JP2018116803A - Electric heater, injection device and spacecraft - Google Patents

Electric heater, injection device and spacecraft Download PDF

Info

Publication number
JP2018116803A
JP2018116803A JP2017005844A JP2017005844A JP2018116803A JP 2018116803 A JP2018116803 A JP 2018116803A JP 2017005844 A JP2017005844 A JP 2017005844A JP 2017005844 A JP2017005844 A JP 2017005844A JP 2018116803 A JP2018116803 A JP 2018116803A
Authority
JP
Japan
Prior art keywords
electric heating
heating wall
electric
heating member
wall member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017005844A
Other languages
Japanese (ja)
Inventor
紀世志 杵淵
Kiyoshi Kinebuchi
紀世志 杵淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2017005844A priority Critical patent/JP2018116803A/en
Publication of JP2018116803A publication Critical patent/JP2018116803A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1818Arrangement or mounting of electric heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1854Arrangement or mounting of grates or heating means for air heaters
    • F24H9/1863Arrangement or mounting of electric heating means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric heater capable of improving heating efficiency and reliability while restraining up-sizing.SOLUTION: An electric heater 40 includes a first electric heating member 41 generating heat by electrification, a second electric heating member 41 facing the first electric heating member 41, while forming a first flow path 51 therebetween, and generating heat by electrification, a third electric heating member 41 facing the second electric heating member 41, while forming a second flow path 51 communicating with the first flow path 51 therebetween, and generating heat by electrification, and a conduction member 42 for conducting the first electric heating member 41, the second electric heating member 41 and the third electric heating member 41 each other, where the first electric heating member 41, the second electric heating member 41 and the third electric heating member 41 are formed integrally.SELECTED DRAWING: Figure 1

Description

本発明は、電熱ヒータ、噴射装置及び宇宙機に関する。   The present invention relates to an electric heater, an injection device, and a spacecraft.

人工衛星や惑星探査機などの宇宙機では、姿勢制御や軌道変更にスラスタが用いられる。スラスタには、推力電力比や比推力が異なる複数の形態があり、その一形態としてレジストジェットが知られている。レジストジェットは、電熱ヒータにより推進剤を加熱して噴射する電熱加速型の電気推進装置(噴射装置)の一種である。レジストジェットでは、推進剤が高温であるほど高性能となるため、電気エネルギーを推進剤の熱エネルギーに効率良く変換することが重要となる。
電熱ヒータの方式としては、例えば、下記非特許文献1に示されているように、Coil式やHeated Wall式、Conglomerate式、Solid Body式などがある(具体例としては、例えば下記非特許文献2参照)。従来のレジストジェットはCoil式が主であり、細線をコイル状に形成してなるヒータにより推進剤を加熱する。Coil式に用いられるコイルには、例えば、下記特許文献1に記載された構成が考えられる。
また、レジストジェットの他の形態として、下記特許文献2に記載の構成も知られている。このレジストジェットでは、プラグノズルに中空部を形成し、この中空部を加熱部としてノズルを直接加熱している。下記特許文献2では、このようなレジストジェットにより、構造を複雑化することなく、推進剤の加熱に適した温度分布を実現するとしている。
In spacecraft such as artificial satellites and planetary probes, thrusters are used for attitude control and orbit change. The thruster has a plurality of forms with different thrust power ratios and specific thrusts, and a resist jet is known as one form thereof. The resist jet is a kind of electrothermal acceleration type electric propulsion apparatus (injection apparatus) that injects a propellant heated by an electric heater. In the resist jet, the higher the temperature of the propellant, the higher the performance. Therefore, it is important to efficiently convert electric energy into the thermal energy of the propellant.
As a method of the electric heater, for example, as shown in Non-Patent Document 1 below, there are a Coil type, a Heated Wall type, a Conmomerate type, a Solid Body type, and the like (specific examples include, for example, Non-Patent Document 2 below) reference). Conventional resist jets are mainly of the coil type, and the propellant is heated by a heater in which fine wires are formed in a coil shape. For the coil used in the coil system, for example, a configuration described in Patent Document 1 below can be considered.
Moreover, the structure of the following patent document 2 is also known as another form of a resist jet. In this resist jet, a hollow portion is formed in the plug nozzle, and the nozzle is directly heated by using the hollow portion as a heating portion. In Patent Document 2 described below, such a resist jet realizes a temperature distribution suitable for heating the propellant without complicating the structure.

米国特許出願公開第2010/0171411号明細書US Patent Application Publication No. 2010/0171411 国際公開第2006/093198号International Publication No. 2006/093198

Robert G.Jahn、“Physics of Electric Propulsion”、(米国)、McGraw−Hill Inc.、1968年、p.103−110Robert G. Jahn, “Physics of Electric Propulsion”, (USA), McGraw-Hill Inc. 1968, p. 103-110 J.A.DONOVAN、外2名、“FABRICATION AND PRELIMINARY TESTING OF A 3kW HYDROGEN RESISTOJET”、AIAA Paper、(米国)、米国航空宇宙工学協会(AIAA)、1972年4月、No.72−449J. et al. A. DONOVAN, two others, “FABRICATION AND PRELIMINARY TESTING OF A 3kW HYDROGEN RESISTOJET”, AAAA Paper, (USA), American Aerospace Engineering Association (AIAA), April 1972, No. 72-449

前記特許文献1に記載のようなコイルを適用したCoil式のレジストジェットでは、例えば、エネルギーの変換効率及び電気抵抗を高める目的で、コイルを形成する細線を細くした場合など、寿命が短くなる上に断線などの不具合も絶えず、信頼性が低い。一方で、細線を保護すると効率が低下する。
また、前記特許文献2に記載のレジストジェットでは、加熱効率を上げるためには装置の大型化を伴う。また、例えば熱伝導リブ等を設けると、流体の流路自体が複雑化し、加熱ムラが発生したり、強い衝撃に対する強度が低下したりする。
In the coil type resist jet to which the coil as described in Patent Document 1 is applied, for example, when the thin wire forming the coil is made thin for the purpose of increasing the energy conversion efficiency and the electric resistance, the life is shortened. In addition, there are constant problems such as disconnection, and the reliability is low. On the other hand, the efficiency decreases when the fine wires are protected.
Further, the resist jet described in Patent Document 2 is accompanied by an increase in the size of the apparatus in order to increase the heating efficiency. Further, for example, when a heat conducting rib or the like is provided, the fluid flow path itself is complicated, heating unevenness occurs, and the strength against a strong impact is reduced.

本発明は、前述した事情に鑑みてなされたものであって、大型化を抑えつつ、加熱効率及び信頼性を向上させることができる電熱ヒータを提供することを目的とする。   This invention is made | formed in view of the situation mentioned above, Comprising: It aims at providing the electric heater which can improve heating efficiency and reliability, suppressing an enlargement.

前記課題を解決するために、本発明は以下の手段を提案している。
本発明に係る電熱ヒータは、通電により発熱する第1の電熱部材と、前記第1の電熱部材と対向し、前記第1の電熱部材との間に第1の流路を形成するとともに、通電により発熱する第2の電熱部材と、前記第2の電熱部材と対向し、前記第2の電熱部材との間に、前記第1の流路と連通する第2の流路を形成するとともに、通電により発熱する第3の電熱部材と、前記第1の電熱部材、前記第2の電熱部材及び前記第3の電熱部材を互いに導通する導通部材と、を備え、前記第1の電熱部材、前記第2の電熱部材及び前記第3の電熱部材が一体的に形成されている。
In order to solve the above problems, the present invention proposes the following means.
The electric heater according to the present invention is a first electric heating member that generates heat upon energization, and is opposed to the first electric heating member and forms a first flow path between the first electric heating member and energization. Forming a second flow path that communicates with the first flow path between the second electric heating member that generates heat due to the second electric heating member and facing the second electric heating member; A third electric heating member that generates heat by energization; and a conductive member that electrically connects the first electric heating member, the second electric heating member, and the third electric heating member, the first electric heating member, The second electric heating member and the third electric heating member are integrally formed.

本発明に係る電熱ヒータでは、前記導通部材と、前記第1の電熱部材、前記第2の電熱部材及び前記第3の電熱部材とが、同一の発熱材料で構成されかつ一体的に形成されてもよい。   In the electric heater according to the present invention, the conducting member, the first electric heating member, the second electric heating member, and the third electric heating member are made of the same heat generating material and integrally formed. Also good.

本発明に係る電熱ヒータでは、前記第1の電熱部材、前記第2の電熱部材及び前記第3の電熱部材が、互いに同軸に配置された筒状の電熱部材であってもよい。   In the electric heater according to the present invention, the first electric heating member, the second electric heating member, and the third electric heating member may be cylindrical electric heating members arranged coaxially with each other.

本発明に係る電熱ヒータでは、前記第1の流路及び前記第2の流路が、前記第2の電熱部材を貫通する連通孔を介して連通してもよい。   In the electric heater according to the present invention, the first flow path and the second flow path may communicate with each other through a communication hole penetrating the second electric heating member.

本発明に係る電熱ヒータでは、前記第1の電熱部材、前記第2の電熱部材及び前記第3の電熱部材のうちの少なくとも1つに凹凸部が形成されてもよい。   In the electric heater according to the present invention, an uneven portion may be formed on at least one of the first electric heating member, the second electric heating member, and the third electric heating member.

本発明に係る噴射装置は、前記電熱ヒータと、少なくとも一部が複数の前記第1の流路及び前記第2の流路によって形成された加熱流路を通過した流体が供給されるノズルと、前記電熱ヒータを収容する容器と、を有する。   The injection device according to the present invention includes the electric heater, and a nozzle to which a fluid that has passed through a heating channel formed at least partially by the plurality of the first channel and the second channel, A container for housing the electric heater.

本発明に係る宇宙機は、前記噴射装置により形成されたスラスタを有する。   The spacecraft according to the present invention includes a thruster formed by the jetting device.

本発明に係る電熱ヒータ及び噴射装置によれば、大型化を抑えつつ、加熱効率及び信頼性を向上させることができる。
さらに、本発明に係る電熱ヒータ及び噴射装置をスラスタとして利用した場合、高比推力においても高い推進効率を実現できることから、このスラスタを宇宙機に適用することによって、高比推力により少ない燃料消費を達成しつつ、所定の軌道へ宇宙機を移動させるための遷移期間を従来よりも大幅に短くすることが可能となる。
According to the electric heater and the injection device according to the present invention, it is possible to improve heating efficiency and reliability while suppressing an increase in size.
Furthermore, when the electric heater and the injection device according to the present invention are used as a thruster, a high propulsive efficiency can be realized even at a high specific thrust. While achieving this, the transition period for moving the spacecraft to a predetermined orbit can be made significantly shorter than before.

本発明の第1実施形態に係る噴射装置の断面図である。It is sectional drawing of the injection apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る噴射装置の変形例であって、電熱ヒータの一部を拡大した状態を示す断面図である。It is a modification of the injection device concerning a 1st embodiment of the present invention, and is a sectional view showing the state where a part of electric heater was expanded. 本発明の第2実施形態に係る噴射装置の断面図である。It is sectional drawing of the injection apparatus which concerns on 2nd Embodiment of this invention. 図3に示す噴射装置を構成する電熱ヒータの斜視図である。It is a perspective view of the electric heater which comprises the injection apparatus shown in FIG. 本発明の第3実施形態に係る宇宙機の一部を示す模式図である。It is a schematic diagram which shows a part of spacecraft concerning 3rd Embodiment of this invention.

(第1実施形態)
図1を参照し、本発明の第1実施形態に係る噴射装置10を説明する。
(First embodiment)
With reference to FIG. 1, the injection apparatus 10 which concerns on 1st Embodiment of this invention is demonstrated.

図1に示すように、噴射装置10は、外部から供給される流体Fを加熱して噴射する。例えば、この噴射装置10を宇宙機のスラスタとして用いる場合、流体Fには推進剤が適用される。推進剤には、液体、気体を問わず、種々の流体を採用することができる。推進剤としては、例えば、ヒドラジンや水素、アンモニア、ヘリウム、窒素、キセノン、炭化水素、フロン、亜酸化窒素などが挙げられる。推進剤としてヒドラジン等を採用した場合、触媒反応による発熱エネルギーにより推進剤を加熱することもできる。また推進剤として、HANやADNといった低毒性の高性能推進剤を採用することもできる。   As shown in FIG. 1, the injection device 10 heats and injects the fluid F supplied from the outside. For example, when this injection device 10 is used as a thruster of a spacecraft, a propellant is applied to the fluid F. Various fluids can be adopted as the propellant regardless of liquid or gas. Examples of the propellant include hydrazine, hydrogen, ammonia, helium, nitrogen, xenon, hydrocarbon, chlorofluorocarbon, and nitrous oxide. When hydrazine or the like is employed as the propellant, the propellant can be heated by heat generated by the catalytic reaction. Moreover, as a propellant, a low-toxic high-performance propellant such as HAN or ADN can be employed.

噴射装置10は、電熱ヒータ40と、ノズル11と、一対の電極12、13と、絶縁体14と、弾性シール15と、容器16と、電源17と、を備えている。
電熱ヒータ40は、電気エネルギーを熱エネルギーに変換し、流体Fを加熱してノズル11に供給する。電熱ヒータ40は、3つ以上の電熱壁部材41(以下、「複数の電熱壁部材41」という。)と、導通部材42と、閉塞部材43と、を備えている。なお、電熱壁部材41は、本発明における電熱部材である。
The injection device 10 includes an electric heater 40, a nozzle 11, a pair of electrodes 12 and 13, an insulator 14, an elastic seal 15, a container 16, and a power source 17.
The electric heater 40 converts electric energy into heat energy, heats the fluid F, and supplies it to the nozzle 11. The electric heater 40 includes three or more electric heating wall members 41 (hereinafter referred to as “a plurality of electric heating wall members 41”), a conduction member 42, and a closing member 43. The electric heating wall member 41 is an electric heating member in the present invention.

複数の電熱壁部材41は、互いに間隔をあけて並設され、互いに導通されている。各電熱壁部材41は、通電により発熱する。複数の電熱壁部材41は、互いに同軸に配置された筒状に形成されている。これにより、電熱ヒータ40は、多重筒状に形成されている。以下では、電熱ヒータ40の軸方向を軸方向Dといい、電熱ヒータ40の径方向を単に径方向といい、電熱ヒータ40の周方向を単に周方向という。   The plurality of heating wall members 41 are juxtaposed at intervals and are electrically connected to each other. Each electric heating wall member 41 generates heat when energized. The plurality of electric heating wall members 41 are formed in a cylindrical shape arranged coaxially with each other. Thereby, the electric heater 40 is formed in the multiple cylinder shape. Hereinafter, the axial direction of the electric heater 40 is referred to as an axial direction D, the radial direction of the electric heater 40 is simply referred to as a radial direction, and the circumferential direction of the electric heater 40 is simply referred to as a circumferential direction.

本実施形態では、複数の電熱壁部材41として、6つの電熱壁部材41が備えられている。電熱壁部材41としては、径方向の外側から内側に向けて順に、第1電熱壁部材41a、第2電熱壁部材41b、第3電熱壁部材41c、第4電熱壁部材41d、第5電熱壁部材41e及び第6電熱壁部材41fが備えられている。互いに対向する電熱壁部材41同士の間には、部材間流路51が形成されている。部材間流路51は、本発明における流路である。部材間流路51としては、径方向の外側から内側に向けて順に、第1部材間流路51a、第2部材間流路51b、第3部材間流路51c、第4部材間流路51d及び第5部材間流路51eが備えられている。   In the present embodiment, six heating wall members 41 are provided as the plurality of heating wall members 41. As the heating wall member 41, the first heating wall member 41a, the second heating wall member 41b, the third heating wall member 41c, the fourth heating wall member 41d, and the fifth heating wall are sequentially arranged from the outer side to the inner side in the radial direction. A member 41e and a sixth electric heating wall member 41f are provided. An inter-member flow path 51 is formed between the heating wall members 41 facing each other. The inter-member flow path 51 is a flow path in the present invention. As the inter-member flow path 51, the first inter-member flow path 51a, the second inter-member flow path 51b, the third inter-member flow path 51c, and the fourth inter-member flow path 51d are sequentially arranged from the outer side to the inner side in the radial direction. And a fifth inter-member flow path 51e.

第1部材間流路51aは、第1電熱壁部材41aと第2電熱壁部材41bとの間に形成されている。第2部材間流路51bは、第2電熱壁部材41bと第3電熱壁部材41cとの間に形成されている。第3部材間流路51cは、第3電熱壁部材41cと第4電熱壁部材41dとの間に形成されている。第4部材間流路51dは、第4電熱壁部材41dと第5電熱壁部材41eとの間に形成されている。第5部材間流路51eは、第5電熱壁部材41eと第6電熱壁部材41fとの間に形成されている。   The first inter-member flow path 51a is formed between the first electric heating wall member 41a and the second electric heating wall member 41b. The flow path 51b between the second members is formed between the second heating wall member 41b and the third heating wall member 41c. The third inter-member flow path 51c is formed between the third electric heating wall member 41c and the fourth electric heating wall member 41d. The fourth inter-member flow path 51d is formed between the fourth electric heating wall member 41d and the fifth electric heating wall member 41e. The fifth inter-member flow path 51e is formed between the fifth electric heating wall member 41e and the sixth electric heating wall member 41f.

導通部材42は、互いに対向する電熱壁部材41同士を導通する。導通部材42は、互いに対向する電熱壁部材41同士を周方向の全周にわたって連続して連結している。導通部材42は、部材間流路51を軸方向Dに閉塞している。本実施形態では、導通部材42として、径方向の外側から内側に向けて順に、第1導通部材42a、第2導通部材42b、第3導通部材42c、第4導通部材42d及び第5導通部材42eが備えられている。   The conducting member 42 conducts the heating wall members 41 facing each other. The conductive member 42 continuously connects the electrically heated wall members 41 facing each other over the entire circumference in the circumferential direction. The conducting member 42 closes the inter-member flow path 51 in the axial direction D. In this embodiment, as the conducting member 42, the first conducting member 42a, the second conducting member 42b, the third conducting member 42c, the fourth conducting member 42d, and the fifth conducting member 42e are sequentially arranged from the outside in the radial direction toward the inside. Is provided.

第1導通部材42aは、第1電熱壁部材41aと第2電熱壁部材41bとを連結し、第1部材間流路51aを閉塞している。第2導通部材42bは、第2電熱壁部材41bと第3電熱壁部材41cとを連結し、第2部材間流路51bを閉塞している。第3導通部材42cは、第3電熱壁部材41cと第4電熱壁部材41dとを連結し、第3部材間流路51cを閉塞している。第4導通部材42dは、第4電熱壁部材41dと第5電熱壁部材41eとを連結し、第4部材間流路51dを閉塞している。第5導通部材42eは、第5電熱壁部材41eと第6電熱壁部材41fとを連結し、第5部材間流路51eを閉塞している。   The first conduction member 42a connects the first heating wall member 41a and the second heating wall member 41b, and closes the first inter-member flow path 51a. The 2nd conduction member 42b connects the 2nd heating wall member 41b and the 3rd heating wall member 41c, and obstructs channel 2b between the 2nd members. The third conducting member 42c connects the third electric heating wall member 41c and the fourth electric heating wall member 41d, and closes the inter-third member channel 51c. The fourth conducting member 42d connects the fourth electric heating wall member 41d and the fifth electric heating wall member 41e, and closes the fourth inter-member flow path 51d. The fifth conducting member 42e connects the fifth electric heating wall member 41e and the sixth electric heating wall member 41f, and closes the fifth inter-member flow path 51e.

各導通部材42は、互いに対向する電熱壁部材41における軸方向Dの端部同士を連結している。第1導通部材42a、第3導通部材42c及び第5導通部材42eは、軸方向Dの一方側D1の端部同士を連結し、第2導通部材42b及び第4導通部材42dは、軸方向Dの他方側D2の端部同士を連結している。その結果、本実施形態では、軸方向Dの一方側D1に位置する導通部材42(第1導通部材42a、第3導通部材42c及び第5導通部材42e)と、他方側D2に位置する導通部材42(第2導通部材42b及び第4導通部材42d)とが、径方向に交互に配置されている。第1導通部材42a、第3導通部材42c及び第5導通部材42eはそれぞれ、第1部材間流路51a、第3部材間流路51c、及び第5部材間流路51eを軸方向Dの一方側D1から閉塞し、第2導通部材42b及び第4導通部材42dはそれぞれ、第2部材間流路51b及び第4部材間流路51dを軸方向Dの他方側D2から閉塞している。なお図示の例では、第6電熱壁部材41f内も、軸方向Dの一方側D1から閉塞されている。   Each conducting member 42 connects ends in the axial direction D of the electrically heated wall members 41 facing each other. The first conducting member 42a, the third conducting member 42c, and the fifth conducting member 42e connect the ends of one side D1 in the axial direction D, and the second conducting member 42b and the fourth conducting member 42d are in the axial direction D. The ends of the other side D2 are connected to each other. As a result, in this embodiment, the conducting member 42 (the first conducting member 42a, the third conducting member 42c, and the fifth conducting member 42e) located on the one side D1 in the axial direction D and the conducting member located on the other side D2. 42 (second conducting member 42b and fourth conducting member 42d) are alternately arranged in the radial direction. The first conducting member 42a, the third conducting member 42c, and the fifth conducting member 42e are respectively connected to the first inter-member passage 51a, the third inter-member passage 51c, and the fifth inter-member passage 51e in the axial direction D. The second conducting member 42b and the fourth conducting member 42d close the second inter-member flow path 51b and the fourth inter-member flow path 51d from the other side D2 in the axial direction D, respectively. In the illustrated example, the sixth heating wall member 41f is also closed from the one side D1 in the axial direction D.

閉塞部材43は、複数の部材間流路51のうちの一部の部材間流路51を閉塞している。本実施形態では、閉塞部材43は、第2部材間流路51b及び第4部材間流路51dを閉塞するように2つ(複数)設けられている。閉塞部材43としては、第2部材間流路51bを閉塞する第2閉塞部材43bと、第4部材間流路51dを閉塞する第4閉塞部材43dと、が備えられている。   The closing member 43 closes some of the inter-member flow paths 51 among the plurality of inter-member flow paths 51. In the present embodiment, two (plural) closing members 43 are provided so as to close the second inter-member flow path 51b and the fourth inter-member flow path 51d. The closing member 43 includes a second closing member 43b that closes the second inter-member flow path 51b, and a fourth closing member 43d that closes the fourth inter-member flow path 51d.

第2閉塞部材43bは、第2部材間流路51bを軸方向Dに挟んで第2導通部材42bの反対側に配置され、第2部材間流路51bを軸方向Dの一方側D1から閉塞している。第4閉塞部材43dは、第4部材間流路51dを軸方向Dに挟んで第4導通部材42dの反対側に配置され、第4部材間流路51dを軸方向Dの一方側D1から閉塞している。各閉塞部材43は、それぞれに対応する部材間流路51を軸方向Dに挟んで導通部材42の反対側に配置されている。   The second closing member 43b is disposed on the opposite side of the second conduction member 42b with the second inter-member flow path 51b sandwiched in the axial direction D, and the second inter-member flow path 51b is closed from the one side D1 in the axial direction D. doing. The fourth closing member 43d is disposed on the opposite side of the fourth conducting member 42d with the fourth inter-member flow path 51d sandwiched in the axial direction D, and the fourth inter-member flow path 51d is closed from the one side D1 in the axial direction D. doing. Each blocking member 43 is disposed on the opposite side of the conducting member 42 with the corresponding inter-member flow path 51 sandwiched in the axial direction D.

第2閉塞部材43bは、第2電熱壁部材41bに連結され、第4閉塞部材43dは、第4電熱壁部材41dに連結されている。導通部材42が、前述のように互いに対向する電熱壁部材41同士を連結しているのに対して、閉塞部材43は、互いに対向する電熱壁部材41同士を連結していない。   The second closing member 43b is connected to the second heating wall member 41b, and the fourth closing member 43d is connected to the fourth heating wall member 41d. The conduction member 42 connects the heating wall members 41 facing each other as described above, whereas the closing member 43 does not connect the heating wall members 41 facing each other.

全ての電熱壁部材41、導通部材42及び閉塞部材43は、一体的に形成されている。なお本実施形態において、一体的に形成されていることは、対象となる製品が一体成形品により形成されていることを意味する。言い換えると、一体的に形成されていることは、二次接着や機械的接合を用いないで、部材の接合と同時に製品が一体で成形されていることを意味する。つまり本実施形態では、全ての電熱壁部材41が、一体成形品により形成されていて、二次接着や機械的接合を用いないで、全ての電熱壁部材41の接合と同時に全ての電熱壁部材41が一体で成形されている。本実施形態では、電熱ヒータ40の全体が、三次元造形技術(いわゆる3Dプリンタ)により一体的に形成されている。   All the electric heating wall members 41, the conducting members 42, and the closing members 43 are integrally formed. In the present embodiment, being integrally formed means that the target product is formed by an integrally molded product. In other words, being formed integrally means that the product is integrally formed at the same time as joining the members without using secondary bonding or mechanical joining. That is, in this embodiment, all the heating wall members 41 are formed of an integrally formed product, and all the heating wall members 41 are simultaneously joined to all the heating wall members 41 without using secondary bonding or mechanical bonding. 41 is integrally formed. In the present embodiment, the entire electric heater 40 is integrally formed by a three-dimensional modeling technique (so-called 3D printer).

全ての電熱壁部材41、導通部材42及び閉塞部材43は、同一の発熱材料で構成されかつ一体的に形成されている。発熱材料としては、高温耐性を具備している材料が好ましく、例えば、タングステン若しくはルテニウム、モリブデン、タンタル、白金、チタン、ニッケル、ニオブ、インジウム又はこれらのうちの少なくとも1つを含む合金(例えば、ニッケルを含む合金であるインコネル718(登録商標))など、種々の金属材料やカーボン等が挙げられる。発熱材料には、高温耐性の他、電気抵抗率が高いことや、流体F(推進剤)の種類に応じた適合性なども求められる。そのため、発熱材料は、電熱ヒータ40の用途や使用環境に応じて適宜選定されることが好ましい。例えば、インコネル718(登録商標)は、三次元造形が容易であること、耐熱合金であること、電気抵抗値の温度依存性がほぼ一定で扱いやすいこと等の特性があり、これらの特性が発熱材料に求められるときに、発熱材料としてインコネル718(登録商標)を好適に採用することができる。   All the electric heating wall members 41, the conducting members 42, and the closing members 43 are made of the same heat generating material and are integrally formed. As the heat generating material, a material having high-temperature resistance is preferable. For example, tungsten or ruthenium, molybdenum, tantalum, platinum, titanium, nickel, niobium, indium, or an alloy containing at least one of them (for example, nickel And various metal materials such as Inconel 718 (registered trademark), which is an alloy containing carbon, and the like. In addition to high temperature resistance, the heat generating material is required to have high electrical resistivity and suitability according to the type of fluid F (propellant). Therefore, it is preferable that the heat generating material is appropriately selected according to the application and use environment of the electric heater 40. For example, Inconel 718 (registered trademark) has characteristics such as easy three-dimensional modeling, being a heat-resistant alloy, and being easy to handle because the temperature dependence of the electrical resistance value is almost constant, and these characteristics generate heat. When required for the material, Inconel 718 (registered trademark) can be suitably employed as the heat generating material.

なお電熱ヒータ40の質量やコスト、サイズ、加熱効率などの各種の製品性能は、電熱壁部材41の総数、又は各電熱壁部材41の表面形状や軸方向Dの長さ、厚さ(壁厚)、直径などを調整することで、適宜、設計することができる。
例えば、各電熱壁部材41は、電気抵抗を確保する観点からは薄いことが望ましい。各電熱壁部材41の厚さは、例えば、造形実現性や要求剛性などにより決定され、一例として、0.1mm〜0.5mm程度とすることができる。
Various product performances such as the mass, cost, size, and heating efficiency of the electric heater 40 are the total number of the electric heating wall members 41, the surface shape of each electric heating wall member 41, the length in the axial direction D, and the thickness (wall thickness). ), By adjusting the diameter and the like, it can be designed appropriately.
For example, each heating wall member 41 is desirably thin from the viewpoint of securing electric resistance. The thickness of each electric heating wall member 41 is determined by, for example, modeling feasibility or required rigidity, and can be set to about 0.1 mm to 0.5 mm as an example.

ここで、第6電熱壁部材41f(径方向の最も内側に位置する電熱部材)の厚さ(壁厚)は、他の電熱壁部材41a、41b、41c、41d、41eの厚さ(壁厚)よりも大きい(厚い)。第6電熱壁部材41fの周長は、他の電熱壁部材41a、41b、41c、41d、41eの周長よりも小さいため、第6電熱壁部材41fの厚さが他の電熱壁部材41a、41b、41c、41d、41eの厚さと同等である場合、第6電熱壁部材41fにおける電気抵抗が他の電熱壁部材41a、41b、41c、41d、41eにおける電気抵抗よりも高くなり、第6電熱壁部材41fにおけるジュール発熱が大きくなる。第6電熱壁部材41fを他の電熱壁部材41a、41b、41c、41d、41eよりも厚くすることで、第6電熱壁部材41fにおける過度な熱上昇を抑えることができる。また、第6電熱壁部材41fには、後述するように第2電極13が接合されることから、第6電熱壁部材41fを厚くすることで第6電熱壁部材41fにおける強度を確保することも望まれている。ただし、第6電熱壁部材41fを厚くしすぎると、第6電熱壁部材41fにおける電気抵抗が低下してジュール発熱が小さくなりすぎ、流体Fから第6電熱壁部材41fに熱エネルギーが移動しまう可能性があるため、第6電熱壁部材41fにおける壁厚は適宜調整することが望まれる。   Here, the thickness (wall thickness) of the sixth electric heating wall member 41f (electric heating member located on the innermost side in the radial direction) is the thickness (wall thickness) of the other electric heating wall members 41a, 41b, 41c, 41d, and 41e. Larger than (thick). Since the circumference of the sixth electric heating wall member 41f is smaller than the circumferences of the other electric heating wall members 41a, 41b, 41c, 41d, 41e, the thickness of the sixth electric heating wall member 41f is the other electric heating wall member 41a, When the thickness is equal to the thickness of 41b, 41c, 41d, 41e, the electrical resistance in the sixth heating wall member 41f is higher than the electrical resistance in the other heating wall members 41a, 41b, 41c, 41d, 41e, and the sixth heating Joule heat generation in the wall member 41f increases. By making the sixth electric heating wall member 41f thicker than the other electric heating wall members 41a, 41b, 41c, 41d, and 41e, an excessive increase in heat in the sixth electric heating wall member 41f can be suppressed. Further, since the second electrode 13 is joined to the sixth heating wall member 41f as will be described later, it is also possible to secure the strength of the sixth heating wall member 41f by increasing the thickness of the sixth heating wall member 41f. It is desired. However, if the sixth heating wall member 41f is made too thick, the electrical resistance in the sixth heating wall member 41f is lowered and Joule heat generation becomes too small, and heat energy can be transferred from the fluid F to the sixth heating wall member 41f. Therefore, it is desirable to adjust the wall thickness of the sixth electric heating wall member 41f as appropriate.

さらに例えば、本実施形態では、各電熱壁部材41の形状が平滑形状になっているが、例えば図2に示すように、電熱壁部材41に凹凸部44を形成してもよく、電熱壁部材41の形状を凹凸状にしてもよい。凹凸部44としては、例えば図2(a)に示すような波状の凹凸部44aや、図2(b)に示すような鋸状の凹凸部44b、図2(c)に示すような階段状の凹凸部44cを採用することができる。これらの凹凸部44a、44b、44cでは、いずれも軸方向Dに凹部と凸部とが並んでいるが、図2(d)に示す凹凸部44dのように、周方向に凹部と凸部とが並んでいてもよい。図2(d)に示す電熱壁部材41では、周方向に厚肉部46と薄肉部47とが交互に配置されている。図示の例では、厚肉部46と薄肉部47とは、周方向に同じ長さで交互に繰り返されているが、これに限られない。例えば、電熱壁部材41が必要な剛性を維持した上で電気抵抗を上げるためには、薄肉部47ができる限り周方向に長いことが望ましい。厚肉部46は、薄肉部47に対して径方向に2倍程度の厚みを有する。厚肉部46は、薄肉部47に対して径方向の内側及び外側の両側に向けて張り出して凸リブを形成している。これにより、電熱壁部材41における内周面及び外周面の両側に、凹凸部44dが形成されている。凹凸部44dは、周方向の全周にわたって連続して延びている。この場合、例えば、電熱壁部材41に凹凸部44dが形成されておらず、電熱壁部材41が平滑形状である場合に比べて、加熱効率を向上させるとともに、電熱壁部材41の強度(剛性)を向上させることができる。例えば、電熱壁部材41の強度を向上させることにより、全体の材料の使用量を抑えて、電熱壁部材41において軸線に直交する断面視(以下「横断面視」という。)の断面積を小さくすることが可能になり、電熱壁部材41における電気抵抗を高めて発熱効率(加熱効率)を高めることができる。さらに、凹凸部44dによって、電熱壁部材41の表面積を増加させることも可能になり、電熱壁部材41における伝熱効率(加熱効率)を高めることもできる。なお、上記各凹凸部44a、44b、44c、44dにより流体Fの流れが乱れることで、熱伝達率が向上することも期待される。   Further, for example, in the present embodiment, the shape of each heating wall member 41 is a smooth shape. However, as shown in FIG. 2, for example, an uneven portion 44 may be formed on the heating wall member 41. The shape of 41 may be uneven. As the uneven portion 44, for example, a wavy uneven portion 44a as shown in FIG. 2A, a saw-like uneven portion 44b as shown in FIG. 2B, or a stepped shape as shown in FIG. The uneven portion 44c can be employed. In these concavo-convex portions 44a, 44b, and 44c, the concave portion and the convex portion are arranged in the axial direction D, but the concave portion and the convex portion are arranged in the circumferential direction like the concavo-convex portion 44d shown in FIG. May be lined up. In the heating wall member 41 shown in FIG. 2D, the thick portions 46 and the thin portions 47 are alternately arranged in the circumferential direction. In the illustrated example, the thick portions 46 and the thin portions 47 are alternately repeated with the same length in the circumferential direction, but the present invention is not limited thereto. For example, in order to increase the electric resistance while maintaining the required rigidity of the electric heating wall member 41, it is desirable that the thin portion 47 be as long as possible in the circumferential direction. The thick portion 46 has a thickness about twice that of the thin portion 47 in the radial direction. The thick portion 46 protrudes toward both the inside and outside in the radial direction with respect to the thin portion 47 to form a convex rib. Thereby, the uneven | corrugated | grooved part 44d is formed in the both sides of the inner peripheral surface and outer peripheral surface in the heating wall member 41. As shown in FIG. The uneven portion 44d extends continuously over the entire circumference in the circumferential direction. In this case, for example, the uneven portion 44d is not formed on the heating wall member 41, and the heating efficiency is improved and the strength (rigidity) of the heating wall member 41 is improved as compared with the case where the heating wall member 41 has a smooth shape. Can be improved. For example, by improving the strength of the electric heating wall member 41, the amount of use of the entire material is suppressed, and the electric cross section of the electric heating wall member 41 in a cross-sectional view perpendicular to the axis (hereinafter referred to as “transverse cross-sectional view”) is reduced. It is possible to increase the electric resistance in the heating wall member 41 and increase the heat generation efficiency (heating efficiency). Furthermore, it is possible to increase the surface area of the heating wall member 41 by the uneven portion 44d, and the heat transfer efficiency (heating efficiency) in the heating wall member 41 can be increased. In addition, it is expected that the heat transfer rate is improved by disturbing the flow of the fluid F due to the uneven portions 44a, 44b, 44c, and 44d.

図1に示すように、ノズル11は、流体Fを噴射する。ノズル11は、軸方向Dに延び、軸方向Dの一方側D1から他方側D2に向けて流体Fを噴射する。ノズル11における軸方向Dの中間部には、流路断面積が極小とされたスロート18が形成されている。ノズル11は、電熱ヒータ40(電熱壁部材41)と同軸に配置された筒状に形成されている。ノズル11の少なくとも一部は、電熱ヒータ40と同一の発熱材料で構成されかつ一体的に形成されている。ノズル11は、第6電熱壁部材41fにおける軸方向Dの他方側D2の端部に連結され、前記端部から他方側D2に向けて突出している。   As shown in FIG. 1, the nozzle 11 ejects a fluid F. The nozzle 11 extends in the axial direction D and ejects the fluid F from the one side D1 in the axial direction D toward the other side D2. A throat 18 having a minimum flow path cross-sectional area is formed at an intermediate portion in the axial direction D of the nozzle 11. The nozzle 11 is formed in a cylindrical shape arranged coaxially with the electric heater 40 (electric heating wall member 41). At least a part of the nozzle 11 is made of the same heat generating material as the electric heater 40 and is integrally formed. The nozzle 11 is connected to an end portion on the other side D2 in the axial direction D of the sixth electric heating wall member 41f, and protrudes from the end portion toward the other side D2.

一対の電極12、13は、電熱ヒータ40に導通されている。一対の電極12、13は、第1電極12と、第2電極13と、を備えている。
第1電極12は、電熱ヒータ40に直接的に導通されている。第1電極12は、電熱ヒータ40と同軸の環状に形成されている。第1電極12は、第1電熱壁部材41aから径方向の外側に向けて突出している。第1電極12は、第1電熱壁部材41aの軸方向Dの他方側D2の端部に連結されている。第1電極12は、電熱ヒータ40と同一の発熱材料で構成されかつ一体的に形成されている。
The pair of electrodes 12 and 13 are electrically connected to the electric heater 40. The pair of electrodes 12 and 13 includes a first electrode 12 and a second electrode 13.
The first electrode 12 is directly connected to the electric heater 40. The first electrode 12 is formed in an annular shape coaxial with the electric heater 40. The first electrode 12 protrudes outward in the radial direction from the first heating wall member 41a. The 1st electrode 12 is connected with the edge part of the other side D2 of the axial direction D of the 1st heating wall member 41a. The first electrode 12 is made of the same heat generating material as the electric heater 40 and is integrally formed.

第2電極13は、電熱ヒータ40に間接的に導通されている。第2電極13は、ノズル11を介して電熱ヒータ40に導通されている。第2電極13は、ノズル11と同軸の環状に形成されている。第2電極13は、ノズル11から径方向の外側に向けて突出している。第2電極13は、ノズル11の軸方向Dの他方側D2の端部に連結されている。第2電極13は、ノズル11とは一体的に形成されていない。第2電極13は、ノズル11と別途成形された後、例えば溶接や嵌合、螺合等によりノズル11に接合されている。第1電極12と第2電極13とは、軸方向Dに間隔をあけて対向している。   The second electrode 13 is indirectly connected to the electric heater 40. The second electrode 13 is electrically connected to the electric heater 40 through the nozzle 11. The second electrode 13 is formed in an annular shape coaxial with the nozzle 11. The second electrode 13 protrudes outward from the nozzle 11 in the radial direction. The second electrode 13 is connected to the end of the other side D <b> 2 of the nozzle 11 in the axial direction D. The second electrode 13 is not formed integrally with the nozzle 11. The second electrode 13 is formed separately from the nozzle 11 and then joined to the nozzle 11 by welding, fitting, screwing, or the like. The first electrode 12 and the second electrode 13 are opposed to each other with an interval in the axial direction D.

絶縁体14は、一対の電極12、13間に挟み込まれている。絶縁体14は、一対の電極12、13間を電気的に絶縁する。絶縁体14は、電熱ヒータ40(ノズル11)と同軸の環状に形成されている。絶縁体14は、複数の電熱壁部材41のうちの少なくとも1つの電熱壁部材41における軸方向Dの端縁に突き当たり、複数の部材間流路51のうちの少なくとも1つの部材間流路51を軸方向Dから閉塞している。本実施形態では、絶縁体14は、全ての電熱壁部材41の軸方向Dの他方側D2の端縁に突き当たっている。そして絶縁体14は、複数の部材間流路51のうち、第1部材間流路51a、第3部材間流路51c及び第5部材間流路51eを、軸方向Dの他方側D2から閉塞している。   The insulator 14 is sandwiched between the pair of electrodes 12 and 13. The insulator 14 electrically insulates the pair of electrodes 12 and 13 from each other. The insulator 14 is formed in an annular shape coaxial with the electric heater 40 (nozzle 11). The insulator 14 hits the edge in the axial direction D of the at least one heating wall member 41 of the plurality of heating wall members 41, and at least one of the plurality of member flow paths 51 among the plurality of member flow paths 51. It is closed from the axial direction D. In the present embodiment, the insulator 14 abuts against the edge of the other side D2 in the axial direction D of all the heating wall members 41. The insulator 14 blocks the first inter-member flow path 51a, the third inter-member flow path 51c, and the fifth inter-member flow path 51e from the other side D2 in the axial direction D among the plurality of inter-member flow paths 51. doing.

弾性シール15は、絶縁体14と、電熱ヒータ40または一対の電極12、13と、の間に配置されている。絶縁体14は、電熱壁部材41及び一対の電極12、13それぞれに弾性シール15を介して突き当てられている。なお図示の例では、弾性シール15は、絶縁体14において部材間流路51を閉塞する部分には配置されていない。弾性シール15は、例えば、絶縁体14に形成された溝に嵌め込むことで絶縁体14に固定してもよい。   The elastic seal 15 is disposed between the insulator 14 and the electric heater 40 or the pair of electrodes 12 and 13. The insulator 14 is abutted against the electric heating wall member 41 and the pair of electrodes 12 and 13 via the elastic seal 15. In the illustrated example, the elastic seal 15 is not disposed in a portion of the insulator 14 that closes the inter-member flow path 51. The elastic seal 15 may be fixed to the insulator 14 by, for example, fitting into a groove formed in the insulator 14.

容器16は、電熱ヒータ40を収容する。容器16は、軸方向Dに延びる筒状に形成され、本実施形態では、電熱ヒータ40と同軸に配置されている。容器16における軸方向Dの一方側D1の端部は閉塞され、他方側D2の端部は開放されている。前記他方側D2の端部は、第1電極12に突き当たっている。容器16と電熱ヒータ40との間には、外側流路53が形成されている。外側流路53は、第1電極12によって軸方向Dの他方側D2から閉塞されている。   The container 16 accommodates the electric heater 40. The container 16 is formed in a cylindrical shape extending in the axial direction D, and is arranged coaxially with the electric heater 40 in this embodiment. The end of one side D1 in the axial direction D of the container 16 is closed, and the end of the other side D2 is open. The end of the other side D2 is in contact with the first electrode 12. An outer flow path 53 is formed between the container 16 and the electric heater 40. The outer flow path 53 is closed from the other side D2 in the axial direction D by the first electrode 12.

なお、噴射装置10をスラスタとして利用する場合、高い推進効率を得るために流体Fの圧力を高めることが考えられる。このような場合であっても、本実施形態における噴射装置10では、電気抵抗(発熱効率)の観点から薄肉となるべき電熱壁部材41には圧力負荷をほとんどかけることなく、容器16が、第2電極13(フランジ)とともに加熱流路50における圧力を負担することができる。そのため、噴射装置10において、前述のように流体Fを高圧にして高い推進効率を得ることができる。   In addition, when utilizing the injection apparatus 10 as a thruster, in order to obtain high propulsion efficiency, it is possible to raise the pressure of the fluid F. FIG. Even in such a case, in the injection device 10 according to the present embodiment, the container 16 is not subjected to a pressure load on the electric heating wall member 41 that should be thin from the viewpoint of electrical resistance (heat generation efficiency). The pressure in the heating channel 50 can be borne with the two electrodes 13 (flange). Therefore, in the injection device 10, the fluid F can be set to a high pressure as described above and high propulsion efficiency can be obtained.

噴射装置10には、加熱流路50が形成されている。加熱流路50を通過した流体Fは、ノズル11に供給される。加熱流路50の少なくとも一部は、複数の部材間流路51によって形成されている。本実施形態では、加熱流路50が、外側流路53と、複数の部材間流路51と、によって形成されている。これらの各部材間流路51及び外側流路53は、各電熱壁部材41に形成された連通孔45を介して連通する。   A heating flow path 50 is formed in the injection device 10. The fluid F that has passed through the heating flow path 50 is supplied to the nozzle 11. At least a part of the heating channel 50 is formed by a plurality of inter-member channels 51. In the present embodiment, the heating channel 50 is formed by the outer channel 53 and the plurality of inter-member channels 51. The inter-member flow path 51 and the outer flow path 53 communicate with each other through a communication hole 45 formed in each electric heating wall member 41.

連通孔45は、各電熱壁部材41を貫通している。連通孔45は、各電熱壁部材41に周方向に複数形成されている。本実施形態では、連通孔45として、第1電熱壁部材41aに形成された第1連通孔45aと、第2電熱壁部材41bに形成された第2連通孔45bと、第3電熱壁部材41cに形成された第3連通孔45cと、第4電熱壁部材41dに形成された第4連通孔45dと、第5電熱壁部材41eに形成された第5連通孔45eと、第6電熱壁部材41fに形成された第6連通孔45fと、が備えられている。   The communication hole 45 passes through each electric heating wall member 41. A plurality of communication holes 45 are formed in each electric heating wall member 41 in the circumferential direction. In this embodiment, as the communication hole 45, the 1st communication hole 45a formed in the 1st heating wall member 41a, the 2nd communication hole 45b formed in the 2nd heating wall member 41b, and the 3rd heating wall member 41c. The third communication hole 45c formed in the fourth electric heating wall member 41d, the fourth communication hole 45d formed in the fourth electric heating wall member 41d, the fifth communication hole 45e formed in the fifth electric heating wall member 41e, and the sixth electric heating wall member. And a sixth communication hole 45f formed in 41f.

第1連通孔45aは、外側流路53と第1部材間流路51aとを連通する。第2連通孔45b、第3連通孔45c、第4連通孔45d及び第5連通孔45eは、各連通孔45が形成された電熱壁部材41を挟んで隣り合う部材間流路51同士を連通する。第6連通孔45fは、第5部材間流路51eと第6電熱壁部材41f内とを連通している。   The first communication hole 45a communicates the outer flow path 53 and the first inter-member flow path 51a. The second communication hole 45b, the third communication hole 45c, the fourth communication hole 45d, and the fifth communication hole 45e communicate the adjacent member flow paths 51 with the electric heating wall member 41 formed with the respective communication holes 45 interposed therebetween. To do. The sixth communication hole 45f allows communication between the fifth inter-member flow path 51e and the sixth electric heating wall member 41f.

互いに対向する電熱壁部材41に形成された連通孔45同士では、軸方向Dの位置が互いに異なっている。本実施形態では、第1連通孔45a、第3連通孔45c及び第5連通孔45eは、各電熱壁部材41における軸方向Dの他方側D2の端部に位置し、第2連通孔45b、第4連通孔45d及び第6連通孔45fは、各電熱壁部材41における軸方向Dの一方側D1の端部に位置している。その結果、本実施形態では、軸方向Dの一方側D1に位置する連通孔45(第2連通孔45b、第4連通孔45d及び第6連通孔45f)と、他方側D2に位置する連通孔45(第1連通孔45a、第3連通孔45c及び第5連通孔45e)とが、径方向に交互に配置されている。   In the communication holes 45 formed in the electrically heated wall members 41 facing each other, the positions in the axial direction D are different from each other. In the present embodiment, the first communication hole 45a, the third communication hole 45c, and the fifth communication hole 45e are located at the end of the other side D2 in the axial direction D of each electric heating wall member 41, and the second communication hole 45b, The fourth communication hole 45d and the sixth communication hole 45f are located at the end of one side D1 in the axial direction D of each electric heating wall member 41. As a result, in this embodiment, the communication hole 45 (second communication hole 45b, fourth communication hole 45d, and sixth communication hole 45f) located on one side D1 in the axial direction D and the communication hole located on the other side D2. 45 (first communication hole 45a, third communication hole 45c, and fifth communication hole 45e) are alternately arranged in the radial direction.

加熱流路50には、供給口21から流体Fが供給される。供給口21は、容器16に設けられている。供給口21は、外側流路53に連通している。供給口21は、容器16における軸方向Dの一方側D1の端部に配置されている。
供給口21から加熱流路50に供給された流体Fは、複数の部材間流路51を、径方向の外側に位置する部材間流路51から、径方向の内側に位置する部材間流路51に向けて順に通過する。本実施形態では、供給口21から加熱流路50に供給された流体Fは、外側流路53、第1連通孔45a、第1部材間流路51a、第2連通孔45b、第2部材間流路51b、第3連通孔45c、第3部材間流路51c、第4連通孔45d、第4部材間流路51d、第5連通孔45e、第5部材間流路51e、第4連通孔45d及び第6電熱壁部材41f内の順に加熱流路50を通過し、ノズル11内に供給される。このとき、電熱壁部材41を挟んで隣り合う部材間流路51では流体Fの流通方向が反転し、流体Fが複数の部材間流路51を軸方向Dの一方側D1又は他方側D2に向けて交互に流通する。
The fluid F is supplied to the heating channel 50 from the supply port 21. The supply port 21 is provided in the container 16. The supply port 21 communicates with the outer flow path 53. The supply port 21 is disposed at the end portion on the one side D <b> 1 in the axial direction D of the container 16.
The fluid F supplied from the supply port 21 to the heating flow path 50 has a plurality of inter-member flow paths 51 arranged between the inter-member flow paths 51 located outside in the radial direction and the inter-member flow paths located inside in the radial direction. Pass in turn toward 51. In the present embodiment, the fluid F supplied from the supply port 21 to the heating flow path 50 includes the outer flow path 53, the first communication hole 45a, the first inter-member flow path 51a, the second communication hole 45b, and the second member. Flow path 51b, third communication hole 45c, third member flow path 51c, fourth communication hole 45d, fourth member flow path 51d, fifth communication hole 45e, fifth member flow path 51e, fourth communication hole 45 d and the sixth heating wall member 41 f pass through the heating flow path 50 in this order, and are supplied into the nozzle 11. At this time, the flow direction of the fluid F is reversed in the channel 51 between the members adjacent to each other with the electric heating wall member 41 interposed therebetween, and the fluid F moves the channel 51 between the members to the one side D1 or the other side D2 in the axial direction D. Circulates alternately.

電源17は、一対の電極12、13を介して電熱ヒータ40に電圧を印加し、電熱ヒータ40に通電する。電源17が電熱ヒータ40に通電すると、電流Cが、複数の電熱壁部材41のうち、径方向の外側に位置する電熱壁部材41から、径方向の内側に位置する電熱壁部材41に向けて順に電熱ヒータ40に向けて流れる。本実施形態では、電流Cが、第1電極12、第1電熱壁部材41a、第1導通部材42a、第2電熱壁部材41b、第2導通部材42b、第3電熱壁部材41c、第3導通部材42c、第4電熱壁部材41d、第4導通部材42d、第5電熱壁部材41e、第5導通部材42e、第6電熱壁部材41f、ノズル11及び第2電極13の順に流れる。電熱ヒータ40及びノズル11は、電源17が一対の電極12、13に接続されたときに、電源17及び一対の電極12、13とともに一連の電気回路(閉回路)を形成する。   The power source 17 applies a voltage to the electric heater 40 through the pair of electrodes 12 and 13 and energizes the electric heater 40. When the power source 17 energizes the electric heater 40, the electric current C is directed from the electric heating wall member 41 located on the radially outer side to the electric heating wall member 41 located on the inner side in the radial direction. It flows toward the electric heater 40 in order. In the present embodiment, the current C is applied to the first electrode 12, the first heating wall member 41a, the first conduction member 42a, the second heating wall member 41b, the second conduction member 42b, the third heating wall member 41c, and the third conduction. The member 42c, the fourth heating wall member 41d, the fourth conduction member 42d, the fifth heating wall member 41e, the fifth conduction member 42e, the sixth heating wall member 41f, the nozzle 11 and the second electrode 13 flow in this order. The electric heater 40 and the nozzle 11 form a series of electric circuits (closed circuit) together with the power source 17 and the pair of electrodes 12 and 13 when the power source 17 is connected to the pair of electrodes 12 and 13.

前記噴射装置10では、流体Fが加熱流路50を流通する過程で部材間流路51を通過するときに、電熱壁部材41に通電しておくと、部材間流路51を通過する流体Fが、電熱壁部材41から生じるジュール熱によって加熱される。この噴射装置10では、部材間流路51が、互いに対向する電熱壁部材41同士の間に形成され、かつ、電熱壁部材41を挟んで隣り合う部材間流路51同士が互いに連通していることから、流体Fが加熱流路50を通過する過程で各部材間流路51を流通することで、流体Fが各電熱壁部材41により長い区間にわたって加熱される。また本実施形態のように、部材間流路51が3層以上積層されている場合などには、複数の部材間流路51のうち、径方向の中間領域に位置する一部の部材間流路51が他の部材間流路51により覆われ、この一部の部材間流路51では熱エネルギーが外部に逃げ難く、流体Fが効果的に加熱される。例えば、前記一部の部材間流路51から逃げようとする熱エネルギーによって、前記一部の部材間流路51に隣接する他の部材間流路51内の流体Fを加熱することが可能になり、熱損失を抑えて流体Fの加熱効率を高めることができる。さらに本実施形態のように、複数の電熱壁部材41が、互いに同軸に配置された筒状に形成されている場合には、複数の部材間流路51のうち、径方向の内側に位置する部材間流路51における熱エネルギーの漏出を抑えることが可能になり、流体Fが更に効果的に加熱される。   In the ejection device 10, when the electric heating wall member 41 is energized when the fluid F passes through the inter-member flow channel 51 in the process of flowing through the heating flow channel 50, the fluid F that passes through the inter-member flow channel 51. Is heated by Joule heat generated from the electric heating wall member 41. In the injection device 10, the inter-member flow path 51 is formed between the heating wall members 41 facing each other, and the inter-member flow paths 51 adjacent to each other with the heating wall member 41 in communication with each other. For this reason, the fluid F is heated by each of the heating wall members 41 over a long section by passing through the inter-member passage 51 in the process of passing the heating passage 50 through the fluid F. Further, as in the present embodiment, when three or more inter-member flow paths 51 are laminated, a part of the inter-member flow paths 51 located in an intermediate region in the radial direction among the plurality of inter-member flow paths 51. The channel 51 is covered with another inter-member flow path 51, and in this part of the inter-member flow paths 51, the heat energy hardly escapes to the outside, and the fluid F is effectively heated. For example, it is possible to heat the fluid F in the other inter-member flow paths 51 adjacent to the some inter-member flow paths 51 by the thermal energy that is about to escape from the some inter-member flow paths 51. Thus, heat loss can be suppressed and the heating efficiency of the fluid F can be increased. Further, as in the present embodiment, in the case where the plurality of heating wall members 41 are formed in a cylindrical shape arranged coaxially with each other, among the plurality of inter-member flow paths 51, they are positioned on the inside in the radial direction. It becomes possible to suppress the leakage of thermal energy in the inter-member flow path 51, and the fluid F is heated more effectively.

以上説明したように、本実施形態に係る噴射装置10によれば、流体Fを各電熱壁部材41により長い区間にわたって加熱することが可能で、かつ、一部の部材間流路51において熱エネルギーが外部に逃げ難い。したがって、加熱効率を向上させることができる。
さらに、複数の電熱壁部材41が一体に形成されていて、例えば、電熱ヒータ40を、三次元造形技術を利用して一体成形品によって形成することができる。したがって、例えば複数の電熱壁部材41を、別々に成形した後に組み合わせる場合に比べて、低コスト化及び高効率化を図りつつ、信頼性を向上させることができる。すなわち、複数の電熱壁部材41を、別々に成形した後に組み合わせる場合、例えば組み付け作業や組み付け精度などを考慮して、電熱壁部材41の壁厚や部材間流路51の流路断面積などに制約が生じ、加熱効率に影響が生じるおそれがある。さらにこのように、複数の電熱壁部材41を、別々に成形した後に組み合わせる場合(部品点数が多い場合)、例えば、ノズル11からの流体Fの噴射時などをはじめとして噴射装置10に振動が生じたときに、複数の電熱壁部材41同士が相対的に変位する等し、電熱ヒータ40に損傷が生じるおそれがあり信頼性が低下する。
As described above, according to the ejection device 10 according to the present embodiment, the fluid F can be heated by each of the heating wall members 41 over a long section, and the thermal energy in some of the inter-member flow paths 51 is obtained. Is difficult to escape to the outside. Therefore, heating efficiency can be improved.
Further, the plurality of electric heating wall members 41 are integrally formed. For example, the electric heating heater 40 can be formed as an integrally molded product using a three-dimensional modeling technique. Therefore, for example, compared with the case where the plurality of heating wall members 41 are separately molded and then combined, the reliability can be improved while reducing the cost and increasing the efficiency. That is, when combining the plurality of electric heating wall members 41 after being separately molded, for example, considering the assembling work and the accuracy of the assembly, the wall thickness of the electric heating wall member 41, the channel cross-sectional area of the channel 51 between members, etc. Restrictions may occur, which may affect the heating efficiency. Furthermore, when the plurality of heating wall members 41 are combined after being separately molded (when the number of parts is large), for example, vibration is generated in the injection device 10 such as when the fluid F is injected from the nozzle 11. In this case, the plurality of electric heating wall members 41 are relatively displaced, and the electric heater 40 may be damaged, resulting in a decrease in reliability.

また、全ての電熱壁部材41及び導通部材42が、同一の発熱材料で構成されかつ一体的に形成されている。したがって、互いに対向する電熱壁部材41同士の間を、セラミック等の電気絶縁体で接合する必要がなく、熱設計や精度管理を容易にすることができる。すなわち、互いに対向する電熱壁部材41同士の間を、熱応力等で割れ易いセラミックを介して接合する場合、熱設計や精度管理が難しくなる。   Moreover, all the heating wall members 41 and the conduction members 42 are made of the same heat generating material and are integrally formed. Therefore, it is not necessary to join between the electrically heated wall members 41 facing each other with an electrical insulator such as ceramic, and thermal design and accuracy management can be facilitated. That is, when the electrically heated wall members 41 facing each other are joined via a ceramic that is easily broken by thermal stress or the like, thermal design and accuracy management become difficult.

また、複数の電熱壁部材41が、互いに同軸に配置された筒状に形成されている。したがって、複数の部材間流路51のうち、径方向の内側に位置する部材間流路51における熱エネルギーの漏出を抑えることが可能になり、加熱効率を一層高めることができる。さらに本実施形態のように、流体Fが、複数の部材間流路51を、径方向の外側に位置する部材間流路51から、径方向の内側に位置する部材間流路51に向けて順に流通した後、ノズル11に供給されることで、高温の流体Fをノズル11に供給することができる。   Moreover, the some heating wall member 41 is formed in the cylinder shape arrange | positioned mutually coaxially. Therefore, it becomes possible to suppress the leakage of thermal energy in the inter-member flow path 51 located on the inner side in the radial direction among the plurality of inter-member flow paths 51, and the heating efficiency can be further increased. Further, as in the present embodiment, the fluid F moves the plurality of inter-member flow paths 51 from the inter-member flow paths 51 located on the radially outer side toward the inter-member flow paths 51 located on the radially inner side. After flowing in order, the hot fluid F can be supplied to the nozzle 11 by being supplied to the nozzle 11.

また、電熱壁部材41が筒状に形成されているので、電熱壁部材41の剛性を高めることができる。したがって、例えば電熱壁部材41の電気抵抗を高めるために電熱壁部材41を薄肉にしたとしても、各電熱壁部材41を三次元造形技術によって軸方向Dに大きく(長く)形成することができる。すなわち、三次元造形技術では、剛性が低い薄肉の壁状体を長く形成することが困難であるものの、電熱壁部材41の剛性が高められていることで、三次元造形技術であっても電熱壁部材41を長く形成することができる。   Moreover, since the heating wall member 41 is formed in a cylindrical shape, the rigidity of the heating wall member 41 can be increased. Therefore, for example, even if the heating wall member 41 is thinned to increase the electrical resistance of the heating wall member 41, each heating wall member 41 can be formed larger (longer) in the axial direction D by the three-dimensional modeling technique. That is, although it is difficult to form a thin wall-like body with low rigidity for a long time with the three-dimensional modeling technique, the rigidity of the electric heating wall member 41 is increased, so even with the three-dimensional modeling technique, the electric heating The wall member 41 can be formed long.

また、互いに対向する電熱壁部材41同士が、互いの全周にわたって連続して連結されている。したがって、径方向に隣り合う電熱壁部材41同士の相対的な位置関係を安定させることが可能になり、信頼性を一層高めること等ができる。
また連通孔45が、電熱壁部材41を挟んで隣り合う部材間流路51同士を連通する。したがって、連通孔45の形態(例えば数や形状、位置など)を適宜変更することで、例えば、加熱効率の最適化を図ること等ができる。なお加熱効率の最適化は、連通孔45の形態のほか、例えば、電熱壁部材41の総数、又は各電熱壁部材41の表面形状や軸方向Dの長さ、厚さ(壁厚)、直径などを調整することにより、適宜実現することができる。
Moreover, the electrically heated wall members 41 facing each other are continuously connected over the entire circumference. Therefore, it becomes possible to stabilize the relative positional relationship between the heating wall members 41 adjacent in the radial direction, and the reliability can be further improved.
The communication hole 45 communicates between the adjacent member flow paths 51 with the electric heating wall member 41 interposed therebetween. Therefore, for example, the heating efficiency can be optimized by appropriately changing the form (for example, the number, shape, position, etc.) of the communication hole 45. In addition to the form of the communication hole 45, the optimization of the heating efficiency is, for example, the total number of the heating wall members 41, the surface shape of each heating wall member 41, the length in the axial direction D, the thickness (wall thickness), and the diameter. It can be realized as appropriate by adjusting the above.

また、ノズル11が、複数の電熱壁部材41と一体に形成されている。したがって、例えば、噴射装置10を製造するときに、電熱ヒータ40の径方向の内側に位置する空間に、軸方向Dに沿ってノズル11を差し込む等という作業を不要とすることが可能になり、信頼性を一層高めること等ができる。   Further, the nozzle 11 is formed integrally with the plurality of heating wall members 41. Therefore, for example, when the injection device 10 is manufactured, it becomes possible to eliminate the work of inserting the nozzle 11 along the axial direction D into the space located inside the electric heater 40 in the radial direction. Reliability can be further enhanced.

また絶縁体14が、複数の電熱壁部材41のうちの少なくとも一部の電熱壁部材41における軸方向Dの端縁に突き当たり、複数の部材間流路51のうちの少なくとも一部の部材間流路51を軸方向Dから閉塞している。したがって、一対の電極12、13間を絶縁する絶縁体14を利用して、複数の部材間流路51のうちの少なくとも一部の部材間流路51を閉塞することが可能になり、部品点数を少なく抑えることができる。   Further, the insulator 14 hits the edge in the axial direction D of at least some of the heating wall members 41 among the plurality of heating wall members 41, and flows between at least some of the plurality of channel passages 51 between members. The path 51 is closed from the axial direction D. Therefore, it is possible to close at least some of the inter-member flow paths 51 among the plurality of inter-member flow paths 51 by using the insulator 14 that insulates the pair of electrodes 12 and 13 from each other. Can be reduced.

また絶縁体14が、電熱壁部材41に弾性シール15を介して突き当てられている。したがって、絶縁体14と電熱壁部材41とが突き当たる部分のシール性を高めることが可能になり、径方向に隣り合う部材間流路51同士が、前記突き当たる部分を通して短絡するのを抑えることができる。また、電熱壁部材41が発熱することで軸方向Dに熱膨張したとしても、弾性シール15が弾性変形することで電熱壁部材41の熱膨張に基づく変形を吸収することができる。   The insulator 14 is abutted against the heating wall member 41 via the elastic seal 15. Therefore, it becomes possible to improve the sealing performance of the portion where the insulator 14 and the heating wall member 41 abut, and it is possible to suppress short circuit between the radially adjacent member flow paths 51 through the abutting portion. . Further, even if the electric heating wall member 41 generates heat and thermally expands in the axial direction D, the elastic seal 15 is elastically deformed, so that deformation based on the thermal expansion of the electric heating wall member 41 can be absorbed.

このように、この電熱ヒータ40では、熱応力に関して、各電熱壁部材41における軸方向Dの一方側D1は固定されているものの、他方側D2はフリーである(固定されていない)ので、大きな負荷とはならない。さらに、電熱ヒータ40における各部材間流路51の流路断面積などを適宜設計することで、加熱流路50における圧力損失(例えば、第1部材間流路51aと第5部材間流路51eとの間の圧力損失)を小さく抑えることができる。その結果、電熱ヒータ40に負荷される応力は小さい。したがって、電熱ヒータ40が筒状に形成されることにより電熱ヒータ40の剛性が高められることと相俟って、電熱ヒータ40の信頼性を高めることができる。   As described above, in the electric heater 40, the thermal stress is large because one side D1 in the axial direction D of each electric heating wall member 41 is fixed, but the other side D2 is free (not fixed). It is not a load. Furthermore, the pressure loss in the heating flow path 50 (for example, the first inter-member flow path 51a and the fifth inter-member flow path 51e is designed by appropriately designing the cross-sectional area of each inter-member flow path 51 in the electric heater 40. The pressure loss between the two can be kept small. As a result, the stress applied to the electric heater 40 is small. Therefore, the reliability of the electric heater 40 can be increased in combination with the rigidity of the electric heater 40 being increased by forming the electric heater 40 in a cylindrical shape.

(第2実施形態)
図3及び図4を参照し、本発明の第2実施形態に係る噴射装置60を説明する。
なお、この第2実施形態においては、第1実施形態における構成要素と同一の部分については同一の符号を付し、その説明を省略し、異なる点についてのみ説明する。
(Second Embodiment)
With reference to FIG.3 and FIG.4, the injection apparatus 60 which concerns on 2nd Embodiment of this invention is demonstrated.
In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different points will be described.

図3及び図4に示すように、本実施形態に係る噴射装置60では、第6電熱壁部材41fを除く各電熱壁部材41が、傾斜壁部61と、真直壁部62と、を備えている。傾斜壁部61は、軸方向Dの一方側D1から他方側D2に向かうに従い拡径するテーパ形状(錐形状)に形成されている。真直壁部62は、傾斜壁部61における軸方向Dの他方側D2の端部から他方側D2に向けて延びている。真直壁部62は、軸方向Dに沿って真直に延びるストレート形状に形成されている。なお第6電熱壁部材41fは、軸方向Dに沿って真直に延びるストレート形状に形成されている。   As shown in FIG.3 and FIG.4, in the injection apparatus 60 which concerns on this embodiment, each heating wall member 41 except the 6th heating wall member 41f is provided with the inclination wall part 61 and the straight wall part 62. As shown in FIG. Yes. The inclined wall portion 61 is formed in a tapered shape (cone shape) whose diameter increases as it goes from one side D1 in the axial direction D to the other side D2. The straight wall portion 62 extends from the end portion on the other side D2 in the axial direction D of the inclined wall portion 61 toward the other side D2. The straight wall portion 62 is formed in a straight shape extending straight along the axial direction D. The sixth heating wall member 41f is formed in a straight shape extending straight along the axial direction D.

第1導通部材42aは、第1電熱壁部材41aと第2電熱壁部材41bとの間に配置された環状に形成されている。第3導通部材42cは、第3電熱壁部材41cと第4電熱壁部材41dとの間に配置された環状に形成されている。第1導通部材42a及び第3導通部材42cは、電熱ヒータ40(電熱壁部材41)と同軸に配置されている。第1導通部材42a及び第3導通部材42cはいずれも、互いに対向する電熱壁部材41同士のうちの傾斜壁部61同士を連結している。   The first conduction member 42a is formed in an annular shape disposed between the first heating wall member 41a and the second heating wall member 41b. The third conduction member 42c is formed in an annular shape disposed between the third heating wall member 41c and the fourth heating wall member 41d. The first conducting member 42a and the third conducting member 42c are arranged coaxially with the electric heater 40 (electric heating wall member 41). Both the first conducting member 42a and the third conducting member 42c connect the inclined wall portions 61 of the heating wall members 41 facing each other.

第2導通部材42bは、第2電熱壁部材41b及び第3電熱壁部材41cによって形成されている。第2電熱壁部材41bにおける軸方向Dの他方側D2の端部は、他方側D2に向かうに従い縮径し、第3電熱壁部材41cにおける軸方向Dの他方側D2の端部は、他方側D2に向かうに従い拡径している。第2導通部材42bは、第2電熱壁部材41bにおける軸方向Dの他方側D2の端縁と、第3電熱壁部材41cにおける軸方向Dの他方側D2の端縁と、が連結されることにより形成されている。   The 2nd conduction member 42b is formed of the 2nd heating wall member 41b and the 3rd heating wall member 41c. The end of the other side D2 in the axial direction D of the second heating wall member 41b is reduced in diameter toward the other side D2, and the end of the other side D2 in the axial direction D of the third heating wall member 41c is the other side. The diameter increases as it goes to D2. The second conduction member 42b is connected to the edge of the second side D2 in the axial direction D of the second heating wall member 41b and the edge of the other side D2 of the third heating wall member 41c in the axial direction D. It is formed by.

第4導通部材42dは、第4電熱壁部材41d及び第5電熱壁部材41eによって形成されている。第4電熱壁部材41dにおける軸方向Dの他方側D2の端部は、他方側D2に向かうに従い縮径し、第5電熱壁部材41eにおける軸方向Dの他方側D2の端部は、他方側D2に向かうに従い拡径している。第4導通部材42dは、第4電熱壁部材41dにおける軸方向Dの他方側D2の端縁と、第5電熱壁部材41eにおける軸方向Dの他方側D2の端縁と、が連結されることにより形成されている。   The fourth conducting member 42d is formed by a fourth heating wall member 41d and a fifth heating wall member 41e. The end of the other side D2 in the axial direction D of the fourth heating wall member 41d is reduced in diameter toward the other side D2, and the end of the other side D2 in the axial direction D of the fifth heating wall member 41e is the other side. The diameter increases as it goes to D2. The fourth conducting member 42d is connected to the edge on the other side D2 in the axial direction D of the fourth heating wall member 41d and the edge on the other side D2 in the axial direction D of the fifth heating wall member 41e. It is formed by.

第5導通部材42eは、第5電熱壁部材41e及び第6電熱壁部材41fによって形成されている。第5導通部材42eは、第6電熱壁部材41fにおける軸方向Dの一方側D1の端縁が、第5電熱壁部材41eにおける傾斜壁部61に連結されることにより形成されている。   The fifth conduction member 42e is formed by a fifth heating wall member 41e and a sixth heating wall member 41f. The fifth conducting member 42e is formed by connecting an end edge on one side D1 in the axial direction D of the sixth electric heating wall member 41f to the inclined wall portion 61 of the fifth electric heating wall member 41e.

第2閉塞部材43bは、第1電熱壁部材41a及び第2電熱壁部材41bそれぞれの傾斜壁部61において、第1導通部材42aよりも軸方向Dの一方側D1に位置する部分によって形成されている。なお図示の例では、第1電熱壁部材41aにおける軸方向Dの一方側D1の端部は閉塞されている一方、第2電熱壁部材41bにおける前記端部には、貫通孔(以下、「第2貫通孔63b」という。)が形成されている。第2閉塞部材43bは、中空とされていて、第2閉塞部材43bの内部は、第2貫通孔63bを通して第2部材間流路51bに連通している。   The second closing member 43b is formed by a portion located on the one side D1 in the axial direction D with respect to the first conducting member 42a in the inclined wall portion 61 of each of the first heating wall member 41a and the second heating wall member 41b. Yes. In the illustrated example, the end of one side D1 in the axial direction D of the first heating wall member 41a is closed, while the end of the second heating wall member 41b has a through hole (hereinafter referred to as “first 2 through-holes 63b "). The second closing member 43b is hollow, and the inside of the second closing member 43b communicates with the second inter-member flow path 51b through the second through hole 63b.

第4閉塞部材43dは、第3電熱壁部材41c及び第4電熱壁部材41dそれぞれの傾斜壁部61において、第3導通部材42cよりも軸方向Dの一方側D1に位置する部分によって形成されている。なお図示の例では、第3電熱壁部材41cにおける軸方向Dの一方側D1の端部は閉塞されている一方、第4電熱壁部材41dにおける前記端部には、貫通孔(以下、「第4貫通孔63d」という。)が形成されている。第4閉塞部材43dは、中空とされていて、第4閉塞部材43dの内部は、第4貫通孔63dを通して第4部材間流路51dに連通している。   The fourth closing member 43d is formed by a portion located on one side D1 in the axial direction D from the third conducting member 42c in the inclined wall portion 61 of each of the third heating wall member 41c and the fourth heating wall member 41d. Yes. In the illustrated example, the end portion on one side D1 in the axial direction D of the third electric heating wall member 41c is closed, while the end portion of the fourth electric heating wall member 41d has a through hole (hereinafter referred to as “the 4 through-holes 63d "). The fourth closing member 43d is hollow, and the inside of the fourth closing member 43d communicates with the fourth inter-member flow path 51d through the fourth through hole 63d.

以上のような本実施形態に係る噴射装置60によれば、前記第1実施形態と同様の作用効果を奏することができる。   According to the injection device 60 according to the present embodiment as described above, the same operational effects as those of the first embodiment can be obtained.

(第3実施形態)
図5を参照し、本発明の第3実施形態に係る宇宙機70を説明する。
本実施形態に係る宇宙機70は、前記第1実施形態に係る噴射装置10又は前記第2実施形態に係る噴射装置60により形成されたスラスタ71を備える。なお、高い効率を得るために、図示しない断熱材によって噴射装置10、60を覆うことも可能である。
(Third embodiment)
A spacecraft 70 according to a third embodiment of the present invention will be described with reference to FIG.
The spacecraft 70 according to this embodiment includes a thruster 71 formed by the injection device 10 according to the first embodiment or the injection device 60 according to the second embodiment. In addition, in order to obtain high efficiency, it is also possible to cover the injection devices 10 and 60 with a heat insulating material (not shown).

前記噴射装置10、60をスラスタ71として利用した場合、高比推力においても高い推進効率を実現できることから、高比推力により少ない燃料消費を達成しつつ、所定の軌道へ宇宙機70を移動させるための遷移期間を従来よりも大幅に短くすることが可能となる。すなわち、高比推力を実現するために、例えば、推進剤(流体F)として、水素やヘリウムなどの軽量ガスを採用し、推進剤を2500K程度の高温に加熱する場合などには、推進剤が低分子量のガスであること及び推進剤が高温に加熱されることを起因として、熱損失が大きくなり易い。そのため、高比推力を実現しようとするほど、推進効率を高めることが難しくなる。本実施形態に係る宇宙機70では、このような高比推力を実現する場合であっても、電熱ヒータ40において複雑な流路を実現することで推進効率を高め、例えば、静止軌道投入の場合において従来ではロケット分離後から3〜6か月程度要していた遷移期間を1か月程度まで大幅に短縮することができる。   When the injection devices 10 and 60 are used as the thrusters 71, high propulsive efficiency can be realized even at high specific thrust, so that the spacecraft 70 can be moved to a predetermined orbit while achieving low fuel consumption with high specific thrust. It is possible to significantly shorten the transition period. That is, in order to achieve a high specific thrust, for example, when a light gas such as hydrogen or helium is used as the propellant (fluid F) and the propellant is heated to a high temperature of about 2500K, Heat loss tends to increase due to the low molecular weight gas and the propellant being heated to a high temperature. Therefore, the higher the specific thrust is, the more difficult it is to increase the propulsion efficiency. In the spacecraft 70 according to the present embodiment, even when such a high specific thrust is realized, the propulsion efficiency is improved by realizing a complicated flow path in the electric heater 40, for example, in the case of a stationary orbit injection In the past, the transition period, which conventionally required about 3 to 6 months after the rocket separation, can be significantly reduced to about 1 month.

なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、弾性シール15が無くてもよい。   For example, the elastic seal 15 may not be provided.

ノズル11と電熱ヒータ40とが完全に別体によって形成されて、ノズル11が電熱ヒータ40と一体的に形成されていなくてもよい。例えば、図1に示す噴射装置10において、第6電熱壁部材41fを軸方向Dの他方側D2に延長し、この延長部分内に、電熱ヒータ40と別体に形成されたノズル11を嵌合する等してもよい。   The nozzle 11 and the electric heater 40 may be formed as separate bodies, and the nozzle 11 may not be formed integrally with the electric heater 40. For example, in the injection device 10 shown in FIG. 1, the sixth electric heating wall member 41f is extended to the other side D2 in the axial direction D, and the nozzle 11 formed separately from the electric heating heater 40 is fitted in this extended portion. You may do it.

互いに対向する電熱壁部材41同士が互いの全周にわたって連続して連結されなくてもよい。また、電熱壁部材41を挟んで隣り合う部材間流路51同士が連通孔45を通して連通しなくてもよい。例えば、互いに対向する電熱壁部材41同士が互いの全周にわたって間欠的に連結され、その間欠部を通して、電熱壁部材41を挟んで隣り合う部材間流路51同士が連通してもよい。   The heating wall members 41 facing each other may not be continuously connected over the entire circumference. Further, the inter-member flow paths 51 adjacent to each other with the electric heating wall member 41 interposed therebetween may not communicate with each other through the communication hole 45. For example, the electrically heated wall members 41 facing each other may be intermittently connected over the entire circumference of each other, and the adjacent member flow paths 51 may be communicated with each other with the electrically heated wall member 41 interposed therebetween.

前記実施形態では、6つの電熱壁部材41全てが一体的に形成されているが、本発明はこれに限られない。6つの電熱壁部材41のうち、並んで配置された3つの電熱壁部材41が一体的に形成された他の形態に適宜変更することができる。
例えば、第1電熱壁部材41a、第2電熱壁部材41b及び第3電熱壁部材41cが一体的に形成された形態を採用することができる。この場合、第1電熱壁部材41a、第2電熱壁部材41b及び第3電熱壁部材41cをそれぞれ、本発明における第1の電熱部材、第2の電熱部材及び第3の電熱部材とし、第1部材間流路51a及び第2部材間流路51bをそれぞれ、本発明における第1の流路及び第2の流路とすることができる。この形態において、第4電熱壁部材41d、第5電熱壁部材41e及び第6電熱壁部材41fのうちの一部又は全部が、第1電熱壁部材41a、第2電熱壁部材41b及び第3電熱壁部材41cと一体的に形成されていてもよい。
さらに例えば、第4電熱壁部材41d、第5電熱壁部材41e及び第6電熱壁部材41fが一体的に形成された形態を採用することもできる。この場合、第4電熱壁部材41d、第5電熱壁部材41e及び第6電熱壁部材41fをそれぞれ、本発明における第1の電熱部材、第2の電熱部材及び第3の電熱部材とし、第4部材間流路51d及び第5部材間流路51eをそれぞれ、本発明における第1の流路及び第2の流路とすることができる。この形態において、第1電熱壁部材41a、第2電熱壁部材41b及び第3電熱壁部材41cのうちの一部又は全部が、第4電熱壁部材41d、第5電熱壁部材41e及び第6電熱壁部材41fと一体的に形成されていてもよい。
In the embodiment, all the six heating wall members 41 are integrally formed, but the present invention is not limited to this. Of the six electric heating wall members 41, the three electric heating wall members 41 arranged side by side can be appropriately changed to another form in which they are integrally formed.
For example, the form in which the 1st heating wall member 41a, the 2nd heating wall member 41b, and the 3rd heating wall member 41c were integrally formed is employable. In this case, the first electric heating wall member 41a, the second electric heating wall member 41b, and the third electric heating wall member 41c are used as the first electric heating member, the second electric heating member, and the third electric heating member in the present invention, respectively. The inter-member flow path 51a and the second inter-member flow path 51b can be used as the first flow path and the second flow path in the present invention, respectively. In this embodiment, some or all of the fourth electric heating wall member 41d, the fifth electric heating wall member 41e, and the sixth electric heating wall member 41f are formed by the first electric heating wall member 41a, the second electric heating wall member 41b, and the third electric heating member. It may be formed integrally with the wall member 41c.
Further, for example, a form in which the fourth electric heating wall member 41d, the fifth electric heating wall member 41e, and the sixth electric heating wall member 41f are integrally formed may be employed. In this case, the fourth electric heating wall member 41d, the fifth electric heating wall member 41e, and the sixth electric heating wall member 41f are used as the first electric heating member, the second electric heating member, and the third electric heating member in the present invention, respectively. The inter-member flow path 51d and the fifth inter-member flow path 51e can be used as the first flow path and the second flow path in the present invention, respectively. In this embodiment, some or all of the first heating wall member 41a, the second heating wall member 41b, and the third heating wall member 41c are used as the fourth heating wall member 41d, the fifth heating wall member 41e, and the sixth heating wall. It may be formed integrally with the wall member 41f.

複数の電熱壁部材41は、円筒状(例えば、真円筒状、楕円筒状)や角筒状(例えば、矩形筒状)など、多様な筒状に形成することができる。さらに複数の電熱壁部材41が、筒状に形成されていなくてもよく、例えば、平板状に形成されていてもよい。   The plurality of heating wall members 41 can be formed in various cylindrical shapes such as a cylindrical shape (for example, a true cylindrical shape or an elliptical cylindrical shape) or a square cylindrical shape (for example, a rectangular cylindrical shape). Furthermore, the several heating wall member 41 does not need to be formed in the cylinder shape, for example, may be formed in flat form.

前記噴射装置10、60では、電熱壁部材41がいずれも6つ備えられているが、本発明はこれに限られない。3つ以上の電熱壁部材41が備えられた他の構成に適宜変更することが可能である。なお、電熱壁部材41が筒状である場合、複数の電熱壁部材41のうち、径方向の外側に位置する電熱壁部材41ほど、断面積が大きくなり電気抵抗が下がるため、発熱量が小さくなり加熱効率が低下し易い。このような加熱効率や、電熱ヒータ40(噴射装置10、60)の重さ、サイズなどを考慮して、電熱壁部材41の総数を設計することも可能である。   In the said injection apparatuses 10 and 60, all the six heating wall members 41 are provided, but this invention is not limited to this. It is possible to appropriately change to another configuration in which three or more electric heating wall members 41 are provided. In addition, when the heating wall member 41 is cylindrical, among the heating wall members 41, the heating wall member 41 positioned on the outer side in the radial direction has a larger cross-sectional area and lowers electric resistance. Therefore, the heating efficiency tends to decrease. It is possible to design the total number of the electric heating wall members 41 in consideration of such heating efficiency and the weight and size of the electric heater 40 (the injection devices 10 and 60).

噴射装置10、60は、スラスタ71以外にも適用可能である。例えば、噴射装置10、60を、インクジェットプリンタ等に適用することも可能である。   The injection devices 10 and 60 can be applied to devices other than the thruster 71. For example, the ejection devices 10 and 60 can be applied to an inkjet printer or the like.

その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。   In addition, it is possible to appropriately replace the constituent elements in the embodiment with known constituent elements without departing from the spirit of the present invention, and the above-described modified examples may be appropriately combined.

10、60 噴射装置
11 ノズル
16 容器
40 電熱ヒータ
41 電熱壁部材(電熱部材)
42 導通部材
44 凹凸部
45 連通孔
50 加熱流路
51 部材間流路(流路)
70 宇宙機
71 スラスタ
D 軸方向
F 流体
10, 60 Injection device 11 Nozzle 16 Container 40 Electric heater 41 Electric heating wall member (electric heating member)
42 Conducting member 44 Concavity and convexity 45 Communication hole 50 Heating channel 51 Channel between members (channel)
70 Spacecraft 71 Thruster D Axial F Fluid

Claims (7)

通電により発熱する第1の電熱部材と、
前記第1の電熱部材と対向し、前記第1の電熱部材との間に第1の流路を形成するとともに、通電により発熱する第2の電熱部材と、
前記第2の電熱部材と対向し、前記第2の電熱部材との間に、前記第1の流路と連通する第2の流路を形成するとともに、通電により発熱する第3の電熱部材と、
前記第1の電熱部材、前記第2の電熱部材及び前記第3の電熱部材を互いに導通する導通部材と、を備え、
前記第1の電熱部材、前記第2の電熱部材及び前記第3の電熱部材が一体的に形成された、電熱ヒータ。
A first electrothermal member that generates heat when energized;
A second electric heating member facing the first electric heating member, forming a first flow path between the first electric heating member and generating heat by energization;
A third electric heating member facing the second electric heating member and forming a second flow channel communicating with the first flow channel between the second electric heating member and generating heat by energization; ,
A conductive member that conducts the first electric heating member, the second electric heating member, and the third electric heating member, and
An electric heater in which the first electric heating member, the second electric heating member, and the third electric heating member are integrally formed.
前記導通部材と、前記第1の電熱部材、前記第2の電熱部材及び前記第3の電熱部材とが、同一の発熱材料で構成されかつ一体的に形成された、請求項1記載の電熱ヒータ。   2. The electric heater according to claim 1, wherein the conducting member, the first electric heating member, the second electric heating member, and the third electric heating member are made of the same heat generating material and integrally formed. . 前記第1の電熱部材、前記第2の電熱部材及び前記第3の電熱部材が、互いに同軸に配置された筒状の電熱部材である、請求項1又は2記載の電熱ヒータ。   The electric heater according to claim 1 or 2, wherein the first electric heating member, the second electric heating member, and the third electric heating member are cylindrical electric heating members arranged coaxially with each other. 前記第1の流路及び前記第2の流路が、前記第2の電熱部材を貫通する連通孔を介して連通する、請求項1から3のいずれか1項に記載の電熱ヒータ。   The electric heater according to any one of claims 1 to 3, wherein the first flow path and the second flow path communicate with each other through a communication hole that penetrates the second electric heating member. 前記第1の電熱部材、前記第2の電熱部材及び前記第3の電熱部材のうちの少なくとも1つに凹凸部が形成された、請求項1から4のいずれか1項に記載の電熱ヒータ。   The electric heater according to any one of claims 1 to 4, wherein an uneven portion is formed on at least one of the first electric heating member, the second electric heating member, and the third electric heating member. 請求項1から5のいずれか1項に記載の電熱ヒータと、
少なくとも一部が前記第1の流路及び前記第2の流路によって形成された加熱流路を通過した流体が供給されるノズルと、
前記電熱ヒータを収容する容器と、を有する、噴射装置。
The electric heater according to any one of claims 1 to 5,
A nozzle to which a fluid having passed through a heating channel formed at least in part by the first channel and the second channel;
And a container for housing the electric heater.
請求項6に記載の噴射装置により形成されたスラスタを有する、宇宙機。   A spacecraft having a thruster formed by the injection device according to claim 6.
JP2017005844A 2017-01-17 2017-01-17 Electric heater, injection device and spacecraft Pending JP2018116803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017005844A JP2018116803A (en) 2017-01-17 2017-01-17 Electric heater, injection device and spacecraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017005844A JP2018116803A (en) 2017-01-17 2017-01-17 Electric heater, injection device and spacecraft

Publications (1)

Publication Number Publication Date
JP2018116803A true JP2018116803A (en) 2018-07-26

Family

ID=62984322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017005844A Pending JP2018116803A (en) 2017-01-17 2017-01-17 Electric heater, injection device and spacecraft

Country Status (1)

Country Link
JP (1) JP2018116803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2601309A (en) * 2020-11-24 2022-06-01 Univ Southampton Electric heating system for heating a fluid flow
CN115971511A (en) * 2022-12-05 2023-04-18 深圳市塘朗科技有限公司 Cube satellite bus assembly optimization manufacturing method and device based on novel material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2601309A (en) * 2020-11-24 2022-06-01 Univ Southampton Electric heating system for heating a fluid flow
WO2022111968A3 (en) * 2020-11-24 2022-08-11 University Of Southampton Electric heating system for heating a fluid flow
CN115971511A (en) * 2022-12-05 2023-04-18 深圳市塘朗科技有限公司 Cube satellite bus assembly optimization manufacturing method and device based on novel material

Similar Documents

Publication Publication Date Title
Levchenko et al. Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers
US4882465A (en) Arcjet thruster with improved arc attachment for enhancement of efficiency
US10910198B2 (en) Spacecraft propulsion devices and systems with microwave excitation
US4995231A (en) Performance arcjet thruster
US20130276426A1 (en) Cooling Jacket with Porous Matrix
US7665292B2 (en) Thruster with electro-thermal thrust augmentation
US6397580B1 (en) High performance rocket engine having a stepped expansion combustion chamber and method of making the same
US4926632A (en) Performance arcjet thruster
US5319926A (en) Thruster for spacecraft
JP2018116803A (en) Electric heater, injection device and spacecraft
US10825976B2 (en) Thermoelectric device and methods for manufacture and use
JP4394320B2 (en) Thrust chamber of the drive mechanism used for satellites and space transporters
US6799418B2 (en) Rocket engine member and method for manufacturing a rocket engine member
US20060032212A1 (en) Lightweight rocket engine combustion chamber and associated method
Xing et al. High efficient configuration design and simulation of platelet heat exchanger in solar thermal thruster
JPH06173774A (en) Catalytic gas generator
US20230417451A1 (en) Electric Heating System for Heating a Fluid Flow
Furukubo et al. Performance Characteristics and Interior Plasma Phenomena of High-Power and High-Specific-Impulse Hall Thrusters for Manned Mars Exploration
Wu et al. Design, fabrication and characterization of a solid propellant micro-thruster
Miotti et al. Bi-propellant micro-rocket engine
KR102137202B1 (en) Thrusters for spacecraft
Teel Development and Characterization of the Heated-Anode Cathode Arc Thruster (HA-CAT)
NakataЃ et al. Development of Long-life Lightweight Arcjets
Emrich Jr Current status of the gasdynamic mirror fusion propulsion experiment
JPH0447177A (en) Electric propulsion machinery