JP2018111086A - Temperature responsive hygroscopic material - Google Patents

Temperature responsive hygroscopic material Download PDF

Info

Publication number
JP2018111086A
JP2018111086A JP2017004448A JP2017004448A JP2018111086A JP 2018111086 A JP2018111086 A JP 2018111086A JP 2017004448 A JP2017004448 A JP 2017004448A JP 2017004448 A JP2017004448 A JP 2017004448A JP 2018111086 A JP2018111086 A JP 2018111086A
Authority
JP
Japan
Prior art keywords
temperature
hygroscopic material
responsive hygroscopic
responsive
mesoporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017004448A
Other languages
Japanese (ja)
Inventor
和代 大沼
Kazuyo Onuma
和代 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017004448A priority Critical patent/JP2018111086A/en
Publication of JP2018111086A publication Critical patent/JP2018111086A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Drying Of Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature responsive hygroscopic material that improves hygroscopic property at a low humidity and has a wide temperature change width.SOLUTION: In a temperature responsive hygroscopic material, only a hydrophilic functional group is chemically bonded inside a pore of a mesoporous body of which average pore diameter is 2 nm or more and 4 nm or less.SELECTED DRAWING: Figure 1

Description

本願は、温度応答性吸湿材料を開示する。   The present application discloses a temperature-responsive hygroscopic material.

従来、デシカント式の除湿機や空調機において、温度変化に応じて空気中の水蒸気を吸収及び放出する特性を持つ、温度応答性吸湿材料が使用される。温度応答性吸湿材料は、水蒸気を吸収して吸湿性が低下した場合でも、所定条件下で水蒸気を放出して吸湿性を回復させることができるため、再生可能な除湿材として繰り返し使用される。   Conventionally, in a desiccant-type dehumidifier or air conditioner, a temperature-responsive hygroscopic material having a characteristic of absorbing and releasing water vapor in the air according to a temperature change is used. The temperature-responsive moisture-absorbing material is repeatedly used as a recyclable dehumidifying material because it can recover moisture absorption by releasing water vapor under a predetermined condition even when the moisture absorption is reduced by absorbing water vapor.

このような温度応答性吸湿材料として、例えば、特許文献1には、平均細孔径が2nm以上50nm未満であるメソ多孔体の細孔内部に感温性分子が化学結合されている温度応答性吸湿材料であって、感温性分子の数平均分子量が2000以上5000以下であり、感温性分子の導入量が5.2質量%以上21.4質量%以下である温度応答性吸湿材料が開示されている。   As such a temperature-responsive hygroscopic material, for example, Patent Document 1 discloses a temperature-responsive hygroscopic material in which a thermosensitive molecule is chemically bonded inside the pores of a mesoporous body having an average pore diameter of 2 nm or more and less than 50 nm. Disclosed is a temperature-responsive moisture-absorbing material, wherein the number-average molecular weight of the temperature-sensitive molecule is 2000 or more and 5000 or less, and the introduction amount of the temperature-sensitive molecule is 5.2 mass% or more and 21.4 mass% or less. Has been.

特開2016−97359号公報Japanese Patent Laid-Open No. 2006-97359

特許文献1に記載の温度応答性吸湿材料では、低湿度での吸湿性を向上させるために平均細孔径が2〜4nmのような孔が小さなメソ多孔体を用いると、分子量の小さい感温性分子しか細孔内に導入することが出来なかった。導入される感温性分子の分子量が小さくなると、水和・脱水和する水分子の数が減少するため、温度変化に伴い変化する温度応答性吸湿材料が吸湿特性を示す相対湿度の変化の幅(以下、「温度変化幅」という。)が小さくなってしまうという問題があった。   In the temperature-responsive hygroscopic material described in Patent Document 1, when a mesoporous material having a small average pore diameter of 2 to 4 nm is used in order to improve the hygroscopic property at low humidity, the temperature sensitivity having a small molecular weight is used. Only molecules could be introduced into the pores. If the molecular weight of the temperature-sensitive molecule introduced is reduced, the number of water molecules to be hydrated / dehydrated decreases, so the temperature-responsive moisture-absorbing material that changes with temperature changes the width of the change in relative humidity that exhibits hygroscopic properties. (Hereinafter, referred to as “temperature change width”) becomes small.

そこで本開示は、低湿度での吸湿性が向上し且つ温度変化幅が大きい温度応答性吸湿材料を提供することを課題とする。   Therefore, an object of the present disclosure is to provide a temperature-responsive hygroscopic material having improved hygroscopicity at low humidity and a large temperature change range.

上記課題を解決するために、本開示は以下の手段をとる。
本開示は、平均細孔径が2nm以上4nm以下であるメソ多孔体の細孔内部に、親水性官能基のみが化学結合されている温度応答性吸湿材料である。
In order to solve the above problems, the present disclosure takes the following means.
The present disclosure is a temperature-responsive hygroscopic material in which only hydrophilic functional groups are chemically bonded inside the pores of a mesoporous material having an average pore diameter of 2 nm or more and 4 nm or less.

本開示によれば、低湿度での吸湿性が向上し且つ温度変化幅が大きい温度応答性吸湿材料を提供することができる。   According to the present disclosure, it is possible to provide a temperature-responsive hygroscopic material with improved hygroscopicity at low humidity and a large temperature change range.

図1(a)は従来材の細孔表面において推定される低温(20℃)及び高温(40℃)における感温性分子及び水蒸気分子の挙動を概略的に示す図、図1(b)は、本開示の温度応答性吸湿材料の細孔表面において推定される同温度における水蒸気分子の挙動を概略的に示す図である。FIG. 1A schematically shows the behavior of temperature-sensitive molecules and water vapor molecules at a low temperature (20 ° C.) and a high temperature (40 ° C.) estimated on the pore surface of the conventional material, and FIG. FIG. 3 is a diagram schematically showing the behavior of water vapor molecules at the same temperature estimated on the pore surface of the temperature-responsive hygroscopic material of the present disclosure. 実施例1〜3及び比較例1の水蒸気吸着等温線の測定結果を示す図である。It is a figure which shows the measurement result of the water vapor | steam adsorption isotherm of Examples 1-3 and the comparative example 1. FIG. 図3(a)は実施例1に係る温度応答性吸湿材料の吸湿前及び吸湿・乾燥繰り返し後の細孔分布を示す図、図3(b)は比較例2に係る温度応答性吸湿材料の吸湿前、吸湿後及び吸湿・乾燥繰り返し後の細孔分布を示す図である。FIG. 3A is a diagram showing the pore distribution before moisture absorption and after repeated moisture absorption / drying of the temperature-responsive moisture-absorbing material according to Example 1, and FIG. 3B is the temperature-responsive moisture-absorbing material according to Comparative Example 2. It is a figure which shows the pore distribution before moisture absorption, after moisture absorption, and after repeated moisture absorption and drying. 図4(a)は図2(a)と同一の測定結果を示す図、図4(b)は比較例2の水蒸気吸着等温線の測定結果を示す図である。4A is a diagram showing the same measurement results as FIG. 2A, and FIG. 4B is a diagram showing the measurement results of the water vapor adsorption isotherm of Comparative Example 2. FIG. 実施例1及び比較例2の固体29Si−NMR測定の結果を示す図である。It is a figure which shows the result of the solid 29 Si-NMR measurement of Example 1 and Comparative Example 2. 図6(a)は、比較例2に係る材料(メソ多孔体)の細孔表面の様子を概略的に示す図、図6(b)は実施例1に係る温度応答性吸湿材料の細孔表面の様子を概略的に示す図である。FIG. 6A is a diagram schematically showing the state of the pore surface of the material (mesoporous body) according to Comparative Example 2, and FIG. 6B is the pore of the temperature-responsive moisture-absorbing material according to Example 1. It is a figure which shows the mode of the surface roughly.

以下、本開示について説明する。なお、以下に示す形態は本開示の例示であり、本開示は以下に示す形態に限定されない。   Hereinafter, the present disclosure will be described. In addition, the form shown below is an illustration of this indication and this indication is not limited to the form shown below.

<温度応答性吸湿材料>
本開示は、平均細孔径が2nm以上4nm以下であるメソ多孔体の細孔内部に、親水性官能基のみが化学結合されている温度応答性吸湿材料である。
本開示の温度応答性吸湿材料は、例えば、以下に示すメソ多孔体及びシランカップリング剤を材料とし、後述のカップリング反応を行うことにより作製することができる。
<Temperature responsive hygroscopic material>
The present disclosure is a temperature-responsive hygroscopic material in which only hydrophilic functional groups are chemically bonded inside the pores of a mesoporous material having an average pore diameter of 2 nm or more and 4 nm or less.
The temperature-responsive hygroscopic material of the present disclosure can be produced, for example, by performing a coupling reaction described later using a mesoporous material and a silane coupling agent described below as materials.

(メソ多孔体)
本開示に用いるメソ多孔体は、平均細孔径が2nm以上4nm以下である細孔(メソ孔)を有する多孔体である。本開示に用いることのできるメソ多孔体は、このような細孔(メソ孔)を有し、その粒子骨格の表面にヒドロキシル基(シラノール基)を有するものであれば特に限定されず、特開平11−114410号公報に記載のメソ多孔体等を使用することができる。
(Mesoporous material)
The mesoporous material used in the present disclosure is a porous material having pores (mesopores) having an average pore diameter of 2 nm or more and 4 nm or less. The mesoporous material that can be used in the present disclosure is not particularly limited as long as it has such pores (mesopores) and has a hydroxyl group (silanol group) on the surface of the particle skeleton. The mesoporous material described in JP-A-11-114410 can be used.

(シランカップリング剤)
シランカップリング剤は、一つの分子内に有機材料と反応する有機官能基、及び、無機材料と反応する加水分解性基を併せ持つ有機ケイ素化合物である。本開示に用いるシランカップリング剤は、有機官能基として親水性官能基のみを有する。有機官能基として親水性官能基のみを有するシランカップリング剤を用いることにより、後述するカップリング反応により、メソ多孔体の細孔内部に親水性官能基のみを化学結合させることができる。シランカップリング剤が有機官能基として有する親水性官能基としては、例えば、アミノ基、カルボキシル基、チオール基、アミド基、又は、これらから選択される少なくとも一つの基を有するアルキル基等が挙げられる。シランカップリング剤が有する加水分解性基は特に限定されず、例えば、メトキシ基、エトキシ基等のアルコキシ基が挙げられる。
(Silane coupling agent)
A silane coupling agent is an organosilicon compound having both an organic functional group that reacts with an organic material and a hydrolyzable group that reacts with an inorganic material in one molecule. The silane coupling agent used in the present disclosure has only a hydrophilic functional group as an organic functional group. By using a silane coupling agent having only a hydrophilic functional group as an organic functional group, only the hydrophilic functional group can be chemically bonded inside the pores of the mesoporous material by a coupling reaction described later. Examples of the hydrophilic functional group that the silane coupling agent has as an organic functional group include an amino group, a carboxyl group, a thiol group, an amide group, or an alkyl group having at least one group selected from these. . The hydrolyzable group possessed by the silane coupling agent is not particularly limited, and examples thereof include alkoxy groups such as methoxy group and ethoxy group.

(カップリング反応)
本開示の温度応答性吸湿材料において、メソ多孔体の細孔内部に親水性官能基のみが化学結合されている。該化学結合は、上記メソ多孔体及び上記シランカップリング剤を用いて、以下に説明するカップリング反応を行うことにより形成される。
(Coupling reaction)
In the temperature-responsive hygroscopic material of the present disclosure, only hydrophilic functional groups are chemically bonded inside the pores of the mesoporous material. The chemical bond is formed by performing a coupling reaction described below using the mesoporous material and the silane coupling agent.

カップリング反応を行うに際し、まず、上記シランカップリング剤をメソ多孔体の細孔内に導入する。シランカップリング剤を導入する方法は特に限定されず、例えば、メソ多孔体及びシランカップリング剤を適当な溶媒に分散又は溶解させ、メソ多孔体の細孔内に、溶媒に分散又は溶解したシランカップリング剤を含浸させる方法が挙げられる。このとき、メソ多孔体の細孔内へシランカップリング剤の導入を促進するため、減圧、撹拌等を行ってもよい。   When performing the coupling reaction, first, the silane coupling agent is introduced into the pores of the mesoporous material. The method for introducing the silane coupling agent is not particularly limited. For example, a silane in which the mesoporous material and the silane coupling agent are dispersed or dissolved in an appropriate solvent and dispersed or dissolved in the solvent in the pores of the mesoporous material. The method of impregnating a coupling agent is mentioned. At this time, in order to promote introduction of the silane coupling agent into the pores of the mesoporous material, decompression, stirring, or the like may be performed.

カップリング反応は、以下の加水分解反応及び脱水縮合反応により進行する。   The coupling reaction proceeds by the following hydrolysis reaction and dehydration condensation reaction.

加水分解反応は、シランカップリング剤の加水分解性基が加水分解を受けてシラノール基を生成する反応である。加水分解反応は、シランカップリング剤を水と接触させることにより進行させることができる。そのため、シランカップリング剤をメソ多孔体の細孔内部に導入するための溶媒に水を含ませることにより、加水分解反応を進行させることができる。   The hydrolysis reaction is a reaction in which the hydrolyzable group of the silane coupling agent undergoes hydrolysis to generate a silanol group. The hydrolysis reaction can proceed by contacting the silane coupling agent with water. Therefore, the hydrolysis reaction can be advanced by including water in the solvent for introducing the silane coupling agent into the pores of the mesoporous material.

脱水縮合反応は、メソ多孔体の細孔表面のシラノール基と、シランカップリング剤のシラノール基又はシランカップリング剤のシラノール基同士が自己縮合して生成するシロキサンオリゴマーのシラノール基とが脱水縮合する反応である。脱水縮合反応により、シランカップリング剤の親水性官能基のみが、シランカップリング剤同士の自己縮合により形成されるシロキサン骨格を介してメソ多孔体の細孔内部に化学結合(共有結合)される。このように、親水性官能基は、シランカップリング剤に由来するシロキサン骨格を介してメソ多孔体と化学結合するが、本開示において、シランカップリング剤に由来するシロキサン骨格については、メソ多孔体の粒子骨格の一部とみなすものとする。   In the dehydration condensation reaction, the silanol groups on the pore surface of the mesoporous material and the silanol groups of the siloxane oligomer generated by the self-condensation of silanol groups of the silane coupling agent or silanol groups of the silane coupling agent are dehydrated and condensed. It is a reaction. Due to the dehydration condensation reaction, only the hydrophilic functional group of the silane coupling agent is chemically bonded (covalently bonded) inside the pores of the mesoporous material via the siloxane skeleton formed by self-condensation of the silane coupling agents. . Thus, the hydrophilic functional group is chemically bonded to the mesoporous material via the siloxane skeleton derived from the silane coupling agent. In the present disclosure, the siloxane skeleton derived from the silane coupling agent is mesoporous. As part of the particle skeleton.

脱水縮合反応は、加熱や触媒の添加等、シラノール基の脱水縮合に用いられる公知の方法により進行させることができる。例えば、シランカップリング剤の溶媒が水を含む形態においては、シランカップリング剤をメソ多孔体の細孔内部に導入した後、加熱することにより進行させることができる。   The dehydration condensation reaction can proceed by a known method used for dehydration condensation of silanol groups, such as heating or addition of a catalyst. For example, in the form in which the solvent of the silane coupling agent contains water, the silane coupling agent can be advanced by heating after introducing the silane coupling agent into the pores of the mesoporous material.

脱水縮合反応の反応温度、反応時間及びpHは、シランカップリング剤の種類等によって適宜設定されるものである。例えば、反応液中のpHが4〜12、反応温度が10℃〜100℃の温度範囲において、約10分〜12時間反応させたのち、100℃〜150℃の温度範囲において、30分〜120分程度乾燥することにより、脱水縮合反応を完了させることができる。   The reaction temperature, reaction time, and pH of the dehydration condensation reaction are appropriately set depending on the type of silane coupling agent and the like. For example, after the reaction in the temperature range of 4 to 12 and the reaction temperature of 10 ° C. to 100 ° C. for about 10 minutes to 12 hours, the reaction solution has a temperature of 100 ° C. to 150 ° C. for 30 minutes to 120 minutes. By drying for about a minute, the dehydration condensation reaction can be completed.

本開示の温度応答性吸湿材料において、メソ多孔体に導入される親水性官能基の導入量は、細孔閉塞させることなく、温度変化幅が5%以上得られるような細孔空間を確保し易くするという観点から、3質量%以上45質量%以下であることが好ましい。なお、親水性官能基は、メソ多孔体の細孔以外の表面領域にも保持されていてもよい。   In the temperature-responsive hygroscopic material of the present disclosure, the introduction amount of the hydrophilic functional group introduced into the mesoporous material ensures a pore space where a temperature change width of 5% or more can be obtained without blocking the pores. From the viewpoint of facilitating, it is preferably 3% by mass or more and 45% by mass or less. In addition, the hydrophilic functional group may be held in a surface region other than the pores of the mesoporous material.

本開示によれば、低湿度での吸湿性を向上させるために細孔径の小さいメソ多孔体を用いた場合でも、温度変化幅を大きくすることが可能である。
図1はその推定メカニズムを説明するための図であり、図1(a)は従来材の細孔表面において推定される低温(20℃)及び高温(40℃)における感温性分子及び水蒸気分子の挙動を概略的に示す図、図1(b)は本開示の温度応答性吸湿材料の細孔表面において推定される同温度における水蒸気分子の挙動を概略的に示す図である。
According to the present disclosure, even when a mesoporous material having a small pore diameter is used in order to improve hygroscopicity at low humidity, the temperature change width can be increased.
FIG. 1 is a diagram for explaining the presumed mechanism, and FIG. 1 (a) is a temperature-sensitive molecule and a water vapor molecule at a low temperature (20 ° C.) and a high temperature (40 ° C.) estimated on the pore surface of a conventional material. FIG. 1B is a diagram schematically showing the behavior of water vapor molecules at the same temperature estimated on the pore surface of the temperature-responsive hygroscopic material of the present disclosure.

図1(a)に示すように、従来材においては、低温(20℃)では感温性分子の親水基間に水分子が協同的に水和しており、高温(40℃)では親水基間に協同水和していた水分子が一気に脱水和することで、吸湿特性が変化する。このような機構により吸湿特性が変化する従来材では、細孔径の小さいメソ多孔体に合わせて感温性分子の分子量を小さくすると、親水基の数が減少し、親水基間に協同的に水和・脱水和する水分子数が減少するため、温度変化幅が小さくなるものと考えられる。
一方、本開示の温度応答性吸湿材料によれば、図1(b)に示すように、低温では親水性官能基表面に水分子が協同水和しており、高温では分子活動が活発化し、親水性官能基表面の水分子が一気に脱水和する。そのため、細孔径の小さいメソ多孔体を用いた場合でも、感温性分子を用いた従来材と比べて、温度変化幅が大きくなると考えられる。
As shown in FIG. 1A, in the conventional material, water molecules cooperatively hydrate between the hydrophilic groups of the temperature-sensitive molecules at a low temperature (20 ° C.), and hydrophilic groups at a high temperature (40 ° C.). Moisture absorption characteristics change by dehydration of water molecules that had been hydrated together. In conventional materials whose hygroscopic properties change due to such a mechanism, the number of hydrophilic groups decreases when the molecular weight of the thermosensitive molecule is decreased in accordance with the mesoporous material having a small pore diameter, and water is cooperatively provided between the hydrophilic groups. Since the number of water molecules to be summed and dehydrated decreases, the temperature change width is considered to be small.
On the other hand, according to the temperature-responsive hygroscopic material of the present disclosure, as shown in FIG. 1 (b), water molecules are cooperatively hydrated on the surface of the hydrophilic functional group at low temperatures, and molecular activities are activated at high temperatures, Water molecules on the surface of the hydrophilic functional group are dehydrated at once. Therefore, even when a mesoporous material having a small pore diameter is used, the temperature change width is considered to be larger than that of a conventional material using a temperature-sensitive molecule.

<実施例1〜3>
[主な原料]
以下に示す主な原料を用いて、実施例1〜3に係る温度応答性吸湿材料を合成した。
・メソ多孔体・・・メソポーラスシリカ TMPS−4R(太陽化学株式会社製)
平均粒径:11μm
比表面積:891m/g
平均細孔径:3.6nm
・シランカップリング剤・・・3−アミノプロピルトリメトキシシラン(東京化成工業株式会社製)
親水性官能基:アミノプロピル基
<Examples 1-3>
[Main ingredients]
The temperature-responsive hygroscopic materials according to Examples 1 to 3 were synthesized using the main raw materials shown below.
-Mesoporous material: mesoporous silica TMPS-4R (manufactured by Taiyo Chemical Co., Ltd.)
Average particle size: 11 μm
Specific surface area: 891 m 2 / g
Average pore diameter: 3.6 nm
・ Silane coupling agent: 3-aminopropyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.)
Hydrophilic functional group: aminopropyl group

[温度応答性吸湿材料の合成]
(実施例1)
下記導入工程(1)〜(8)により、実施例1に係る温度応答性吸湿材料を合成した。
(1)500ml二つ口フラスコにメソ多孔体5gと、2−プロパノールと蒸留水とを重量比1:1で混合した混合溶媒250mlとを投入した。
(2)スターラーで撹拌しながら、3−アミノプロピルトリメトキシシラン2.5gを投入したのち、ダイヤフラムポンプで5分間真空引きし、メソ多孔体の細孔内に混合溶媒を浸透させた。
(3)コックを開放しフラスコ内を大気圧に戻したのち密栓し、スターラーで約300rpmで撹拌しながら、30℃のウォーターバス中で5時間保持した。
(4)フラスコの内容物を吸引濾過し、得られた濾物を200mlビーカーに移し、イオン交換水を50ml投入し、スターラーで5分間撹拌したのち、吸引濾過した。
(5)得られた濾物を200mlビーカーに移し、イオン交換水を50ml投入し、スターラーで5分間撹拌したのち、吸引濾過した。
(6)得られた濾物を200mlビーカーに移し、イオン交換水を50ml投入し、スターラーで5分間撹拌したのち、吸引濾過した。
(7)得られた濾物を120℃で2時間減圧乾燥し、脱水縮合させた。
(8)得られた粉末を30℃で12時間減圧乾燥し、メソ多孔体の細孔内部にアミノプロピル基のみが修飾された、実施例1に係る温度応答性吸湿材料を得た。
[Synthesis of temperature-responsive hygroscopic material]
Example 1
The temperature-responsive hygroscopic material according to Example 1 was synthesized by the following introduction steps (1) to (8).
(1) A 500 ml two-necked flask was charged with 5 g of mesoporous material and 250 ml of a mixed solvent prepared by mixing 2-propanol and distilled water at a weight ratio of 1: 1.
(2) While stirring with a stirrer, 2.5 g of 3-aminopropyltrimethoxysilane was added, and then a vacuum was drawn for 5 minutes with a diaphragm pump to infiltrate the mixed solvent into the pores of the mesoporous material.
(3) The cock was opened and the inside of the flask was returned to atmospheric pressure, then sealed, and kept in a water bath at 30 ° C. for 5 hours while stirring with a stirrer at about 300 rpm.
(4) The contents of the flask were subjected to suction filtration, the obtained filtrate was transferred to a 200 ml beaker, 50 ml of ion-exchanged water was added, and the mixture was stirred for 5 minutes with a stirrer and then suction filtered.
(5) The obtained filtrate was transferred to a 200 ml beaker, 50 ml of ion-exchanged water was added, and the mixture was stirred with a stirrer for 5 minutes, followed by suction filtration.
(6) The obtained filtrate was transferred to a 200 ml beaker, 50 ml of ion exchange water was added, and the mixture was stirred with a stirrer for 5 minutes, and then filtered with suction.
(7) The obtained residue was dried under reduced pressure at 120 ° C. for 2 hours and subjected to dehydration condensation.
(8) The obtained powder was dried under reduced pressure at 30 ° C. for 12 hours to obtain a temperature-responsive hygroscopic material according to Example 1 in which only aminopropyl groups were modified inside the pores of the mesoporous material.

(実施例2)
工程(1)における混合溶媒の投入量を150mlとし、工程(2)における3−アミノプロピルトリメトキシシランの投入量を1.5gとした以外は、実施例1と同様に、メソ多孔体の細孔内部にアミノプロピル基のみが修飾された、実施例2に係る温度応答性吸湿材料を合成した。
(Example 2)
The mesoporous material was finely treated in the same manner as in Example 1, except that the amount of the mixed solvent in step (1) was 150 ml and the amount of 3-aminopropyltrimethoxysilane in step (2) was 1.5 g. A temperature-responsive hygroscopic material according to Example 2 in which only the aminopropyl group was modified inside the pores was synthesized.

(実施例3)
工程(1)における混合溶媒の投入量を50mlとし、工程(2)における3−アミノプロピルトリメトキシシランの投入量を0.5gとした以外は実施例1と同様に、メソ多孔体の細孔内部にアミノプロピル基のみが修飾された、実施例3に係る温度応答性吸湿材料を合成した。
(Example 3)
The pores of the mesoporous material were the same as in Example 1 except that the amount of the mixed solvent in step (1) was 50 ml and the amount of 3-aminopropyltrimethoxysilane in step (2) was 0.5 g. A temperature-responsive hygroscopic material according to Example 3 in which only the aminopropyl group was modified inside was synthesized.

[組織・特性評価方法]
(親水性官能基の導入量)
親水性官能基を導入する前のメソ多孔体及び親水性官能基を導入した後の温度応答性吸湿材料を、熱重量測定装置(パーキンエルマー製Pyris 1 TGA)にて、乾燥空気フローで10℃/minで1,000℃まで加熱し、重量減少率を測定し、温度応答性吸湿材料の重量減少率からメソ多孔体の重量減少率を引くことにより、親水性官能基の導入量を算出した。結果を表1に示す。
[Organization / characteristic evaluation method]
(Amount of hydrophilic functional group introduced)
The mesoporous material before the introduction of the hydrophilic functional group and the temperature-responsive hygroscopic material after the introduction of the hydrophilic functional group were heated at 10 ° C. with a thermogravimetric apparatus (Pyris 1 TGA manufactured by PerkinElmer) in a dry air flow. The amount of hydrophilic functional groups introduced was calculated by heating to 1,000 ° C./min, measuring the weight reduction rate, and subtracting the weight reduction rate of the mesoporous material from the weight reduction rate of the temperature-responsive hygroscopic material. . The results are shown in Table 1.

(細孔物性)
BELSORP−max(日本ベル(株)製)にて温度応答性吸湿材料の窒素吸着等温線を測定し、得られた結果をBJH法で解析することによって、全細孔容積、平均細孔径、比表面積の値を得た。結果を表2に示す。
(Pore properties)
By measuring the nitrogen adsorption isotherm of the temperature-responsive hygroscopic material with BELSORP-max (manufactured by Nippon Bell Co., Ltd.), and analyzing the obtained results by the BJH method, the total pore volume, average pore diameter, ratio Surface area values were obtained. The results are shown in Table 2.

(水蒸気吸着等温線)
80℃の飽和水蒸気下で3時間親水化処理した温度応答性吸湿材料の水蒸気吸着等温線を、BELSORP−max(日本ベル(株)製)にて、高温(40℃)で測定したのち低温(20℃)で測定した。各温度での測定前に、試料を60℃で6時間真空乾燥させた。結果を図2に示す。また、最大吸着量の50%を吸着する際の相対湿度(Rh50)の温度変化幅[Rh50(H)−Rh50(L)]を表3に示す。
(Water vapor adsorption isotherm)
A water vapor adsorption isotherm of a temperature-responsive hygroscopic material hydrophilized under saturated water vapor at 80 ° C. for 3 hours was measured at a high temperature (40 ° C.) with BELSORP-max (manufactured by Nippon Bell Co., Ltd.) and then at a low temperature ( 20 ° C.). Prior to measurement at each temperature, the sample was vacuum dried at 60 ° C. for 6 hours. The results are shown in FIG. Table 3 shows the temperature change width [Rh 50 (H) −Rh 50 (L)] of the relative humidity (Rh 50 ) when adsorbing 50% of the maximum adsorption amount.

<比較例1>
[主な原料]
以下に示す主な原料を用いて、比較例1に係る温度応答性吸湿材料を合成した。
・メソ多孔体・・・メソポーラスシリカ TMPS−4R(太陽化学(株)製;実施例1〜3で使用したものと同一。)
・感温性分子・・・カルボキシル終端N−イソプロピルアミド(NIPAM)オリゴマー(ナード研究所製)
数平均分子量:2238
<Comparative Example 1>
[Main ingredients]
A temperature-responsive hygroscopic material according to Comparative Example 1 was synthesized using the main raw materials shown below.
-Mesoporous material: mesoporous silica TMPS-4R (manufactured by Taiyo Kagaku Co., Ltd .; the same as that used in Examples 1 to 3)
-Temperature sensitive molecule: Carboxyl-terminated N-isopropylamide (NIPAM) oligomer (manufactured by Nard Laboratories)
Number average molecular weight: 2238

[温度応答性吸湿材料の合成]
下記導入工程(1)〜(10)により、メソ多孔体に感温性分子であるNIPAMオリゴマーが修飾されてなる、比較例1に係る温度応答性吸湿材料を合成した。
(1)300ml三つ口フラスコにメソ多孔体0.5gを投入し、ロータリーポンプで真空引きしながら60℃のウォーターバス中で3時間保持し、メソ多孔体を乾燥させたのち、真空引きしたままウォーターバスから出し、室温になるまで冷却した。
(2)不活性ガス雰囲気中で、感温性分子0.0723g、ジメチルホルムアミド(DMF)6.2699g、ヒドロキシスクシンイミド(NHS)0.0416g、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)0.1206gを順に投入、撹拌し溶解させたのち、15mlシリンジに導入した。
(3)(1)の三つ口フラスコに装着したゴム製セプタムを通して、(2)の溶液を注入した。
(4)スターラーで撹拌しながら5分間減圧したのち、アルゴンを流量50ml/分にて5分間フローさせた。この操作を計3回繰り返し、メソ多孔体の細孔内に混合液を浸透させた。
(5)フラスコにアルゴンガスを大気圧近くまで導入し、混合液をスターラーで約300rpmで撹拌しながら、室温で24時間保持した。
(6)イオン交換水50mlをフラスコに投入し、容量60mlの遠沈管に分注し、5000rpmで2分間遠心分離した。
(7)上澄みを捨て、遠沈管それぞれに蒸留水を50ml投入し、15000rpmで5分間遠心分離した。
(8)上澄みを捨て、遠沈管それぞれに蒸留水を50ml投入し、15000rpmで7分間遠心分離した。
(9)上澄みを捨て、遠沈管それぞれに蒸留水を50ml投入し、15000rpmで10分間遠心分離した。
(10)得られた沈殿を70℃で4時間減圧乾燥し、メソ多孔体にNIPAMオリゴマーが修飾されてなる、比較例1に係る温度応答性吸湿材料を得た。
[Synthesis of temperature-responsive hygroscopic material]
A temperature-responsive hygroscopic material according to Comparative Example 1 was synthesized by modifying the mesoporous material with a NIPAM oligomer as a temperature-sensitive molecule by the following introduction steps (1) to (10).
(1) 0.5 g of mesoporous material was put into a 300 ml three-necked flask, held in a water bath at 60 ° C. for 3 hours while evacuating with a rotary pump, and the mesoporous material was dried and then evacuated. The product was taken out of the water bath as it was and cooled to room temperature.
(2) In an inert gas atmosphere, thermosensitive molecule 0.0723 g, dimethylformamide (DMF) 6.2699 g, hydroxysuccinimide (NHS) 0.0416 g, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide 0.1206 g of hydrochloride (EDC) was sequentially added, stirred and dissolved, and then introduced into a 15 ml syringe.
(3) The solution of (2) was injected through a rubber septum attached to the three-necked flask of (1).
(4) The pressure was reduced for 5 minutes while stirring with a stirrer, and then argon was allowed to flow at a flow rate of 50 ml / min for 5 minutes. This operation was repeated a total of 3 times, and the mixed solution was infiltrated into the pores of the mesoporous material.
(5) Argon gas was introduced into the flask to near atmospheric pressure, and the mixture was kept at room temperature for 24 hours while stirring at about 300 rpm with a stirrer.
(6) 50 ml of ion exchange water was put into a flask, dispensed into a centrifuge tube having a capacity of 60 ml, and centrifuged at 5000 rpm for 2 minutes.
(7) The supernatant was discarded, 50 ml of distilled water was added to each centrifuge tube, and the mixture was centrifuged at 15000 rpm for 5 minutes.
(8) The supernatant was discarded, and 50 ml of distilled water was added to each centrifuge tube and centrifuged at 15000 rpm for 7 minutes.
(9) The supernatant was discarded, 50 ml of distilled water was added to each centrifuge tube, and centrifuged at 15000 rpm for 10 minutes.
(10) The obtained precipitate was dried under reduced pressure at 70 ° C. for 4 hours to obtain a temperature-responsive hygroscopic material according to Comparative Example 1 in which the mesoporous material was modified with the NIPAM oligomer.

[組織・特性評価方法]
(感温性分子の導入量)
感温性分子を導入する前のメソ多孔体及び感温性分子を導入した後の温度応答性吸湿材料を、熱重量測定装置(パーキンエルマー製Pyris 1 TGA)にて、乾燥空気フローで10℃/minで1,000℃まで加熱し、重量減少率を測定し、温度応答性吸湿材料の重量減少率からメソ多孔体の重量減少率を引くことにより、感温性分子の導入量を算出した。結果を表1に示す。
[Organization / characteristic evaluation method]
(Introduction amount of thermosensitive molecule)
The mesoporous material before the introduction of the temperature-sensitive molecule and the temperature-responsive hygroscopic material after the introduction of the temperature-sensitive molecule were heated at 10 ° C. with a thermogravimetric apparatus (Pyris 1 TGA manufactured by PerkinElmer) in a dry air flow. The amount of temperature-sensitive molecules introduced was calculated by heating to 1,000 ° C./min, measuring the weight reduction rate, and subtracting the weight reduction rate of the mesoporous material from the weight reduction rate of the temperature-responsive hygroscopic material. . The results are shown in Table 1.

(細孔物性)
実施例1〜3と同様に、比較例1に係る温度応答性吸湿材料の全細孔容積、平均細孔径、比表面積を測定した。結果を表2に示す。
(Pore properties)
Similar to Examples 1 to 3, the total pore volume, average pore diameter, and specific surface area of the temperature-responsive hygroscopic material according to Comparative Example 1 were measured. The results are shown in Table 2.

(水蒸気吸着等温線)
実施例1〜3と同様に、比較例1に係る温度応答性吸湿材料の高温(40℃)及び低温(20℃)における水蒸気吸着等温線を測定した。結果を図2に示す。また、最大吸着量の50%を吸着する際の相対湿度(Rh50)の温度変化幅[Rh50(H)−Rh50(L)]を表3に示す。
(Water vapor adsorption isotherm)
In the same manner as in Examples 1 to 3, the water vapor adsorption isotherm at the high temperature (40 ° C.) and the low temperature (20 ° C.) of the temperature-responsive hygroscopic material according to Comparative Example 1 was measured. The results are shown in FIG. Table 3 shows the temperature change width [Rh 50 (H) −Rh 50 (L)] of the relative humidity (Rh 50 ) when adsorbing 50% of the maximum adsorption amount.

[結果]
図2及び表3より、温度変化幅が最も大きかった実施例1に係る温度応答性吸湿材料においては6.5%の温度変化幅を示し、温度変化幅が最も小さかった実施例3に係る温度応答性吸湿材料においても、従来材である比較例1に係る温度応答性吸湿材料の約2.3倍の温度変化幅を示した。
[result]
2 and Table 3, the temperature-responsive hygroscopic material according to Example 1 having the largest temperature change width showed a temperature change width of 6.5%, and the temperature according to Example 3 with the smallest temperature change width. Also in the responsive hygroscopic material, the temperature change width was about 2.3 times that of the temperature responsive hygroscopic material according to Comparative Example 1 which is a conventional material.

<耐水性に関する付随実験>
(実施例1)
実施例1に係る温度応答性吸湿材料について、吸湿・乾燥繰り返し後(上記水蒸気吸着等温線測定後)の物性を測定した。
<Ancillary experiments on water resistance>
Example 1
About the temperature-responsive hygroscopic material which concerns on Example 1, the physical property after repeating moisture absorption and drying (after the said water vapor | steam adsorption isotherm measurement) was measured.

[組織・特性評価方法]
(細孔物性)
BELSORP−max(日本ベル(株)製)にて、吸湿・乾燥繰り返し後(水蒸気吸着等温線測定後)の温度応答性吸湿材料の窒素吸着等温線を測定し、得られた結果をBJH法で解析することによって、細孔径分布、全細孔容積、平均細孔径、比表面積の値を得た。図3(a)に細孔分布を、表4に全細孔容積、平均細孔径、比表面積の測定値を示す。
[Organization / characteristic evaluation method]
(Pore properties)
Nitrogen adsorption isotherm of temperature-responsive hygroscopic material after repeated moisture absorption and drying (after measurement of water vapor adsorption isotherm) was measured with BELSORP-max (manufactured by Nippon Bell Co., Ltd.), and the obtained results were obtained by BJH method. By analysis, values of pore size distribution, total pore volume, average pore size, and specific surface area were obtained. FIG. 3A shows the pore distribution, and Table 4 shows the measured values of total pore volume, average pore diameter, and specific surface area.

(耐水性評価)
INOVA300(Agilent製)にて、吸湿・乾燥繰り返し後(水蒸気吸着等温線測定後)の温度応答性吸湿材料について、固体29Si−NMRを測定した。結果を図5に示す。
(Water resistance evaluation)
A solid 29 Si-NMR was measured for the temperature-responsive hygroscopic material after repeated moisture absorption and drying (after measurement of water vapor adsorption isotherm) with INOVA300 (manufactured by Agilent). The results are shown in FIG.

(比較例2)
実施例1〜3、比較例1で使用したメソ多孔体(親水性官能基又は感温性分子により修飾されていないメソ多孔体そのもの)を比較例2に係る材料とし、吸湿前、吸湿後(80℃の飽和水蒸気下で3時間吸湿させた後)、及び、吸湿・乾燥繰り返し後(実施例1〜3、比較例1と同様に水蒸気吸着等温線を測定した後)の物性を測定した。
(Comparative Example 2)
The mesoporous material used in Examples 1 to 3 and Comparative Example 1 (the mesoporous material itself not modified with a hydrophilic functional group or a temperature-sensitive molecule) is a material according to Comparative Example 2, and before moisture absorption, after moisture absorption ( Physical properties were measured after moisture absorption under saturated water vapor at 80 ° C. for 3 hours and after repeated moisture absorption and drying (after measuring water vapor adsorption isotherms in the same manner as in Examples 1 to 3 and Comparative Example 1).

[組織・特性評価方法]
(細孔物性)
BELSORP−max(日本ベル(株)製)にて、吸湿前、吸湿後(80℃の飽和水蒸気下で3時間吸湿させた後)、及び、吸湿・乾燥繰り返し後(下記水蒸気吸着等温線測定後)のメソ多孔体の窒素吸着等温線を測定し、得られた結果をBJH法で解析することによって、細孔径分布、全細孔容積、平均細孔径、比表面積の値を得た。図3(b)に細孔分布を、表4に全細孔容積、平均細孔径、比表面積の測定値を示す。
[Organization / characteristic evaluation method]
(Pore properties)
BELSORP-max (made by Nippon Bell Co., Ltd.) Before moisture absorption, after moisture absorption (after absorbing moisture for 3 hours under saturated steam at 80 ° C.), and after repeated moisture absorption and drying (after measurement of water vapor adsorption isotherm below) The nitrogen adsorption isotherm of the mesoporous material was measured, and the obtained results were analyzed by the BJH method to obtain values of pore size distribution, total pore volume, average pore size, and specific surface area. FIG. 3B shows the pore distribution, and Table 4 shows the measured values of total pore volume, average pore diameter, and specific surface area.

(水蒸気吸着等温線)
実施例1〜3、比較例1と同様に、メソ多孔体の高温(40℃)及び低温(20℃)における水蒸気吸着等温線を測定した。結果を図4(b)に示す。なお、比較のため、図4(a)には、併せて図2(a)と同一の図を示す。
(Water vapor adsorption isotherm)
In the same manner as in Examples 1 to 3 and Comparative Example 1, the water vapor adsorption isotherm at high temperature (40 ° C.) and low temperature (20 ° C.) of the mesoporous material was measured. The results are shown in FIG. For comparison, FIG. 4 (a) also shows the same diagram as FIG. 2 (a).

(耐水性評価)
INOVA300(Agilent製)にて、吸湿前及び吸湿・乾燥繰り返し後(水蒸気吸着等温線測定後)の温度応答性吸湿材料について、固体29Si−NMRを測定した。結果を図5に示す。
(Water resistance evaluation)
With INOVA300 (manufactured by Agilent), solid 29 Si-NMR was measured for the temperature-responsive hygroscopic material before moisture absorption and after repeated moisture absorption and drying (after water vapor adsorption isotherm measurement). The results are shown in FIG.

[結果]
表4より、比較例2に係る材料(未処理のメソ多孔体)では、吸湿前に対し吸湿・乾燥繰り返し後に全細孔容積が33.1%低下したのに対し、実施例1に係る温度応答性吸湿材料では、吸湿・乾燥繰り返し後に全細孔容積の低下が9.6%に抑えられていた。
また、図4(b)に示すように、比較例2に係る材料は、吸湿・乾燥を繰り返すと、水蒸気吸着等温線の形状がV型からIV型状に変化し、水蒸気吸着量が大幅に低下したのに対し、実施例1に係る温度応答性吸湿材料は吸湿・乾燥を繰り返した後でも、水蒸気吸着等温線の形状はV型のまま変化せず、水蒸気吸着量も維持されていた。
さらに、図5に示すように、比較例2に係る材料では、吸湿・乾燥繰り返し後に、多孔体骨格であるSi−O−Si結合が切断されたことを示すQ2の明確なピークが出現したが、実施例1に係る温度応答性吸湿材料では、吸湿・乾燥を繰り返した後でも、Q2の明確なピークは出現しなかった。この結果から、比較例2に係る材料は、吸湿・乾燥を繰り返すと、骨格のSi−O−Si結合が切断され(図6(a)参照)、水蒸気吸着特性が低下したが、実施例1に係る温度応答性吸湿材料では、有機修飾により骨格が補強され、吸湿・乾燥を繰り返してもSi−O−Si結合が切断されにくくなったと考えられる(図6(b)参照)。
以上の結果より、親水性官能基を修飾させた本開示の温度応答性吸湿材料は、未処理のメソ多孔体よりも、耐水性が向上すると考えられる。
[result]
From Table 4, in the material according to Comparative Example 2 (untreated mesoporous material), the total pore volume decreased by 33.1% after repeated moisture absorption and drying compared to before moisture absorption, whereas the temperature according to Example 1 In the responsive hygroscopic material, the decrease in the total pore volume was suppressed to 9.6% after repeated moisture absorption and drying.
In addition, as shown in FIG. 4B, when the material according to Comparative Example 2 repeats moisture absorption and drying, the shape of the water vapor adsorption isotherm changes from V type to IV type, and the water vapor adsorption amount is greatly increased. On the other hand, the temperature-responsive moisture-absorbing material according to Example 1 did not change the shape of the water vapor adsorption isotherm even after repeated moisture absorption and drying, and the water vapor adsorption amount was maintained.
Further, as shown in FIG. 5, in the material according to Comparative Example 2, after repeating moisture absorption and drying, a clear peak of Q2 indicating that the Si—O—Si bond, which is the porous skeleton, was broken appeared. In the temperature-responsive hygroscopic material according to Example 1, no clear peak of Q2 appeared even after repeated moisture absorption and drying. From this result, in the material according to Comparative Example 2, when moisture absorption and drying were repeated, the Si—O—Si bond of the skeleton was cut (see FIG. 6A), and the water vapor adsorption property was deteriorated. In the temperature-responsive hygroscopic material according to the present invention, it is considered that the skeleton is reinforced by organic modification, and the Si—O—Si bond is hardly broken even after repeated moisture absorption and drying (see FIG. 6B).
From the above results, it is considered that the temperature-responsive hygroscopic material of the present disclosure modified with a hydrophilic functional group has improved water resistance as compared to an untreated mesoporous material.

Claims (1)

平均細孔径が2nm以上4nm以下であるメソ多孔体の細孔内部に、親水性官能基のみが化学結合されている温度応答性吸湿材料。   A temperature-responsive hygroscopic material in which only hydrophilic functional groups are chemically bonded inside the pores of a mesoporous material having an average pore diameter of 2 nm or more and 4 nm or less.
JP2017004448A 2017-01-13 2017-01-13 Temperature responsive hygroscopic material Pending JP2018111086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017004448A JP2018111086A (en) 2017-01-13 2017-01-13 Temperature responsive hygroscopic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017004448A JP2018111086A (en) 2017-01-13 2017-01-13 Temperature responsive hygroscopic material

Publications (1)

Publication Number Publication Date
JP2018111086A true JP2018111086A (en) 2018-07-19

Family

ID=62910725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017004448A Pending JP2018111086A (en) 2017-01-13 2017-01-13 Temperature responsive hygroscopic material

Country Status (1)

Country Link
JP (1) JP2018111086A (en)

Similar Documents

Publication Publication Date Title
JP5806639B2 (en) Polysilazane thermosetting polymers for use in chromatography systems and applications
Kallury et al. Effect of surface water and base catalysis on the silanization of silica by (aminopropyl) alkoxysilanes studied by X-ray photoelectron spectroscopy and 13C cross-polarization/magic angle spinning nuclear magnetic resonance
US9308520B2 (en) Silica based material
Rekha et al. Unprecedented adsorptive removal of Cr 2 O 7 2− and methyl orange by using a low surface area organosilica
Liu et al. Engineering surface functional groups on mesoporous silica: towards a humidity-resistant hydrophobic adsorbent
RU2401694C2 (en) Silicon oxide based material
JP2007534460A5 (en)
JP2013511389A (en) Method for surface treatment of porous particles
Ehgartner et al. Flexible organofunctional aerogels
de Melo Pinheiro et al. Chemical modification/grafting of mesoporous alumina with polydimethylsiloxane (PDMS)
Ponchel et al. Cyclodextrin silica-based materials: advanced characterizations and study of their complexing behavior by diffuse reflectance UV–Vis spectroscopy
Prenzel et al. Tailoring amine functionalized hybrid ceramics to control CO2 adsorption
Toubi et al. Synthesis of pyridin-3-yl-functionalized silica as a chelating sorbent for solid-phase adsorption of Hg (II), Pb (II), Zn (II), and Cd (II) from water
JP2020171882A (en) Method for hydrophobization of hydrophilic material
JP2016097359A (en) Temperature-responsive moisture absorption material and its manufacturing method
Xu et al. The aminosilane functionalization of cellulose nanocrystal aerogel via vapor‐phase reaction and its CO2 adsorption characteristics
Kalantzopoulos et al. Resistance to the transport of H2 through the external surface of as-made and modified silicalite-1 (MFI)
JP6955700B2 (en) CO2 adsorbent
JP2018111086A (en) Temperature responsive hygroscopic material
Brilliantova et al. Synthesis and analysis of silica–resorcinol–formaldehyde aerogels
JP2018058050A (en) Temperature-responsive hygroscopic material
JP2013103174A (en) Hydrophobic adsorbent and method of producing the same
JP3691619B2 (en) Filler for liquid chromatography and processing method thereof
JP6509591B2 (en) Hydrophobized carbon material and method for producing the same
JP2013103856A (en) Hydrophobic metal oxide particle