JP2018111114A - Pulse mag welding method for high-strength steel sheet - Google Patents

Pulse mag welding method for high-strength steel sheet Download PDF

Info

Publication number
JP2018111114A
JP2018111114A JP2017003371A JP2017003371A JP2018111114A JP 2018111114 A JP2018111114 A JP 2018111114A JP 2017003371 A JP2017003371 A JP 2017003371A JP 2017003371 A JP2017003371 A JP 2017003371A JP 2018111114 A JP2018111114 A JP 2018111114A
Authority
JP
Japan
Prior art keywords
pulse
weld metal
welding
wire
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017003371A
Other languages
Japanese (ja)
Other versions
JP6683635B2 (en
Inventor
木本 勇
Isamu Kimoto
勇 木本
友勝 岩上
Tomokatsu Iwagami
友勝 岩上
諒 土久岡
Ryo Tokuoka
諒 土久岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2017003371A priority Critical patent/JP6683635B2/en
Publication of JP2018111114A publication Critical patent/JP2018111114A/en
Application granted granted Critical
Publication of JP6683635B2 publication Critical patent/JP6683635B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pulse MAG welding method for a high-strength steel sheet, wherein, the arc is stable, the fit of a toe part is good, a weld bead that is wide can be obtained, there are no weld defects, and excellent weld metal mechanical performance can be obtained.SOLUTION: A pulse MAG welding method uses a solid wire that contains, in mass% based on the total wire mass, C: 0.02-0.15%, Si: 0.30-0.60%, Mn: 1.20-1.90%, Ni: 2.0-4.0%, Cr: 0.30-0.70%, Mo: 0.40-0.80%, the total of Cr and Mo : 0.75-1.15%, Ti: 0.02-0.07%, and Cu: 0.10-0.40%, with S: 0.03% or less and P: 0.03% or less, having pulse peak current (Ip): 440-600A and pulse base current (Ib): 30-80A, the pulse peak current (Ip) and pulse peak time (Tp) satisfying the following formula: 415≤Ip(A)×Tp(msec)≤780.SELECTED DRAWING: None

Description

本発明は、引張強度が780MPa以上の高強度薄鋼板のパルスMAG溶接方法に関し、特に板厚が1.2〜3.2mmの高強度薄鋼板の重ね継手部やT継手部を溶接するに際してアークを安定させ、止端部のなじみが良好で、溶接部のギャップが大きい場合においてもビード幅の広い溶接ビードが得られ、溶接欠陥がなく、かつ優れた溶接金属の機械的性能が得られるなど、高能率で高品質な溶接部を得る上で好適な高強度薄鋼板のパルスMAG溶接方法に関する。   The present invention relates to a pulse MAG welding method for a high strength thin steel sheet having a tensile strength of 780 MPa or more, and particularly to arc welding when welding a lap joint or a T joint of a high strength thin steel sheet having a thickness of 1.2 to 3.2 mm. This makes it possible to obtain a weld bead with a wide bead width even when the gap of the welded portion is large, no weld defects, and excellent mechanical performance of the weld metal. The present invention relates to a pulse MAG welding method for a high-strength thin steel sheet suitable for obtaining a highly efficient and high-quality weld.

近年、地球環境保全の見地から、自動車の燃費向上が重要な課題となっており、車体材料の高強度化のために使用鋼板の薄肉化が進められている。例えば特許文献1には、引張最大強度780MPa以上の高強度鋼板で衝突時の衝撃吸収能に優れた自動車用鋼板が開示されている。また特許文献2には、引張強さが980MPa以上の高強度鋼板で成形性の優れた自動車用鋼板が開示されている。   In recent years, from the viewpoint of global environmental conservation, improving the fuel efficiency of automobiles has become an important issue, and the use of thinner steel sheets has been promoted in order to increase the strength of car body materials. For example, Patent Document 1 discloses a steel sheet for automobiles that is a high-strength steel sheet having a maximum tensile strength of 780 MPa or more and that is excellent in impact absorption at the time of collision. Patent Document 2 discloses a steel sheet for automobiles having a high strength steel sheet having a tensile strength of 980 MPa or more and excellent in formability.

自動車用薄鋼板の溶接は、ソリッドワイヤを用いて継手部の品質特性の面からスパッタの発生量を低減させて部材への付着を少なくする目的と、高速溶接性確保の面からシールドガスとしてArガスを主成分とし、これにCO2ガスを混合、さらにはO2ガスを混合したガスを用いたパルスMAG溶接方法が近年増加している。パルスMAG溶接方法は、平均電流を低くして溶接できることから薄鋼板の溶接では耐溶け落ち性も向上できるとともに、高速度の溶接条件で施工されるので生産性が高く、品質の良好な溶接継手部が得られる。 Welding thin steel sheets for automobiles uses Ar as a shielding gas for the purpose of reducing the amount of spatter generated by reducing the amount of spatter generated from the aspect of quality characteristics of the joint using solid wires and ensuring high-speed weldability. In recent years, pulse MAG welding methods using a gas mainly composed of gas, mixed with CO 2 gas, and further mixed with O 2 gas have been increasing. The pulse MAG welding method can weld with a low average current, so it can improve the melt-off resistance in the welding of thin steel plates, and it is constructed under high-speed welding conditions, so it is highly productive and has good quality. Part is obtained.

パルスMAG溶接とは、溶接電流として平均電流値より高電流となるピーク電流と平均電流値より低電流としたベース電流を周期的に流す溶接方法である。これによりピーク電流期間では一定に送給されている溶接用ワイヤを電磁ピンチ力などの作用で溶滴状態に溶融させ、ベース電流期間中にこの溶滴を溶融池に安定的に移行させるので、高速溶接時にアンダーカットを抑制するために溶接中のアーク電圧が低くなった場合においても溶滴が溶融池と短絡することなくスムーズに溶融池へ移行させることができる。   Pulse MAG welding is a welding method in which a peak current that is higher than the average current value as a welding current and a base current that is lower than the average current value are periodically passed. As a result, the welding wire, which is constantly fed during the peak current period, is melted into a droplet state by an action such as an electromagnetic pinch force, and this droplet is stably transferred to the molten pool during the base current period. Even when the arc voltage during welding becomes low in order to suppress undercut during high-speed welding, the droplets can be smoothly transferred to the molten pool without short-circuiting with the molten pool.

このように、パルス溶接電源を適用することにより、パルスMAG溶接においてピーク電流、ピーク時間、アーク電圧の積からなる溶融エネルギーに対応したワイヤ送給量毎の溶滴生成量にする。すなわち、1回のパルスピーク電流時に1個の溶滴を生成させ、ベース電流期間に溶滴を溶融池に規則的に移行させる1パルス−1ドロップ移行となるパルス条件とするにより、溶滴はスムーズに溶融池に移行してスパッタ発生量が低減される。このため溶接電源は、溶接用ワイヤの送給速度に対応してパルスの周波数を数十Hz〜300Hz程度まで変化させることが可能となっている。   In this way, by applying the pulse welding power source, the droplet generation amount for each wire feeding amount corresponding to the melting energy consisting of the product of peak current, peak time, and arc voltage in pulse MAG welding is obtained. That is, by forming a single droplet at the time of one pulse peak current and setting a pulse condition of 1 pulse-1 drop transition that regularly transfers the droplet to the molten pool during the base current period, The amount of spatter generated is reduced by smoothly moving to the molten pool. For this reason, the welding power source can change the frequency of the pulse from about several tens of Hz to about 300 Hz corresponding to the feeding speed of the welding wire.

一方、ピーク電流、ピーク時間、アーク電圧の積からなるワイヤを溶融するエネルギーがワイヤ送給量と不均衡になると、溶滴の形成がベース電流期間となり、溶滴形成がピーク電流期間の初期時に終了した溶滴はスムーズに移行できなくなり、スパッタとして飛散する。また溶滴移行時期がベース電流期間及びピーク電流期間に不連続に発生することになり、スパッタとして飛散するばかりでなく不均一なビード形状となる。   On the other hand, if the energy for melting the wire, which is the product of peak current, peak time, and arc voltage, becomes unbalanced with the wire feed amount, droplet formation becomes the base current period, and droplet formation occurs at the beginning of the peak current period. The finished droplets cannot move smoothly and scatter as spatter. In addition, the droplet transfer timing occurs discontinuously during the base current period and the peak current period, resulting in not only scattering as spatter but also a non-uniform bead shape.

特にガスシールドアーク溶接での高速度溶接においてはアンダーカットが発生し易く、これを抑制する方法としてはアーク電圧を低くした溶接条件を採用することが一般的であるが、アークの広がりが小さくなるのでビード幅も狭くなり、ビード幅の広い良好な継手の形成が困難となる。また薄鋼板の構造物の形状は複雑化し、溶接部においても継手部の形状は複雑で溶接狙い精度が要求され、ワイヤ狙い精度の不安定状態により鋼板の溶け落ちや溶け込み不良さらにはアーク状態の安定性劣化によるスパッタの多発、ビード形状の不良などの要因となる。   Particularly in high-speed welding in gas shielded arc welding, undercut is likely to occur. As a method for suppressing this, it is common to employ welding conditions with a reduced arc voltage, but the arc spread is reduced. As a result, the bead width is also narrowed, making it difficult to form a good joint with a wide bead width. In addition, the shape of the structure of the thin steel plate is complicated, and the shape of the joint portion is also complicated in the welded part, so that the accuracy of the aiming of the welding is required. This causes frequent spatters due to stability deterioration and bead shape defects.

図1(a)、(b)、(c)、(d)、(e)に薄鋼板の重ね継手部の横向姿勢においてギャップがある場合のビード形成状態の例を示す。前板1に対して後側に後板2を位置させ、この前板1及び後板2にそれぞれ溶接金属3を形成させる。この前板1と後板2との間にはギャップGが形成されている。図1(a)は、溶け落ちやビードの垂れおよびアンダーカットがなくビード幅Wが大きく良好な溶接金属3が得られた例を示す。図1(b)は、アンダーカット4が生じた例を示す。図1(c)は、溶融金属3が前板1側に垂れた例を示す。図1(d)は、鋼板(後板2)が溶け落ちた例を示す。図1(e)は、溶融金属3が前板1と後板2の間のギャップG内に垂れ落ちた例を示す。   FIG. 1A, FIG. 1B, FIG. 1C, FIG. 1D, and FIG. 1E show an example of a bead formation state when there is a gap in the lateral orientation of the lap joint portion of a thin steel plate. The rear plate 2 is positioned on the rear side with respect to the front plate 1, and the weld metal 3 is formed on each of the front plate 1 and the rear plate 2. A gap G is formed between the front plate 1 and the rear plate 2. FIG. 1 (a) shows an example in which a good weld metal 3 having a large bead width W without melt-through, bead dripping and undercut is obtained. FIG. 1B shows an example in which an undercut 4 has occurred. FIG. 1C shows an example in which the molten metal 3 hangs down to the front plate 1 side. FIG.1 (d) shows the example which the steel plate (rear plate 2) melted away. FIG. 1 (e) shows an example in which the molten metal 3 has dropped into the gap G between the front plate 1 and the rear plate 2.

図1(b)に示すアンダーカット4は、アーク電圧が高い場合に生じる。図1(c)に示す溶融金属3の前板1側への垂れは、図2に示すワイヤ狙い位置6が前板1の前面側61になった場合に生じやすい。図1(d)に示す鋼板(後板2)の溶け落ちは、図2に示すワイヤ狙い位置6が後板側62になった場合に生じやすい。図1(e)に示す溶接金属3のギャップG内への垂れ落ちは、ギャップG自体が大きい場合に生じやすくなる。このように、ワイヤ狙い位置が変動した場合は、溶融金属3の垂れや、後板2側の鋼板の溶け落ちが生ずるばかりでなく、重ね継手部のギャップGが大きい場合、溶融金属3が前板1と後板2との間で架橋できなくなり、良好な溶接ビード形成が困難という問題があった。   The undercut 4 shown in FIG. 1B occurs when the arc voltage is high. The dripping of the molten metal 3 shown in FIG. 1C toward the front plate 1 side is likely to occur when the wire aiming position 6 shown in FIG. 2 is the front side 61 of the front plate 1. The steel plate (rear plate 2) shown in FIG. 1 (d) is likely to be melted when the wire aiming position 6 shown in FIG. The dripping of the weld metal 3 into the gap G shown in FIG. 1 (e) is likely to occur when the gap G itself is large. In this way, when the wire aiming position fluctuates, not only does the molten metal 3 droop and the steel plate on the rear plate 2 side melts, but if the gap G of the lap joint is large, the molten metal 3 moves forward. There was a problem that it was impossible to bridge between the plate 1 and the rear plate 2 and it was difficult to form a good weld bead.

高強度薄鋼板の溶接用ソリッドワイヤは、例えば特許文献3において、ワイヤ組成から導き出される炭素当量と、溶接電圧を限定することによる水平すみ肉溶接部適正な曲率半径の止端部とし、疲労強度が優れた溶接部が得られるという技術の開示がある。しかし、溶接はMAG溶接であり高速溶接の場合スパッタ発生量が多くなる。また、溶接金属の強度及び靭性も満足するものではない。   For example, in Patent Document 3, a solid wire for welding of a high-strength thin steel sheet has a carbon equivalent derived from the wire composition and a toe portion having an appropriate curvature radius by limiting the welding voltage, and the fatigue strength There is a disclosure of a technique that an excellent weld can be obtained. However, welding is MAG welding, and in the case of high-speed welding, the amount of spatter generated increases. Further, the strength and toughness of the weld metal are not satisfactory.

一方、高強度鋼板のパルスMAG溶接用ワイヤとして、特許文献4に、薄板高張力鋼板(690MPa鋼級)をワイヤ成分、シールドガス組成及びパルス付与条件を限定して溶接し、溶接金属の機械的性質を良好にすることができるととともにスパッタの発生量が少なく溶接作業性に優れる技術が開示されている。しかし、特許文献4に開示の技術においても、アークが安定してビード幅が広く、ビード止端部のなじみが良好で、ギャップが大きい場合においても良好な溶接金属を得ることができず、溶接金属の強度も低くなってしまうという問題があった。   On the other hand, as a pulse MAG welding wire for high-strength steel plates, Patent Document 4 welds a thin high-tensile steel plate (690 MPa steel grade) with limited wire components, shielding gas composition and pulse application conditions, and mechanically welds the metal. A technique has been disclosed in which properties can be improved and the amount of spatter generated is small and welding workability is excellent. However, even in the technique disclosed in Patent Document 4, even when the arc is stable, the bead width is wide, the bead toe is well-fitted, and the gap is large, a good weld metal cannot be obtained. There was a problem that the strength of the metal was also lowered.

特開2015−175061号公報Japanese Patent Laying-Open No. 2015-175061 特開2015−175051号公報JP-A-2015-175051 特開平8−25080号公報Japanese Patent Laid-Open No. 8-25080 特開平8−99175号公報JP-A-8-99175

そこで本発明は、上述した問題点に鑑みて案出されたものであり、板厚が1.2〜3.2mmであり、引張強度が780MPa以上の高強度薄鋼板の重ね継手部やT継手部を溶接するに際してアークが安定し、止端部のなじみが良好で、溶接部のギャップが大きい場合においてもビード幅の広い溶接ビードが得られ、溶接欠陥がなく、かつ優れた溶接金属の機械的性能が得られるなど、高能率に高品質な溶接部が得られる高強度薄鋼板のパルスMAG溶接方法を提供することを目的とする。   Therefore, the present invention has been devised in view of the above-described problems, and is a lap joint or T joint of a high strength thin steel plate having a plate thickness of 1.2 to 3.2 mm and a tensile strength of 780 MPa or more. When welding parts, the arc is stable, the toe end fits well, and even when the weld gap is large, a weld bead with a wide bead width can be obtained, and there are no weld defects and an excellent weld metal machine. It is an object of the present invention to provide a pulse MAG welding method for a high-strength thin steel sheet, which can obtain a high-quality welded portion with high efficiency, such as a high performance.

本発明の要旨は、板厚1.2〜3.2mmである高強度薄鋼板のパルスMAG溶接方法において、ワイヤ全質量に対する質量%で、C:0.02〜0.15%、Si:0.30〜0.60%、Mn:1.20〜1.90%、Ni:2.0〜4.0%、Cr:0.30〜0.70%、Mo:0.40〜0.80%、かつCrとMoの合計:0.75〜1.15%、Ti:0.02〜0.07%、Cu:0.10〜0.40%を含有し、S:0.03%以下、P:0.03%以下であり、残部はFe及び不可避不純物よりなるソリッドワイヤを用いて、パルスピーク電流(Ip):440〜600A、パルスベース電流(Ib):30〜80Aとし、前記パルスピーク電流(Ip)とパルスピーク時間(Tp)が下記式(1)を満足するパルスを付加して溶接することを特徴とする高強度薄鋼板のパルスMAG溶接方法にある。
415≦Ip(A)×Tp(msec) ≦ 780・・・・・(1)
The gist of the present invention is that, in the pulse MAG welding method of a high-strength thin steel sheet having a thickness of 1.2 to 3.2 mm, C: 0.02 to 0.15%, Si: 0 with respect to the total mass of the wire. .30 to 0.60%, Mn: 1.20 to 1.90%, Ni: 2.0 to 4.0%, Cr: 0.30 to 0.70%, Mo: 0.40 to 0.80 %, And the total of Cr and Mo: 0.75 to 1.15%, Ti: 0.02 to 0.07%, Cu: 0.10 to 0.40%, S: 0.03% or less , P: 0.03% or less, the balance using a solid wire made of Fe and inevitable impurities, pulse peak current (Ip): 440-600A, pulse base current (Ib): 30-80A, and the pulse A pulse whose peak current (Ip) and pulse peak time (Tp) satisfy the following formula (1): In the pulse MAG welding method of the high strength thin steel sheet, which comprises welding by pressurizing.
415 ≦ Ip (A) × Tp (msec) ≦ 780 (1)

本発明の高強度鋼板のパルスMAG溶接方法によれば、板厚が1.2〜3.2mmの引張強度が780MPa以上の高強度薄鋼板の重ね継手部やT継手部を溶接するに際してアークが安定し、止端部のなじみが良好で、溶接部のギャップが大きい場合においてもビード幅の広い溶接ビードが得られ、溶接欠陥がなく、かつ優れた溶接金属の機械的性能が得られるなど、高能率に高品質な溶接部が得られる。   According to the pulse MAG welding method of a high strength steel sheet of the present invention, an arc is generated when welding a lap joint part or a T joint part of a high strength thin steel sheet having a plate thickness of 1.2 to 3.2 mm and a tensile strength of 780 MPa or more. Stable, good fit at the toe, and a wide weld bead even when the weld gap is large, no weld defects, and excellent weld metal mechanical performance, etc. High quality and high quality welds can be obtained.

(a)乃至(e)は、それぞれ薄鋼板の重ね継手の横向姿勢でギャップがある場合のビード形成状態を示す図である。(A) thru | or (e) is a figure which shows the bead formation state in case there exists a gap in the horizontal orientation of the lap joint of a thin steel plate, respectively. 本発明の実施例における横向重ね継手のワイヤ狙い位置を示す図である。It is a figure which shows the wire aim position of the horizontal lap joint in the Example of this invention. 本発明の実施例に用いた横向重ね継手に試験板を示す図である。It is a figure which shows a test plate in the horizontal lap joint used for the Example of this invention.

本発明者らは、上述した問題点を解決するために、薄鋼板を重ね継手とし、各種成分のソリッドワイヤを用いて各種パルス条件で0.6m/min以上の溶接速度で溶接を行い、アークの安定性、溶接ビード幅、溶接止端部のなじみ性、溶接欠陥の有無を評価し、かつ溶着金属の強度及び低温靱性について詳細に検討した結果、次の知見を得た。   In order to solve the above-mentioned problems, the inventors made thin steel plates into lap joints, welded at various welding conditions at a welding speed of 0.6 m / min or more using solid wires of various components, and arcs. As a result of evaluating the stability of the weld, the bead width, the conformability of the weld toe, the presence or absence of weld defects, and examining the strength and low temperature toughness of the weld metal in detail, the following knowledge was obtained.

(1)ワイヤ組成は、Mnの含有量、Siの含有量の適正化によって溶滴の細粒化、アークの安定性向上、溶融金属の粘性及び表面張力の適正化を図り、広幅ビードでスパッタ発生量の少ない溶接ができ、ビード外観が良好で溶接欠陥の無い溶接金属が得られる。また、Cの含有量、Crの含有量及びMoの含有量の適正化及びNi、Ti、Cuの添加によって高強度で安定した靱性の溶接金属が得られる。   (1) The wire composition is sputtered with a wide bead by optimizing the Mn content and Si content to make the droplets finer, improve the stability of the arc, and optimize the viscosity and surface tension of the molten metal. Welding with a small amount of generation is possible, and a weld metal having a good bead appearance and no welding defects can be obtained. In addition, by optimizing the C content, Cr content and Mo content and adding Ni, Ti and Cu, a weld metal having high strength and stable toughness can be obtained.

(2)上述した組成のワイヤを用いてパルス条件が1パルス−1ドロップの溶滴移行となる領域にすることで、60cm/min以上の高速度の溶接でアーク電圧を低くしても溶滴が溶融池と短絡することがなく移行でき、スパッタ発生量が少なく高速溶接においても広幅ビードが得られる。   (2) Even if the arc voltage is lowered by welding at a high speed of 60 cm / min or more by using the wire having the above composition, the pulse condition is set to a region in which the pulse condition is 1 pulse-1 drop droplet transfer. Can be transferred without short-circuiting with the molten pool, and the amount of spatter is small and a wide bead can be obtained even in high-speed welding.

以下、本発明の高強度薄鋼板のパルスMAG溶接方法の限定理由について説明する。   Hereinafter, the reason for limitation of the pulse MAG welding method of the high strength thin steel sheet of the present invention will be described.

まず、ワイヤ成分組成について説明する。なお、各成分の含有率は、ワイヤ全質量に対する質量%で表すものとし、その質量%に関する記載を単に%と記載する。   First, the wire component composition will be described. In addition, the content rate of each component shall be represented by the mass% with respect to the total mass of a wire, and the description regarding the mass% is only described as%.

[C:0.02〜0.15%]
Cは、溶接金属の強度を確保する元素である。また、アークを安定させて溶滴を細粒化する作用がある。Cが0.02%未満では、溶接金属の強度が得られない。また、溶滴の細粒化が困難となってアークが不安定でスパッタ発生量が多くなる。さらに、横向重ね継手溶接で溶融金属の垂れが生じ、ビード外観を劣化させる。一方、Cが0.15%を超えると、スパッタ発生量が多くなるばかりでなく、溶接金属の強度が高くなり耐割れ性が劣化する。また、横向重ね継手溶接で溶融金属の粘性が劣り耐垂れ性を確保できない。したがって、Cは、0.02〜0.15%とする。
[C: 0.02 to 0.15%]
C is an element that ensures the strength of the weld metal. It also has the effect of stabilizing the arc and making the droplets finer. If C is less than 0.02%, the strength of the weld metal cannot be obtained. Further, it is difficult to make the droplets finer, the arc is unstable, and the amount of spatter generated increases. Furthermore, dripping of molten metal occurs in the transverse lap joint welding, and the bead appearance is deteriorated. On the other hand, when C exceeds 0.15%, not only the amount of spatter generated increases, but also the strength of the weld metal increases and the crack resistance deteriorates. Moreover, the melt of the molten metal is inferior due to the transverse lap joint welding, and the sag resistance cannot be secured. Therefore, C is 0.02 to 0.15%.

[Si:0.30〜0.60%]
Siは溶接金属の主な脱酸剤として不可欠な元素である。また、ワイヤの電気抵抗を増大させてワイヤの溶融量を増大させ、さらに溶融金属の粘度及び表面張力を増大させる作用がある。これによって、横向重ね継手溶接の溶融金属の垂れを軽減して耐ギャップ性が得られる。しかし、Siが0.30%未満では、上記効果が得られず、横向き重ね継手溶接で溶融金属の垂れが生じて十分な耐ギャップ性が得られない。一方、Siが0.60%を超えると、溶融金属の表面張力が過度に上昇するため溶融金属が溶接速度に追従できずハンピングビードとなりやすい。また、アークが不安定でスパッタ発生量、スラグ生成量が多くなる。したがって、Siは0.30〜0.60%とする。
[Si: 0.30 to 0.60%]
Si is an essential element as a main deoxidizer for weld metal. In addition, there is an effect that the electric resistance of the wire is increased to increase the melting amount of the wire, and further the viscosity and surface tension of the molten metal are increased. As a result, dripping of the molten metal in the lateral lap joint welding is reduced, and the gap resistance is obtained. However, if Si is less than 0.30%, the above-mentioned effects cannot be obtained, and the molten metal sag is produced by the transverse lap joint welding, so that sufficient gap resistance cannot be obtained. On the other hand, when Si exceeds 0.60%, the surface tension of the molten metal is excessively increased, so that the molten metal cannot follow the welding speed and tends to be a humping bead. Further, the arc is unstable, and the amount of spatter generation and slag generation increases. Therefore, Si is 0.30 to 0.60%.

[Mn:1.20〜1.90%]
Mnは、Siと共に脱酸剤として作用する他、溶融金属の粘度及び表面張力を増大させる作用がある。Mnが1.20%未満では、上記効果が得られず、溶融金属の粘度及び表面張力が低下することから、横向重ね継手溶接で溶融金属が垂れ、十分な耐ギャップ性が得られない。一方、Mnが1.90%を超えると、スパッタ発生量が多くなる。また、溶融金属の粘度及び表面張力が増加し過ぎて横向重ね継手溶接で十分な耐ギャップ性が得られない。したがって、Mnは1.20〜1.90%とする。
[Mn: 1.20 to 1.90%]
Mn acts as a deoxidizer together with Si, and also has an effect of increasing the viscosity and surface tension of the molten metal. If Mn is less than 1.20%, the above-mentioned effects cannot be obtained, and the viscosity and surface tension of the molten metal are lowered. On the other hand, when Mn exceeds 1.90%, the amount of spatter generated increases. In addition, since the viscosity and surface tension of the molten metal increase excessively, sufficient gap resistance cannot be obtained by transverse lap joint welding. Therefore, Mn is 1.20 to 1.90%.

[Ni:2.0〜4.0%]
Niは、溶接金属の組織を微細化して靱性を向上させる元素である。しかし、Niが2.0%未満ではその効果が得られず、溶接金属の靱性が低下する。一方、Niが4.0%を超えると、溶接金属の強度が高くなり耐割れ性が劣化するとともにスパッタ発生量も多くなる。したがって、Niは、2.0〜4.0%とする。
[Ni: 2.0 to 4.0%]
Ni is an element that refines the structure of the weld metal and improves toughness. However, if Ni is less than 2.0%, the effect cannot be obtained, and the toughness of the weld metal decreases. On the other hand, when Ni exceeds 4.0%, the strength of the weld metal increases, crack resistance deteriorates, and the amount of spatter generated increases. Therefore, Ni is set to 2.0 to 4.0%.

[Cr:0.30〜0.70%]
Crは、溶接金属の組織を微細化して靱性を向上させる元素である。Crが0.30%未満であると、その効果が得られず、溶接金属の靱性が低下する。一方、Crが0.70%を超えると、溶接金属の硬化が著しくなり靱性が低下するとともにスパッタ発生量も多くなる。したがって、Crは0.30〜0.70%とする。
[Cr: 0.30 to 0.70%]
Cr is an element that refines the structure of the weld metal and improves toughness. If Cr is less than 0.30%, the effect cannot be obtained, and the toughness of the weld metal decreases. On the other hand, if Cr exceeds 0.70%, the weld metal is markedly hardened and the toughness is lowered, and the amount of spatter generated is increased. Therefore, Cr is 0.30 to 0.70%.

[Mo:0.40〜0.80%]
Moは、Crと同様に溶接金属の組織を微細化して靱性を向上させる元素である。Moが0.40%未満であると、その効果が得られず、溶接金属の靱性が低下する。一方、Moが0.80%を超えると、溶接金属の硬化が著しくなり靱性が低下するとともにスパッタ発生量も多くなる。したがって、Moは0.40〜0.80%とする。
[Mo: 0.40 to 0.80%]
Mo, like Cr, is an element that refines the structure of the weld metal and improves toughness. If Mo is less than 0.40%, the effect cannot be obtained, and the toughness of the weld metal decreases. On the other hand, if Mo exceeds 0.80%, the weld metal is markedly hardened and the toughness is lowered, and the amount of spatter generated is increased. Therefore, Mo is set to 0.40 to 0.80%.

[CrとMoの合計:0.75〜1.15%]
CrとMoの合計は、溶接金属の強度向上のために添加する。CrとMoの合計が0.75%未満であると溶接金属の強度が得られない。一方、CrとMoの合計が1.15%を超えると溶接金属の強度が高くなり耐割れ性が劣化する。したがって、CrとMoの合計は、0.75〜1.15%とする。
[Total of Cr and Mo: 0.75 to 1.15%]
The total of Cr and Mo is added to improve the strength of the weld metal. If the total of Cr and Mo is less than 0.75%, the strength of the weld metal cannot be obtained. On the other hand, if the total of Cr and Mo exceeds 1.15%, the strength of the weld metal increases and the crack resistance deteriorates. Therefore, the total of Cr and Mo is set to 0.75 to 1.15%.

[Ti:0.02〜0.07%]
Tiは、アークを安定にする作用とともに溶接金属中にTiの微細酸化物を生成し溶接金属の靱性を向上させる。Tiが0.02%未満であると、その効果が得られず、溶接金属の靱性が低下するとともにアークが不安定となる。一方、Tiが0.07%を超えると溶接金属中の固溶Tiが多くなって靱性が低下する。また、スラグが多く生成してビード外観を劣化させる。したがって、Tiは0.02〜0.07%とする。
[Ti: 0.02 to 0.07%]
Ti improves the toughness of the weld metal by generating a fine oxide of Ti in the weld metal together with the effect of stabilizing the arc. If Ti is less than 0.02%, the effect cannot be obtained, the toughness of the weld metal is lowered, and the arc becomes unstable. On the other hand, if Ti exceeds 0.07%, the solid solution Ti in the weld metal increases and the toughness decreases. In addition, a large amount of slag is generated and the bead appearance is deteriorated. Therefore, Ti is made 0.02 to 0.07%.

[Cu:0.10〜0.40%]
Cuは、溶接金属の組織を微細化して靱性を安定させる効果がある。Cuが0.10%未満であると、安定した靱性が得られない。一方、Cuが0.40%を超えると、析出脆化が生じて靱性が低下する。また、高温割れも発生しやすくなる。したがって、Cuは0.10〜0.40%とする。
[Cu: 0.10 to 0.40%]
Cu has the effect of refining the structure of the weld metal and stabilizing the toughness. If Cu is less than 0.10%, stable toughness cannot be obtained. On the other hand, if Cu exceeds 0.40%, precipitation embrittlement occurs and the toughness decreases. Also, hot cracking is likely to occur. Therefore, Cu is 0.10 to 0.40%.

[P:0.03%以下]
Pは不純物であり、Pの増加により溶接金属の割れを引き起こすので0.03%以下とする。好ましくは0.02%以下である。
[P: 0.03% or less]
P is an impurity, and an increase in P causes cracking of the weld metal, so 0.03% or less. Preferably it is 0.02% or less.

[S:0.03%以下]
Sは不純物であり、Sの増加により溶接金属の割れを引き起こすので0.03%以下とする。好ましくは0.02%以下である。
[S: 0.03% or less]
S is an impurity, and an increase in S causes cracking of the weld metal, so 0.03% or less. Preferably it is 0.02% or less.

さらに、60cm/min以上の高速度の溶接条件でビード幅が広く、しかも溶融金属が垂れ難い最適パルスMAG条件範囲を検討した結果、1パルス−1ドロップ領域であるパルスピーク電流Ipとパルスピーク時間Tpの領域において、短絡がし難くスパッタ発生量の少ない溶接となり、ワイヤ狙い位置が変動した場合においても広幅ビードが得られる最適のパルスMAG条件範囲を見出した。   Furthermore, as a result of examining the optimum pulse MAG condition range in which the bead width is wide and the molten metal is difficult to sag under high-speed welding conditions of 60 cm / min or more, the pulse peak current Ip and the pulse peak time which are one pulse-1 drop region In the region of Tp, the optimum pulse MAG condition range was found in which short-circuiting is difficult and the amount of spatter generated is small, and a wide bead can be obtained even when the wire aiming position fluctuates.

[パルスピーク電流(Ip):440〜600A]
パルスピーク電流(Ip)が440A未満では、電磁ピンチ効果による溶滴の離脱がスムーズに行われなくなり、不均一な凸ビードとなる。また、アークが不安定で、スパッタ発生量が多くなる。一方、パルスピーク電流(Ip)が600Aを超えると、アーク力により溶融金属が垂れ易くなる。したがって、パルスピーク電流(Ip)は440〜600Aとする。
[Pulse peak current (Ip): 440 to 600 A]
When the pulse peak current (Ip) is less than 440 A, the droplets are not released smoothly due to the electromagnetic pinch effect, resulting in uneven convex beads. Further, the arc is unstable and the amount of spatter generated increases. On the other hand, when the pulse peak current (Ip) exceeds 600 A, the molten metal tends to sag due to the arc force. Therefore, the pulse peak current (Ip) is set to 440 to 600A.

[パルスベース電流(Ib):30〜80A]
パルスベース電流(Ib)は、ベース期間でアークを保持できる電流値が必要となる。パルスベース電流(Ib)が30A未満では、アークが不安定となり、スパッタ発生量が多く、ビード外観が劣化する。一方、パルスベース電流(Ib)が80Aを超えると、溶滴の離脱が速やかに行われず、アークが不安定でスパッタ発生量が多くなる。したがって、パルスベース電流(Ib)は30〜80Aとする。
[Pulse base current (Ib): 30-80A]
The pulse base current (Ib) requires a current value that can hold the arc in the base period. When the pulse base current (Ib) is less than 30 A, the arc becomes unstable, the amount of spatter generated is large, and the bead appearance deteriorates. On the other hand, when the pulse base current (Ib) exceeds 80 A, the droplets are not released quickly, the arc is unstable, and the amount of spatter generated increases. Therefore, the pulse base current (Ib) is 30 to 80A.

[415≦Ip(A)×Tp(msec)≦780]
下記式(1)で示すパルス電流(Ip)とパルスピーク時間(Tp)の積(Ip×Tp)で得られる値を限定することによって、ピーク時間の短い領域でアーク電圧が高い場合においても、溶滴の短絡がピーク時及びベース時に適度に生じて溶融金属の垂れが生じ難く、広幅ビードが得られる。パルスピーク電流(Ip)とパルスピーク時間(Tp)の積(Ip×Tp)が415未満では、ピーク電流期間で溶滴を形成するためのエネルギーが不足し十分な溶滴の形成ができず、十分な耐ギャップ性が得られない。また、Ip×Tpが415未満では、溶融金属が垂れやすくなる。一方、パルスピーク電流(Ip)とパルスピーク時間(Tp)の積が780を超えると、過度に成長した溶滴が短絡しやすくなり再点弧時のアーク力で溶融地が吹き飛ばされることからアークが不安定でスパッタ発生量が多くなるとともに溶融金属が垂れやすく、十分な耐ギャップ性が得られない。従ってIp×Tpは、下記式(1)で示される範囲とする。
415≦Ip(A)×Tp(msec)≦780 ・・・・(1)
[415 ≦ Ip (A) × Tp (msec) ≦ 780]
Even when the arc voltage is high in the region where the peak time is short, by limiting the value obtained by the product (Ip × Tp) of the pulse current (Ip) and the pulse peak time (Tp) represented by the following formula (1), The short circuit of the droplets occurs moderately at the peak and at the base, and the dripping of the molten metal hardly occurs, and a wide bead is obtained. If the product (Ip × Tp) of the pulse peak current (Ip) and the pulse peak time (Tp) is less than 415, the energy for forming the droplet is insufficient during the peak current period, and sufficient droplet formation is not possible. Sufficient gap resistance cannot be obtained. Further, when Ip × Tp is less than 415, the molten metal tends to sag. On the other hand, if the product of the pulse peak current (Ip) and the pulse peak time (Tp) exceeds 780, the excessively grown droplets are likely to be short-circuited, and the molten ground is blown away by the arc force at the time of re-ignition. However, the amount of spatter generated becomes unstable and the molten metal tends to sag, and sufficient gap resistance cannot be obtained. Therefore, Ip × Tp is set to a range represented by the following formula (1).
415 ≦ Ip (A) × Tp (msec) ≦ 780 (1)

以下、実施例により本発明の効果をさらに具体的に説明する。   Hereinafter, the effects of the present invention will be described more specifically with reference to examples.

まず、原料鋼を真空溶解し、鍛造、圧延、伸線、焼鈍そして銅めっきした後、1.2mmのワイヤ径まで伸線、スプールに巻き取った試作ワイヤの化学成分を表1に示す。   First, Table 1 shows chemical components of the trial wire that was prepared by vacuum melting the raw steel, forging, rolling, wire drawing, annealing, copper plating, wire drawing to a wire diameter of 1.2 mm, and winding on a spool.

Figure 2018111114
Figure 2018111114

表1に示す試作ワイヤを用いて、パルスMAG溶接による横向姿勢による重ねすみ肉継手の耐ギャップ性試験を行い、架橋可能なギャップ幅を調査した。試験体は表2に示す化学成分、板厚1.6mm、溶接長500mmの980MPa級の高強度薄鋼板を使用した。耐ギャップ性試験は、図2に示すように前板1と後板2の間にスペーサ5を挟み、試験片長さ500mmの継手を形成した。この時、ギャップ長さG1=1mmからG2=3mmへと広がるようにして溶接を行った。溶接のスタートはギャップ長さG1=1mm側から表3及び表4に示す各パルスMAG溶接条件で行い、溶接金属が架橋できなくなるところまで溶接を実施した。なお、溶接は図3に示すように、前板1と後板2側の角を狙い位置にし、溶接トーチ7の角度θは30°として溶接した。この時の溶接可能なギャップを測定し、溶接可能なギャップが2.5mm以上を良好と評価した。また、アーク状態、スパッタ発生量、スラグ生成量及びビード形状は官能で、高温割れの有無は目視で評価した。   Using the prototype wires shown in Table 1, a gap resistance test was conducted on the lap fillet joint in a lateral orientation by pulse MAG welding, and the gap width capable of crosslinking was investigated. The test specimen used was a 980 MPa class high-strength thin steel sheet having chemical components shown in Table 2, a plate thickness of 1.6 mm, and a weld length of 500 mm. In the gap resistance test, a spacer 5 was sandwiched between the front plate 1 and the rear plate 2 as shown in FIG. 2 to form a joint having a test piece length of 500 mm. At this time, welding was performed so that the gap length G1 = 1 mm increased to G2 = 3 mm. Welding was started from the gap length G1 = 1 mm side under the pulse MAG welding conditions shown in Tables 3 and 4 until the weld metal could not be cross-linked. As shown in FIG. 3, the welding was performed with the angle on the front plate 1 and the rear plate 2 side set as a target position and the angle θ of the welding torch 7 being 30 °. The weldable gap at this time was measured, and a weldable gap of 2.5 mm or more was evaluated as good. Further, the arc state, spatter generation amount, slag generation amount, and bead shape were sensory, and the presence or absence of hot cracking was visually evaluated.

また、表1の試作ワイヤを用いて溶着金属の強度及び靱性を評価するためにJIS Z 3111に準じて溶着金属試験を行った。なお、使用した鋼板は表2に示す980MPa級の高強度薄鋼板である。溶接条件は、表3に示す溶接条件とし、溶接試験体の鋼板板厚中央を中心に引張試験片(JIS Z 2241 10号)及びシャルピー衝撃試験片(JIS Z 2242 Vノッチ試験片)を採取した。なお引張試験の評価は、引張強さが780〜980MPaを良好とした。衝撃試験の評価は、−40℃におけるシャルピー衝撃試験を行い、繰返し3本の吸収エネルギーの平均が47J以上を良好とした。これらの結果を表4にまとめて示す。   In addition, in order to evaluate the strength and toughness of the weld metal using the trial wire shown in Table 1, a weld metal test was conducted according to JIS Z 3111. In addition, the used steel plate is a high strength thin steel plate of 980 MPa class shown in Table 2. The welding conditions were as shown in Table 3, and a tensile test piece (JIS Z 2241 No. 10) and a Charpy impact test piece (JIS Z 2242 V notch test piece) were collected around the center of the steel plate thickness of the weld specimen. . The tensile test was evaluated as good when the tensile strength was 780 to 980 MPa. In the evaluation of the impact test, a Charpy impact test at −40 ° C. was performed, and the average of the three absorbed energy was 47 J or more. These results are summarized in Table 4.

Figure 2018111114
Figure 2018111114

Figure 2018111114
Figure 2018111114

Figure 2018111114
Figure 2018111114

表4中の試験No.1〜No.12は本発明例、試験No.13〜No.25は比較例である。本発明例である試験No.1〜No.12は、ワイヤ記号W1〜W12が本発明で規定した各成分範囲内で、パルスMAG溶接条件が適正であるので、パルスMAG溶接による横向姿勢による重ねすみ肉継手溶接のアークが安定してスパッタ発生量及びスラグ生成量が少なく、溶融金属の粘性及び表面張力が適正で溶融金属の垂れが無く、溶接可能ギャップが広く、良好なビード外観であり、溶着金属においても引張強さ及び吸収エネルギーが良好で、極めて満足な結果であった。   Test No. in Table 4 1-No. 12 is an example of the present invention, test no. 13-No. Reference numeral 25 is a comparative example. Test No. which is an example of the present invention. 1-No. No. 12, since the wire symbols W1 to W12 are within the respective component ranges defined in the present invention and the pulse MAG welding conditions are appropriate, the arc of the lap fillet joint welding in a lateral orientation by pulse MAG welding is stably generated. The amount of molten metal and the amount of slag generation are low, the viscosity and surface tension of the molten metal are appropriate, the molten metal does not sag, the weldable gap is wide, the bead appearance is good, and the tensile strength and absorbed energy are good even in the weld metal. The result was very satisfactory.

比較例中の試験No.13は、ワイヤ記号W13のCが少ないので、アークが不安定で、スパッタ発生量が多く、溶融金属の溶融垂れが生じ、ビード外観が不良であった。また溶着金属試験では、溶着金属の引張強さが低かった。さらに、Niが少ないので溶着金属の吸収エネルギーが低かった。   Test No. in the comparative example. In No. 13, since the C of the wire symbol W13 was small, the arc was unstable, the amount of spatter was large, the molten metal melted and the bead appearance was poor. In the weld metal test, the tensile strength of the weld metal was low. Further, since the amount of Ni is small, the absorbed energy of the deposited metal is low.

試験No.14は、ワイヤ記号W14のCが多いので、スパッタ発生量が多く、クレータ割れが発生し、溶融金属の垂れも生じ、ビード外観が不良であった。また、溶着金属試験では、溶着金属の引張強さが高かった。さらに、Crが少ないので溶着金属の吸収エネルギーが低かった。   Test No. No. 14 had a lot of C in the wire symbol W14, so that the amount of spatter was large, crater cracking occurred, dripping of the molten metal occurred, and the bead appearance was poor. In the weld metal test, the tensile strength of the weld metal was high. Furthermore, since there is little Cr, the absorbed energy of the weld metal was low.

試験No.15は、ワイヤ記号W15のSiが少ないので、溶融金属の垂れが生じ、ビード外観が不良で、溶接可能ギャップも狭かった。また、Niが多いので、スパッタ発生量が多く、クレータ割れが発生した。さらに、溶着金属試験では、溶着金属の引張強さが高かった。   Test No. In No. 15, since the Si of the wire symbol W15 was small, dripping of the molten metal occurred, the bead appearance was poor, and the weldable gap was narrow. Moreover, since there was much Ni, spatter generation amount was large and the crater crack generate | occur | produced. Furthermore, in the weld metal test, the tensile strength of the weld metal was high.

試験No.16は、ワイヤ記号W16のSiが多いので、ハンピングビードとなり、アークが不安定で、スパッタ発生量及びスラグ生成量が多かった。また、Moが少ないので、溶着金属試験では、溶着金属の吸収エネルギーが低かった。   Test No. No. 16 was a humping bead due to the large amount of Si of the wire symbol W16, the arc was unstable, and the amount of spatter generation and slag generation was large. Moreover, since there is little Mo, the absorbed energy of the weld metal was low in the weld metal test.

試験No.17は、ワイヤ記号W17のMnが少ないので、溶融金属の垂れが生じ、ビード外観が不良で、溶接可能ギャップが狭かった。また、Crが多いので、スパッタが多く発生し、溶着金属試験では、溶着金属の吸収エネルギーが低かった。   Test No. In No. 17, since the Mn of the wire symbol W17 was small, dripping of the molten metal occurred, the bead appearance was poor, and the weldable gap was narrow. Further, since there is a large amount of Cr, a lot of spatter was generated, and in the weld metal test, the absorbed energy of the weld metal was low.

試験No.18は、ワイヤ記号W18のMnが多いので、スパッタ発生量が多く発生し、溶接可能ギャップも狭かった。さらに、CrとMoの合計が少ないので、溶着金属試験では、溶着金属の引張強さが低かった。   Test No. No. 18 had a large amount of Mn in the wire symbol W18, so that a large amount of spatter was generated and the weldable gap was narrow. Furthermore, since the total of Cr and Mo is small, in the weld metal test, the tensile strength of the weld metal was low.

試験No.19は、ワイヤ記号W19のMoが多いので、スパッタ発生量が多く、溶着金属試験では、溶着金属の吸収エネルギーが低かった。また、パルスピーク電流(Ip)が高いので、溶融金属の垂れが生じ、ビード外観が不良であった。   Test No. No. 19 has a large amount of Mo of the wire symbol W19, so that the amount of spatter generated was large, and in the weld metal test, the absorbed energy of the weld metal was low. Moreover, since the pulse peak current (Ip) was high, dripping of the molten metal occurred and the bead appearance was poor.

試験No.20は、ワイヤ記号W20のCrとMoの合計が多いので、クレータ割れが発生した。また、溶着金属試験では溶着金属の引張強さが高かった。さらに、パルスピーク電流(Ip)が低いので、アークが不安定であり、スパッタ発生量が多く、ビード外観が不良であった。   Test No. No. 20 had a large sum of Cr and Mo of the wire symbol W20, and crater cracking occurred. In the weld metal test, the tensile strength of the weld metal was high. Furthermore, since the pulse peak current (Ip) was low, the arc was unstable, the amount of spatter generated was large, and the bead appearance was poor.

試験No.21は、ワイヤ記号W21のTiが少ないので、アークが不安定であった。また、溶着金属試験では、溶着金属の吸収エネルギーが低かった。   Test No. In No. 21, since the Ti of the wire symbol W21 was small, the arc was unstable. In the weld metal test, the absorbed energy of the weld metal was low.

試験No.22は、ワイヤ記号W22のTiが多いので、スラグ生成量が多くなり、ビード外観が不良であった。また、溶着金属試験では、溶着金属の吸収エネルギーが低かった。また、パルスピーク電流Ipとピーク時間Tpの積Ip×Tpが低いので、スパッタ発生量が多く、溶融金属の垂れが生じ、溶接可能ギャップも狭かった。   Test No. In No. 22, since the Ti of the wire symbol W22 is large, the amount of slag generated is large and the bead appearance is poor. In the weld metal test, the absorbed energy of the weld metal was low. Further, since the product Ip × Tp of the pulse peak current Ip and the peak time Tp was low, the amount of spatter generated was large, dripping of the molten metal occurred, and the weldable gap was narrow.

試験No.23は、ワイヤ記号W23のCuが少ないので、溶着金属試験で、溶着金属の吸収エネルギーが低かった。また、パルスベース電流(Ib)が低いので、アークが不安定で、スパッタ発生量が多く、ビード外観が不良であった。   Test No. No. 23 had less Cu of the wire symbol W23, so the absorbed energy of the weld metal was low in the weld metal test. Further, since the pulse base current (Ib) was low, the arc was unstable, the amount of spatter was large, and the bead appearance was poor.

試験No.24は、ワイヤ記号W24のCuが多いので、クレータ割れが生じた。また、溶着金属試験では、溶着金属の吸収エネルギーが低かった。さらに、パルスベース電流(Ib)が高いので、アークが不安定で、スパッタ発生量が多かった。   Test No. In No. 24, crater cracking occurred because of the large amount of Cu of the wire symbol W24. In the weld metal test, the absorbed energy of the weld metal was low. Furthermore, since the pulse base current (Ib) is high, the arc is unstable and the amount of spatter generated is large.

試験No.25は、ワイヤ記号W6が本発明で規定した各成分範囲内であるが、パルスピーク電流Ipとピーク時間Tpの積Ip×Tpが高いので、アークが不安定でスパッタ発生量が多く、溶融金属の垂れが生じ、ビード外観が不良で、溶接可能ギャップも狭かった。   Test No. 25, the wire symbol W6 is within the range of each component defined in the present invention, but the product Ip × Tp of the pulse peak current Ip and the peak time Tp is high. The bead appearance was poor and the weldable gap was narrow.

1 前板
2 後板
3 溶接金属
4 アンダーカット
5 スペーサ
6、61、62 ワイヤ狙い位置
7 溶接トーチ
W ビード幅
θ トーチ角度
G ギャップ長さ
1 Front plate 2 Rear plate 3 Weld metal 4 Undercut 5 Spacer 6, 61, 62 Target position 7 Welding torch W Bead width θ Torch angle G Gap length

Claims (1)

板厚1.2〜3.2mmである高強度薄鋼板のパルスMAG溶接方法において、
ワイヤ全質量に対する質量%で、
C:0.02〜0.15%、
Si:0.30〜0.60%、
Mn:1.20〜1.90%、
Ni:2.0〜4.0%、
Cr:0.30〜0.70%、
Mo:0.40〜0.80%、
かつCrとMoの合計:0.75〜1.15%、
Ti:0.02〜0.07%、
Cu:0.10〜0.40%を含有し、
P:0.03%以下、
S:0.03%以下であり、
残部はFe及び不可避不純物よりなるソリッドワイヤを用いて、
パルスピーク電流(Ip):440〜600A、
パルスベース電流(Ib):30〜80Aとし、
前記パルスピーク電流(Ip)とパルスピーク時間(Tp)が下記式(1)を満足するパルスを付加して溶接することを特徴とする高強度薄鋼板のパルスMAG溶接方法。
415≦Ip(A)×Tp(msec) ≦ 780・・・・・(1)
In the pulse MAG welding method of a high-strength thin steel plate having a plate thickness of 1.2 to 3.2 mm,
% By mass relative to the total mass of the wire
C: 0.02 to 0.15%,
Si: 0.30 to 0.60%,
Mn: 1.20 to 1.90%,
Ni: 2.0 to 4.0%,
Cr: 0.30 to 0.70%,
Mo: 0.40 to 0.80%,
And the total of Cr and Mo: 0.75 to 1.15%,
Ti: 0.02 to 0.07%,
Cu: 0.10 to 0.40% is contained,
P: 0.03% or less,
S: 0.03% or less,
The remainder uses a solid wire made of Fe and inevitable impurities,
Pulse peak current (Ip): 440 to 600 A,
Pulse base current (Ib): 30-80A,
A pulse MAG welding method for high-strength thin steel sheets, wherein the pulse peak current (Ip) and the pulse peak time (Tp) are welded by applying a pulse satisfying the following formula (1).
415 ≦ Ip (A) × Tp (msec) ≦ 780 (1)
JP2017003371A 2017-01-12 2017-01-12 Pulse MAG welding method for high strength thin steel sheet Active JP6683635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017003371A JP6683635B2 (en) 2017-01-12 2017-01-12 Pulse MAG welding method for high strength thin steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017003371A JP6683635B2 (en) 2017-01-12 2017-01-12 Pulse MAG welding method for high strength thin steel sheet

Publications (2)

Publication Number Publication Date
JP2018111114A true JP2018111114A (en) 2018-07-19
JP6683635B2 JP6683635B2 (en) 2020-04-22

Family

ID=62910683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017003371A Active JP6683635B2 (en) 2017-01-12 2017-01-12 Pulse MAG welding method for high strength thin steel sheet

Country Status (1)

Country Link
JP (1) JP6683635B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110587074A (en) * 2019-09-29 2019-12-20 无锡市锡西化机配件有限公司 Surfacing welding process for copper pipe and stainless steel pipe
CN113106239A (en) * 2021-04-02 2021-07-13 集美大学 Method for toughening heat affected zone of ultrahigh-strength steel
CN114616068A (en) * 2019-10-31 2022-06-10 杰富意钢铁株式会社 MIG welding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110587074A (en) * 2019-09-29 2019-12-20 无锡市锡西化机配件有限公司 Surfacing welding process for copper pipe and stainless steel pipe
CN114616068A (en) * 2019-10-31 2022-06-10 杰富意钢铁株式会社 MIG welding method
CN113106239A (en) * 2021-04-02 2021-07-13 集美大学 Method for toughening heat affected zone of ultrahigh-strength steel

Also Published As

Publication number Publication date
JP6683635B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
JP4857015B2 (en) Gas shielded arc welding flux cored wire and welding method
RU2506148C2 (en) Combined welding process using combination of gas-arc welding by metallic electrode and hidden-arc welding, and combined-action arc welding machine
JP5909143B2 (en) MAG welding method for hot rolled steel sheet and MIG welding method for hot rolled steel sheet
CA2963056C (en) Arc spot welding method and welding apparatus for working the same
JP6800770B2 (en) Pulse MAG welding method for thin steel sheets
JP6683635B2 (en) Pulse MAG welding method for high strength thin steel sheet
JP6439882B2 (en) Vertical narrow groove gas shielded arc welding method
JP4930048B2 (en) Plasma arc hybrid welding method to improve joint fatigue strength of lap fillet welded joint
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
JP5925703B2 (en) Solid wire for gas shielded arc welding of thin steel sheet
WO2017098692A1 (en) Vertical narrow gap gas shielded arc welding method
JP5080748B2 (en) Tandem arc welding method
CN115916446B (en) Arc welding method
JP6782580B2 (en) Arc spot welding method
JP6676553B2 (en) MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same
JP6709177B2 (en) Pulse MAG welding method for thin steel sheet
JP5086881B2 (en) High-speed gas shield arc welding method for thin steel sheet
JP2018111101A (en) Mag welding wire for high-strength steel sheet and pulse mag welding method using the same
JP2015100813A (en) Solid wire for gas shield arc weld for thin steel plate
JP7364088B2 (en) Arc welding joints and arc welding methods
JP2018144103A (en) Arc welding method
KR20230154327A (en) Arc welding joints and arc welding methods
JPH09285891A (en) Electro gas arc welding fluxed core wire
CN112512739A (en) Method for manufacturing vertical narrow groove welded joint and vertical narrow groove welded joint
JP2010064140A (en) Solid wire for gas shielded arc welding of steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200326

R150 Certificate of patent or registration of utility model

Ref document number: 6683635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250