JP2018112206A - Skewed shaft gear and intersecting shaft gear - Google Patents

Skewed shaft gear and intersecting shaft gear Download PDF

Info

Publication number
JP2018112206A
JP2018112206A JP2017001489A JP2017001489A JP2018112206A JP 2018112206 A JP2018112206 A JP 2018112206A JP 2017001489 A JP2017001489 A JP 2017001489A JP 2017001489 A JP2017001489 A JP 2017001489A JP 2018112206 A JP2018112206 A JP 2018112206A
Authority
JP
Japan
Prior art keywords
tooth
contact point
tooth profile
pair
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017001489A
Other languages
Japanese (ja)
Inventor
大竹 與志知
Yoshitomo Otake
與志知 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otanigiken Co Ltd
Original Assignee
Otanigiken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otanigiken Co Ltd filed Critical Otanigiken Co Ltd
Priority to JP2017001489A priority Critical patent/JP2018112206A/en
Publication of JP2018112206A publication Critical patent/JP2018112206A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gear Transmission (AREA)
  • Gears, Cams (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove noise and reduce abrasion due to a pitch error of the screwed shaft gear and intersecting shaft gear, in a screwed shaft gear and an intersecting shaft gear where, when an error may occur in a pitch between front and rear tooth profiles, wide angular contact or angular contact occurs in transition of a contact point of the front and rear wave profiles, and thus noise and abrasion occur.SOLUTION: Special tooth surface correction is executed, where an angular pitch error is absorbed on an addendum side of a tooth surface, and wide angular contact or angular contact is prevented from occurring. Consequently, noise and abrasion can be reduced.SELECTED DRAWING: Figure 8

Description

本発明は、摩耗に強くかつ騒音の少ない食い違い軸歯車および交叉軸歯車に関するものである。   The present invention relates to a staggered shaft gear and a cross shaft gear which are resistant to wear and have low noise.

食い違い軸歯車および交叉軸歯車は機械要素として用いられている。これまで、これら歯車のピッチ誤差による騒音の低減に関する研究や技術は見られない。本特許では一対の歯車の両者に、ピッチ誤差による騒音の低減の為に歯先側に特別な歯面修正をおこなう。   Staggered shaft gears and crossed shaft gears are used as machine elements. So far, there has been no research or technology related to noise reduction due to the pitch error of these gears. In this patent, both the pair of gears are subjected to special tooth surface correction on the tooth tip side in order to reduce noise due to pitch error.

特許文献1ではウォームをウォームホイールに押付けた時のギヤ同士の食込みを防ぐ為に、ウォームの歯底部にR形状の歯形修正が施してあるが、本特許と目的、歯形修正の方法が異なる。特許文献2では、歯幅方向中央部を中心にして荷重の集中を軽減させる為に歯形修正面を設けている。これもまた、本特許と目的、歯形修正の方法が異なる。   In Patent Document 1, an R-shaped tooth profile correction is applied to the tooth bottom of the worm in order to prevent the gears from biting when the worm is pressed against the worm wheel. However, the purpose and the method of tooth profile correction differ from this patent. In Patent Document 2, a tooth profile correction surface is provided in order to reduce the concentration of load around the central portion in the tooth width direction. Again, this patent differs from the purpose and method of tooth profile correction.

特開2007-099229号公報JP 2007-099229 特開2008-095774号公報JP 2008-095774 A

発明が解決しようとする課題は、食い違い軸歯車および交叉軸歯車のピッチ誤差による騒音を低減させることである。   The problem to be solved by the invention is to reduce the noise caused by the pitch error of the staggered shaft gear and the cross shaft gear.

課題を解決するための手段は、歯面の歯先側をピッチ誤差を吸収し、かつ広角あたりや歯先の角あたりが無い、特定の曲面状に歯面修正することである。   Means for solving the problem is to correct the tooth surface of the tooth surface to a specific curved surface that absorbs the pitch error and does not have a wide angle or a tooth angle.

本発明により、ピッチ誤差による騒音が低減され耐摩耗に優れた歯車を実現できる。   According to the present invention, it is possible to realize a gear with reduced noise due to pitch error and excellent wear resistance.

図1は一対2組(m、n)の隣り合う歯面上の歯形および角ピッチ誤差を示す説明図である。(実施例1)FIG. 1 is an explanatory diagram showing tooth forms and angular pitch errors on adjacent tooth surfaces of a pair of two pairs (m, n). Example 1 図2は歯車1のピッチ誤差(+)が逆符号(−)である場合を示す。(実施例1)FIG. 2 shows a case where the pitch error (+) of the gear 1 is an opposite sign (−). Example 1 図3は図2を180度回転させ歯車2側を主体に示したものである。(実施例1)3 mainly shows the gear 2 side by rotating FIG. 2 180 degrees. Example 1 図4は歯形対nの歯形の回転と接触点軌跡線の様子を示す説明図である。(実施例1)FIG. 4 is an explanatory diagram showing the rotation of the tooth profile of the tooth profile pair n and the contact point locus line. Example 1 図5は修正歯面を示す図である。(実施例1)FIG. 5 is a view showing a modified tooth surface. Example 1 図6は曲面でカットした歯面修正の場合の、歯形対nの歯形の回転と接触点軌跡線の様子を示す説明図である。(実施例1)FIG. 6 is an explanatory view showing the rotation of the tooth profile of the tooth profile pair n and the state of the contact point locus line in the case of correction of the tooth surface cut with a curved surface. Example 1 図7は歯車軸と静止座標を示す図である。(実施例1)FIG. 7 is a diagram showing a gear shaft and stationary coordinates. Example 1 図8はピッチ誤差による騒音を防止する歯面修正を加えた場合の、歯形対nの歯形の回転と接触点軌跡線の様子を示す説明図である。(実施例1)FIG. 8 is an explanatory diagram showing the rotation of the tooth profile of the tooth profile pair n and the state of the contact point locus line when the tooth surface correction for preventing noise due to the pitch error is added. Example 1

発明を実施するための形態は、歯面の歯先側をピッチ誤差を吸収し、かつ広角あたりや歯先の角あたりが無い特定の曲面状に歯面修正した一対の食い違い軸歯車および交叉軸歯車である。   A mode for carrying out the invention is a pair of staggered shaft gears and a cross shaft in which a tooth surface side of a tooth surface absorbs a pitch error and has a tooth surface modified to have a specific curved surface without a wide angle or a corner of the tooth tip. It is a gear.

まず、ピッチ誤差による騒音発生の原因を明らかにする。   First, the cause of noise generation due to pitch error will be clarified.

等角速度比の点接触歯車を基本に考える。不等角速度比の場合や線接触歯車の場合は,等角速度比の場合と同様に論じ,同様の結果を得ることができる。かみあっている歯車1、2の歯面対を歯面対nとし、歯面対nの次にかみあう歯面対を歯面対mとする。また、歯面対n上の歯形対を歯形対nとし、歯面対m上の歯形対を歯形対mとする。歯形対は接触点軌跡線上でお互いに接する一対の歯形である。歯形対は点接触歯車の場合1つ定まるが、線接触歯車の場合は無数に存在する。線接触歯車の場合はその中から、歯面1上の最後の接触点を歯先とする歯形を選択する。   Consider a point contact gear with a constant angular velocity ratio. In the case of the unequal angular velocity ratio or in the case of the line contact gear, the discussion can be made in the same manner as in the case of the equiangular velocity ratio, and the same result can be obtained. The tooth surface pair of the gears 1 and 2 that are engaged is a tooth surface pair n, and the tooth surface pair that meshes next to the tooth surface pair n is a tooth surface pair m. Further, a tooth profile pair on the tooth surface pair n is a tooth profile pair n, and a tooth profile pair on the tooth surface pair m is a tooth profile pair m. The tooth profile pair is a pair of tooth profiles that touch each other on the contact point locus line. One tooth shape pair is determined in the case of a point contact gear, but innumerable in the case of a line contact gear. In the case of a line contact gear, a tooth profile with the tip of the last contact point on the tooth surface 1 is selected.

図1は、ピッチ誤差により歯形対nが接触し、歯形対mに隙間ができている状態を示している。ここでは、ピッチ誤差を角ピッチの誤差で表す。図1は説明の為の概念図である.概念図は理解しやすいように平面的に示しているが、実際には立体的である。以下同様の図も同じである。   FIG. 1 shows a state where the tooth profile pair n is in contact with the pitch error and a gap is formed in the tooth profile pair m. Here, the pitch error is expressed as an angular pitch error. Figure 1 is a conceptual diagram for explanation. The conceptual diagram is shown two-dimensionally for easy understanding, but is actually three-dimensional. The same applies to the following drawings.

図1の101は歯車1、102は歯車2、103は歯形1、104は歯形2、105は歯形対m、106は歯形1、107は歯形2、108は歯形対n、109は歯底円1、110は歯先円1、111は歯底円2、112は歯先円2、113は角ピッチの誤差ΔψDを表す。   1, 101 is the gear 1, 102 is the gear 2, 103 is the tooth profile 1, 104 is the tooth profile 2, 105 is the tooth profile m, 106 is the tooth profile 1, 107 is the tooth profile 2, 108 is the tooth profile n, 109 is the root circle. Reference numerals 1 and 110 denote tooth tip circles 1, 111 denotes a root circle 2, 112 denotes a tooth tip circle 2, and 113 denotes an angular pitch error ΔψD.

角ピッチの誤差ΔψDの符号は図1のように歯形対mの歯形1と歯形対nの歯形1が広がる場合を正(+)とする。また、図2のように狭まる場合を負(−)とする。角ピッチ誤差は歯形1の角ピッチ誤差と歯形2の換算角ピッチ誤差を合わせたものである。換算角ピッチ誤差は歯形2の角ピッチ誤差を歯形1側の角ピッチ誤差に換算したものである。   The sign of the angular pitch error ΔψD is positive (+) when the tooth profile 1 of the tooth profile pair m and the tooth profile 1 of the tooth profile pair n spread as shown in FIG. Moreover, the case where it narrows like FIG. 2 is made into negative (-). The angular pitch error is a combination of the angular pitch error of the tooth profile 1 and the converted angular pitch error of the tooth profile 2. The converted angular pitch error is obtained by converting the angular pitch error of the tooth profile 2 into the angular pitch error on the tooth profile 1 side.

各歯面間のピッチ誤差の符号や大きさはまちまちである。例えば、ピッチ誤差が(+)の場合、一般にとなりの符号は(−)となる。後述するが、図1に示す正の角ピッチ誤差の場合、歯車1の歯面修正によりピッチ誤差を吸収する。図3は符号が(−)の場合の図2を180度回転させて示したもので、図1と同様の形を示す。従って、負の角ピッチ誤差の場合は、正の角ピッチ誤差の場合と同様にして歯車2の歯面修正によりピッチ誤差を吸収する必要がある。すなわち、正負の角ピッチ誤差に対応するには、歯車1、2の両方に歯面修正を施す必要があることを意味する。これはここで明らかにした重要な知見である。以下では、図1に示す正の角ピッチ誤差の場合を主体として述べる。   The sign and size of the pitch error between each tooth surface varies. For example, when the pitch error is (+), the next sign is generally (-). As will be described later, in the case of the positive angular pitch error shown in FIG. 1, the pitch error is absorbed by correcting the tooth surface of the gear 1. FIG. 3 shows FIG. 2 rotated by 180 degrees when the sign is (−) and shows the same shape as FIG. Therefore, in the case of a negative angular pitch error, it is necessary to absorb the pitch error by correcting the tooth surface of the gear 2 in the same manner as in the case of the positive angular pitch error. That is, in order to cope with positive and negative angular pitch errors, it means that both the gears 1 and 2 need to be subjected to tooth surface correction. This is an important finding revealed here. Hereinafter, the case of the positive angular pitch error shown in FIG. 1 will be mainly described.

図4は図1に示す歯形対n108の歯形の回転と接触点軌跡線の様子を示す。   FIG. 4 shows the rotation of the tooth profile of the tooth profile pair n108 shown in FIG.

図4の401は接触点軌跡線Q、402は接触点軌跡線Qr、403は接触点Q1、404は接触点Q2、405は接触点Q3、406は接触点Q3rを表す。   4, 401 represents a contact point locus line Q, 402 represents a contact point locus line Qr, 403 represents a contact point Q1, 404 represents a contact point Q2, 405 represents a contact point Q3, and 406 represents a contact point Q3r.

G1は歯形1(符号106)、G2はG1とかみあう歯形2(符号107)であり、Q401はG1とG2の接触点軌跡線である。歯形対n108の接触点は回転と共に、接触点軌跡線上および歯形1上を、歯形1の歯元側Q1403から歯先Q2404へ移動する。この間は角速度比が一定であるのでピッチ誤差は同じで縮まらない。角速度比が一定に近い場合もピッチ誤差はあまり縮まらない。   G1 is a tooth profile 1 (reference numeral 106), G2 is a tooth profile 2 (reference numeral 107) that meshes with G1, and Q401 is a contact point locus line between G1 and G2. The contact point of the tooth profile pair n108 moves along the contact point locus line and the tooth profile 1 from the tooth base side Q1403 of the tooth profile 1 to the tooth tip Q2404 with rotation. During this time, since the angular velocity ratio is constant, the pitch error is the same and does not shrink. Even when the angular velocity ratio is almost constant, the pitch error is not reduced so much.

接触点が歯先Q2へ移動した後は、歯形1が回転しても歯形1上の接触点は歯先に留まる。歯形1を歯先から連続して伸びた仮想の歯形を考えた場合、回転と共に歯面は延伸部上の点Q3405で外接するので、歯先と歯形2との間は隙間ができ、実際には歯形2が回転して角として突き出た歯先に接触する。または,歯形1が回転して歯先が歯形2に接触する。これにより、歯形上の接触点が留まった状態で接触点は歯車軸1の周りを回動しQ3r406に移動する。その間、角あたりの状態で歯形対n108は角ピッチの誤差ΔψD113を吸収する。ΔψDの吸収が完了すると、歯形対m105が新たに接触し歯形対n108が離れる。これにより、歯形対nから次の歯形対mへの接触点の移行がおこなわれる。   After the contact point moves to the tooth tip Q2, even if the tooth profile 1 rotates, the contact point on the tooth profile 1 remains at the tooth tip. Considering a virtual tooth profile in which the tooth profile 1 is continuously extended from the tooth tip, the tooth surface circumscribes at the point Q3405 on the extension part with rotation, so there is a gap between the tooth tip and the tooth profile 2, Contacts the tooth tip protruding as a corner when the tooth profile 2 rotates. Alternatively, the tooth profile 1 rotates and the tooth tip contacts the tooth profile 2. As a result, the contact point rotates around the gear shaft 1 and moves to Q3r406 while the contact point on the tooth profile remains. Meanwhile, in the state around the corner, the tooth profile pair n108 absorbs the angular pitch error ΔψD113. When the absorption of ΔψD is completed, the tooth profile pair m105 comes into contact again and the tooth profile pair n108 is separated. Thereby, the transition of the contact point from the tooth profile pair n to the next tooth profile pair m is performed.

ここで重要なのは、角あたりを通してピッチ誤差の吸収がなされ、衝撃無く歯形から歯形への接触点の移行がおこなわれることである。しかしながら、角あたりはすべり率無限や相対曲率無限、応力無限状態を示し摩耗、騒音を発生させる。すべり率無限は歯車1速度方向と接触点軌跡線方向が一致するためである。相対曲率無限は、歯形1上の角点の曲率が無限大となるため、相対曲率も無限大となるためである。ここで、歯形対n108から歯形対m105への接触点の移行する瞬間を除き、歯形対nでの接触と歯形対mでの接触が同時に起こることはなく実質かみあい率1の状態となる。また、接触点軌跡線の領域は回転方向に偏位する。   What is important here is that the pitch error is absorbed around the corner, and the transition of the contact point from the tooth profile to the tooth profile is performed without impact. However, the corners show infinite slip rate, relative curvature infinite, and stress infinite states, and generate wear and noise. The slip ratio is infinite because the gear 1 speed direction and the contact point locus line direction coincide. The relative curvature infinite is because the curvature of the corner point on the tooth profile 1 is infinite and the relative curvature is also infinite. Here, except for the moment when the contact point from the tooth profile pair n108 to the tooth profile pair m105 shifts, the contact at the tooth profile pair n and the contact at the tooth profile pair m do not occur at the same time, and the substantial meshing ratio is 1. Further, the region of the contact point locus line is deviated in the rotation direction.

図5は歯面の歯先側を曲面でカットした修正歯面を示す。図5の501は元歯面、502は修正歯面、503は歯面修正領域、504は歯元、505は歯先を表す。   FIG. 5 shows a modified tooth surface obtained by cutting the tooth tip side of the tooth surface with a curved surface. In FIG. 5, reference numeral 501 denotes an original tooth surface, 502 denotes a correction tooth surface, 503 denotes a tooth surface correction region, 504 denotes a tooth base, and 505 denotes a tooth tip.

図6は曲面でカットした歯面修正の場合の、歯形対nの歯形の回転と接触点軌跡線の様子を示す。図6の601は接触点軌跡線Qr、602は接触点Q2、603は接触点Q3、604は接触点Q4、605は接触点Q3r、606は接触点Q4rを表す。   FIG. 6 shows the rotation of the tooth profile of the tooth profile pair n and the state of the contact point locus line in the case of correction of the tooth surface cut with a curved surface. In FIG. 6, 601 represents a contact point locus line Qr, 602 represents a contact point Q2, 603 represents a contact point Q3, 604 represents a contact point Q4, 605 represents a contact point Q3r, and 606 represents a contact point Q4r.

G1は歯面1上の歯形1、G2はG1とかみあう歯面2上の歯形2、QはG1とG2の接触点軌跡線である。歯形対n108の接触点は歯面1の歯元側Q1403から回転と共にカット開始点Q2602へ移動する。この間は角速度比が一定であるのでピッチ誤差は同じで縮まらない。角速度比が一定に近い場合も同様である。   G1 is the tooth profile 1 on the tooth surface 1, G2 is the tooth profile 2 on the tooth surface 2 that meshes with G1, and Q is the contact point locus line between G1 and G2. The contact point of the tooth profile pair n108 moves from the root side Q1403 of the tooth surface 1 to the cutting start point Q2602 with rotation. During this time, since the angular velocity ratio is constant, the pitch error is the same and does not shrink. The same applies when the angular velocity ratio is nearly constant.

接触点がカット開始点Q2602へ移動した後は、歯形1が回転しても歯形上の接触点はカット開始点に留まり、空間上の接触点は歯車軸1の周りを回動しQ3r605に移動する。元歯形を考えた場合、回転と共に歯面は歯形上の点Q3603で外接するので、カット開始点と歯形2との間は隙間ができ、歯形2が回転して角として突き出たカット開始点に接触する。または,歯形1が回転してカット開始点が歯形2に接触する。すなわち、接触点Q2602から接触点Q3r605の間では,角あたりの状態で歯形対n108はΔψD113を吸収する。この角あたりは歯先での角あたりに比べると広角での角あたりになるので、ここではこの角あたりを広角あたりと定義する。   After the contact point moves to the cut start point Q2602, even if the tooth profile 1 rotates, the contact point on the tooth profile remains at the cut start point, and the contact point on the space rotates around the gear shaft 1 and moves to Q3r605. To do. Considering the original tooth profile, the tooth surface circumscribes at the point Q3603 on the tooth profile as it rotates, so there is a gap between the cut start point and the tooth profile 2, and the tooth profile 2 rotates to the cut start point protruding as a corner. Contact. Alternatively, the tooth profile 1 rotates and the cutting start point contacts the tooth profile 2. That is, between the contact point Q2602 and the contact point Q3r605, the tooth profile pair n108 absorbs ΔψD113 in the state around the corner. Since this per corner is around a wide angle compared to that at the tip of the tooth, this per corner is defined as a wide angle.

ΔψDの吸収が不足の場合は、回転と共に接触点は修正歯形上を歯先に向かってΔψDを吸収しながら移動しQ4rへ606向かう。接触点Q4rに至ってもΔψDの吸収が不足の場合は、回転と共に接触点は歯先に留まって角あたりの状態でΔψDを吸収する。開始点Q1以降ΔψDの吸収が完了した時点で歯形対m105が新たに接触し歯形対n108が離れる。これにより、歯形対nから次の歯形対mへの接触点の移行がおこなわれる。   If the absorption of ΔψD is insufficient, the contact point moves along the correction tooth profile toward the tooth tip while absorbing ΔψD along with the rotation and heads toward Q4r 606. If the absorption of ΔψD is insufficient even after reaching the contact point Q4r, the contact point stays at the tooth tip with rotation and absorbs ΔψD in the state around the corner. After the start point Q1, when the absorption of ΔψD is completed, the tooth profile pair m105 newly comes into contact with the tooth profile pair n108. Thereby, the transition of the contact point from the tooth profile pair n to the next tooth profile pair m is performed.

ここで重要なのは、カット開始点Q2602からQ3r605への間は広角あたりになり、広角あたりを通してピッチ誤差の吸収がなされ、衝撃無く歯形から歯形への接触点の移行がおこなわれることである。しかしながら、広角あたりも角あたり同様すべり率無限や相対曲率無限、応力無限状態を示し摩耗、騒音を発生させる。但し、歯先での角あたりに比べると広角での角あたりとなり曲面あたり側に近いので騒音は低減される。すべり率無限は歯車1速度方向と接触点軌跡線方向が一致するためである。相対曲率無限は、歯形1上の角点の曲率が無限大となるため、相対曲率も無限大となるためである。ここで、歯形対nから歯形対mへの接触点の移行する瞬間を除き、歯形対nでの接触と歯形対mでの接触が同時に起こることはなく実質かみあい率1の状態となる。また、接触点軌跡領域は偏位する。   What is important here is that the area between the cut start point Q2602 and Q3r605 is around a wide angle, the pitch error is absorbed through the wide angle, and the contact point is transferred from the tooth profile to the tooth profile without impact. However, wear and noise are generated around the wide angle as well, with the same infinite slip rate, infinite relative curvature, and infinite stress. However, noise is reduced because it is near the corner at the wide angle and closer to the curved surface side than at the corner at the tooth tip. The slip ratio is infinite because the gear 1 speed direction and the contact point locus line direction coincide. The relative curvature infinite is because the curvature of the corner point on the tooth profile 1 is infinite and the relative curvature is also infinite. Here, except for the moment of transition of the contact point from the tooth profile pair n to the tooth profile pair m, the contact at the tooth profile pair n and the contact at the tooth profile pair m do not occur at the same time, and the substantial meshing ratio is 1. Further, the contact point locus region is deviated.

次に、ピッチ誤差吸収式を誘導する。図7に示すように、歯車1、2を考える。   Next, a pitch error absorption formula is derived. Consider the gears 1 and 2 as shown in FIG.

図7の701は歯車1軸S1、702は歯車2軸S2、703は歯車1軸と2軸の共通垂線、704は角速度1ω1、705は角速度2ω2、706は原点O1、707は点O2、708は座標X、709は座標系Y、710は座標Z、711は単位ベクトルib、712は単位ベクトルjb、713は単位ベクトルkb、714は接触点Q、715は接触点の位置ベクトルQbを表す。(以下では,ベクトルを記号の後にbを加えて表す)。   7, reference numeral 701 denotes a gear 1 axis S1, 702 denotes a gear 2 axis S2, 703 denotes a common perpendicular to the gear 1 axis and the two axes, 704 denotes an angular velocity 1ω1, 705 denotes an angular velocity 2ω2, 706 denotes an origin O1, 707 denotes a point O2, and 708. Is a coordinate X, 709 is a coordinate system Y, 710 is a coordinate Z, 711 is a unit vector ib, 712 is a unit vector jb, 713 is a unit vector kb, 714 is a contact point Q, and 715 is a position vector Qb of the contact point. (In the following, the vector is expressed by adding b after the symbol).

図7に示すように、歯車1、2の軸の共通垂線703と歯車1、2軸の交点をO1706、O2707とし、O1を原点とし、共通垂線方向をX708、歯車1方向をZ710、XとZに垂直な方向をY709とする座標を考え、X、Y、Z座標の方向単位ベクトルをib711、jb712、kb713とする。O1706を始点とする接触点Q714の位置ベクトルをQb715、O1からO2へのベクトルをDb716、角速度1をω1704、角速度2をω2705、回転比をiとする。   As shown in FIG. 7, the intersections of the common vertical axis 703 of the gears 1 and 2 and the gears 1 and 2 are O1706 and O2707, O1 is the origin, the common vertical direction is X708, and the gear 1 direction is Z710 and X. Consider a coordinate whose direction perpendicular to Z is Y709, and let ib711, jb712, and kb713 be direction unit vectors of the X, Y, and Z coordinates. The position vector of the contact point Q714 starting from O1706 is Qb715, the vector from O1 to O2 is Db716, the angular velocity 1 is ω1704, the angular velocity 2 is ω2705, and the rotation ratio is i.

前述のように、ピッチ誤差は広角あたり、修正歯面での接触、角あたりにより吸収される。まず、無修正かつ歯先が伸びた元歯面上の接触点Q714を考える。接触点を求める式は知られている。接触点が定まれば、共通歯面法線方向が定まる。接触点での相対速度ベクトルをVb、歯面の共通歯面法線の単位ベクトルをNbとすれば、接触点でのかみあい条件は次式(数1)、(数2)となる。   As described above, the pitch error is absorbed by the wide angle, the contact with the corrected tooth surface, and the corner. First, consider the contact point Q714 on the original tooth surface where the tooth tip is uncorrected and the tooth tip is extended. The formula for determining the contact point is known. If the contact point is determined, the common tooth surface normal direction is determined. If the relative velocity vector at the contact point is Vb and the unit vector of the common tooth surface normal of the tooth surface is Nb, the contact condition at the contact point is expressed by the following equations (Equation 1) and (Equation 2).

(数1)
Nb・Vb=0
(数2)
Vb=ω2jb×(Qb−Db)−ω1kb×Qb
(Equation 1)
Nb ・ Vb = 0
(Equation 2)
Vb = ω2jb × (Qb−Db) −ω1 kb × Qb

回転比iは式(数1)、(数2)より次式(数3)となる。
(数3)
i=ω1 / ω2={Nb・(jb×(Qb−Db))}/{Nb・(kb×Qb)}
The rotation ratio i is expressed by the following expression (Expression 3) from Expressions (Expression 1) and (Expression 2).
(Equation 3)
i = ω1 / ω2 = {Nb · (jb × (Qb−Db))} / {Nb · (kb × Qb)}

接触点での歯面1の回転角ψ1は、時間tとして次式(数4)となる。ここで、歯面修正面の始点を接触点とするときの歯面1、2の回転角を零とする。ψ1の積分の範囲は0からtであり、tが0のときψ1も0である。ω2は一定とする。不等角速度比の場合は、角速度比が時間と共に変化するのでiは時間tの関数となる。等角速度比の場合は、角速度比が一定なのでiは一定となる。そしてψ1は次式(数5)となる。ψ2は歯面2の回転角である。 The rotation angle ψ 1 of the tooth surface 1 at the contact point is expressed by the following equation (Equation 4) as time t. Here, the rotation angle of the tooth surfaces 1 and 2 when the starting point of the tooth surface correction surface is the contact point is set to zero. The integration range of ψ1 is from 0 to t, and when t is 0, ψ1 is also 0. ω2 is assumed to be constant. In the case of an unequal angular velocity ratio, since the angular velocity ratio changes with time, i is a function of time t. In the case of a constant angular velocity ratio, i is constant because the angular velocity ratio is constant. Ψ1 is expressed by the following equation (Equation 5). ψ2 is the rotation angle of the tooth surface 2.

(数4)
ψ1=∫iω2 dt
(数5)
ψ1=ω1t=iω2t=iψ2
(Equation 4)
ψ1 = ∫iω2 dt
(Equation 5)
ψ 1 = ω 1 t = iω 2 t = iψ 2

次に修正後の歯面を考える。この場合の修正前後で値が異なる記号は添え字rを付す。接触点QはQr、接触点の位置ベクトルQbはQbr、角速度ω1はω1r、回転比iはir、接触点での相対速度ベクトルVbはVbr、歯面の共通歯面法線の単位ベクトルNbはNbrである。角速度ω2はω2で同じである。歯面1の回転角irの式は、修正前の歯面の場合と同様にして、次式(数6)、(数7)となる。ψ1rの積分の範囲は0からtであり、tが0のときψ1rも0である。角速度比は時間と共に変化するのでirは時間tの関数となる。   Next, consider the modified tooth surface. In this case, a symbol having a different value before and after correction is given a subscript r. The contact point Q is Qr, the contact point position vector Qb is Qbr, the angular velocity ω1 is ω1r, the rotation ratio i is ir, the relative velocity vector Vb at the contact point is Vbr, and the unit vector Nb of the tooth surface common tooth surface normal is Nbr. The angular velocity ω2 is the same as ω2. The expression of the rotation angle ir of the tooth surface 1 is expressed by the following expressions (Expression 6) and (Expression 7), similarly to the case of the tooth surface before correction. The integration range of ψ1r is from 0 to t, and when t is 0, ψ1r is also 0. Since the angular velocity ratio changes with time, ir is a function of time t.

(数6)
ψ1r=∫irω2 dt
(数7)
ir=ω1r / ω2={Nbr・(jb×(Qbr−Db))}/{Nbr・(kb×Qbr)}
(Equation 6)
ψ1r = ∫irω2 dt
(Equation 7)
ir = ω1r / ω2 = {Nbr · (jb × (Qbr−Db))} / {Nbr · (kb × Qbr)}

歯面修正後の歯形上の点を接触点とするときの歯車1、2の回転角をψ1r、ψ2とする。また、歯車2の回転角が同じψ2の場合の、歯面修正前の歯車1の回転角をψ1とする。ここで、歯車1の修正後の回転角ψ1rと修正前の回転角ψ1の差をΔψ1とすれば、角ピッチ誤差を吸収する条件は次式(数8)となる。これは、歯車2の同一回転角に対する、歯車1の修正後の回転角ψ1rが修正前の回転角ψ1に比べ大きいことである。ここで、このΔψ1を角ピッチ誤差吸収角とよぶ。 The rotation angle of the gear 1 and 2 when the contact point a point on the tooth profile after the tooth surface modify Pusai1r, and [psi 2. In addition, when the rotation angle of the gear 2 is the same φ 2 , the rotation angle of the gear 1 before the tooth surface correction is φ 1. Here, if the difference between the corrected rotation angle ψ1r of the gear 1 and the uncorrected rotation angle ψ1 is Δψ1, the condition for absorbing the angular pitch error is expressed by the following equation (Equation 8). This is because the rotation angle ψ1r after correction of the gear 1 with respect to the same rotation angle of the gear 2 is larger than the rotation angle ψ1 before correction. Here, this Δψ1 is referred to as an angular pitch error absorption angle.

(数8)
Δψ1=ψ1r−ψ1 > 0
(Equation 8)
Δψ1 = ψ1r−ψ1> 0

以上のことより、ピッチ誤差による騒音を防止する為の必要条件を整理すれば、   From the above, if we organize the necessary conditions to prevent noise due to pitch error,

条件1(ピッチ誤差吸収) :修正歯面を歯面の歯先側かつ内側に設けること。これにより、早い段階でピッチ誤差を連続的に吸収することができ、角あたりを防ぐことが可能となる。       Condition 1 (Pitch error absorption): A modified tooth surface is provided on the tooth tip side and inside of the tooth surface. As a result, pitch errors can be absorbed continuously at an early stage, and corners can be prevented.

条件2(広角あたりの防止) :修正歯面は歯面に内接する曲面とすること。これにより、歯面上に不連続線が現れることがなく広角あたりを防ぐことができる。       Condition 2 (Prevention per wide angle): The modified tooth surface should be a curved surface inscribed in the tooth surface. As a result, discontinuous lines do not appear on the tooth surface, and a wide-angle area can be prevented.

条件3(角あたりの防止) :修正歯面の修正面の構成要素を、修正歯面の歯先から一定量内側の接触点で、ピッチ誤差をすべて吸収する条件式を満たすように定めること。これにより、角あたりを防ぐことができる。       Condition 3 (Prevention per corner): The components of the correction surface of the correction tooth surface should be determined so as to satisfy the conditional expression that absorbs all pitch errors at the contact point inside the correction tooth surface by a certain amount. Thereby, the corner hit can be prevented.

修正歯面1の歯先から一定量内側の点が接触点である場合の角ピッチ誤差吸収角をΔψ1Lとし、角ピッチ誤差の設計上の公差の最大値をΔψDとする。ここで、歯先から一定量内側の歯面上の接触点でピッチ誤差を吸収する条件は、ピッチ誤差吸収角が公差の最大値より大きいことで有り次式(数9)で表される。ここで、ピッチ誤差ΔψDは歯車1の角ピッチ誤差と、歯車2の角ピッチ誤差を歯車1の角ピッチ誤差に換算したものを合わせたものである。実際のΔψ1Lは誤差や安全率等を考慮し元のΔψ1Lより大きくとることになる。   The angle pitch error absorption angle when the point inside the tooth tip of the corrected tooth surface 1 is a contact point is Δψ1L, and the maximum design tolerance of the angle pitch error is ΔψD. Here, the condition for absorbing the pitch error at the contact point on the tooth surface a certain amount inside from the tooth tip is that the pitch error absorption angle is larger than the maximum tolerance, and is expressed by the following equation (Equation 9). Here, the pitch error ΔψD is a combination of the angular pitch error of the gear 1 and the angular pitch error of the gear 2 converted into the angular pitch error of the gear 1. The actual Δψ1L is larger than the original Δψ1L in consideration of errors and safety factors.

(数9)
Δψ1L > ΔψD
(Equation 9)
Δψ1L> ΔψD

この条件式(数9)を満たす修正面を決定する修正面構成要素を与える方法としては次の解法がある。修正面構成要素は、例えば、円で補正する場合は円の中心位置や円の半径である。   There is the following solution as a method for providing a correction surface component for determining a correction surface that satisfies this conditional expression (Equation 9). The correction surface component is, for example, the center position of the circle or the radius of the circle when correcting with a circle.

解法1 :条件式を修正面構成要素を求める式に変形して解を求める方法
解法2 :条件式に修正面構成要素を代入し,数値解法により解を求める方法
解法3 :修正面構成要素を変数として種々の値を与え,歯面と接触点の軌跡をシ ミュレーションして、解を求める方法
Solution 1: A method for obtaining a solution by transforming a conditional expression into a formula for obtaining a corrected surface component. Solution 2: A method for obtaining a solution by a numerical solution by substituting the modified surface component into a conditional equation. Solution 3: A modified surface component. A method to obtain solutions by simulating the tooth surface and contact point trajectories by giving various values as variables

生産上は、生産ラインで実際のあるいは基準の相手歯車とかみ合わせ、歯面対nから歯面対mへの移行時の歯面対nの接触点が歯先を除く歯形上に位置しているか、画像処理を用いて評価判定することもできる。   In production, meshing with the actual or reference mating gear on the production line, is the contact point of tooth surface pair n at the transition from tooth surface pair n to tooth surface pair m positioned on the tooth profile excluding the tooth tip? Evaluation can also be made using image processing.

歯形工具により歯面を加工する場合は、平歯車のように工具歯形の歯底側に歯形修正を加えることにより、歯形の歯先側が修正された修正歯面を得ることができる。これは、成形歯切り、創成歯切りによらず可能である。例えば、ホブの歯形修正、ハイポイドギヤにおける環状カッターの歯形修正、ウォームギヤにおけるバイトの歯形修正等が考えられる。歯形により理論的に歯面を構成し数値加工する歯面の場合も同様である。歯形修正曲線としては、円、楕円、インボリュート曲線、直線と円弧の合成曲線等が考えられる。   When a tooth surface is machined with a tooth profile tool, a modified tooth surface in which the tooth tip side of the tooth profile is corrected can be obtained by applying a tooth profile correction to the tooth bottom side of the tool tooth profile like a spur gear. This is possible regardless of molding gear cutting or generating gear cutting. For example, the tooth profile correction of the hob, the tooth profile correction of the annular cutter in the hypoid gear, the tooth profile correction of the bite in the worm gear, etc. can be considered. The same applies to a tooth surface that theoretically forms a tooth surface based on the tooth profile and is numerically processed. As the tooth profile correction curve, a circle, an ellipse, an involute curve, a combined curve of a straight line and an arc, and the like can be considered.

条件4(先細り防止) :修正歯面の曲率の大きさは必要最低限とすること。これにより、歯の先細りによる強度やかみあいに関する問題を防げる.歯面修正が小さ過ぎるとピッチ誤差の吸収が不満足となり、大きいと歯先の先細りや角速度比の変化が大きくなる。ピッチ誤差が大きい場合、歯面修正が大きくなり歯先の先細りや角速度比の変化が大きくなる。従って、ピッチ誤差は極力小さく抑える必要がある。   Condition 4 (Preventing taper): The curvature of the modified tooth surface should be the minimum necessary. This prevents problems related to strength and contact caused by tooth taper. If the tooth surface correction is too small, the absorption of the pitch error is unsatisfactory, and if it is large, the tip of the tooth tip and the change in the angular velocity ratio become large. When the pitch error is large, the tooth surface correction becomes large, and the taper of the tooth tip and the change in the angular velocity ratio become large. Therefore, it is necessary to keep the pitch error as small as possible.

条件5(符号対応) :歯車1、2の両方に上記の歯面修正を施すこと。これは重要なことで、歯車1、2の片方のみに上記の歯面修正を施した場合は符号の+−のいずれかのピッチ誤差に対応できない。   Condition 5 (corresponding to the code): Apply the above tooth surface correction to both gears 1 and 2. This is important, and if the tooth surface correction is applied to only one of the gears 1 and 2, it cannot cope with any of the + and-sign pitch errors.

図8は上記の条件を満たす歯面修正の場合の、歯形対nの歯形の回転と接触点軌跡線の様子を示す。   FIG. 8 shows the rotation of the tooth profile of the tooth profile pair n and the state of the contact point locus line in the case of the tooth surface correction satisfying the above conditions.

図8の801は歯形1G1、802は接触点軌跡線Qr、803は接触点Q2、804は接触点Q3、805は接触点Q4、806は接触点Q3rを表す。   In FIG. 8, 801 represents the tooth profile 1G1, 802 represents the contact point locus line Qr, 803 represents the contact point Q2, 804 represents the contact point Q3, 805 represents the contact point Q4, and 806 represents the contact point Q3r.

G1は歯面1上の歯形1、G2はG1とかみあう歯面2上の歯形2、Q404はG1とG2の接触点軌跡線である。   G1 is a tooth profile 1 on the tooth surface 1, G2 is a tooth profile 2 on the tooth surface 2 that meshes with G1, and Q404 is a contact point locus line between G1 and G2.

歯形対n108の接触点は歯面1の歯元側Q1403から回転と共に歯形修正開始点Q2803へ移動する。この間は角速度比が一定であるのでピッチ誤差は同じで縮まらない。角速度比が一定に近い場合も同様である。   The contact point of the tooth profile pair n108 moves from the tooth root side Q1403 of the tooth surface 1 to the tooth profile correction start point Q2803 with rotation. During this time, since the angular velocity ratio is constant, the pitch error is the same and does not shrink. The same applies when the angular velocity ratio is nearly constant.

接触点が歯形修正開始点Q2へ移動した後は、回転と共に接触点は修正歯形上を歯先に向かってΔψD113を吸収しながら移動しQ3r806へ向かう。修正前の元歯形を考えた場合、回転と共に歯面は歯形上の点Q3804で外接するので、Q3rを通る歯形1と歯形2との間は隙間ができ、歯形2が回転して歯形1と接触する。または、歯形1が回転して歯形2に接触する。これにより、歯形対nはΔψDを吸収する。   After the contact point moves to the tooth profile correction start point Q2, the contact point moves on the correction tooth profile toward the tooth tip while absorbing ΔψD113 and moves toward Q3r806. Considering the original tooth profile before correction, the tooth surface circumscribes at the point Q3804 on the tooth profile as it rotates, so that there is a gap between the tooth profile 1 and the tooth profile 2 passing through Q3r. Contact. Alternatively, the tooth profile 1 rotates and contacts the tooth profile 2. As a result, the tooth profile pair n absorbs ΔψD.

さらに、回転と共に接触点は修正歯形上を歯先に向かってΔψDを吸収しながら移動しQ4r807へ向かう。元歯形を考えた場合、回転と共に歯面は歯形上の点Q4805で外接するので、Q4rを通る歯形1と歯形2との間は隙間ができ、歯形2が回転して歯形1と接触する。または,歯形1が回転して歯形2に接触する。これにより、歯形対nはΔψDを吸収する。この時点で、ΔψD113の吸収が完了し、歯形対n108から次の歯形対m105への接触点の移行がおこなわれる。   Further, the contact point moves along the correction tooth profile toward the tooth tip while absorbing ΔψD along with the rotation, and moves toward Q4r807. Considering the original tooth profile, the tooth surface circumscribes at the point Q4805 on the tooth profile as it rotates, so that there is a gap between the tooth profile 1 and the tooth profile 2 passing through Q4r, and the tooth profile 2 rotates and contacts the tooth profile 1. Alternatively, the tooth profile 1 rotates and contacts the tooth profile 2. As a result, the tooth profile pair n absorbs ΔψD. At this time, the absorption of ΔψD113 is completed, and the transition of the contact point from the tooth profile pair n108 to the next tooth profile pair m105 is performed.

ここで重要なのは、衝撃そして広角あたりや角あたりがなく歯形から歯形への接触点の移行がおこなわれることである。すなわち、すべり率無限や相対曲率無限、応力無限状態となって摩耗、騒音を発生させることはない。なお、歯面対nから歯面対mへの接触点の移行する瞬間を除き、歯面対nでの接触と歯面対mでの接触が同時に起こることはなく実質かみあい率1の状態となる。また、接触点軌跡領域の偏位は縮小する。   What is important here is that the contact point shifts from the tooth profile to the tooth profile without impact and around a wide angle or corner. In other words, the slip rate is infinite, the relative curvature is infinite, the stress is infinite, and no wear or noise is generated. Except for the moment of transition of the contact point from the tooth surface pair n to the tooth surface pair m, the contact at the tooth surface pair n and the contact at the tooth surface pair m do not occur at the same time, and the state of the substantial meshing rate is 1. Become. Further, the deviation of the contact point locus region is reduced.

ねじれは右ねじれでも左ねじれでも同様である。左右の歯面は右歯面でも左歯面でも同様である。回転方向は正方向でも逆方向でも同様である。   The twist is the same for both right and left twists. The same applies to the right and left tooth surfaces. The rotation direction is the same in both the forward and reverse directions.

以上は,幾何学的な考察であるが,力による変形がある場合でも同様である。歯圧による歯の変形がある場合は、歯車対nから歯車対mへの接触点および力の移行が、瞬間的ではあるが微小時間をかけておこなわれる。
歯圧による歯の変形がある場合は、歯車対nから歯車対mへの接触点および力の移行が、瞬間的ではあるが微小時間をかけておこなわれる。
The above is a geometrical consideration, but it is the same even when there is deformation due to force. When there is a deformation of the tooth due to the tooth pressure, the transition of the contact point and the force from the gear pair n to the gear pair m is instantaneously performed over a very short time.
When there is a deformation of the tooth due to the tooth pressure, the transition of the contact point and the force from the gear pair n to the gear pair m is instantaneously performed over a very short time.

本発明により、騒音や耐摩耗に優れた歯車を実現できる。その為、静粛かつ強い強度を備えた機械要素としての歯車が要求される機械において広く利用可能である。   According to the present invention, a gear excellent in noise and wear resistance can be realized. Therefore, the present invention can be widely used in machines that require a gear as a machine element having a quiet and strong strength.

101 歯車1
102 歯車2
103 歯形1
104 歯形2
105 歯形対m
106 歯形1
107 歯形2
108 歯形対n
109 歯底円1
110 歯先円1
111 歯底円2
112 歯先円2
113 角ピッチ誤差ΔψD
401 接触点軌跡線Q
402 接触点軌跡線Qr
403 接触点Q1
404 接触点Q2
405 接触点Q3
406 接触点Q3r
501 元歯面
502 修正歯面
503 歯面修正領域
504 歯元
505 歯先
601 接触点軌跡線Qr
602 接触点Q2
603 接触点Q3
604 接触点Q4
605 接触点Q3r
606 接触点Q4r
701 歯車1軸S1
702 歯車2軸S2
703 歯車1軸と2軸の共通垂線
704 角速度1
705 角速度2
706 原点O1
707 点O2
708 座標X
709 座標Y
710 座標Z
711 単位ベクトルib
712 単位ベクトルjb
713 単位ベクトルkb
714 接触点Q
715 接触点位置ベクトルQb
716 ベクトルDb
801 歯形1G1
802 接触点軌跡線Qr
803 接触点Q2
804 接触点Q3
805 接触点Q4
806 接触点Q3r
807 接触点Q4r
101 Gear 1
102 Gear 2
103 Tooth profile 1
104 Tooth profile 2
105 Tooth profile vs. m
106 Tooth profile 1
107 Tooth profile 2
108 Tooth profile vs. n
109 root circle 1
110 Tooth circle 1
111 root circle 2
112 Tooth circle 2
113 Angular pitch error ΔψD
401 Contact point locus line Q
402 Contact point locus line Qr
403 Contact point Q1
404 Contact point Q2
405 Contact point Q3
406 Contact point Q3r
501 Original tooth surface 502 Correction tooth surface 503 Tooth surface correction region 504 Tooth base 505 Tooth tip 601 Contact point locus line Qr
602 Contact point Q2
603 Contact point Q3
604 Contact point Q4
605 Contact point Q3r
606 Contact point Q4r
701 Gear 1 axis S1
702 Gear 2 shaft S2
703 Gear 1 axis and 2 axis common perpendicular 704 Angular velocity 1
705 Angular velocity 2
706 Origin O1
707 points O2
708 coordinate X
709 coordinate Y
710 coordinate Z
711 Unit vector ib
712 Unit vector jb
713 unit vector kb
714 Contact point Q
715 Contact point position vector Qb
716 Vector Db
801 Tooth profile 1G1
802 Contact point locus line Qr
803 Contact point Q2
804 Contact point Q3
805 Contact point Q4
806 Contact point Q3r
807 Contact point Q4r

Claims (1)

歯面の歯先側そして内側に共に歯面修正された一対の歯車であり,この修正面は歯面に内接する曲面であり、この修正面の構成要素を歯先から一定量内側の接触点でピッチ誤差の吸収を完了するように定めたことを特徴とする一対の食い違い軸歯車および交叉軸歯車。   A pair of gears whose tooth surfaces are modified on both the tooth tip side and the inside of the tooth surface. The correction surface is a curved surface inscribed in the tooth surface. A pair of staggered shaft gears and crossed shaft gears characterized in that absorption of pitch errors is completed.
JP2017001489A 2017-01-07 2017-01-07 Skewed shaft gear and intersecting shaft gear Pending JP2018112206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017001489A JP2018112206A (en) 2017-01-07 2017-01-07 Skewed shaft gear and intersecting shaft gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017001489A JP2018112206A (en) 2017-01-07 2017-01-07 Skewed shaft gear and intersecting shaft gear

Publications (1)

Publication Number Publication Date
JP2018112206A true JP2018112206A (en) 2018-07-19

Family

ID=62911932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001489A Pending JP2018112206A (en) 2017-01-07 2017-01-07 Skewed shaft gear and intersecting shaft gear

Country Status (1)

Country Link
JP (1) JP2018112206A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108953550A (en) * 2018-08-01 2018-12-07 中南大学 The point tooth surface design method of spur gear
CN111120624A (en) * 2019-12-04 2020-05-08 武汉市精华减速机制造有限公司 Contact stress homogenization-based cycloidal gear tooth profile modification method
CN112541235A (en) * 2020-12-04 2021-03-23 重庆大学 Universal design method for hypoid gear pair

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796441A (en) * 1993-09-24 1995-04-11 Eisuke Yokoyama Backlash eliminating structure in worm-worm wheel mechanism
JP2005075274A (en) * 2003-09-03 2005-03-24 Honda Motor Co Ltd Electric power steering device
JP2010221855A (en) * 2009-03-24 2010-10-07 Hitachi Automotive Systems Ltd Electric power steering device
JP2016008682A (en) * 2014-06-25 2016-01-18 大竹技研株式会社 Hypoid gear

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796441A (en) * 1993-09-24 1995-04-11 Eisuke Yokoyama Backlash eliminating structure in worm-worm wheel mechanism
JP2005075274A (en) * 2003-09-03 2005-03-24 Honda Motor Co Ltd Electric power steering device
JP2010221855A (en) * 2009-03-24 2010-10-07 Hitachi Automotive Systems Ltd Electric power steering device
JP2016008682A (en) * 2014-06-25 2016-01-18 大竹技研株式会社 Hypoid gear

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108953550A (en) * 2018-08-01 2018-12-07 中南大学 The point tooth surface design method of spur gear
CN111120624A (en) * 2019-12-04 2020-05-08 武汉市精华减速机制造有限公司 Contact stress homogenization-based cycloidal gear tooth profile modification method
CN112541235A (en) * 2020-12-04 2021-03-23 重庆大学 Universal design method for hypoid gear pair

Similar Documents

Publication Publication Date Title
JP2018112206A (en) Skewed shaft gear and intersecting shaft gear
US9132493B2 (en) Continuous method for manufacturing face gears
CN110263367B (en) Three-dimensional tooth profile design method of harmonic reducer without interference meshing
CN109604738B (en) Efficient side edge finish milling method based on Niemann worm gear mathematical model
JP2019524468A (en) Power skiving pressure angle correction without changing the tool shape
US6422924B1 (en) Process for widening the crown of cylindrical-type gears by continuous diagonal hobbing
CN109773279B (en) Circular arc tooth line gear machining method
CN111322373B (en) Gear pair design method based on claw helix rack knife
CN108204441A (en) A kind of controllable repairing type method of the arc-shaped gear cylindrical worm flank of tooth
CN111715947B (en) Method for forming linear contact gradually-reduced tooth arc tooth bevel gear pair
Liu et al. Computerized approach for design and generation of face-milled non-generated hypoid gears with low shaft angle
Gonzalez-Perez et al. Conjugated action and methods for crowning in face-hobbed spiral bevel and hypoid gear drives through the spirac system
CN107882950A (en) A kind of involute profile correction method of harmonic drive
CN104819267A (en) Harmonic gear device adopting non-interference and wide range meshing tooth profile
US3720989A (en) Gear cutting methods
JP2009279674A (en) Analysis system of hypoid gear
TWI825767B (en) Gear skiving cutter and designing method thereof
Simon Hob for worm gear manufacturing with circular profile
CN109812544B (en) Arc tooth surface gear transmission pair and design method
TWI584894B (en) A worm - type tool with dual lead form and variable pressure angle and its operation method
CN106180911B (en) A kind of design method of serration gear hobbing cutter
US2916803A (en) Hob
MATSUURA et al. GENERATION METHOD OF POLYGONAL SHAPES WITH FILLETS BASES ON THE GEAR MESHING THEORY
JP3717052B2 (en) How to hob a curved tooth-gear gear
US20180243849A1 (en) Method and tool for manufacturing spiral tooth face couplings

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180807