JP2018116006A - Contactless surface height measurement method and device therefor - Google Patents

Contactless surface height measurement method and device therefor Download PDF

Info

Publication number
JP2018116006A
JP2018116006A JP2017008237A JP2017008237A JP2018116006A JP 2018116006 A JP2018116006 A JP 2018116006A JP 2017008237 A JP2017008237 A JP 2017008237A JP 2017008237 A JP2017008237 A JP 2017008237A JP 2018116006 A JP2018116006 A JP 2018116006A
Authority
JP
Japan
Prior art keywords
optical system
surface height
objective optical
measurement
measurement workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017008237A
Other languages
Japanese (ja)
Inventor
勝弘 三浦
Katsuhiro Miura
勝弘 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitaka Kohki Co Ltd
Original Assignee
Mitaka Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitaka Kohki Co Ltd filed Critical Mitaka Kohki Co Ltd
Priority to JP2017008237A priority Critical patent/JP2018116006A/en
Publication of JP2018116006A publication Critical patent/JP2018116006A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a contactless surface height measurement method and device therefor, which allow for making rapid and accurate surface height measurement by continuously scanning a work under measurement with a laser probe.SOLUTION: A zero level of a bisected sensor is detected while rapidly moving a focus changing optical system to rapidly change a focal position of an objective optical system, thereby enabling rapid and accurate measurement of a surface height profile of a work under measurement. Accurate measurement is possible even when return light of a laser probe is weak at some measurement points such as tips.SELECTED DRAWING: Figure 1

Description

本発明は非接触表面高さ測定方法およびその装置に関するものである。   The present invention relates to a non-contact surface height measuring method and apparatus.

レーザオートフォーカスを用いたレーザプローブ式の非接触表面高さ測定装置は精密部品の表面高さを測定するために使用されている。すなわち、測定対象である測定ワークの上面に対し、レーザプローブよるオートフォーカス制御をかけながら、測定ワークを所定のピッチごとに水平方向へスキャンし、オートフォーカス光学系における対物レンズのフォーカス方向での移動量から測定ワークの表面高さに関する測定データを取得する。   Laser probe type non-contact surface height measuring devices using laser autofocus are used to measure the surface height of precision parts. In other words, while the autofocus control by the laser probe is applied to the upper surface of the measurement workpiece to be measured, the measurement workpiece is scanned horizontally at a predetermined pitch, and the objective lens in the autofocus optical system moves in the focus direction. Measurement data on the surface height of the workpiece is obtained from the quantity.

対物レンズは、特許第2125498号(特許文献1)に開示されるように、レーザプローブの戻り光が二分割センサの中心で受光されるように制御される。すなわち、測定ワークは所定ピッチで送られ、対物レンズがフィードバック制御により移動して測定ワークからの戻り光が二分割センサの中心で受光された時に焦点位置と判断して、対物レンズの移動量が検出され、その移動量から測定ワークの表面の高さ情報を計測することができる。   The objective lens is controlled so that the return light of the laser probe is received at the center of the two-divided sensor as disclosed in Japanese Patent No. 2125498 (Patent Document 1). In other words, the measurement workpiece is sent at a predetermined pitch, the objective lens moves by feedback control, and when the return light from the measurement workpiece is received at the center of the two-divided sensor, it is determined as the focal position, and the amount of movement of the objective lens is The detected height information of the surface of the workpiece can be measured from the amount of movement.

さらに、特許第5584140号(特許文献2)に開示されるように、測定ワークを連続的にスキャンしてレーザプローブが焦点位置から一定程度はずれた状態であっても、二分割センサの差動出力に基づいて焦点位置からのオフセット量を推定することにより測定を高速化することができる。   Further, as disclosed in Japanese Patent No. 5585140 (Patent Document 2), even if the measurement workpiece is continuously scanned and the laser probe is deviated from the focal position to a certain extent, the differential output of the two-divided sensor The speed of measurement can be increased by estimating the offset amount from the focal position based on the above.

特許第2125498号公報Japanese Patent No. 2125498 特許第5584140号公報Japanese Patent No. 5854140

しかしながらこのような関連技術にあっては、傾斜面をもつ測定ワークやレーザプローブのビームより細かい凹凸を持つ表面など、表面の散乱により対物レンズを介して二分割センサに到達する戻り光のS/N強度が微弱な場合には差動出力のレベルも小さくなる。そのため、差動出力をフィードバックしつつ焦点位置を収束させるオートフォーカスシステムではレーザが散乱する表面のオンフォーカス位置を特定することが困難な場合があった。   However, in such related technology, the S / W of the return light that reaches the two-divided sensor via the objective lens due to scattering of the surface, such as a measurement workpiece having an inclined surface or a surface with unevenness finer than the beam of the laser probe When the N intensity is weak, the differential output level also decreases. Therefore, in an autofocus system that converges the focal position while feeding back the differential output, it may be difficult to specify the on-focus position of the surface where the laser is scattered.

本発明はこのような関連技術に着目してなされたものであり、レーザが散乱する表面においてもレーザプローブを測定ワークに対して連続的にスキャンしながら高速且つ正確な表面高さ測定が行える非接触表面高さ測定方法および装置を提供することを目的としている。   The present invention has been made by paying attention to such a related technology, and can perform high-speed and accurate surface height measurement while continuously scanning the laser probe with respect to the measurement work even on the surface where the laser is scattered. It is an object of the present invention to provide a contact surface height measuring method and apparatus.

本発明に係る非接触表面高さ測定方法は、測定ワークの表面の第1の方向へ連続的に走査しつつ測定ワークの表面高さを測定する非接触表面高さ測定方法であって、対物光学系を介して測定ワークの表面にレーザプローブを照射すると共に測定ワークの表面からのレーザプローブの戻り光を二分割センサで受光することと、対物光学系と二分割センサの間に設けられ対物光学系の焦点位置を変更する焦点変更光学系を対物光学系の光軸に沿って高速往復移動させて対物光学系の焦点位置を高速変動させることと、対物光学系の変動する焦点位置が測定ワークの表面と一致したことを二分割センサの差動出力がゼロ位になることにより検出することと、ゼロ位検出に対応する焦点位置に基づいて光軸方向における測定ワークの表面の高さを検出することと、を含むことを特徴とする。   A non-contact surface height measurement method according to the present invention is a non-contact surface height measurement method for measuring the surface height of a measurement workpiece while continuously scanning in the first direction of the surface of the measurement workpiece. The surface of the measurement workpiece is irradiated with the laser probe through the optical system, and the return light of the laser probe from the surface of the measurement workpiece is received by the two-divided sensor, and the objective is provided between the objective optical system and the two-divided sensor. Changing the focal position of the optical system The high-speed reciprocation of the focus-changing optical system along the optical axis of the objective optical system to change the focal position of the objective optical system at high speed, and the varying focal position of the objective optical system is measured Detecting the coincidence with the workpiece surface by detecting the differential output of the two-divided sensor to the zero position, and measuring the surface height of the workpiece in the optical axis direction based on the focal position corresponding to the zero position detection. detection Characterized in that it comprises a Rukoto, the.

従来のように対物光学系をフィードバック制御して焦点位置を収束させるオートフォーカス方式ではなく、軽量な焦点変更光学系の可動部を高速往復移動させることで対物光学系の焦点位置を高速変動させながら差動出力がゼロ位になるタイミングとレベル(高さ)を検出するゼロ位検出方式を採用したため、散乱表面であっても高速且つ正確に表面高さを検出することが可能となる。更に尖端部等の測定ポイントで戻り光の強度が小さい場合でも焦点位置を高速変動させる途中に必ずゼロ位が発生するために、ゼロ位置の検出を確実に行うことができる。   Instead of the autofocus method that converges the focal position by feedback control of the objective optical system as in the past, while moving the focal position of the objective optical system at high speed by reciprocating the movable part of the lightweight focus changing optical system at high speed Since the zero position detection method for detecting the timing and level (height) at which the differential output becomes zero is employed, it is possible to detect the surface height at high speed and accurately even for a scattering surface. Further, even when the intensity of the return light is small at a measurement point such as a tip, a zero position is always generated while the focal position is rapidly changed, so that the zero position can be reliably detected.

本発明の実施形態態に係る非接触表面高さ測定装置を示す概略図。Schematic which shows the non-contact surface height measuring apparatus which concerns on embodiment of this invention. レーザプローブの高速スキャンを示す概念図。The conceptual diagram which shows the high-speed scan of a laser probe. レーザプローブによる高速スキャンと二分割センサにおける戻り光のスポットの位置関係を表す概念図。The conceptual diagram showing the positional relationship of the high-speed scan by a laser probe, and the spot of the return light in a two-divided sensor. 測定ワーク表面とレーザプローブの高速スキャンとの関係を表す概念図。The conceptual diagram showing the relationship between the measurement workpiece | work surface and the high-speed scan of a laser probe. 焦点変更光学系の他の可動部の例を示す概念図。The conceptual diagram which shows the example of the other movable part of a focus change optical system.

図1〜5は本発明の実施形態を示す図である。図中、XYは水平面上で直交する二方向とし、Zは水平面に直交する上下方向とする。   1-5 is a figure which shows embodiment of this invention. In the figure, XY is two directions orthogonal to each other on a horizontal plane, and Z is a vertical direction orthogonal to the horizontal plane.

図1は非接触表面高さ測定装置1の概念図であり、この非触表面高さ測定装置1は、X方向およびY方向にスライド自在な「走査装置」としてのステージ30と組み合わされている。ステージ30上には測定ワーク2が固定され、ステージ30により測定ワーク2を非接触表面高さ測定装置1に対してX方向およびY方向にスライドさせることができる。ステージ30を第1の方向すなわちX方向またはY方向へ移動させるためのドライバはコントローラ20に内蔵され、ステージ30はコントローラ20により制御されて駆動される。ステージ30のX方向やY方向での位置は図示しないリニアスケールにより検出することができる。   FIG. 1 is a conceptual diagram of a non-contact surface height measuring device 1, and this non-touch surface height measuring device 1 is combined with a stage 30 as a “scanning device” that is slidable in the X and Y directions. . The measurement workpiece 2 is fixed on the stage 30, and the measurement workpiece 2 can be slid in the X direction and the Y direction with respect to the non-contact surface height measurement device 1 by the stage 30. A driver for moving the stage 30 in the first direction, that is, the X direction or the Y direction is built in the controller 20, and the stage 30 is controlled and driven by the controller 20. The position of the stage 30 in the X direction or Y direction can be detected by a linear scale (not shown).

測定ワーク2の上方には対物レンズ(対物光学系)4が固定されている。この対物レンズ4はそれ自体が移動して焦点変更に関与するものでなく位置が固定されている。   An objective lens (objective optical system) 4 is fixed above the measurement work 2. The objective lens 4 itself moves and does not participate in the focus change, but the position is fixed.

対物レンズ4の上方には、凹レンズ(第1光学系)13と凸レンズ(第2光学系)14とから構成された焦点変更光学系12が設けられている。凹レンズ13と凸レンズ14はそれぞれが対物レンズ4よりも小径且つ軽量で、両方とも垂直な光軸Kに沿って上下に配列されている。なお、光軸Kは第1の方向(XまたはY)と交差する第2の方向、典型的にはZ軸と平行に規定される。   Above the objective lens 4, a focus changing optical system 12 including a concave lens (first optical system) 13 and a convex lens (second optical system) 14 is provided. The concave lens 13 and the convex lens 14 are each smaller in diameter and lighter than the objective lens 4, and both are arranged vertically along the vertical optical axis K. The optical axis K is defined in a second direction intersecting the first direction (X or Y), typically parallel to the Z axis.

凹レンズ13と凸レンズ14はそれぞれがリニアアクチュエータ(駆動手段)5に接続されている。そして凹レンズ13と凸レンズ14のうち、凹レンズ13のみが「可動部」として光軸Kに沿って高速で往復移動自在で、凹レンズ13が移動することにより、凹レンズ13と凸レンズ14との間隔を変化させることができる。   The concave lens 13 and the convex lens 14 are each connected to a linear actuator (driving means) 5. Of the concave lens 13 and the convex lens 14, only the concave lens 13 is a “movable part” that can reciprocate at high speed along the optical axis K, and the concave lens 13 moves to change the distance between the concave lens 13 and the convex lens 14. be able to.

リニアアクチュエータ5により凹レンズ13(焦点距離が負)と凸レンズ14(焦点距離が正)の距離が変更されるということは、対物レンズ4の焦点距離が変更されることと比例関係である。このリニアアクチュエータ5は例えば高速駆動の可能なピエゾアクチュエータを利用することができる。リニアアクチュエータ5もコントローラ20により制御される。凹レンズ14の位置は図示せぬ位置センサにより検出され、その位置情報もコントローラ20に入力される。   Changing the distance between the concave lens 13 (having a negative focal length) and the convex lens 14 (having a positive focal length) by the linear actuator 5 is proportional to changing the focal length of the objective lens 4. For example, a piezo actuator that can be driven at high speed can be used as the linear actuator 5. The linear actuator 5 is also controlled by the controller 20. The position of the concave lens 14 is detected by a position sensor (not shown), and the position information is also input to the controller 20.

対物レンズ4および焦点変更光学系12の上方にはビームスプリッタ10が配置されている。ビームスプリッタ10は、光の50%を透過し、50%を反射する機能を有している。   A beam splitter 10 is disposed above the objective lens 4 and the focus changing optical system 12. The beam splitter 10 has a function of transmitting 50% of light and reflecting 50%.

ビームスプリッタ10の側方にはレーザ照射手段11が配置されている。レーザ照射手段11からはレーザプローブLとなるレーザ光(半導体レーザ)が水平方向に照射される。レーザ光はビームスプリッタ10で光軸Kと平行な方向に反射され、焦点変更光学系12および対物レンズ4を透過し、レーザプローブLとして測定ワーク2の表面Tに当たる。レーザプローブLの光束の断面の光学的重心は対物レンズ4の光軸中心からX方向でオフセットした位置を通る。   Laser irradiation means 11 is disposed on the side of the beam splitter 10. Laser light (semiconductor laser) serving as the laser probe L is irradiated from the laser irradiation means 11 in the horizontal direction. The laser beam is reflected by the beam splitter 10 in a direction parallel to the optical axis K, passes through the focus changing optical system 12 and the objective lens 4, and strikes the surface T of the measurement workpiece 2 as a laser probe L. The optical center of gravity of the cross section of the beam of the laser probe L passes through a position offset in the X direction from the center of the optical axis of the objective lens 4.

対物レンズ4を通過したレーザプローブLは測定ワーク2の表面Tで反射され、その戻り光L’は再度対物レンズ4、焦点変更光学系12、ビームスプリッタ10を通過し、結像レンズ7を経て二分割センサSに受光される。二分割センサSはX方向で近接並置される2つのホトセンサa、bから構成される。尚、図において戻り光L’はレーザプローブLが測定ワーク2の表面Tで反射された光束であるが便宜上代表的光路L’で表示している。   The laser probe L that has passed through the objective lens 4 is reflected by the surface T of the measurement workpiece 2, and its return light L ′ passes again through the objective lens 4, the focus changing optical system 12, and the beam splitter 10, and passes through the imaging lens 7. Light is received by the two-divided sensor S. The two-divided sensor S is composed of two photosensors a and b that are closely arranged in the X direction. In the drawing, the return light L 'is a light beam reflected by the surface T of the measurement workpiece 2 by the laser probe L, but is represented by a representative optical path L' for convenience.

二分割センサSはその中心に戻り光L’のスポットの重心が一致した時に、2つのセンサa、bの出力が釣り合って差動アンプ21の差動出力がゼロとなるように構成される。作動アンプ21の差動出力もコントローラ20に入力される。   The two-divided sensor S is configured so that the outputs of the two sensors a and b are balanced and the differential output of the differential amplifier 21 becomes zero when the center of gravity of the spot of the return light L ′ coincides with the center. The differential output of the operational amplifier 21 is also input to the controller 20.

図2において凹レンズ13の中立位置をZb、このときのレーザプローブLの光路をLb、対物レンズ4の焦点位置をFbとする。この位置から凹レンズ13を上昇させて(B方向)レンズ間距離を長くすると、レーザプローブLの光路はLaで示すように対物レンズ4の外側を透過し、基準となる焦点位置Fbよりも上の焦点位置Faで光軸Kと交差する。これは対物レンズ4の焦点距離が短くなったことと等価である。   In FIG. 2, the neutral position of the concave lens 13 is Zb, the optical path of the laser probe L at this time is Lb, and the focal position of the objective lens 4 is Fb. When the concave lens 13 is raised from this position (in the B direction) to increase the distance between the lenses, the optical path of the laser probe L passes through the outside of the objective lens 4 as indicated by La and is above the reference focal position Fb. Crosses the optical axis K at the focal position Fa. This is equivalent to shortening the focal length of the objective lens 4.

凹レンズ13を基準の位置から下降させて(A方向)レンズ間距離を短くすると、レーザプローブLの光路はLcで示すように対物レンズ4の内側を透過し、基準となる焦点位置Fbよりも下の焦点位置Fcで光軸Kと交差する。これは対物レンズ4の焦点距離が長くなったことと等価である。   When the concave lens 13 is lowered from the reference position (direction A), the distance between the lenses is shortened, the optical path of the laser probe L passes through the inside of the objective lens 4 as indicated by Lc, and is below the reference focal position Fb. Crosses the optical axis K at the focal position Fc. This is equivalent to an increase in the focal length of the objective lens 4.

図3において、中央の(II)は対物レンズ4の焦点位置FとレーザプローブLが照射される測定ワーク2の表面Tが一致したフォーカス状態、(I)は表面Tが焦点位置Fの手前にある状態、(III)は表面Tが焦点位置Fの先にある状態を示している。   In FIG. 3, (II) in the center is a focus state in which the focal position F of the objective lens 4 and the surface T of the measurement workpiece 2 irradiated with the laser probe L coincide with each other, and (I) is the surface T in front of the focal position F. A certain state (III) shows a state in which the surface T is ahead of the focal position F.

図4は測定ワーク2の走査方向(X方向)における表面高さ分布の一部を模式的に表現したものである。測定ワーク2はステージ30によりX方向に定速移動するため、レーザプローブLに対して連続走査される。従って横軸は時間t及びこれに対応する位置X(t)を表し、縦軸は表面Tの高さ情報Z及びレーザプローブLの焦点位置の変動幅dを表している。   FIG. 4 schematically represents a part of the surface height distribution in the scanning direction (X direction) of the measurement workpiece 2. Since the measurement workpiece 2 moves at a constant speed in the X direction by the stage 30, it is continuously scanned with respect to the laser probe L. Accordingly, the horizontal axis represents time t and the corresponding position X (t), and the vertical axis represents the height information Z of the surface T and the fluctuation range d of the focal position of the laser probe L.

焦点変更光学系12により対物レンズ4の焦点位置を光軸K方向に高速に所定の周期τ及び変動幅dで振幅変位させながら、二分割センサSの差動出力のゼロ位検出を行なって表面Tの高さZ(t)を取得する。特に対物レンズ4ではなく軽量な凹レンズ13を上下方向に往復移動させるため、高速に焦点位置を変更することができる。この実施形態では変動幅dを30μm、周期τを1msとしているが、これに限定されない。図4では周期τを分かりやすくするため拡大して図示している。   The focus change optical system 12 detects the zero position of the differential output of the two-divided sensor S while changing the amplitude of the focus position of the objective lens 4 in the optical axis K direction at a high speed with a predetermined period τ and fluctuation width d. The height Z (t) of T is acquired. In particular, since the light concave lens 13 instead of the objective lens 4 is reciprocated in the vertical direction, the focal position can be changed at high speed. In this embodiment, the fluctuation width d is 30 μm and the period τ is 1 ms, but the present invention is not limited to this. In FIG. 4, the period τ is shown in an enlarged manner for easy understanding.

連続した焦点位置の変動の中でゼロ位を検出するため、散乱のため戻り光L’が微弱になった場合でも必ずゼロクロス(ゼロ位)が発生するため、確実に測定ポイントの高さZ(t)を捕捉することができる。   Since the zero position is detected in the continuous variation of the focal position, a zero cross (zero position) is always generated even when the return light L ′ becomes weak due to scattering, so that the height Z ( t) can be captured.

このように上下に高速で往復移動する凹レンズ13の位置のうち、二分割センサSの差動出力がゼロ位となるタイミングにおける凹レンズ13の位置を検出することにより、対物レンズ4の等価焦点位置を取得することができ、ターゲットとなる測定ワーク2の表面Tの各測定ポイントにおける高さ情報を検出することができる。したがって、測定ワーク2のX方向での高さ測定を少しずつY方向にずらしながら行うことにより、測定ワーク2の表面Tの三次元的形状も測定することができる。   By detecting the position of the concave lens 13 at the timing at which the differential output of the two-divided sensor S becomes zero among the positions of the concave lens 13 that reciprocates up and down at high speed in this way, the equivalent focal position of the objective lens 4 is determined. The height information at each measurement point on the surface T of the measurement workpiece 2 as a target can be detected. Therefore, the three-dimensional shape of the surface T of the measurement workpiece 2 can also be measured by measuring the height of the measurement workpiece 2 in the X direction while gradually shifting it in the Y direction.

本実施形態では凹レンズ13と凸レンズ14の距離を変更するために凹レンズ13のみを可動部として高速往復移動させたが、凸レンズ14のみを可動部としてもよい。更に図5に示すように、リニアアクチュエータ5により凹レンズ13及び凸レンズ14の両方を可動部として相互に相反する方向へ同期させながら接近・離反するように高速移動させても良い。相互に相反する方向に移動させる場合には凹レンズ13と凸レンズ14の加速運動に伴う衝撃等の反動が互いにキャンセルされるため振動が発生しない構造となる。   In the present embodiment, in order to change the distance between the concave lens 13 and the convex lens 14, only the concave lens 13 is reciprocated as a movable part, but only the convex lens 14 may be used as the movable part. Further, as shown in FIG. 5, both the concave lens 13 and the convex lens 14 may be moved at high speed by the linear actuator 5 so as to move toward and away from each other while being synchronized in mutually opposite directions. When moving in directions opposite to each other, a reaction such as an impact accompanying the acceleration movement of the concave lens 13 and the convex lens 14 is canceled with each other, so that no vibration is generated.

以上この実施形態では、ステージ30を走査装置として、ステージ30上に載せた測定ワーク2を非接触表面高さ測定装置1に対してX方向またはY方向へ移動させる例を示したが、走査装置を非接触表面高さ測定装置1側に設けて、位置が固定された測定ワーク2に対して非接触表面高さ測定装置1全体を反X方向または反Y方向へ移動せることにより、測定ワーク2をレーザプローブLに対して相対的にX方向またはY方向へ移動させるようにしても良い。   As described above, in this embodiment, the stage 30 is used as a scanning device, and the measurement work 2 placed on the stage 30 is moved in the X direction or the Y direction with respect to the non-contact surface height measuring device 1. Is provided on the non-contact surface height measuring device 1 side, and the entire non-contact surface height measuring device 1 is moved in the anti-X direction or the anti-Y direction with respect to the measurement work 2 whose position is fixed. 2 may be moved relative to the laser probe L in the X or Y direction.

1 非接触表面高さ測定装置
2 測定ワーク
4 対物レンズ(対物光学系)
5 リニアアクチュエータ(駆動手段)
11 レーザ照射手段
12 焦点変更光学系
13 凹レンズ(第1光学系:可動部)
14 凸レンズ(第2光学系)
20 コントローラ
30 XYステージ(走査装置)
a、b ホトセンサ
S 二分割センサ
L レーザプローブ
L’戻り光
K 光軸
T 測定ワークの表面
F 焦点位置
1 Non-contact surface height measuring device 2 Measurement work 4 Objective lens (objective optical system)
5 Linear actuator (drive means)
DESCRIPTION OF SYMBOLS 11 Laser irradiation means 12 Focus change optical system 13 Concave lens (1st optical system: Movable part)
14 Convex lens (second optical system)
20 controller 30 XY stage (scanning device)
a, b Photosensor S Two-part sensor L Laser probe L 'Return light K Optical axis T Surface of workpiece F Focus position

Claims (4)

測定ワークの表面の第1の方向へ連続的に走査しつつ測定ワークの表面高さを測定する非接触表面高さ測定方法であって、
対物光学系を介して測定ワークの表面にレーザプローブを照射すると共に測定ワークの表面からのレーザプローブの戻り光を二分割センサで受光することと、
対物光学系と二分割センサの間に設けられ対物光学系の焦点位置を変更する焦点変更光学系を対物光学系の光軸に沿って高速往復移動させて対物光学系の焦点位置を高速変動させることと、
対物光学系の変動する焦点位置が測定ワークの表面と一致したことを二分割センサの差動出力がゼロ位になることにより検出することと、
ゼロ位検出に対応する焦点位置に基づいて光軸方向における測定ワークの表面の高さを検出することと、
を含むことを特徴とする非接触表面高さ測定方法。
A non-contact surface height measuring method for measuring the surface height of a measurement workpiece while continuously scanning in the first direction of the surface of the measurement workpiece,
Irradiating the surface of the measurement workpiece with the laser probe via the objective optical system and receiving the return light of the laser probe from the surface of the measurement workpiece by the two-divided sensor;
A focal point changing optical system that is provided between the objective optical system and the two-divided sensor and changes the focal position of the objective optical system is reciprocated at high speed along the optical axis of the objective optical system to change the focal position of the objective optical system at high speed. And
Detecting that the foci of the objective optical system fluctuate with the surface of the workpiece by detecting the differential output of the two-divided sensor to zero.
Detecting the height of the surface of the measurement workpiece in the optical axis direction based on the focal position corresponding to the zero position detection;
A non-contact surface height measuring method comprising:
走査装置に組み合わされて使用され、該走査装置により測定ワークの表面の第1の方向にレーザプローブを連続的に走査しながら測定ワークの表面高さを測定する非接触表面高さ測定装置であって、
第1の方向と垂直な第2の方向に光軸を有し、位置が固定された対物光学系と、
対物光学系を介して測定ワークの表面にレーザプローブを照射するレーザ照射手段と、
測定ワークの表面からのレーザプローブの戻り光を受光して、対物光学系の焦点位置が測定ワークの表面と一致した時に差動出力がゼロ位になる二分割センサと、
対物光学系と二分割センサの間に配置され、全部又は一部が対物光学系よりも軽量で且つ対物光学系の光軸に沿って移動自在な可動部で構成され、該可動部の位置により対物光学系の焦点位置を変更する焦点変更光学系と、
焦点変更光学系の可動部を高速往復移動させる駆動手段と、
二分割センサのゼロ位を検出し、ゼロ位検出に対応する焦点位置に基づいて光軸方向における測定ワークの表面の高さを検出するコントローラと、
を具備することを特徴とする非接触表面高さ測定装置。
A non-contact surface height measuring device that is used in combination with a scanning device and measures the surface height of a measurement workpiece while continuously scanning a laser probe in the first direction of the surface of the measurement workpiece by the scanning device. And
An objective optical system having an optical axis in a second direction perpendicular to the first direction and having a fixed position;
Laser irradiation means for irradiating the surface of the measurement workpiece with a laser probe via the objective optical system;
A two-divided sensor that receives the return light of the laser probe from the surface of the measurement workpiece and has a differential output of zero when the focal position of the objective optical system coincides with the surface of the measurement workpiece;
It is arranged between the objective optical system and the two-divided sensor, and is composed of a movable part that is lighter than the objective optical system and movable along the optical axis of the objective optical system. A focus changing optical system for changing the focal position of the objective optical system;
Driving means for reciprocating the movable part of the focus changing optical system at high speed;
A controller that detects the zero position of the two-divided sensor and detects the height of the surface of the measurement workpiece in the optical axis direction based on the focal position corresponding to the zero position detection;
A non-contact surface height measuring device comprising:
焦点変更光学系は焦点の正負が異なる第1光学系と第2光学系を備え、駆動手段は第1光学系と第2光学系のいずれか一方を可動部として対物光学系の光軸方向に沿って高速往復移動させることを特徴とする請求項2記載の非接触表面高さ測定装置。   The focal point changing optical system includes a first optical system and a second optical system having different positive and negative focal points, and the driving means uses either the first optical system or the second optical system as a movable part in the optical axis direction of the objective optical system. 3. The non-contact surface height measuring device according to claim 2, wherein the non-contact surface height measuring device is reciprocated at a high speed. 焦点変更光学系は焦点の正負が異なる第1光学系と第2光学系を備え、駆動手段は第1光学系と第2光学系の両方を可動部として対物光学系の光軸方向において同期した状態で相反する方向に高速往復移動させることを特徴とする請求項2記載の非接触表面高さ測定装置。   The focus changing optical system includes a first optical system and a second optical system having different positive and negative focal points, and the driving means is synchronized in the optical axis direction of the objective optical system using both the first optical system and the second optical system as movable parts. 3. The non-contact surface height measuring device according to claim 2, wherein the non-contact surface height measuring device is reciprocated at high speed in opposite directions in the state.
JP2017008237A 2017-01-20 2017-01-20 Contactless surface height measurement method and device therefor Pending JP2018116006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017008237A JP2018116006A (en) 2017-01-20 2017-01-20 Contactless surface height measurement method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017008237A JP2018116006A (en) 2017-01-20 2017-01-20 Contactless surface height measurement method and device therefor

Publications (1)

Publication Number Publication Date
JP2018116006A true JP2018116006A (en) 2018-07-26

Family

ID=62984075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017008237A Pending JP2018116006A (en) 2017-01-20 2017-01-20 Contactless surface height measurement method and device therefor

Country Status (1)

Country Link
JP (1) JP2018116006A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039724A (en) * 2000-07-24 2002-02-06 Yasunaga Corp Internal hole surface inspecting device
JP2005214905A (en) * 2004-01-30 2005-08-11 Sunx Ltd Displacement sensor, and method of measuring displacement
WO2010087391A1 (en) * 2009-02-02 2010-08-05 三鷹光器株式会社 Method for noncontact measurement of surface shape and device thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039724A (en) * 2000-07-24 2002-02-06 Yasunaga Corp Internal hole surface inspecting device
JP2005214905A (en) * 2004-01-30 2005-08-11 Sunx Ltd Displacement sensor, and method of measuring displacement
WO2010087391A1 (en) * 2009-02-02 2010-08-05 三鷹光器株式会社 Method for noncontact measurement of surface shape and device thereof

Similar Documents

Publication Publication Date Title
CN109791042B (en) Method for optically measuring a weld depth
US11054624B2 (en) Predictive focus tracking apparatus and methods
CN104034276A (en) Shape Measuring Apparatus
WO2013115134A1 (en) Distance measurement device, distance measurement method, and control program
KR20040083012A (en) Displacement system and method for measuring displacement
CN109219496A (en) The device with optical distance-measuring device and prism deflection unit of process monitoring and the laser Machining head with it when laser processing
KR101891182B1 (en) Apparatus for controlling auto focus
CN108344381A (en) A kind of non-contact 3-D surface shape measurement method
US9689892B2 (en) Scanning probe microscope
JPWO2016031935A1 (en) Surface shape measuring device
JP2020106480A (en) Imaging apparatus, image measuring device, contactless displacement detection device, and contactless shape measuring device
KR101554389B1 (en) Laser processing apparatus
JP2020032423A (en) Laser marking device
JP2018116006A (en) Contactless surface height measurement method and device therefor
JP2008119715A (en) Laser beam machining apparatus
CN114778514B (en) Measuring device and method for nondestructive high aspect ratio structure based on Raman analysis
US11486822B2 (en) Specimen inspection device and specimen inspection method
KR101322782B1 (en) Optical position detection apparatus based on CMM
KR102552859B1 (en) high speed high precision confocal sensor
JP2016080494A (en) Near field measurement method and near field optical microscope
KR101264370B1 (en) Apparatus patterning groove on 3 dimension curved surface
JP2014002026A (en) Lens shape measuring device, and lens shape measuring method
CN103791840A (en) Simple apparatus for measuring micro displacement
JP6791788B2 (en) Shape measuring device
KR100631048B1 (en) Auto focusing apparatus for laser beam machining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210330