the surface facing the plate thickness direction). . Then, the average of the area fraction of {001} crystal grains 3 in an arbitrary measurement region is defined as the area fraction of {001} crystal grains.
Here, in the case where a plating layer or the like is formed on the surface of the metal plate, the area of the {001} crystal grains 3 with respect to a region (linear region) corresponding to the surface of the metal plate in contact with the plating layer or the like Measure the fraction.

[{111}結晶粒以外の結晶粒]
二軸引張変形が生じる成形加工を施す場合、fcc構造を有する金属板の表面において、金属板の表面に平行な{111}面から15°以内の結晶方位を有する結晶粒({111}結晶粒)以外の結晶粒(つまり、金属板の表面に平行な{111}面から15°を超えた結晶方位を有する結晶粒)は、次の(A)又は(B)を満たす。
(A){111}結晶粒以外の結晶粒の面積分率が0.25以上0.55以下である。
(B){111}結晶粒以外の結晶粒の、面積分率が0.55以下、かつ平均結晶粒径が15μm以下である。
[Crystal grains other than {111} grains]
When a forming process causing biaxial tensile deformation is performed, crystal grains ({111} crystal grains having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the metal plate on the surface of the metal plate having the fcc structure. ) (That is, crystal grains having a crystal orientation exceeding 15 ° from the {111} plane parallel to the surface of the metal plate) satisfy the following (A) or (B).
(A) The area fraction of crystal grains other than {111} crystal grains is 0.25 or more and 0.55 or less.
(B) The area fraction of crystal grains other than {111} crystal grains is 0.55 or less and the average crystal grain size is 15 μm or less.

上述のとおり、fcc構造を有する金属板の場合、{111}結晶粒以外の結晶粒が二軸引張変形(特に平面ひずみ変形場に近い不等二軸引張変形)の応力に弱い(つまり{111}結晶粒が最も強い)。したがって、大きな加工量(金属板の少なくとも一部が板厚減少率10%以上30%以下となる加工量)で、深絞り成形及び張り出し成形等、二軸引張変形が生じる金属板の成形加工を実施すれば、{111}結晶粒以外の結晶粒にひずみが集中しやすく、{111}結晶粒以外の結晶粒にて凹凸が発達しやすい。そして、{111}結晶粒以外の結晶粒の割合が多い場合、ひずみが集中しやすく、凹凸が発達しやすい。一方で、{111}結晶粒以外の結晶粒の割合が少ない場合、ひずみが集中する箇所が少なくなり、{111}結晶粒にも局所変形が分散するため、逆に、凹凸が発達しやすくなる。ただし、{111}結晶粒以外の結晶粒の割合が少ない場合でも、{111}結晶粒以外の結晶粒の大きさが十分小さければ、{111}結晶粒で局所変形する領域も小さくなり、凹凸が発達しても、微細となり、成形品の肌荒れとして認識され難くなる。   As described above, in the case of a metal plate having an fcc structure, crystal grains other than {111} crystal grains are weak against stress of biaxial tensile deformation (particularly unequal biaxial tensile deformation close to a plane strain deformation field) (that is, {111). } The grain is the strongest). Therefore, with a large amount of processing (a processing amount at which at least a part of the metal plate has a thickness reduction rate of 10% or more and 30% or less), the forming processing of the metal plate in which biaxial tensile deformation occurs, such as deep drawing and stretch forming. If implemented, the strain tends to concentrate on crystal grains other than {111} crystal grains, and irregularities tend to develop in crystal grains other than {111} crystal grains. And when there are many ratios of crystal grains other than {111} crystal grains, distortion tends to concentrate and an unevenness | corrugation tends to develop. On the other hand, when the proportion of crystal grains other than {111} crystal grains is small, the number of locations where strain concentrates is small, and local deformation is dispersed also in {111} crystal grains. . However, even when the proportion of crystal grains other than {111} crystal grains is small, if the size of the crystal grains other than {111} crystal grains is sufficiently small, the region that is locally deformed by {111} crystal grains is also reduced, resulting in unevenness. Even if it develops, it becomes fine and is difficult to be recognized as rough skin of the molded product.

よって、fcc構造を有する金属板が上記(A)を満たせば、成形加工による適度なひずみの集中が実現される。そのため、凹凸の発達が抑えられ、成形品の肌荒れの発生が抑制される。一方で、fcc構造を有する金属板が上記(B)を満たせば、{111}結晶粒以外の結晶粒の面積分率が0.25以上0.55以下の範囲では、成形加工による適度なひずみの集中が実現される。{111}結晶粒以外の結晶粒の面積分率が0.25未満の範囲では、凹凸が発達しても、成形品の肌荒れとして認識され難くなる。そのため、成形品の肌荒れの発生が抑制される。   Therefore, if the metal plate having the fcc structure satisfies the above (A), an appropriate concentration of strain by the forming process is realized. Therefore, the development of unevenness is suppressed, and the occurrence of rough skin on the molded product is suppressed. On the other hand, if the metal plate having the fcc structure satisfies the above (B), an appropriate strain due to the forming process is obtained when the area fraction of crystal grains other than {111} crystal grains is in the range of 0.25 to 0.55. Concentration is realized. When the area fraction of crystal grains other than {111} crystal grains is less than 0.25, even if unevenness develops, it becomes difficult to be recognized as rough skin of the molded product. Therefore, the occurrence of rough skin of the molded product is suppressed.

また、条件(B)において、{111}結晶粒以外の結晶粒の平均結晶粒径は、15μm以下であるが、肌荒れ抑制の点から、10μm以下が好ましい。{111}結晶粒以外の結晶粒の平均結晶粒径は、小さい程、肌荒れ抑制の点から好ましいが、1μm以上が好ましい。なぜなら、再結晶によって方位を制御しているため、結晶粒径の超微細化と方位制御の両立は難しいからである。   Further, in the condition (B), the average crystal grain size of the crystal grains other than {111} crystal grains is 15 μm or less, but is preferably 10 μm or less from the viewpoint of suppressing rough skin. The average crystal grain size of the crystal grains other than {111} crystal grains is preferably as small as possible from the viewpoint of suppressing rough skin, but is preferably 1 μm or more. This is because, since the orientation is controlled by recrystallization, it is difficult to achieve both ultrafine crystal grain size and orientation control.

{111}結晶粒以外の結晶粒の平均結晶粒径は、測定対象となる結晶粒が異なる以外は、{001}結晶粒の平均結晶粒径と同じ方法で測定される。
一方、{111}結晶粒以外の結晶粒の面積分率は、測定対象となる結晶粒が異なる以外は、{001}結晶粒と同じ方法で測定される。
The average crystal grain size of crystal grains other than {111} crystal grains is measured by the same method as the average crystal grain size of {001} crystal grains, except that the crystal grains to be measured are different.
On the other hand, the area fraction of crystal grains other than {111} crystal grains is measured by the same method as {001} crystal grains except that the crystal grains to be measured are different.

(成形品)
第一の本発明の成形品は、fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品である。そして、第一の本発明の成形品は、成形品の最大板厚をD1とし、成形品の最小板厚をD2としたとき、式:10≦(D1−D2)/D1×100≦30の条件、又は、成形品の最大硬度をH1とし、成形品の最小硬度をH2としたとき、式:15≦(H1−H2)/H1×100≦40の条件を満たし、かつ成形品の表面において下記(c)又は(d)の条件を満たす。
(c)成形品の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒({001}結晶粒)の面積分率が0.20以上0.35以下である。
(d)成形品の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒({001}結晶粒)の、面積分率が0.45以下、かつ平均結晶粒径が15μm以下である。
(Molding)
The molded product of the first aspect of the present invention is a molded product of a metal plate having an fcc structure and a shape in which biaxial tensile deformation occurs. The molded product of the first aspect of the present invention has a formula: 10 ≦ (D1−D2) / D1 × 100 ≦ 30, where D1 is the maximum thickness of the molded product and D2 is the minimum thickness of the molded product. When the condition or the maximum hardness of the molded product is H1 and the minimum hardness of the molded product is H2, the condition of the formula: 15 ≦ (H1−H2) / H1 × 100 ≦ 40 is satisfied and the surface of the molded product is The following condition (c) or (d) is satisfied.
(C) The area fraction of crystal grains ({001} crystal grains) having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the molded product is 0.20 or more and 0.35 or less.
(D) The crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the molded product ({001} crystal grains) have an area fraction of 0.45 or less and an average crystal grain size of 15 μm. It is as follows.

一方、第二の本発明の成形品は、fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品である。そして、第二の本発明の成形品は、成形品の最大板厚をD1とし、成形品の最小板厚をD2としたとき、式:10≦(D1−D2)/D1×100≦30の条件、又は、成形品の最大硬度をH1とし、成形品の最小硬度をH2としたとき、式:15≦(H1−H2)/H1×100≦40の条件を満たし、かつ成形品の表面において下記(C)又は(D)の条件を満たす。
(C)成形品の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒({111}結晶粒)以外の結晶粒の面積分率が0.25以上0.55以下である。
(D)成形品の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒({111}結晶粒)以外の結晶粒の、面積分率が0.55以下、かつ平均結晶粒径が15μm以下である。
On the other hand, the molded product of the second aspect of the present invention is a molded product of a metal plate having an fcc structure and a shape in which biaxial tensile deformation occurs. The molded product of the second aspect of the present invention has the formula: 10 ≦ (D1−D2) / D1 × 100 ≦ 30, where D1 is the maximum thickness of the molded product and D2 is the minimum thickness of the molded product. When the condition or the maximum hardness of the molded product is H1 and the minimum hardness of the molded product is H2, the condition of the formula: 15 ≦ (H1−H2) / H1 × 100 ≦ 40 is satisfied and the surface of the molded product is The following condition (C) or (D) is satisfied.
(C) The area fraction of crystal grains other than crystal grains ({111} crystal grains) having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the molded product is 0.25 or more and 0.55 or less. is there.
(D) The area fraction of crystal grains other than crystal grains ({111} crystal grains) having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the molded product, and an average crystal The particle size is 15 μm or less.

ここで、fcc構造を有する金属板は、第一及び第二の本発明の成形品の製造方法で使用する金属板と同義である。そして、この金属板の成形品には、二軸引張変形が生じる成形加工が施されている。
成形品に、二軸引張変形が生じる成形加工が施されていることを確認する方法は次の通りである。
成形品の3次元形状を測定し、数値解析用のメッシュを作製し、コンピュータによる逆解析によって、板材から3次元形状へ至るまでの過程を導出する。そして、前記各メッシュにおける最大主ひずみと最小主ひずみとの比(前記β)を算出する。この算出により、二軸引張変形が生じる成形加工が施されていることを確認することができる。
例えば、Comet L3D(東京貿易テクノシステム(株))等の三次元計測機により、成形品の三次元形状を測定する。得られた測定データを基に,成形品のメッシュ形状データを得る。次に、得られたメッシュ形状データを用いて、ワンステップ法(加工硬化算出ツール「HYCRASH(株式会社JSOL)」等)の数値解析により、成形品の形状を元にそれを一度平坦な板に展開する。そのときの成形品の伸び、曲げ状態などの形状情報から成形品の板厚変化、残留ひずみなどを計算する。この計算によっても、二軸引張変形が生じる成形加工が施されていることを確認することができる。
Here, the metal plate which has an fcc structure is synonymous with the metal plate used with the manufacturing method of the molded product of the 1st and 2nd this invention. The molded product of the metal plate is subjected to a forming process that causes biaxial tensile deformation.
The method for confirming that the molded product is subjected to a molding process that causes biaxial tensile deformation is as follows.
The three-dimensional shape of the molded product is measured, a mesh for numerical analysis is produced, and the process from the plate material to the three-dimensional shape is derived by computer inverse analysis. Then, a ratio (the β) between the maximum principal strain and the minimum principal strain in each mesh is calculated. By this calculation, it can be confirmed that a forming process causing biaxial tensile deformation is performed.
For example, the three-dimensional shape of the molded product is measured by a three-dimensional measuring machine such as Comet L3D (Tokyo Trading Techno System Co., Ltd.). Based on the obtained measurement data, mesh shape data of the molded product is obtained. Next, by using the obtained mesh shape data, numerical analysis of the one-step method (work hardening calculation tool “HYCRASH (JSOL)”, etc.), based on the shape of the molded product, once to a flat plate expand. The thickness change of the molded product, the residual strain, etc. are calculated from the shape information such as the elongation and bending state of the molded product at that time. Also by this calculation, it can be confirmed that a forming process causing biaxial tensile deformation is performed.

また、式:10≦(D1−D2)/D1×100≦30の条件を満たすことは、金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工により成形品が成形されていると見なすことができる。
つまり、成形品の最大板厚D1は成形加工前の金属板の板厚と見なすことができ、成形品の最小板厚D2は成形加工後で最も板厚減少率が大きい部位の金属板(成形品)の板厚と見なすことができる。
Further, satisfying the condition of the formula: 10 ≦ (D1−D2) / D1 × 100 ≦ 30 means that the molded product is molded by a molding process in which at least a part of the metal plate has a thickness reduction rate of 10% to 30%. Can be considered.
That is, the maximum plate thickness D1 of the molded product can be regarded as the plate thickness of the metal plate before the molding process, and the minimum plate thickness D2 of the molded product is the metal plate (molding) having the largest thickness reduction rate after the molding process. Product).

一方、式:15≦(H1−H2)/H1×100≦40の条件を満たすことも、金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工により成形品が成形されていると見なすことができる。これは、成形加工の加工量(板厚減少率:Thickness reduction)が大きくなるにつれて、加工硬化(つまり加工硬度:Vickers hardness)が大きくなることに起因する。
つまり、成形品の最大硬度H1となる部位は成形加工後で最も板厚減少率が大きい部位の金属板(成形品)の硬度と見なすことができ、成形品の最小硬度H2は成形加工前の金属板の硬度と見なすことができる。
On the other hand, if the condition of the formula: 15 ≦ (H1−H2) / H1 × 100 ≦ 40 is satisfied, the molded product is formed by a forming process in which at least a part of the metal plate has a plate thickness reduction rate of 10% to 30%. Can be considered. This is because work hardening (that is, work hardness: Vickers hardness) increases as the processing amount (thickness reduction) of the forming process increases.
That is, the portion having the maximum hardness H1 of the molded product can be regarded as the hardness of the metal plate (molded product) at the portion where the plate thickness reduction rate is the largest after the molding process, and the minimum hardness H2 of the molded product is It can be regarded as the hardness of the metal plate.

なお、硬度は、JIS規格(JIS Z 2244)に記載のビッカース硬さ測定方法に従い測定される。ただし、硬度の測定は、この方法に限られず、他の方法で硬さを測定し、硬さ変換表を用いて、ビッカース硬さに換算する方法を採用してもよい。   The hardness is measured according to the Vickers hardness measurement method described in the JIS standard (JIS Z 2244). However, the measurement of hardness is not limited to this method, and a method of measuring hardness by another method and converting it to Vickers hardness using a hardness conversion table may be employed.

また、上記(c)又は(d)で示される条件および上記(C)又は(D)で示される条件において、成形品の表面における{001}結晶粒の面積分率及び平均結晶粒径、並びに、成形品の表面における{111}結晶粒以外の結晶粒の面積分率及び平均結晶粒径は、成形品の最大板厚D1又は最小硬度H2となる部位で測定される。
そして、上記(c)又は(d)で示される条件は、第一の本発明の成形品の製造方法で説明した上記(a)又は(b)で示される条件と、成形加工前の金属板に代えて、成形品の表面における{001}結晶粒の面積分率及び平均結晶粒径を条件としている以外は同義である。
同様に、上記(C)又は(D)で示される条件は、第二の本発明の成形品の製造方法で説明した上記(A)又は(B)で示される条件と、成形加工前の金属板に代えて、成形品の表面における{111}結晶粒以外の結晶粒の面積分率及び平均結晶粒径を条件としている以外は同義である。
In addition, in the conditions indicated by (c) or (d) and the conditions indicated by (C) or (D) above, the area fraction and the average crystal grain size of {001} crystal grains on the surface of the molded product, and The area fraction and the average crystal grain size of crystal grains other than {111} crystal grains on the surface of the molded product are measured at a site where the maximum plate thickness D1 or the minimum hardness H2 of the molded product is obtained.
And the conditions shown by said (c) or (d) are the conditions shown by said (a) or (b) demonstrated by the manufacturing method of the molded article of 1st this invention, and the metal plate before a shaping | molding process. Instead of this, they are synonymous except that the area fraction of {001} crystal grains and the average crystal grain size on the surface of the molded product are used as conditions.
Similarly, the conditions indicated by the above (C) or (D) are the same as the conditions indicated by the above (A) or (B) described in the method for producing a molded product of the second invention, and the metal before the forming process. It is synonymous except that instead of the plate, the area fraction of crystal grains other than {111} crystal grains and the average crystal grain size on the surface of the molded product are used as conditions.

以上説明したように、第一及び第二の本発明の成形品は、上記各要件を満たすことで、第一及び第二の本発明の成形品の製造方法により成形された成形品と見なすことができる。そして、第一及び第二の本発明の成形品は、fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品であって、式:10≦(D1−D2)/D1×100≦30の条件、又は、式:10≦(H1−H2)/H1×100≦30の条件を満たした成形品であっても、肌荒れの発生が抑制され意匠性に優れた成形品となる。   As described above, the molded product of the first and second inventions can be regarded as a molded product formed by the manufacturing method of the molded product of the first and second inventions by satisfying the above requirements. Can do. The molded product of the first and second inventions is a molded product of a metal plate having an fcc structure and a shape in which biaxial tensile deformation has occurred, and the formula: 10 ≦ (D1-D2) / D1 Even if the molded product satisfies the condition of x100 ≦ 30 or the formula: 10 ≦ (H1−H2) / H1 × 100 ≦ 30, the occurrence of rough skin is suppressed and the molded product is excellent in design. Become.

<第一の参考例>
[成形品の成形]
次に、表2に示す特性を持つ鋼板(bcc構造を有する鋼板)に対して、次に張り出し加工を施し、図11に示すように、成形品20の天板部20Aの直径R=150mm、成形品20の高さH=18mm、成形品20の縦壁部20Bの角度θ=90℃の皿状の成形品No.1〜5、8、10を成形した。また、成形品20の高さH=15mmとした以外は、成形品No.1〜5、8、10と同様にして、成形品No.6〜7、9を成形した。
なお、この成形は、天板部20Aとなる鋼板の板厚減少率(図11中、天板部20Aの評価部A(天板部20Aの中心部)の板厚減少率)が表2に示す板厚減少率となる加工量で実施した。
<First Reference Example>
[Molding of molded products]
Next, the steel sheet having the characteristics shown in Table 2 (steel having a bcc structure) is then subjected to an extension process, and as shown in FIG. 11, the diameter R of the top plate portion 20A of the molded product 20 is 150 mm, A dish-shaped molded product No. No. 20 having a height H = 18 mm of the molded product 20 and an angle θ of the vertical wall portion 20B of the molded product 20 = 90 ° C. 1-5, 8, 10 were molded. In addition, except for the height H of the molded product 20 being 15 mm, the molded product No. In the same manner as in Nos. 1-5, 8, 10 6-7 and 9 were shape | molded.
In addition, in this shaping | molding, the plate | board thickness reduction | decrease rate (The plate | board thickness reduction | decrease rate of the evaluation part A of the top plate part 20A (center part of the top plate part 20A) in FIG. It was carried out with a processing amount that gave the plate thickness reduction rate shown.

[評価方法]
得られた各鋼板、及び各成形品に対して、次の測定試験及び目視評価を行った。結果を表2及び表3に示す。
[Evaluation method]
The following measurement test and visual evaluation were performed on each obtained steel sheet and each molded product. The results are shown in Tables 2 and 3.

[平均結晶粒径の測定試験]
鋼板に対して、{001}結晶粒の平均結晶粒径の測定試験を実施した。測定試験には、EBSD法を用いた。図12は、鋼板を上部から観察した模式図である。図12を参照して、鋼板の幅方向における、端から1/4より中心部において、1mm四方の測定領域4を任意に3箇所選んだ。それぞれの測定領域4において、鋼板の表面での、鋼板表面と平行な{001}面から15°以内の結晶方位を持つ結晶粒({001}結晶粒3)を選択した。
[Measurement test of average grain size]
A measurement test of the average crystal grain size of {001} crystal grains was performed on the steel sheet. The EBSD method was used for the measurement test. FIG. 12 is a schematic view of the steel plate observed from above. Referring to FIG. 12, three measurement areas 4 each having a 1 mm square were selected arbitrarily in the center portion from ¼ in the width direction of the steel plate. In each measurement region 4, a crystal grain ({001} crystal grain 3) having a crystal orientation within 15 ° from a {001} plane parallel to the steel sheet surface on the surface of the steel sheet was selected.

上述のとおり、{001}結晶粒3の平均結晶粒径を算出した。測定は、3箇所の測定領域4における、全ての{001}結晶粒3に対して行った。得られた{001}結晶粒3の結晶粒径の算術平均を、平均結晶粒径とした。なお、成形品の表面における{001}結晶粒3の平均結晶粒径も、鋼板の{001}結晶粒3の平均結晶粒径と同様の値となる。   As described above, the average crystal grain size of {001} crystal grain 3 was calculated. The measurement was performed on all {001} crystal grains 3 in three measurement regions 4. The arithmetic average of the crystal grain sizes of the {001} crystal grains 3 obtained was defined as the average crystal grain size. In addition, the average crystal grain size of {001} crystal grains 3 on the surface of the molded product is the same value as the average crystal grain size of {001} crystal grains 3 of the steel plate.

[面積分率の測定試験]
鋼板に対して、{001}結晶粒の面積分率の測定試験を実施した。上述のとおり、鋼板から測定領域4を選び、EBSD法を用いて、{001}結晶粒3を選択した。各視野において、{001}結晶粒3の面積分率を算出し、その平均値を求めた。なお、成形品の{001}結晶粒3の面積分率も、鋼板の{001}結晶粒3の面積分率と同様の値となる。
[Area fraction measurement test]
A measurement test of the area fraction of {001} crystal grains was performed on the steel sheet. As described above, the measurement region 4 was selected from the steel sheet, and {001} crystal grains 3 were selected using the EBSD method. In each field of view, the area fraction of {001} crystal grains 3 was calculated, and the average value was obtained. Note that the area fraction of {001} crystal grains 3 of the formed product is the same value as the area fraction of {001} crystal grains 3 of the steel plate.

[板厚の測定試験]
成形品に対して、板厚の測定試験を行った。具体的には、成形品のコンピュータによる成形シミュレーションを実施し、板厚が最大及び最小となる部位を特定した。その後、成形品の板厚測定を板厚が最大及び最小となる部位それぞれにおいて、板厚ゲージを使用し、測定した。これにより、最大板厚D1、最小板厚D2を求めた。ただし、最大板厚D1は、成形品(成形品全体)の最大板厚を求め、最小板厚D2は、成形品の評価部の最小板厚を求めた。
[Thickness measurement test]
A thickness thickness measurement test was performed on the molded product. Specifically, a molding simulation by a computer of a molded product was performed, and a portion where the plate thickness was maximum and minimum was specified. Thereafter, the thickness of the molded product was measured by using a thickness gauge at each of the portions where the thickness was maximum and minimum. Thus, the maximum plate thickness D1 and the minimum plate thickness D2 were obtained. However, the maximum plate thickness D1 determined the maximum plate thickness of the molded product (the entire molded product), and the minimum plate thickness D2 calculated the minimum plate thickness of the evaluation part of the molded product.

[硬度の測定試験]
成形品に対して、硬度の測定試験を行った。具体的には、成形品のコンピュータによる成形シミュレーションを実施し、相当塑性ひずみが最大及び最小となる部位を特定した。その後、成形品の硬度測定を板厚が最大及び最小となる部位それぞれにおいて、JIS規格(JIS Z 2244)に従い、測定した。これにより、最大硬度H1、最小硬度H2を求めた。ただし、最大硬度H1は、成形品(成形品全体)の最大硬度を求め、最小硬度H2は、成形品の評価部の最小硬度を求めた。
[Measurement test of hardness]
A hardness measurement test was performed on the molded product. Specifically, a molding simulation by a computer of the molded product was performed, and a portion where the equivalent plastic strain was maximum and minimum was specified. Thereafter, the hardness of the molded product was measured in accordance with the JIS standard (JIS Z 2244) at each of the portions where the plate thickness was maximum and minimum. Thereby, the maximum hardness H1 and the minimum hardness H2 were obtained. However, the maximum hardness H1 calculated | required the maximum hardness of the molded article (the whole molded article), and minimum hardness H2 calculated | required the minimum hardness of the evaluation part of a molded article.

[凹凸高さ測定試験]
成形品に対して、成形品表面の凹凸高さの測定試験を行った。具体的には、成形品の評価部を切出し、接触式の粗さ計で、長手方位の凹凸を計測した。結晶方位を確認するために凹凸が最も顕著な部分を、クロスセクションポリッシャ(Cross section polisher)加工を用いて切断し、表層の結晶方位と凹凸の関係を分析した。
[Unevenness measurement test]
A measurement test of the uneven height on the surface of the molded product was performed on the molded product. Specifically, the evaluation part of the molded product was cut out, and unevenness in the longitudinal direction was measured with a contact-type roughness meter. In order to confirm the crystal orientation, the portion with the most prominent irregularities was cut using a cross section polisher, and the relationship between the crystal orientation of the surface layer and the irregularities was analyzed.

[目視評価]
本来、化成処理後電着塗装を行うが、簡易的評価手法として、ラッカースプレーを均一に成形品の表面を塗装したのち、目視にて観察し、下記基準に従って、肌荒れの発生度合と評価面の鮮鋭度について調べた。
さらに、表面性状の優劣を示す他のパラメータとして、算術平均うねりWaの値をKeyence社製レーザーマイクロスコープにより測定した。測定条件は,評価長さを1.25mm,カットオフ波長λcを0.25mmとした。そして、カットオフ波長λcよりも長波長側のプロファイルを評価した。
評価基準は、以下の通りである。
A(◎): 成形品の天板部の評価部表面に目視で模様が確認されず、表面に艶があるもの(Wa≦0.5μm)。自動車外板部品としてより望ましく、高級車の外板部品としても利用できる。
B(○): 成形品の天板部の評価部表面に目視で模様が確認されないが、表面の艶が消えているもの(0.5μm<Wa≦1.0μm)。自動車部品として利用できる。
C(△): 成形品の天板部の評価部表面に目視で模様が確認されるが、表面に艶があるもの(1.0μm<Wa≦1.5μm)。自動車の外板部品として利用できない。
D(×): 成形品の天板部の評価部表面に目視で模様が確認され、表面に艶がないもの(1.5μm<Wa)。自動車の部品として利用できない。
[Visual evaluation]
Originally, electrodeposition coating is performed after chemical conversion treatment, but as a simple evaluation method, the surface of the molded product is uniformly coated with lacquer spray, then visually observed, and according to the following criteria, the degree of occurrence of rough skin and the evaluation surface The sharpness was examined.
Furthermore, as another parameter indicating the superiority or inferiority of the surface property, the value of arithmetic mean waviness Wa was measured with a laser microscope manufactured by Keyence. The measurement conditions were an evaluation length of 1.25 mm and a cutoff wavelength λc of 0.25 mm. Then, the profile on the longer wavelength side than the cutoff wavelength λc was evaluated.
The evaluation criteria are as follows.
A ((double-circle)): A pattern is not visually confirmed on the evaluation part surface of the top plate part of a molded article, and the surface is glossy (Wa <= 0.5micrometer). It is more desirable as an automobile outer plate part, and it can be used as an outer plate part of a luxury car.
B (◯): A pattern is not visually confirmed on the surface of the evaluation part of the top plate part of the molded product, but the surface is not glossy (0.5 μm <Wa ≦ 1.0 μm). It can be used as an automobile part.
C ((triangle | delta)): Although a pattern is visually confirmed on the evaluation part surface of the top-plate part of a molded article, the surface is glossy (1.0 micrometer <Wa <= 1.5micrometer). It cannot be used as a car outer plate part.
D (x): A pattern is visually confirmed on the evaluation portion surface of the top plate portion of the molded product, and the surface is not glossy (1.5 μm <Wa). It cannot be used as a car part.


上記結果から、bcc構造を有する鋼板を成形加工した、比較参考例対応の成形品No.1、6、9に比べ、参考例対応の成形品No.2〜5、7、8、10は、肌荒れが抑制され意匠性に優れることがわかる。
ここで、参考例対応の成形品No.2、3、比較参考例対応の成形品No.1の断面ミクロ組織と表面凹凸を示す模式図を、図13〜図15に示す。図13〜図15は、成形品の断面を、EBSD法によって解析した模式図である。なお、図13〜図15中、NDは板厚方向を示し、TDは板幅方向を示す。
この図13〜図15の比較から、比較参考例対応の成形品No.1に比べ、参考例対応の成形品No.2、3は、成形品の表面の凹凸高さが低く、肌荒れが抑制され意匠性に優れることがわかる。ただし、図13と図14との比較から、成形品No.2に比べ、成形品No.3は、成形品の表面の凹凸高さが高いが、肌荒れが抑制され意匠性に優れることがわかる。これは、成形品の表面の凹凸が高くても、又は同等でも、凹部が深く微細であれば、肌荒れとして認識され難くなることもあるためである(成形品No.6と成形品No.7との比較も参照)。
参考例対応の成形品No.7と比較参考例対応の成形品No.9との比較から、{001}結晶粒の面積分率が0.20未満と低くても、{001}結晶粒の平均結晶粒径が15μm未満であれば、肌荒れが抑制され意匠性に優れることがわかる。
参考例対応の成形品No.10から、{001}結晶粒の面積分率が0.45と高くても、{001}結晶粒の平均結晶粒径が15μm未満であれば、肌荒れが抑制され意匠性に優れることがわかる。
From the above results, the molded article No. corresponding to the comparative reference example, in which a steel sheet having a bcc structure was formed. Compared to 1, 6 and 9, the molded product corresponding to the reference example No. 2-5, 7, 8, and 10 show that rough skin is suppressed and the design is excellent.
Here, the molded product No. 2, 3 and molded article No. corresponding to the comparative reference example. Schematic diagrams showing the cross-sectional microstructure of 1 and surface irregularities are shown in FIGS. 13 to 15 are schematic diagrams obtained by analyzing the cross section of the molded product by the EBSD method. 13 to 15, ND indicates the plate thickness direction, and TD indicates the plate width direction.
From the comparison of FIGS. 13 to 15, the molded product No. corresponding to the comparative reference example is obtained. Compared with No. 1, the molded product corresponding to the reference example No. Nos. 2 and 3 show that the unevenness of the surface of the molded product is low, the rough skin is suppressed, and the design is excellent. However, from comparison between FIG. 13 and FIG. 2 compared with the molded product No. 3 shows that although the unevenness of the surface of the molded product is high, the rough surface is suppressed and the design is excellent. This is because even if the unevenness of the surface of the molded product is high or equivalent, if the concave portion is deep and fine, it may be difficult to be recognized as rough skin (molded product No. 6 and molded product No. 7). See also comparison.)
Molded product no. No. 7 and Comparative Article No. From comparison with 9, even if the area fraction of {001} crystal grains is as low as less than 0.20, if the average crystal grain size of {001} crystal grains is less than 15 μm, rough skin is suppressed and the design is excellent. I understand that.
Molded product no. 10, it can be seen that even if the area fraction of {001} crystal grains is as high as 0.45, if the average crystal grain size of {001} crystal grains is less than 15 μm, rough skin is suppressed and the design is excellent.

<第二の参考例>
[成形品の成形]
次に、表4に示す特性を持つ鋼板(bcc構造を有する鋼板)に対して、張り出し加工を施した。それにより、図11に示すように、成形品20の天板部20Aの直径R=150mm、成形品20の高さH=18mm、成形品20の縦壁部20Bの角度θ=90℃の皿状の成形品No.101〜105、108を成形した。また、成形品20の高さH=15mmとした以外は、成形品No.101〜105、108と同様にして、成形品No.106〜107、109、125を成形した。
なお、この成形は、天板部20Aとなる鋼板の板厚減少率(図11中、天板部20Aの評価部A(天板部20Aの中心部)の板厚減少率)が表4に示す板厚減少率となる加工量で実施した。
<Second reference example>
[Molding of molded products]
Next, the steel sheet having the characteristics shown in Table 4 (steel having a bcc structure) was subjected to an overhanging process. Accordingly, as shown in FIG. 11, a dish having a diameter R = 150 mm of the top plate portion 20A of the molded product 20, a height H = 18 mm of the molded product 20, and an angle θ = 90 ° C. of the vertical wall portion 20B of the molded product 20. Shaped molded product No. 101-105 and 108 were molded. In addition, except for the height H of the molded product 20 being 15 mm, the molded product No. In the same manner as in 101-105, 108, the molded product No. 106-107, 109, 125 were molded.
In this molding, the thickness reduction rate of the steel plate to be the top plate portion 20A (the thickness reduction rate of the evaluation portion A of the top plate portion 20A (center portion of the top plate portion 20A) in FIG. 11) is shown in Table 4. It was carried out with a processing amount that gave the plate thickness reduction rate shown.

さらに、図11中、成形品20の天板部板20Aの評価部B(天板部20Aの中心と縁と間の中央部)の板厚減少率が、成形品No.101〜109、125の板厚減少率(図11中、天板部板20Aの評価部Aの板厚減少率)と同様となるように、成形品20の高さHを調整した以外は、成形品No.101〜109、125と同様にして、成形品No.110〜118、126を成形した。   Furthermore, in FIG. 11, the plate thickness reduction rate of the evaluation part B (the center part between the center and the edge of the top plate part 20 </ b> A) of the top plate part plate 20 </ b> A of the molded product 20 is the molded product No. Except for adjusting the height H of the molded product 20 to be the same as the plate thickness reduction rate of 101 to 109, 125 (in FIG. 11, the plate thickness reduction rate of the evaluation portion A of the top plate portion plate 20A), Molded product No. In the same manner as in 101 to 109 and 125, the molded product No. 110-118 and 126 were molded.

また、図11中、成形品20の天板部板20Aの評価部C(天板部20Aの縁部)の板厚減少率が、成形品No.101〜109、125の板厚減少率(図11中、天板部板20Aの評価部Aの板厚減少率)と同様となるように、成形品20の高さHを調整した以外は、成形品No.101〜109、125と同様にして、成形品No.119〜124、127を成形した。   In addition, in FIG. 11, the plate thickness reduction rate of the evaluation portion C (the edge of the top plate portion 20A) of the top plate portion plate 20A of the molded product 20 is the molded product No. Except for adjusting the height H of the molded product 20 to be the same as the plate thickness reduction rate of 101 to 109, 125 (in FIG. 11, the plate thickness reduction rate of the evaluation portion A of the top plate portion plate 20A), Molded product No. In the same manner as in 101 to 109 and 125, the molded product No. 119 to 124, 127 were molded.

ここで、上記成形品の成形では、成形品の評価部に相当する鋼板の表面にスクライブドサークルを転写しておき,成形前後(変形前後)のスクライブドサークルの形状変化を計測することで、最大主ひずみ、最小主ひずみを計測した。それらの値から,成形品の評価部での変形比βを算出した.   Here, in the molding of the molded product, the scribed circle is transferred to the surface of the steel plate corresponding to the evaluation part of the molded product, and the shape change of the scribed circle before and after molding (before and after deformation) is measured, Maximum principal strain and minimum principal strain were measured. From these values, the deformation ratio β in the evaluation part of the molded product was calculated.

[評価方法]
使用した各鋼板、及び得られた各成形品に対して、1){111}結晶粒以外の結晶粒の平均結晶粒径及び面積分率、2)板厚の測定試験、3)硬度の測定試験、4)凹凸高さ測定試験、5)目視評価を、第一の参考例に準じて行った。結果を表4及び表5に示す。
[Evaluation method]
For each steel plate used and each molded product obtained, 1) average crystal grain size and area fraction of crystal grains other than {111} crystal grains, 2) thickness test, 3) hardness measurement Test, 4) Concavity and convexity height measurement test, 5) Visual evaluation was performed according to the first reference example. The results are shown in Tables 4 and 5.

上記結果から、比較参考例対応の成形品No.101、106、109〜110、115、118〜119、124に比べ、参考例対応の成形品No.102〜105、107〜108、111〜114、116〜117、120〜123、125〜127は、肌荒れが抑制され意匠性に優れることがわかる。
ここで、参考例対応の成形品No.102、103、比較参考例対応の成形品No.101の断面ミクロ組織と表面凹凸を示す模式図を、図16〜図18に示す。図16〜図18は、成形品の断面を、EBSD法によって解析した模式図である。なお、図16〜図18中、NDは板厚方向を示し、TDは板幅方向を示す。
この図16〜図18の比較から、比較参考例対応の成形品No.101に比べ、参考例対応の成形品No.102、103は、成形品の表面の凹凸高さが低く、肌荒れが抑制され意匠性に優れることがわかる。ただし、図16と図17との比較から、成形品No.102に比べ、成形品No.103は、成形品の表面の凹凸高さが高いが、肌荒れが抑制され意匠性に優れることがわかる。これは、成形品の表面の凹凸が高くても、又は同等でも、凹部が深く微細であれば、肌荒れとして認識され難くなることもあるためである(成形品No.106と成形品No.107との比較も参照)。
そして、上記結果より、bcc構造を有する鋼板を成形加工した、参考例対応の成形品では、二軸変形場において、成形品の肌荒れが抑制されていることがわかる。
From the above results, the molded product No. 101, 106, 109 to 110, 115, 118 to 119, 124, molded article No. corresponding to the reference example. It can be seen that 102 to 105, 107 to 108, 111 to 114, 116 to 117, 120 to 123, and 125 to 127 are suppressed in rough skin and excellent in design.
Here, the molded product No. 102, 103, the molded product No. corresponding to the comparative reference example. Schematic diagrams showing 101 cross-sectional microstructure and surface irregularities are shown in FIGS. 16 to 18 are schematic diagrams obtained by analyzing the cross section of the molded product by the EBSD method. 16 to 18, ND indicates the plate thickness direction, and TD indicates the plate width direction.
From the comparison of FIGS. 16 to 18, the molded product No. corresponding to the comparative reference example. Compared to 101, the molded product corresponding to the reference example No. It can be seen that Nos. 102 and 103 have low unevenness on the surface of the molded product, and the rough surface is suppressed and the design is excellent. However, from comparison between FIG. 16 and FIG. Compared to 102, the molded product No. No. 103 has a high unevenness on the surface of the molded product, but it can be seen that rough skin is suppressed and the design is excellent. This is because even if the unevenness of the surface of the molded product is high or equivalent, if the concave portion is deep and fine, it may be difficult to be recognized as rough skin (molded product No. 106 and molded product No. 107). See also comparison.)
From the above results, it can be seen that in the molded product corresponding to the reference example, in which the steel sheet having the bcc structure is molded, the rough surface of the molded product is suppressed in the biaxial deformation field.

<実施例>
[成形品の成形シミュレーション]
参考例において使用したbcc構造を有する金属板の断面(例えば、図13〜図18)を用いて、fcc構造を有する金属板の断面の結晶粒をモデリングした。そして、fcc構造を有する金属板の断面の結晶粒の粒径を変化させると共に、{001}結晶粒又は{111}結晶粒以外の結晶粒の平均面積分率を変化させて、表6〜表7に示す特性を持つ仮想材をモデリングした。
次に、モデリングした仮想材に対して、張り出し加工による図11に示す成形品20の成形に相当する成形シミュレーションを実施した。つまり、モデリングした仮想材に対して、成形品の天板部20Aとなる仮想材の板厚減少率(図11中、天板部20Aの評価部A(天板部20Aの中心部)の板厚減少率)に相当する「相当塑性ひずみ」を付与する成形シミュレーションを実施した。
具体的には、まず、仮想材に表6〜表7に示す「相当塑性ひずみ」となる変位を付与するため、図8Bに示すモデル形状のプレス成形シミュレーション(以下、プレス成形シミュレーションという)を有限要素解析法で実施した。それにより、プレス成形シミュレーション実施後の仮想材における、「最大板厚D1(成形品の最大板厚D1に相当)」、「最小板厚D2(成形品の最小板厚D2に相当)」、最大硬度H1(成形品の最大硬度H1に相当)、及び「最小硬度H2(成形品の最小硬度H2に相当)」を算出した。
そして、このプレス成形シミュレーションに相当する仮想材の成形シミュレーションとして、仮想材の断面の左右、手前、及び奥行き方向に、表6〜表7に示す「相当塑性ひずみ」となる変位を付与し,2軸引張変形させる成形シミュレーション(以下、成形シミュレーションという)を結晶塑性有限要素解析法で実施した。
<Example>
[Molding molding simulation]
Using the cross section of the metal plate having the bcc structure used in the reference example (for example, FIGS. 13 to 18), the crystal grains of the cross section of the metal plate having the fcc structure were modeled. And while changing the grain size of the crystal grain of the cross section of the metal plate which has fcc structure, the average area fraction of crystal grains other than {001} crystal grain or {111} crystal grain is changed, and Table 6-Table A virtual material having the characteristics shown in FIG.
Next, a molding simulation corresponding to the molding of the molded product 20 shown in FIG. 11 was performed on the modeled virtual material. That is, the thickness of the virtual material that becomes the top plate portion 20A of the molded product with respect to the modeled virtual material (the plate of the evaluation portion A of the top plate portion 20A (the center portion of the top plate portion 20A) in FIG. 11). A forming simulation was performed to give "equivalent plastic strain" corresponding to (thickness reduction rate).
Specifically, first, in order to give the virtual material a displacement corresponding to “equivalent plastic strain” shown in Tables 6 to 7, a model-shaped press molding simulation shown in FIG. 8B (hereinafter referred to as a press molding simulation) is finite. The element analysis method was used. Thereby, in the virtual material after the press molding simulation, “maximum plate thickness D1 (corresponding to the maximum plate thickness D1 of the molded product)”, “minimum plate thickness D2 (corresponding to the minimum plate thickness D2 of the molded product)”, maximum Hardness H1 (corresponding to the maximum hardness H1 of the molded product) and “minimum hardness H2 (corresponding to the minimum hardness H2 of the molded product)” were calculated.
Then, as a virtual material forming simulation corresponding to the press forming simulation, a displacement corresponding to “equivalent plastic strain” shown in Tables 6 to 7 is given to the left, right, near side, and depth direction of the cross section of the virtual material. A forming simulation (hereinafter referred to as forming simulation) for axial tensile deformation was performed by a crystal plasticity finite element analysis method.

ここで、前記プレス成形シミュレーション実施後の仮想材における「最大板厚D1(成形品の最大板厚D1に相当)、及び「最小板厚D2(成形品の最小板厚D2に相当)」は、次の通りとした。
最大板厚D1は、プレス成形品の板面内で板厚が最大となる場所での板厚である。
最小板厚D2は、プレス成形品の板面内で板厚が最小となる場所での板厚である。
Here, the “maximum plate thickness D1 (corresponding to the maximum plate thickness D1 of the molded product)” and “minimum plate thickness D2 (corresponding to the minimum plate thickness D2 of the molded product)” in the virtual material after execution of the press molding simulation are: It was as follows.
The maximum plate thickness D1 is the plate thickness at the place where the plate thickness is maximum within the plate surface of the press-formed product.
The minimum plate thickness D2 is a plate thickness at a location where the plate thickness is minimum within the plate surface of the press-formed product.

また、前記プレス成形シミュレーション実施後の仮想材における「最大硬度H1(成形品の最大硬度H1に相当)、及び「最小硬度H2(成形品の最小硬度H2に相当)」は、次の通りとした。
最大硬度H1は、成形前の硬度を仮想材の平均降伏強度YP(MPa)から下記式により計算した。
・式:最大硬度H1=YP(MPa)/3
最小硬度H2は、成形後(加工硬化後)の硬度を前記仮想材の平均降伏強度YP(MPa)から下記式により計算した。
・式:最大硬度H2=YP(MPa)/3
In addition, the “maximum hardness H1 (corresponding to the maximum hardness H1 of the molded product)” and “minimum hardness H2 (corresponding to the minimum hardness H2 of the molded product)” in the virtual material after the press molding simulation was performed are as follows. .
For the maximum hardness H1, the hardness before molding was calculated from the average yield strength YP 1 (MPa) of the virtual material according to the following formula.
Formula: Maximum hardness H1 = YP 1 (MPa) / 3
For the minimum hardness H2, the hardness after molding (after work hardening) was calculated from the average yield strength YP 2 (MPa) of the virtual material according to the following formula.
Formula: Maximum hardness H2 = YP 2 (MPa) / 3

ただし、成形前の硬度を仮想材の平均降伏強度YP(MPa)は、仮想材として,6000系アルミ合金板の降伏強度とその結晶方位依存性を基に算出した。
また、成形後(加工硬化後)の硬度を仮想材の平均降伏強度YP(MPa)は、6000系アルミ合金板の機械特性を入力した前記プレス成形シミュレーションにより前記プレス成形品の板面内で板厚が最小となる場所での相当応力値を用いて算出した.
However, the hardness before forming the average yield strength YP 1 (MPa) of the virtual material was calculated based on the yield strength of the 6000 series aluminum alloy plate and its crystal orientation dependence as the virtual material.
Further, the hardness after forming (after work hardening) is the average yield strength YP 2 (MPa) of the virtual material within the plate surface of the press-formed product by the press-forming simulation in which the mechanical properties of the 6000 series aluminum alloy plate are input. It was calculated using the equivalent stress value at the place where the plate thickness was minimum.

そして、前記成形シミュレーション実施後の仮想材について、次の評価を実施した。結果を表6及び表7に示す。   And the following evaluation was implemented about the virtual material after implementation of the said shaping | molding simulation. The results are shown in Tables 6 and 7.

(凹凸高さ)
前記成形シミュレーション実施後の仮想材について、次の方法により、表面の凹凸高さを算出した。前記成形シミュレーション実施後の仮想材の表面プロファイルを仮想材の断面曲線とし,前記断面曲線の最大値と最小値から算出した.
(Uneven height)
About the virtual material after the said forming simulation implementation, the uneven | corrugated height of the surface was computed with the following method. The surface profile of the virtual material after the forming simulation was taken as the cross-sectional curve of the virtual material, and was calculated from the maximum and minimum values of the cross-sectional curve.

(断面曲線の算術平均高さPa)
前記成形シミュレーション実施後の仮想材の表面性状について、仮想材の断面曲線を得た後、断面曲線の算術平均高さPaを算出した。そして、下記評価基準で評価した。
断面曲線の算術平均高さPaは、JIS B0601(2001)に規定された算術平均高さである。測定条件は、次の通りである。
・評価長さ:1mm
・基準長さ:1mm
(Arithmetic mean height Pa of the cross section curve)
For the surface properties of the virtual material after the molding simulation, the arithmetic average height Pa of the cross-sectional curve was calculated after obtaining the cross-sectional curve of the virtual material. And it evaluated by the following evaluation criteria.
The arithmetic average height Pa of the cross-sectional curve is the arithmetic average height defined in JIS B0601 (2001). The measurement conditions are as follows.
・ Evaluation length: 1 mm
・ Standard length: 1mm

仮想材の表面性状の評価基準は、以下の通りである。
A(◎):Pa≦0.5μm(自動車外板部品としてより望ましく、高級車の外板部品としても利用できる。)
B(○):0.5μm<Pa≦1.0μm(自動車部品として利用できる。)
C(△):1.0μm<Pa≦1.5μm(自動車の外板部品として利用できない。)
D(×):1.5μm<Pa(自動車の部品として利用できない。)
The evaluation criteria for the surface properties of the virtual material are as follows.
A (◎): Pa ≦ 0.5 μm (more desirable as an automobile outer plate part, which can also be used as an outer plate part of a luxury car)
B (◯): 0.5 μm <Pa ≦ 1.0 μm (can be used as automobile parts)
C ((triangle | delta)): 1.0 micrometer <Pa <= 1.5micrometer (it cannot utilize as an outer plate | board component of a motor vehicle)
D (x): 1.5 μm <Pa (cannot be used as an automobile part)


上記結果から、上記結果から、比較例対応のNo.A1、A6、A9、A101、A106、A109に比べ、実施例対応のNo.A2〜A5、A7、A8、A10、A102〜A105、A107、A108、A110は、肌荒れが抑制され意匠性に優れることがわかる。
ここで、図19に、No.A1〜A10(図19中、丸を付した1〜10の番号で示す)の成形シミュレーション後の仮想材について、Pa評価の結果と、{001}結晶粒の平均結晶粒径及び結晶粒径との関係を示す。
上記のように、fcc構造を有する仮想材を、二軸変形が生じる成形シミュレーションを実施した結果、bcc構造を有する鋼板と同様に、fcc構造を有する金属板でも、{001}結晶粒の粒径及び面積分率、又は{111}結晶粒の粒径及び面積分率を制御することで、二軸変形が生じる成形加工を施しても、成形品の肌荒れが抑制されていることがわかる。
From the above results, it can be seen from the above results that the No. Compared with A1, A6, A9, A101, A106, A109, No. corresponding to the embodiment. It can be seen that A2 to A5, A7, A8, A10, A102 to A105, A107, A108, and A110 are suppressed in rough skin and excellent in design.
Here, in FIG. About virtual material after forming simulation of A1 to A10 (indicated by numbers 1 to 10 with circles in FIG. 19), results of Pa evaluation, and average crystal grain size and crystal grain size of {001} crystal grains The relationship is shown.
As described above, a virtual material having an fcc structure was subjected to a forming simulation in which biaxial deformation occurred, and as a result, a metal plate having an fcc structure had a grain size of {001} grains as well as a steel sheet having a bcc structure. It can be seen that, by controlling the area fraction, or the grain size and area fraction of the {111} crystal grains, the rough surface of the molded product is suppressed even when a molding process causing biaxial deformation is performed.

3 {001}結晶粒
4 {001}近傍結晶粒
3 {001} grain 4 Near {001} grain

Claims (6)

fcc構造を有し、金属板の表面において下記(a)又は(b)の条件を満たす金属板に対して、二軸引張変形が生じ、かつ前記金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施し、成形品を製造する成形品の製造方法。
(a)前記金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の面積分率が0.20以上0.35以下である。
(b)前記金属板の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の、面積分率が0.45以下、かつ平均結晶粒径が15μm以下である。
Biaxial tensile deformation occurs with respect to a metal plate having an fcc structure and satisfying the following condition (a) or (b) on the surface of the metal plate, and at least a part of the metal plate has a thickness reduction rate of 10 The manufacturing method of the molded article which gives the shaping | molding process used as% or more and 30% or less, and manufactures a molded article.
(A) The area fraction of crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the metal plate is 0.20 or more and 0.35 or less.
(B) The crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the metal plate have an area fraction of 0.45 or less and an average crystal grain size of 15 μm or less.
fcc構造を有し、金属板の表面において下記(A)又は(B)の条件を満たす金属板に対して、二軸引張変形が生じ、かつ前記金属板の少なくとも一部が板厚減少率10%以上30%以下となる成形加工を施し、成形品を製造する成形品の製造方法。
(A)前記金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の面積分率が0.25以上0.55以下である。
(B)前記金属板の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の、面積分率が0.55以下、かつ平均結晶粒径が15μm以下である。
Biaxial tensile deformation occurs with respect to a metal plate having an fcc structure and satisfying the following condition (A) or (B) on the surface of the metal plate, and at least a part of the metal plate has a thickness reduction rate of 10 The manufacturing method of the molded article which gives the shaping | molding process used as% or more and 30% or less, and manufactures a molded article.
(A) The area fraction of crystal grains other than crystal grains having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the metal plate is 0.25 or more and 0.55 or less.
(B) The area fraction of crystal grains other than crystal grains having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the metal plate is 0.55 or less and the average crystal grain size is 15 μm or less. is there.
fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品であって、
成形品の最大板厚をD1とし、成形品の最小板厚をD2としたとき、式:10≦(D1−D2)/D1×100≦30の条件を満たし、
かつ成形品の表面において下記(c)又は(d)の条件を満たす成形品。
(c)前記成形品の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の面積分率が0.20以上0.35以下である。
(d)前記成形品の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の、面積分率が0.45以下、かつ平均結晶粒径が15μm以下である。
A molded product of a metal plate having an fcc structure and a shape in which biaxial tensile deformation occurs,
When the maximum thickness of the molded product is D1 and the minimum thickness of the molded product is D2, the condition of the formula: 10 ≦ (D1−D2) / D1 × 100 ≦ 30 is satisfied,
A molded product that satisfies the following condition (c) or (d) on the surface of the molded product.
(C) The area fraction of crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the molded product is 0.20 or more and 0.35 or less.
(D) The crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the molded product have an area fraction of 0.45 or less and an average crystal grain size of 15 μm or less.
fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品であって、
成形品の最大板厚をD1とし、成形品の最小板厚をD2としたとき、式:10≦(D1−D2)/D1×100≦30の条件を満たし、
かつ成形品の表面において下記(C)又は(D)の条件を満たす成形品。
(C)前記成形品の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の面積分率が0.25以上0.55以下である。
(D)前記成形品の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の、面積分率が0.55以下、かつ平均結晶粒径が15μm以下である。
A molded product of a metal plate having an fcc structure and a shape in which biaxial tensile deformation occurs,
When the maximum thickness of the molded product is D1 and the minimum thickness of the molded product is D2, the condition of the formula: 10 ≦ (D1−D2) / D1 × 100 ≦ 30 is satisfied,
A molded product that satisfies the following condition (C) or (D) on the surface of the molded product.
(C) The area fraction of crystal grains other than crystal grains having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the molded product is 0.25 or more and 0.55 or less.
(D) The area fraction of crystal grains other than crystal grains having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the molded product is 0.55 or less and the average crystal grain size is 15 μm or less. is there.
fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品であって、
成形品の最大硬度をH1とし、成形品の最小硬度をH2としたとき、式:15≦(H1−H2)/H1×100≦40の条件を満たし、
かつ成形品の表面において下記(c)又は(d)の条件を満たす成形品。
(c)前記成形品の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の面積分率が0.20以上0.35以下である。
(d)前記成形品の表面に平行な{001}面から15°以内の結晶方位を持つ結晶粒の、面積分率が0.45以下、かつ平均結晶粒径が15μm以下である。
A molded product of a metal plate having an fcc structure and a shape in which biaxial tensile deformation occurs,
When the maximum hardness of the molded product is H1 and the minimum hardness of the molded product is H2, the condition of the formula: 15 ≦ (H1−H2) / H1 × 100 ≦ 40 is satisfied,
A molded product that satisfies the following condition (c) or (d) on the surface of the molded product.
(C) The area fraction of crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the molded product is 0.20 or more and 0.35 or less.
(D) The crystal grains having a crystal orientation within 15 ° from the {001} plane parallel to the surface of the molded product have an area fraction of 0.45 or less and an average crystal grain size of 15 μm or less.
fcc構造を有し、二軸引張変形が生じた形状の金属板の成形品であって、
成形品の最大硬度をH1とし、成形品の最小硬度をH2としたとき、式:15≦(H1−H2)/H1×100≦40の条件を満たし、
かつ成形品の表面において下記(C)又は(D)の条件を満たす成形品。
(C)前記成形品の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の面積分率が0.25以上0.55以下である。
(D)前記成形品の表面に平行な{111}面から15°以内の結晶方位を持つ結晶粒以外の結晶粒の、面積分率が0.55以下、かつ平均結晶粒径が15μm以下である。
A molded product of a metal plate having an fcc structure and a shape in which biaxial tensile deformation occurs,
When the maximum hardness of the molded product is H1 and the minimum hardness of the molded product is H2, the condition of the formula: 15 ≦ (H1−H2) / H1 × 100 ≦ 40 is satisfied,
A molded product that satisfies the following condition (C) or (D) on the surface of the molded product.
(C) The area fraction of crystal grains other than crystal grains having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the molded product is 0.25 or more and 0.55 or less.
(D) The area fraction of crystal grains other than crystal grains having a crystal orientation within 15 ° from the {111} plane parallel to the surface of the molded product is 0.55 or less and the average crystal grain size is 15 μm or less. is there.
JP2017009516A 2017-01-23 2017-01-23 Molded product manufacturing method and molded product Active JP6776908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017009516A JP6776908B2 (en) 2017-01-23 2017-01-23 Molded product manufacturing method and molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017009516A JP6776908B2 (en) 2017-01-23 2017-01-23 Molded product manufacturing method and molded product

Publications (2)

Publication Number Publication Date
JP2018118260A true JP2018118260A (en) 2018-08-02
JP6776908B2 JP6776908B2 (en) 2020-10-28

Family

ID=63043361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017009516A Active JP6776908B2 (en) 2017-01-23 2017-01-23 Molded product manufacturing method and molded product

Country Status (1)

Country Link
JP (1) JP6776908B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131875A (en) * 2018-02-02 2019-08-08 日本製鉄株式会社 Metal molded plate, draw-molding method and draw-molding die

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131875A (en) * 2018-02-02 2019-08-08 日本製鉄株式会社 Metal molded plate, draw-molding method and draw-molding die
JP7196396B2 (en) 2018-02-02 2022-12-27 日本製鉄株式会社 Ferritic steel forming plate, drawing method, and drawing die

Also Published As

Publication number Publication date
JP6776908B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
JP6156613B1 (en) Manufacturing method of molded product and molded product
US20080148799A1 (en) Molding Method for Precoated Steel Sheet
JP6766365B2 (en) Bending resistance evaluation device and evaluation method for metal plates
JP2017030038A (en) Method for manufacturing press-formed product and press-forming mold
CA2905000C (en) Ironing mold and formed material manufacturing method
KR20210135568A (en) Cutting method and parting products
WO2019194201A1 (en) Metal plate, method for manufacturing metal plate, method for manufacturing metal plate-molded article, and metal plate-molded article
JP2010172909A (en) Rolled sheet and method of manufacturing rolled sheet
JP6776908B2 (en) Molded product manufacturing method and molded product
JP2015208749A (en) Roll molding method and roll molding product
JP6319529B1 (en) Metal plate for press forming, manufacturing method thereof, and press product manufacturing method
EP3085468B1 (en) Press molding method
JP7249730B2 (en) Steel plates, tubular moldings, and stampings
EP3909697A1 (en) Press-molding method, blank member of plate-shaped material, intermediate molded article, method for manufacturing press-molded article, and press-molded article
JP6805925B2 (en) Manufacturing method of differential plate material and differential thickness plate material
JP6954211B2 (en) Metal molding plate, painted metal molding plate and molding method
US20220055085A1 (en) Press forming method
JP5520725B2 (en) Porthole extruded material for hot bulge forming and manufacturing method thereof
JP5332925B2 (en) Press molding method with excellent dimensional accuracy of molded products
JP2016087642A (en) Sear processing mold for metal sheet, design method for the same, and shearing apparatus comprising the processing mold
JP2013013911A (en) Method for producing forming member
WO2021010352A1 (en) Blank material production method, press-formed article production method, shape determination method, shape determination program, blank material production apparatus, and blank material
JP2003201534A (en) Rolled aluminum-alloy sheet for can end, and noncircular blank for can-end working
JP2017047427A (en) Blank shape determination method
JP2004276064A (en) Metal plate excellent in press formability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200921

R151 Written notification of patent or utility model registration

Ref document number: 6776908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151