JP2018110261A - Wet etching device - Google Patents

Wet etching device Download PDF

Info

Publication number
JP2018110261A
JP2018110261A JP2018038606A JP2018038606A JP2018110261A JP 2018110261 A JP2018110261 A JP 2018110261A JP 2018038606 A JP2018038606 A JP 2018038606A JP 2018038606 A JP2018038606 A JP 2018038606A JP 2018110261 A JP2018110261 A JP 2018110261A
Authority
JP
Japan
Prior art keywords
phosphoric acid
aqueous solution
acid aqueous
concentration
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018038606A
Other languages
Japanese (ja)
Other versions
JP2018110261A5 (en
JP6529625B2 (en
Inventor
小林 信雄
Nobuo Kobayashi
信雄 小林
黒川 禎明
Sadaaki Kurokawa
禎明 黒川
晃一 濱田
Koichi Hamada
晃一 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Mechatronics Corp
Original Assignee
Shibaura Mechatronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Mechatronics Corp filed Critical Shibaura Mechatronics Corp
Publication of JP2018110261A publication Critical patent/JP2018110261A/en
Publication of JP2018110261A5 publication Critical patent/JP2018110261A5/ja
Application granted granted Critical
Publication of JP6529625B2 publication Critical patent/JP6529625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a wet etching device that can perform wet etching on the basis of a sufficient selection ratio between a nitride film and an oxide film by supplying a phosphoric acid solution having a suitable silica concentration.SOLUTION: The wet etching device is equipped with: a storage part 20 for storing a phosphoric acid solution; an additive agent storage part 30 for storing a silica additive agent; a concentration detecting part 22 for detecting a silica concentration of the phosphoric acid solution stored in the storage part 20; a control part 100 that when a silica concentration of the phosphoric acid solution detected by the concentration detecting part 22 is lower than a prescribed value, supplies the silica additive agent from the additive agent storage part 30 to the storage part 20; and a processing part 40 that processes a substrate W with the phosphoric acid solution stored in the storage part 20.SELECTED DRAWING: Figure 1

Description

この発明は半導体ウェーハなどの基板の板面をエッチング液を用いてエッチングするウェットエッチング装置に関する。   The present invention relates to a wet etching apparatus for etching a plate surface of a substrate such as a semiconductor wafer using an etching solution.

ウェットエッチング装置は、半導体装置や液晶表示装置等の電子部品の製造工程で用いられる基板処理装置である(例えば、特許文献1参照。)。ウェットエッチング装置は、例えば、半導体基板上の窒化膜と酸化膜に対して選択的にエッチングを行う。   The wet etching apparatus is a substrate processing apparatus used in a manufacturing process of electronic components such as a semiconductor device and a liquid crystal display device (for example, see Patent Document 1). For example, the wet etching apparatus selectively etches a nitride film and an oxide film on a semiconductor substrate.

半導体デバイスを製造する工程において、半導体基板上にはエッチング対象膜の窒化膜(例えば、SiN膜)と、エッチングストップ膜の酸化膜(例えば、SiO)とが積層され、これをリン酸水溶液(HPO)等の薬液を用いて処理している。ところが、半導体デバイスが微細化すると、膜そのものが薄膜となるため、エッチング対象膜とエッチングストップ膜との選択比を高める必要がある。この選択比を十分に取れないと、エッチング工程においてエッチングストップ膜が無くなり、これはデバイス製造に支障をきたすことになる。 In the process of manufacturing a semiconductor device, a nitride film (for example, SiN film) as an etching target film and an oxide film (for example, SiO 2 ) as an etching stop film are stacked on a semiconductor substrate, and this is formed into a phosphoric acid aqueous solution ( H 3 PO 4 ) is used for treatment. However, when the semiconductor device is miniaturized, the film itself becomes a thin film, so that it is necessary to increase the selectivity between the etching target film and the etching stop film. If this selective ratio is not sufficiently obtained, the etching stop film is lost in the etching process, which hinders device manufacturing.

エッチング対象膜である窒化膜のエッチングには、高温のリン酸水溶液が用いられるが、エッチング対象膜の窒化膜とエッチングストップ膜の酸化膜との選択比は低い。リン酸水溶液中のシリカ(silica)濃度を高くすると、窒化膜と酸化膜との選択比が高くなることが知られていることから、リン酸水溶液にシリカが添加される。ところが、リン酸水溶液の処理を続けると、リン酸水溶液が蒸発し、シリカ濃度が上昇する。このため、シリカの固形物が析出し、半導体デバイスに付着することがある。固形物は、汚染の原因となり、処理における品質問題が生じる。逆に、シリカ濃度が低いと、十分な選択比が得られない処理となってしまう。   A high-temperature phosphoric acid aqueous solution is used for etching the nitride film as the etching target film, but the selectivity between the nitride film as the etching target film and the oxide film as the etching stop film is low. Since it is known that when the concentration of silica in the phosphoric acid aqueous solution is increased, the selectivity of the nitride film and the oxide film is increased, silica is added to the phosphoric acid aqueous solution. However, if the treatment with the phosphoric acid aqueous solution is continued, the phosphoric acid aqueous solution evaporates and the silica concentration increases. For this reason, the solid substance of silica may precipitate and adhere to a semiconductor device. Solids cause contamination and create quality problems in processing. On the other hand, when the silica concentration is low, the treatment cannot achieve a sufficient selectivity.

図5は、TEOS溶解液添加量と、SiN及びSiOエッチングレートとの関係を示す図、図6は、TEOS溶解液添加量と、SiN及びSiOとのエッチングレート選択比との関係を示す図である。これからも判るように、酸化膜のエッチングレートは、薬液中のTEOS(Tetraethyl orthosilicateオルトケイ酸テトラエチル)濃度に依存する性質を有している。したがって、このように、薬液中にSiNのダミー膜や固形粉末、またはTEOSを溶解させ、薬液中のシリカ(ケイ酸)濃度を上昇させる方法が知られている。 FIG. 5 shows the relationship between the TEOS solution addition amount and the SiN and SiO 2 etching rate, and FIG. 6 shows the relationship between the TEOS solution addition amount and the etching rate selectivity between SiN and SiO 2. FIG. As can be seen from this, the etching rate of the oxide film has a property that depends on the concentration of TEOS (tetraethyl orthosilicate) in the chemical solution. Therefore, a method is known in which a SiN dummy film, solid powder, or TEOS is dissolved in a chemical solution to increase the silica (silicic acid) concentration in the chemical solution.

例えば、使用する薬液に、ケイ酸溶解液もしくはケイ酸エチルを所定量添加する。具体的には、添加剤(エチルポリシリケートあるいはTEOS)を75%リン酸中に1000ppm程度添加することで、SiN膜のエッチングレートを維持しつつ、SiO膜のエッチングレートを抑制することができる。なお、SiO膜のエッチングレートを所望値にするため、添加剤の添加量を変化させる。 For example, a predetermined amount of a silicate solution or ethyl silicate is added to the chemical solution to be used. Specifically, by adding about 1000 ppm of an additive (ethyl polysilicate or TEOS) in 75% phosphoric acid, the etching rate of the SiO 2 film can be suppressed while maintaining the etching rate of the SiN film. . In order to the etching rate of the SiO 2 film to a desired value, changing the addition amount of the additive.

特開2002−336761号公報JP 2002-336761 A

しかしながら、薬液中にダミー膜を投入して、エッチング処理をすることで、シリカをリン酸水溶液中に溶解させる方法の場合、ダミー膜を処理する時間と基板枚数からシリカ溶解量を管理する必要がある。しかしながら、シリカの溶解(濃度)量の安定な管理が難しいので、管理がしにくいという問題があった。このため、薬液中のシリカ濃度を調整するために時間がかかる。また、バッチ式装置では、シリカ濃度調整で、溶解用のウェーハが50枚ほど必要となり、ウェーハ準備時間等がかかる。   However, in the case of a method of dissolving a silica in a phosphoric acid aqueous solution by introducing a dummy film into a chemical solution and performing an etching process, it is necessary to manage the amount of dissolved silica from the time for processing the dummy film and the number of substrates. is there. However, since it is difficult to stably control the amount of silica dissolved (concentration), there is a problem that it is difficult to control. For this reason, it takes time to adjust the silica concentration in the chemical solution. Further, in the batch type apparatus, about 50 wafers for dissolution are required for adjusting the silica concentration, and it takes time for wafer preparation.

一方、TEOSの場合、アルコールを含む薬液であるため、高温のリン酸水溶液に溶解させるとき、発火の危険性が高いので、薬液管理が難しい。さらに、固形粉末において、粉末が薬液に溶解するのに時間を要し、管理が難しい。   On the other hand, in the case of TEOS, since it is a chemical solution containing alcohol, when it is dissolved in a high-temperature phosphoric acid aqueous solution, there is a high risk of ignition, so chemical solution management is difficult. Furthermore, in a solid powder, it takes time for the powder to dissolve in the chemical solution, and management is difficult.

ところで、薬液中にSiNのダミー膜を投入して、シリカをリン酸水溶液中に溶解させる方法の場合、ダミー膜を処理する時間と基板枚数からシリカ溶解量を管理する必要がある。しかしながら、シリカの溶解(濃度)量の安定な管理が難しいので、管理がしにくいという問題があった。   By the way, in the case of a method in which a SiN dummy film is introduced into a chemical solution and silica is dissolved in a phosphoric acid aqueous solution, it is necessary to manage the silica dissolution amount from the time for processing the dummy film and the number of substrates. However, since it is difficult to stably control the amount of silica dissolved (concentration), there is a problem that it is difficult to control.

この発明は、シリカの適切な濃度管理がしやすいウェットエッチング装置を提供することにある。   It is an object of the present invention to provide a wet etching apparatus that facilitates appropriate concentration control of silica.

この発明は、少なくとも窒化膜と酸化膜とが形成された基板を処理するウェットエッチング装置において、リン酸水溶液を貯留する貯留部と、シリカ添加剤を貯留する添加剤貯留部と、前記貯留部に貯留されたリン酸水溶液のシリカ濃度を検出する検出部と、この検出部により検出されたリン酸水溶液のシリカ濃度が所定値より低い場合に、前記添加剤貯留部から前記貯留部へシリカ添加剤を供給する添加剤供給部と、前記貯留部に貯留されたリン酸水溶液により基板を処理する処理部とを備えることを特徴とするウェットエッチング装置にある。   The present invention relates to a wet etching apparatus for processing a substrate on which at least a nitride film and an oxide film are formed, a storage section storing a phosphoric acid aqueous solution, an additive storage section storing a silica additive, and the storage section A detection unit for detecting the silica concentration of the stored aqueous phosphoric acid solution, and a silica additive from the additive storage unit to the storage unit when the silica concentration of the aqueous phosphoric acid solution detected by the detection unit is lower than a predetermined value. The wet etching apparatus includes: an additive supply unit that supplies the substrate; and a processing unit that processes the substrate with the phosphoric acid aqueous solution stored in the storage unit.

この発明によれば、適切な濃度管理の下でウェットエッチングを行うことが可能となる。   According to this invention, it becomes possible to perform wet etching under appropriate concentration control.

この発明の第1の実施の形態に係るウェットエッチング装置を示す概略図。1 is a schematic view showing a wet etching apparatus according to a first embodiment of the present invention. 同ウェットエッチング装置におけるコロイダルシリカの添加量とSiOエッチングレートとの関係を示す図。Diagram showing the relationship between the added amount and the SiO 2 etching rate of the colloidal silica in the wet etching apparatus. 同ウェットエッチング装置におけるコロイダルシリカの添加量とSiN及びSiOとのエッチングレートとの関係を示す図。Diagram showing the relationship between the etching rate between the mixing amount of the SiN and SiO 2 of the colloidal silica in the wet etching apparatus. この発明の第2の実施の形態に係るウェットエッチング装置を示す概略図。Schematic which shows the wet etching apparatus which concerns on 2nd Embodiment of this invention. TEOS溶解液添加量とSiN及びSiOエッチングレートとの関係を示す図。Diagram showing the relationship between the TEOS solution amount and SiN and SiO 2 etch rate. TEOS溶解液添加量とSiO添加量とSiN及びSiOとのエッチングレート選択比との関係を示す図。Diagram showing the relationship between the TEOS solution amount and additive amount of SiO 2 and SiN, and the etching rate selectivity between SiO 2.

以下、この発明の一実施の形態を図面を参照しながら説明する。   An embodiment of the present invention will be described below with reference to the drawings.

図1は、この発明の第1の実施の形態に係るウェットエッチング装置を示す概略図、図2は、同ウェットエッチング装置におけるコロイダルシリカの添加量とSiOエッチングレートとの関係を示す図、図3は、同ウェットエッチング装置におけるコロイダルシリカの添加量とSiN及びSiOとのエッチングレート選択比との関係を示す図である。 FIG. 1 is a schematic view showing a wet etching apparatus according to the first embodiment of the present invention, and FIG. 2 is a view showing the relationship between the amount of colloidal silica added and the SiO 2 etching rate in the wet etching apparatus. FIG. 3 is a diagram showing the relationship between the amount of colloidal silica added and the etching rate selection ratio of SiN and SiO 2 in the wet etching apparatus.

なお、図1中、Wは、ウェットエッチング処理の対象となる半導体ウェーハ等の基板を示しており、その表面には、エッチング対象膜の窒化膜(例えば、SiN膜)と、エッチングストップ膜の酸化膜(例えば、SiO膜)とが積層されている。 In FIG. 1, W indicates a substrate such as a semiconductor wafer to be wet-etched, and a nitride film (for example, SiN film) as an etching target film and an oxidation of an etching stop film are formed on the surface thereof. A film (for example, a SiO 2 film) is laminated.

図1に示すように、ウェットエッチング装置10は、リン酸水溶液を貯留する貯留部20と、シリカ添加剤を貯留する添加剤貯留部30と、基板をウェットエッチング処理する処理部40と、これら各部間を接続する循環部50と、これら各部を連携制御する制御部100とを備えている。   As shown in FIG. 1, a wet etching apparatus 10 includes a storage unit 20 that stores a phosphoric acid aqueous solution, an additive storage unit 30 that stores a silica additive, a processing unit 40 that performs wet etching on a substrate, and each of these units. A circulation unit 50 that connects them and a control unit 100 that controls these units in a coordinated manner are provided.

貯留部20は、所定のシリカ濃度のリン酸水溶液を貯留するタンク21と、このタンク21に設けられ、内部のリン酸水溶液のシリカ濃度を検出する濃度検出部22と、タンク21内のリン酸水溶液の温度を検出する温度検出部23とを備えている。タンク21は、リン酸水溶液を貯留する上部開放のタンクであリ、新液供給配管33を介して新液供給部32と接続される。新液供給部32からは、新液供給配管33に設けられた開閉弁34を介して新液のリン酸水溶液がタンク21に供給されるようになっている。このタンク21は例えば、フッ素系の樹脂又は石英などの材料により形成されている。濃度検出部22、温度検出部23は制御部100に接続されており、検出したシリカ濃度、リン酸水溶液の温度をそれぞれ制御部100に出力する。なお、タンク21には、後述する循環配管51、回収配管53、添加剤配管54が接続されている。   The storage unit 20 stores a phosphoric acid aqueous solution having a predetermined silica concentration, a concentration detection unit 22 that is provided in the tank 21 and detects the silica concentration of the internal phosphoric acid aqueous solution, and phosphoric acid in the tank 21. And a temperature detector 23 for detecting the temperature of the aqueous solution. The tank 21 is an open tank that stores an aqueous phosphoric acid solution, and is connected to a new liquid supply unit 32 via a new liquid supply pipe 33. From the new liquid supply section 32, a new liquid phosphoric acid aqueous solution is supplied to the tank 21 through an on-off valve 34 provided in the new liquid supply pipe 33. The tank 21 is made of a material such as fluorine-based resin or quartz. The concentration detector 22 and the temperature detector 23 are connected to the controller 100 and output the detected silica concentration and the temperature of the phosphoric acid aqueous solution to the controller 100, respectively. Note that a circulation pipe 51, a recovery pipe 53, and an additive pipe 54, which will be described later, are connected to the tank 21.

添加剤貯留部30は、添加剤を収容する添加剤タンク31を備えている。添加剤タンク31には、添加剤配管54が接続されている。添加剤は例えば、研磨剤等で使用されている液体のコロイダルシリカが用いられる。   The additive storage unit 30 includes an additive tank 31 that stores the additive. An additive pipe 54 is connected to the additive tank 31. As the additive, for example, liquid colloidal silica used in abrasives or the like is used.

処理部40は、所定のシリカ濃度のリン酸水溶液を用いて、半導体基板などの基板Wの表面上の窒化膜を酸化膜に対して選択的にエッチングして除去する機能を有している。この処理部40は、基板Wを回転させる回転機構41と、その回転機構41により回転する基板W上に所定のシリカ濃度のリン酸水溶液を供給する、ノズル42とを備えている。このノズル42は吐出配管52の一端部であり、そのノズル42から、所定のシリカ濃度のリン酸水溶液が処理液として吐出されることになる。すなわち、処理部40は、回転する基板Wの表面に向けて、所定のシリカ濃度のリン酸水溶液を、ノズル42から処理液として供給することによって、基板Wの表面上の窒化膜を選択的に除去する。なお、アーム体(不図示)にノズル42を搭載し、基板Wの上方を基板表面に沿って揺動させて処理するようにしてもよい。   The processing unit 40 has a function of selectively etching and removing the nitride film on the surface of the substrate W such as a semiconductor substrate with respect to the oxide film using a phosphoric acid aqueous solution having a predetermined silica concentration. The processing unit 40 includes a rotation mechanism 41 that rotates the substrate W, and a nozzle 42 that supplies a phosphoric acid aqueous solution having a predetermined silica concentration onto the substrate W rotated by the rotation mechanism 41. The nozzle 42 is one end of a discharge pipe 52, and a phosphoric acid aqueous solution having a predetermined silica concentration is discharged from the nozzle 42 as a processing liquid. That is, the processing unit 40 selectively supplies a nitride film on the surface of the substrate W by supplying a phosphoric acid aqueous solution having a predetermined silica concentration from the nozzle 42 toward the surface of the rotating substrate W as a processing liquid. Remove. Alternatively, the nozzle 42 may be mounted on an arm body (not shown), and the upper side of the substrate W may be swung along the substrate surface for processing.

循環部50は、タンク21につながる循環配管51と、その循環配管51につながり所定のシリカ濃度のリン酸水溶液を吐出する吐出配管52と、処理後のリン酸水溶液をタンク21に戻す回収配管(回収部)53と、添加剤タンク31からタンク21につながる添加剤配管54とを備えている。   The circulation unit 50 includes a circulation pipe 51 connected to the tank 21, a discharge pipe 52 connected to the circulation pipe 51 for discharging a phosphoric acid aqueous solution having a predetermined silica concentration, and a recovery pipe for returning the treated phosphoric acid aqueous solution to the tank 21 ( (Recovery part) 53 and an additive pipe 54 connected from the additive tank 31 to the tank 21.

循環配管51の途中には、循環駆動源となるポンプ51aと、循環配管51を流れるリン酸水溶液を加熱するヒータ51bと、循環配管51を流れるリン酸水溶液から異物を除去するフィルタ51cと、循環配管51を開閉する開閉弁51dとが設けられている。   In the middle of the circulation pipe 51, a pump 51 a serving as a circulation drive source, a heater 51 b for heating the phosphoric acid aqueous solution flowing through the circulation pipe 51, a filter 51 c for removing foreign substances from the phosphoric acid aqueous solution flowing through the circulation pipe 51, and a circulation An opening / closing valve 51d for opening and closing the pipe 51 is provided.

ポンプ51aは制御部100に電気的に接続されており、その制御部100による制御に応じて、タンク21内のリン酸水溶液を循環配管51に流す。また、ヒータ51bは制御部100に電気的に接続されており、その制御部100による制御に応じて、循環配管51を流れるリン酸水溶液を加熱する。開閉弁51dは制御部100に電気的に接続されており、その制御部100による制御に応じて開閉する。なお、本実施の形態において、開閉弁51dは、通常時には常時、開状態とされる。   The pump 51 a is electrically connected to the control unit 100, and causes the phosphoric acid aqueous solution in the tank 21 to flow through the circulation pipe 51 in accordance with control by the control unit 100. The heater 51b is electrically connected to the control unit 100, and heats the phosphoric acid aqueous solution flowing through the circulation pipe 51 in accordance with control by the control unit 100. The on-off valve 51 d is electrically connected to the control unit 100 and opens and closes according to control by the control unit 100. In the present embodiment, the on-off valve 51d is always open at normal times.

吐出配管52は、循環配管51におけるフィルタ51cと開閉弁51dとの間に接続され、所定のシリカ濃度のリン酸水溶液を吐出する配管であり、その吐出側の先端部が基板Wの表面に向けて設けられている。この吐出配管52の途中には、吐出配管52を開閉する開閉弁52aが設けられている。この開閉弁52aは制御部100に電気的に接続されており、その制御部100による制御に応じて開閉する。制御部100は、吐出開始の指示を受けると、濃度検出部22により検出される、タンク21内のリン酸水溶液のシリカ濃度が、予め制御部100に設定された所定の濃度に達していること、つまり予め設定した所定の濃度であること、かつ、予め制御部100に設定された所定のリン酸水溶液温度であることを条件に、吐出配管52途中の開閉弁52aを開状態にし、循環配管51から吐出配管52に所定のシリカ濃度のリン酸水溶液を流す。   The discharge pipe 52 is connected between the filter 51c and the on-off valve 51d in the circulation pipe 51, and discharges a phosphoric acid aqueous solution having a predetermined silica concentration. The discharge-side tip of the discharge pipe 52 faces the surface of the substrate W. Is provided. An opening / closing valve 52 a that opens and closes the discharge pipe 52 is provided in the middle of the discharge pipe 52. The on-off valve 52 a is electrically connected to the control unit 100 and opens and closes according to control by the control unit 100. When the controller 100 receives a discharge start instruction, the silica concentration of the phosphoric acid aqueous solution in the tank 21 detected by the concentration detector 22 has reached a predetermined concentration set in the controller 100 in advance. In other words, the opening / closing valve 52a in the middle of the discharge pipe 52 is opened and the circulation pipe is provided on the condition that the predetermined concentration is set in advance and the temperature of the phosphoric acid aqueous solution is set in advance in the control unit 100. A phosphoric acid aqueous solution having a predetermined silica concentration is allowed to flow from 51 to the discharge pipe 52.

回収配管53は、処理部40とタンク21とを接続するように設けられている。この回収配管53の途中には、駆動源となるポンプ53aと、回収配管53を開閉する開閉弁53bが設けられている。ポンプ53aは制御部100に電気的に接続されており、その制御部100による制御に応じて、処理部40内の使用後の処理液を回収配管53に流す。本実施の形態において、ポンプ53aは、通常時には常時運転状態とされる。開閉弁53bは制御部100に電気的に接続されており、その制御部100による制御に応じて開閉する。また、回収配管53途中の開閉弁53bより上流側には、処理液排出用の排出配管53cが接続されている。この排出配管53cの途中にも、その排出配管53cを開閉する開閉弁53dが設けられている。開閉弁53dは制御部100に電気的に接続されており、その制御部100による制御に応じて開閉する。処理部40と開閉弁53bとの間の回収配管53内には、濃度センサ53eが設けられており、この濃度センサ53eによって回収配管53内のシリカ濃度が検出され、その出力が制御部100に入力される。   The recovery pipe 53 is provided so as to connect the processing unit 40 and the tank 21. In the middle of the recovery pipe 53, a pump 53a serving as a drive source and an on-off valve 53b for opening and closing the recovery pipe 53 are provided. The pump 53 a is electrically connected to the control unit 100, and the used processing liquid in the processing unit 40 flows through the recovery pipe 53 according to control by the control unit 100. In the present embodiment, the pump 53a is normally operated at the normal time. The on-off valve 53 b is electrically connected to the control unit 100 and opens and closes according to control by the control unit 100. Further, a discharge pipe 53c for discharging the processing liquid is connected upstream of the on-off valve 53b in the middle of the recovery pipe 53. An open / close valve 53d for opening and closing the discharge pipe 53c is also provided in the middle of the discharge pipe 53c. The on-off valve 53 d is electrically connected to the control unit 100 and opens and closes according to control by the control unit 100. A concentration sensor 53e is provided in the recovery pipe 53 between the processing unit 40 and the on-off valve 53b. The concentration sensor 53e detects the silica concentration in the recovery pipe 53 and outputs the output to the control unit 100. Entered.

添加剤配管54は、添加剤タンク31とタンク21を接続し、その添加剤配管54の途中には、添加剤供給部を構成する供給駆動源となるポンプ54aが設けられている。このポンプ54aは制御部100に電気的に接続されており、その制御部100による制御に応じて、添加剤タンク31内のコロイドシリカを添加剤配管54に流す。   The additive pipe 54 connects the additive tank 31 and the tank 21, and a pump 54 a serving as a supply driving source constituting the additive supply section is provided in the middle of the additive pipe 54. The pump 54 a is electrically connected to the control unit 100, and causes colloidal silica in the additive tank 31 to flow through the additive pipe 54 in accordance with control by the control unit 100.

制御部100は、各部を集中的に制御するマイクロコンピュータ、さらに、ウェットエッチングに関する各種処理情報や各種プログラムなどを記憶する記憶部を備えている。制御部100は、濃度検出部22で検出されたリン酸水溶液のシリカ濃度が、予め制御部100に設定された所定値より低い場合に、先に述べた各種処理情報や各種プログラムに基づいて、添加剤タンク31からタンク21へシリカ添加剤を供給することで、所定のシリカ濃度を有するリン酸水溶液とする。つまり、制御部100は、添加剤供給部としての機能を備えている。   The control unit 100 includes a microcomputer that centrally controls each unit, and a storage unit that stores various processing information and various programs related to wet etching. When the silica concentration of the phosphoric acid aqueous solution detected by the concentration detection unit 22 is lower than a predetermined value set in the control unit 100 in advance, the control unit 100 is based on the various processing information and various programs described above. By supplying the silica additive from the additive tank 31 to the tank 21, a phosphoric acid aqueous solution having a predetermined silica concentration is obtained. That is, the control unit 100 has a function as an additive supply unit.

このように構成されたウェットエッチング装置10では、制御部100の制御によって、次のようにしてウェットエッチング処理を行う。すなわち、新液供給部32よりタンク21内に所定量のリン酸水溶液を供給して収容する。また、開閉弁51dは開状態が維持されるが、開閉弁52aは閉じる。次に、ポンプ51a、ヒータ51bを起動する。ポンプ51aの起動により、タンク21内のリン酸水溶液は循環配管51内を循環する。循環配管51内を循環するリン酸水溶液は、フィルタ51cにより、リン酸水溶液中の異物が除去されるとともに、ヒータ51bにより加熱される。タンク21内のリン酸水溶液の温度は、温度検出部23により検出され、タンク21内のリン酸水溶液のシリカ濃度は、濃度検出部22により検出される。   In the wet etching apparatus 10 configured as described above, the wet etching process is performed as follows under the control of the control unit 100. That is, a predetermined amount of phosphoric acid aqueous solution is supplied and stored in the tank 21 from the new liquid supply unit 32. In addition, the open / close valve 51d is kept open, but the open / close valve 52a is closed. Next, the pump 51a and the heater 51b are started. When the pump 51 a is started, the phosphoric acid aqueous solution in the tank 21 circulates in the circulation pipe 51. The phosphoric acid aqueous solution circulating in the circulation pipe 51 is heated by the heater 51b while removing foreign substances in the phosphoric acid aqueous solution by the filter 51c. The temperature of the phosphoric acid aqueous solution in the tank 21 is detected by the temperature detection unit 23, and the silica concentration of the phosphoric acid aqueous solution in the tank 21 is detected by the concentration detection unit 22.

制御部100は、温度検出部23からの出力に基づき、リン酸水溶液を予め設定した所定の温度(160〜170℃)になるように、またその温度に維持されるように、ヒータ51bを制御する。   Based on the output from the temperature detection unit 23, the control unit 100 controls the heater 51b so that the phosphoric acid aqueous solution becomes a predetermined temperature (160 to 170 ° C.) set in advance and is maintained at that temperature. To do.

また制御部100は、濃度検出部22が検知したタンク21内のリン酸水溶液のシリカ濃度が、予め制御部100に設定された所定の濃度より低い場合は、ポンプ54aを起動し、添加剤タンク31からコロイドシリカを添加剤としてタンク21に導入し、タンク21内のリン酸水溶液が所定のシリカ濃度となるまで添加を行う。なお、タンク21に導入されたコロイドシリカは、タンク21内のリン酸水溶液とともに循環配管51内を循環するので、リン酸水溶液に対して均一に混合される。   When the silica concentration of the phosphoric acid aqueous solution in the tank 21 detected by the concentration detection unit 22 is lower than a predetermined concentration set in the control unit 100 in advance, the control unit 100 activates the pump 54a and adds the additive tank. The colloidal silica is introduced from 31 into the tank 21 as an additive, and the phosphoric acid aqueous solution in the tank 21 is added until the silica concentration reaches a predetermined level. The colloidal silica introduced into the tank 21 circulates in the circulation pipe 51 together with the phosphoric acid aqueous solution in the tank 21, so that it is uniformly mixed with the phosphoric acid aqueous solution.

このシリカ濃度の検出は、タンク21内にリン酸水溶液が供給された以降、継続的に行われる。また、リン酸水溶液は、所定温度に維持される。なお、タンク21の収容量に対して、コロイダルシリカの添加量が微少の場合、コロイダルシリカを添加したことによるリン酸水溶液の温度低下は考慮しなくても良い。   The detection of the silica concentration is continuously performed after the phosphoric acid aqueous solution is supplied into the tank 21. Moreover, the phosphoric acid aqueous solution is maintained at a predetermined temperature. In addition, when the addition amount of colloidal silica is very small with respect to the capacity of the tank 21, it is not necessary to consider the temperature drop of the phosphoric acid aqueous solution due to the addition of colloidal silica.

次に、処理対象となる基板Wを処理部40内に配置され、処理部100がリン酸水溶液の吐出開始の指示を受けると、制御部100は、濃度検出部22により検出されるタンク21内のリン酸水溶液のシリカ濃度が予め設定した所定の濃度であり、かつ、所定のリン酸水溶液温度であることを条件に、開閉弁51dは開いたままで(常時循環)、開閉弁52aを開く。これにより、タンク21内のリン酸水溶液が、ノズル42から基板W上に処理液が吹きかけられ、ウェットエッチング処理が行われる。   Next, when the substrate W to be processed is placed in the processing unit 40 and the processing unit 100 receives an instruction to start discharging the aqueous phosphoric acid solution, the control unit 100 detects that the concentration detection unit 22 detects the inside of the tank 21. On the condition that the silica concentration of the phosphoric acid aqueous solution is a predetermined concentration set in advance and a predetermined phosphoric acid aqueous solution temperature, the on-off valve 51d is kept open (always circulating) and the on-off valve 52a is opened. As a result, the phosphoric acid aqueous solution in the tank 21 is sprayed from the nozzle 42 onto the substrate W, and a wet etching process is performed.

処理液が吹きかけられた基板Wでは、窒化膜と酸化膜とが処理される。この時、基板に吹きかけられる処理液は、所定のシリカ濃度のリン酸水溶液であるため、所望の大きさの選択比でエッチングが進行し、微細な半導体デバイスであっても、エッチングストップ膜が無くなることがなく、デバイス製造に支障をきたすことがない。図2は、コロイダルシリカの添加量と、SiOエッチングレートとの関係を示している。図3は、コロイダルシリカの添加量と、SiN及びSiOとのエッチングレート選択比との関係を示している。 The nitride film and the oxide film are processed on the substrate W on which the processing liquid has been sprayed. At this time, since the processing liquid sprayed on the substrate is a phosphoric acid aqueous solution having a predetermined silica concentration, the etching proceeds with a selection ratio of a desired size, and the etching stop film disappears even in a fine semiconductor device. It does not interfere with device manufacturing. FIG. 2 shows the relationship between the amount of colloidal silica added and the SiO 2 etching rate. FIG. 3 shows the relationship between the amount of colloidal silica added and the etching rate selectivity with SiN and SiO 2 .

基板Wの表面から処理部40の底面に流れた処理液は、その底面に接続された回収配管53を流れてポンプ53aの駆動によりタンク21に回収される。このとき、開閉弁53bは開状態であり、開閉弁53dが閉状態である。但し、基板W上の窒化膜がエッチングされて、濃度センサ53eにより検出されたシリカ濃度が、予め制御部100に設定された所定の範囲を超えると、処理液はタンク21に回収されずに排出配管53cから排出される。このとき、開閉弁53bは閉状態であり、開閉弁53dが開状態である。なお、回収配管53途中にヒータを設け、回収配管53を経由してタンク21に回収される処理液を加熱するようにしても良い。   The processing liquid that has flowed from the surface of the substrate W to the bottom surface of the processing unit 40 flows through the recovery pipe 53 connected to the bottom surface, and is recovered in the tank 21 by driving the pump 53a. At this time, the on-off valve 53b is in an open state, and the on-off valve 53d is in a closed state. However, if the nitride film on the substrate W is etched and the silica concentration detected by the concentration sensor 53e exceeds a predetermined range set in the control unit 100 in advance, the processing liquid is discharged without being collected in the tank 21. It is discharged from the pipe 53c. At this time, the on-off valve 53b is closed and the on-off valve 53d is open. A heater may be provided in the middle of the recovery pipe 53 so that the processing liquid recovered in the tank 21 via the recovery pipe 53 may be heated.

1枚の基板Wに対するエッチング処理が終了すると、制御部100は、開閉弁52aを閉じ、そして処理部40内の基板Wが新たな基板Wと交換されると、再度開閉弁52aを開き、この新たな基板Wに対して上述したエッチング処理が行われる。   When the etching process for one substrate W is completed, the control unit 100 closes the on-off valve 52a, and when the substrate W in the processing unit 40 is replaced with a new substrate W, the control unit 100 opens the on-off valve 52a again. The above-described etching process is performed on the new substrate W.

ところで、基板Wに対するエッチング処理回数が進むにつれて、タンク21内のリン酸水溶液が消耗される。そこで、図1に示すように、タンク21に液面計24を設け、次のように動作制御するようにすると好ましい。   By the way, the phosphoric acid aqueous solution in the tank 21 is consumed as the number of etching processes for the substrate W increases. Therefore, as shown in FIG. 1, it is preferable to provide a liquid level gauge 24 in the tank 21 and to control the operation as follows.

液面計24は制御部100に接続され、タンク21内のリン酸水溶液の液面を検出して制御部100に出力する。制御部100では、タンク21内のリン酸溶液の液面高さが、制御部100に予め設定した所定の高さより低くなったことを液面計24が検出すると、開閉弁52aを閉じる。なお、タンク21内のリン酸溶液の液面高さが、制御部100に予め設定した所定の高さより低くなったことを基板Wに対するエッチング処理中に検出された場合には、その基板Wへのエッチング処理が終了した時点で、開閉弁52aを閉じるようにする。これにより、その基板Wに対しても、均一なエッチング処理が行える。   The liquid level gauge 24 is connected to the control unit 100, detects the liquid level of the phosphoric acid aqueous solution in the tank 21, and outputs it to the control unit 100. In the control unit 100, when the liquid level gauge 24 detects that the liquid level of the phosphoric acid solution in the tank 21 is lower than a predetermined level preset in the control unit 100, the open / close valve 52 a is closed. If it is detected during the etching process on the substrate W that the liquid level of the phosphoric acid solution in the tank 21 is lower than a predetermined height preset in the control unit 100, the substrate W is moved to the substrate W. When the etching process is completed, the on-off valve 52a is closed. Thereby, a uniform etching process can be performed on the substrate W as well.

さて、次に制御部100は、タンク21内のリン酸溶液の液面高さが、制御部100に予め設定した所定の高さになるまで新液供給部32からリン酸水溶液をタンク21に供給する。このとき、ポンプ51aは起動されているため、タンク21内のリン酸水溶液は、循環配管51内を循環する。さらに、前述したと同様に、制御部100は、ヒータ51bによって、タンク21内のリン酸水溶液の温度が所定の温度となるように制御する。また、タンク21へ新液のリン酸水溶液が供給されると、タンク21内のシリカ濃度が低下する。そこで、制御部100は、濃度検出器22から得られたシリカ濃度が、制御部100に予め設定した所定濃度から低下したことを検知(判断)すると、ポンプ54aの駆動によって、添加剤タンク31からコロイドシリカをタンク21に導入して、タンク21内のシリカ濃度が所定の濃度となるように制御する。   Next, the control unit 100 supplies the phosphoric acid aqueous solution from the new liquid supply unit 32 to the tank 21 until the level of the phosphoric acid solution in the tank 21 reaches a predetermined height set in advance in the control unit 100. Supply. At this time, since the pump 51 a is activated, the phosphoric acid aqueous solution in the tank 21 circulates in the circulation pipe 51. Further, as described above, the control unit 100 controls the temperature of the phosphoric acid aqueous solution in the tank 21 to be a predetermined temperature by the heater 51b. Further, when a new phosphoric acid aqueous solution is supplied to the tank 21, the silica concentration in the tank 21 decreases. Therefore, when the control unit 100 detects (determines) that the silica concentration obtained from the concentration detector 22 has decreased from a predetermined concentration preset in the control unit 100, the control unit 100 drives the pump 54a from the additive tank 31. Colloidal silica is introduced into the tank 21 and controlled so that the silica concentration in the tank 21 becomes a predetermined concentration.

このように、新液供給部32よりタンク21内に新たなリン酸水溶液が供給されると、制御部100は、濃度検出部22により検出されるタンク21内のリン酸水溶液のシリカ濃度が予め設定した所定の濃度であること、そして、所定のリン酸水溶液温度であることを条件に基板Wへの処理を許可する。つまり、リン酸水溶液の吐出開始の指示に対して、開閉弁52aを開く。これにより、タンク21内のリン酸水溶液が、ノズル42から新たな基板W上に処理液が吹きかけられ、ウェットエッチング処理が行われる。   As described above, when a new phosphoric acid aqueous solution is supplied from the new liquid supply unit 32 into the tank 21, the control unit 100 determines that the silica concentration of the phosphoric acid aqueous solution in the tank 21 detected by the concentration detection unit 22 is in advance. Processing on the substrate W is permitted on condition that the concentration is a predetermined concentration and a predetermined phosphoric acid aqueous solution temperature. That is, the open / close valve 52a is opened in response to an instruction to start discharging the phosphoric acid aqueous solution. As a result, the phosphoric acid aqueous solution in the tank 21 is sprayed from the nozzle 42 onto the new substrate W, and wet etching is performed.

一方、処理部40から回収配管53を介してタンク21に回収されるリン酸溶液によって、タンク21内のリン酸水溶液の濃度が、制御部100に予め設定した所定濃度より低下することがある。この場合、制御部100は、濃度検出部22がこの濃度の低下を検出した場合に開閉弁52aを閉じる。なお、制御部100は、タンク21内のリン酸溶液のシリカ濃度が低下したことを、基板Wに対するエッチング処理中に検出した場合、その基板Wへのエッチング処理が終了した時点で、開閉弁52aを閉じるようにする。これにより、その基板Wに対しても、均一なエッチング処理が行える。   On the other hand, the concentration of the phosphoric acid aqueous solution in the tank 21 may be lower than a predetermined concentration preset in the control unit 100 due to the phosphoric acid solution recovered from the processing unit 40 to the tank 21 via the recovery pipe 53. In this case, the control unit 100 closes the on-off valve 52a when the concentration detection unit 22 detects a decrease in the concentration. When the controller 100 detects that the silica concentration of the phosphoric acid solution in the tank 21 has decreased during the etching process on the substrate W, the control valve 100a opens and closes when the etching process on the substrate W is completed. To close. Thereby, a uniform etching process can be performed on the substrate W as well.

そして、次に制御部100は、ポンプ54aを起動し、添加剤タンク31からコロイドシリカを添加剤としてタンク21に導入し、タンク21内のリン酸水溶液が所定のシリカ濃度となるまで添加を行う。タンク21に導入されたコロイドシリカは、タンク21内のリン酸水溶液とともに循環配管51内を循環するので、リン酸水溶液に対して均一に混合され、リン酸水溶液の温度も所定の温度となるように制御される。   Then, the control unit 100 starts the pump 54a, introduces colloidal silica from the additive tank 31 into the tank 21 as an additive, and performs addition until the phosphoric acid aqueous solution in the tank 21 has a predetermined silica concentration. . Since the colloidal silica introduced into the tank 21 circulates in the circulation pipe 51 together with the phosphoric acid aqueous solution in the tank 21, it is uniformly mixed with the phosphoric acid aqueous solution so that the temperature of the phosphoric acid aqueous solution also becomes a predetermined temperature. Controlled.

このように、基板処理中に、タンク21内におけるリン酸水溶液のシリカ濃度低下が検出された場合には、新液供給部32よりタンク21内に新たなリン酸水溶液を供給したときと同様に、制御部100は、タンク21内のリン酸水溶液のシリカ濃度が所定の濃度であること、そして、所定のリン酸水溶液温度であることを条件に基板Wへの処理を許可する。つまり、リン酸水溶液の吐出開始の指示に対して、開閉弁52aを開く。これにより、タンク21内のリン酸水溶液が、ノズル42から新たな基板W上に処理液が吹きかけられ、ウェットエッチング処理が行われる。   As described above, when a decrease in the silica concentration of the phosphoric acid aqueous solution in the tank 21 is detected during the substrate processing, the same as when a new phosphoric acid aqueous solution is supplied into the tank 21 from the new liquid supply unit 32. The control unit 100 permits the processing to the substrate W on condition that the silica concentration of the phosphoric acid aqueous solution in the tank 21 is a predetermined concentration and the phosphoric acid aqueous solution temperature. That is, the open / close valve 52a is opened in response to an instruction to start discharging the phosphoric acid aqueous solution. As a result, the phosphoric acid aqueous solution in the tank 21 is sprayed from the nozzle 42 onto the new substrate W, and wet etching is performed.

以上説明したように、本実施形態によれば、タンク21内のリン酸水溶液のシリカの濃度を適切な値に調整することができるので、リン酸水溶液におけるシリカの適切な濃度管理がしやすくなる。   As described above, according to the present embodiment, since the concentration of silica in the phosphoric acid aqueous solution in the tank 21 can be adjusted to an appropriate value, it is easy to appropriately manage the concentration of silica in the phosphoric acid aqueous solution. .

また、リン酸水溶液におけるシリカの適切な濃度管理が行なわれることにより、シリカ濃度が設定値よりも上昇してしまうことを抑えることができ、シリカの固形物が半導体デバイスに付着することを防止できると共に、シリカ濃度が設定値よりも低くなることを抑えることができ、所定のエッチングの選択比が得られなくなることを防ぐことができる。つまり、リン酸水溶液におけるシリカ濃度の調整により、窒化膜と酸化膜とのエッチングレート選択比を所望の範囲内に制御することで、安定したエッチング処理が行える。このため、十分な選択比を得ることが可能となり、半導体装置の製造に支障をきたして製品品質が低下することを防止し、製品品質を向上させることができる。   In addition, by appropriately controlling the concentration of silica in the phosphoric acid aqueous solution, it is possible to suppress the silica concentration from rising above the set value, and to prevent solid silica from adhering to the semiconductor device. At the same time, it is possible to prevent the silica concentration from becoming lower than the set value, and to prevent a predetermined etching selectivity from being obtained. That is, a stable etching process can be performed by controlling the etching rate selectivity between the nitride film and the oxide film within a desired range by adjusting the silica concentration in the phosphoric acid aqueous solution. For this reason, it is possible to obtain a sufficient selection ratio, and it is possible to prevent the product quality from being deteriorated by hindering the manufacture of the semiconductor device and improve the product quality.

さらに、コロイダルシリカはアルコールを用いない薬液であるため安全性が高く、しかも溶解しやすいから、この点からもリン酸水溶液におけるシリカの濃度管理を行いやすい。   Furthermore, since colloidal silica is a chemical solution that does not use alcohol, it is highly safe and easily dissolved. From this point, it is easy to control the concentration of silica in an aqueous phosphoric acid solution.

上述した実施形態においては、基板Wを一枚ごとに処理する枚葉式処理方法を用いているが、これに限るものではなく、例えば、処理槽に複数枚の基板Wを同時に浸漬して処理するバッチ式処理方法を用いるようにしても良い。また、シリカとして、コロイダルシリカ以外にも、リン酸水溶液に溶けるシリカであれば、コロイダルシリカ以外のシリカでも良い。また、新しいリン酸水溶液の供給管にシリカ供給管を接続してもよい。   In the above-described embodiment, the single wafer processing method for processing the substrates W one by one is used. However, the present invention is not limited to this. For example, a plurality of substrates W are simultaneously immersed in the processing tank. Alternatively, a batch processing method may be used. In addition to colloidal silica, silica other than colloidal silica may be used as long as it is soluble in phosphoric acid aqueous solution. Further, a silica supply pipe may be connected to a new phosphoric acid aqueous solution supply pipe.

図4は、この発明の第2の実施の形態に係るウェットエッチング装置10Aを示す概略図である。図4において図1と同一機能部分には同一符号を付し、その詳細な説明は省略する。   FIG. 4 is a schematic diagram showing a wet etching apparatus 10A according to the second embodiment of the present invention. 4, the same functional parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図4に示すように、ウェットエッチング装置10Aは、リン酸水溶液を貯留する貯留部20Aと、シリカ添加剤を貯留する添加剤貯留部30と、基板をウェットエッチング処理する処理部40と、これら各部間を接続する循環部50と、これら各部を連携制御する制御部100Aとを備えている。   As shown in FIG. 4, the wet etching apparatus 10 </ b> A includes a storage unit 20 </ b> A that stores a phosphoric acid aqueous solution, an additive storage unit 30 that stores a silica additive, a processing unit 40 that performs wet etching processing on a substrate, and each of these units. A circulation unit 50 that connects them and a control unit 100A that controls these units in a coordinated manner are provided.

貯留部20Aは、所定のシリカ濃度のリン酸水溶液を貯留するタンク21と、このタンク21に設けられ、内部のリン酸水溶液のシリカ濃度を検出する濃度検出部22と、タンク21内のリン酸水溶液の温度を検出する温度検出部23と、液面計24と、サブタンク25とを備えている。タンク21は、リン酸水溶液を貯留する上部開放のタンクであリ、タンク配管26を介してサブタンク25と接続される。サブタンク25からは、開閉弁27を介して、コロイダルシリカとの混合処理が済んだリン酸水溶液が供給される。   20 A of storage parts are the tank 21 which stores the phosphoric acid aqueous solution of predetermined | prescribed silica concentration, the density | concentration detection part 22 which is provided in this tank 21, and detects the silica density | concentration of internal phosphoric acid aqueous solution, and the phosphoric acid in the tank 21 A temperature detector 23 for detecting the temperature of the aqueous solution, a liquid level gauge 24, and a sub tank 25 are provided. The tank 21 is an open tank that stores an aqueous phosphoric acid solution, and is connected to the sub tank 25 via a tank pipe 26. From the sub tank 25, an aqueous phosphoric acid solution that has been mixed with colloidal silica is supplied via the on-off valve 27.

サブタンク25には、開閉弁34を介して新液供給部32に接続された新液供給配管33、回収配管53、添加剤配管54が上流側に接続され、さらにタンク配管26を介してタンク21が下流側に接続されている。サブタンク25には、濃度検出部28、温度検出部23a、液面計24aがそれぞれ設けられていて、各検出部の出力は、制御部100Aに送られるようになっている。濃度検出部28、温度検出部23a、液面計24aの各機能は、濃度検出部22、温度検出部23、液面計24の各機能と同様である。   A new liquid supply pipe 33, a recovery pipe 53, and an additive pipe 54 connected to the new liquid supply unit 32 via the opening / closing valve 34 are connected to the sub tank 25 on the upstream side, and the tank 21 is further connected via the tank pipe 26. Is connected downstream. The sub tank 25 is provided with a concentration detection unit 28, a temperature detection unit 23a, and a liquid level gauge 24a, and the output of each detection unit is sent to the control unit 100A. The functions of the concentration detector 28, the temperature detector 23a, and the liquid level gauge 24a are the same as the functions of the concentration detector 22, the temperature detector 23, and the liquid level gauge 24.

さらにサブタンク25には、タンク21に設けられる循環配管51に相当する循環配管55が設けられる。この循環配管55の途中には、循環駆動源となるポンプ55aと、循環配管55を流れるリン酸水溶液を加熱するヒータ55bと、循環配管55を流れるリン酸水溶液から異物を除去するフィルタ55cと、循環配管55を開閉する開閉弁55dとが設けられる。ポンプ55a、ヒータ55b、開閉弁55dは、それぞれ制御部100Aに電気的に接続されている。ポンプ55a、ヒータ55b、フィルタ55cは、ポンプ51a、ヒータ51b、フィルタ51cにそれぞれ相当するので詳細な説明は省略するが、サブタンク25に貯留されるリン酸水溶液を循環配管55に流すことによって、リン酸水溶液を加熱する。本実施の形態において、ポンプ55aは、通常時には常時運転状態とされ、開閉弁55dは、通常時には常時、開状態とされる。   Further, the sub tank 25 is provided with a circulation pipe 55 corresponding to the circulation pipe 51 provided in the tank 21. In the middle of the circulation pipe 55, a pump 55a serving as a circulation drive source, a heater 55b for heating the phosphoric acid aqueous solution flowing through the circulation pipe 55, a filter 55c for removing foreign substances from the phosphoric acid aqueous solution flowing through the circulation pipe 55, An open / close valve 55d for opening and closing the circulation pipe 55 is provided. The pump 55a, the heater 55b, and the on-off valve 55d are each electrically connected to the control unit 100A. Since the pump 55a, the heater 55b, and the filter 55c correspond to the pump 51a, the heater 51b, and the filter 51c, respectively, detailed description thereof is omitted. However, by flowing the phosphoric acid aqueous solution stored in the sub tank 25 through the circulation pipe 55, the phosphorus 55 The aqueous acid solution is heated. In the present embodiment, the pump 55a is normally operated at the normal time, and the open / close valve 55d is always open at the normal time.

新液供給配管33の開閉弁34は制御部100Aに電気的に接続されており、その制御部100Aによる制御に応じて開閉する。   The on-off valve 34 of the new liquid supply pipe 33 is electrically connected to the control unit 100A and opens and closes according to control by the control unit 100A.

制御部100Aは、各部を集中的に制御するマイクロコンピュータ、さらに、ウェットエッチングに関する各種処理情報や各種プログラムなどを記憶する記憶部を備えている。制御部100Aは、濃度検出部28で検出されたリン酸水溶液のシリカ濃度が、予め制御部100Aに設定された所定値より低い場合に、先に述べた各種処理情報や各種プログラムに基づいて、添加剤タンク31からサブタンク25へシリカ添加剤を供給する添加剤供給部としての機能を備えている。   The control unit 100A includes a microcomputer that centrally controls each unit and a storage unit that stores various processing information and various programs related to wet etching. When the silica concentration of the phosphoric acid aqueous solution detected by the concentration detection unit 28 is lower than a predetermined value set in advance in the control unit 100A, the control unit 100A is based on the various processing information and various programs described above. A function as an additive supply unit for supplying the silica additive from the additive tank 31 to the sub tank 25 is provided.

このように構成されたウェットエッチング装置10Aでは、制御部100Aの制御によって、次のようにしてウェットエッチング処理を行う。すなわち、開閉弁27を閉じた状態で、新液供給部32よりサブタンク25内に所定量のリン酸水溶液を供給して収容する。サブタンク25に供給されたリン酸水溶液に対しては、上述したウェットエッチング装置10における、タンク21内のリン酸水溶液に対して行なわれる処理と同等な処理が行なわれ、予め制御部100Aに設定された、所定のシリカ濃度を有し、所定温度を有するリン酸水溶液が、サブタンク25内に生成される。   In the wet etching apparatus 10A configured as described above, the wet etching process is performed as follows under the control of the control unit 100A. That is, with the on-off valve 27 closed, a predetermined amount of phosphoric acid aqueous solution is supplied and stored in the sub tank 25 from the new liquid supply unit 32. The phosphoric acid aqueous solution supplied to the sub tank 25 is subjected to processing equivalent to the processing performed on the phosphoric acid aqueous solution in the tank 21 in the wet etching apparatus 10 described above, and is set in advance in the control unit 100A. A phosphoric acid aqueous solution having a predetermined silica concentration and a predetermined temperature is generated in the sub tank 25.

なお、基板Wの表面から処理部40の底面に流れた処理液は、その底面に接続された回収配管53を流れてポンプ53aの駆動によりサブタンク25に回収されるようになっている。この回収されたリン酸水溶液がサブタンク25に導入されることによって、サブタンク25内のシリカ濃度が所定値以下となった場合に、所定濃度となるように是正される点は上述と同様である。   The processing liquid that has flowed from the surface of the substrate W to the bottom surface of the processing unit 40 flows through a recovery pipe 53 connected to the bottom surface, and is recovered in the sub tank 25 by driving a pump 53a. The recovered phosphoric acid aqueous solution is introduced into the sub-tank 25, and when the silica concentration in the sub-tank 25 becomes a predetermined value or less, it is corrected so as to become a predetermined concentration as described above.

処理に先立つ準備段階当初は、タンク21内は空状態である。このため、上述のようにてサブタンク25にて生成されたリン酸水溶液は、開閉弁27が開状態となることでそのほとんどが、タンク21に供給される。このとき、サブタンク25内のリン酸水溶液のシリカ濃度が、予め制御部100Aに設定された所定濃度であり、かつ所定の温度になっていることを、タンク21に対するリン酸水溶液の供給条件としても良い。   At the beginning of the preparation stage prior to processing, the tank 21 is empty. For this reason, most of the phosphoric acid aqueous solution generated in the sub tank 25 as described above is supplied to the tank 21 when the on-off valve 27 is opened. At this time, the fact that the silica concentration of the phosphoric acid aqueous solution in the sub-tank 25 is a predetermined concentration set in advance in the control unit 100A and is at a predetermined temperature is also a condition for supplying the phosphoric acid aqueous solution to the tank 21. good.

タンク21に供給された、所定のシリカ濃度を有するリン酸水溶液は、循環配管51を循環しながら、所定温度となるように、そしてその温度に維持されるように温度制御される。制御部100Aは、吐出開始の指示を受けると、濃度検出部22により検出される、タンク21内のリン酸水溶液のシリカ濃度が、予め制御部100Aに設定された所定の濃度であること、かつ、予め制御部100Aに設定された所定のリン酸水溶液温度であることを条件に、開閉弁52aを開状態にし、循環配管51から吐出配管52に所定のシリカ濃度のリン酸水溶液を流す。   The temperature of the phosphoric acid aqueous solution having a predetermined silica concentration supplied to the tank 21 is controlled so as to reach a predetermined temperature and be maintained at the temperature while circulating through the circulation pipe 51. When the controller 100A receives a discharge start instruction, the silica concentration of the phosphoric acid aqueous solution in the tank 21 detected by the concentration detector 22 is a predetermined concentration set in the controller 100A in advance, and On the condition that the temperature of the predetermined phosphoric acid aqueous solution is set in advance in the control unit 100A, the on-off valve 52a is opened, and the phosphoric acid aqueous solution having a predetermined silica concentration is caused to flow from the circulation pipe 51 to the discharge pipe 52.

この実施の形態において、所定濃度のリン酸水溶液がサブタンク25からタンク21に供給されると、開閉弁27は閉じる。そして、サブタンク25内では、所定濃度のリン酸水溶液の生成が行なわれる。生成の詳細は既に述べたとおりである。   In this embodiment, when the phosphoric acid aqueous solution having a predetermined concentration is supplied from the sub tank 25 to the tank 21, the on-off valve 27 is closed. In the sub tank 25, a phosphoric acid aqueous solution having a predetermined concentration is generated. Details of generation are as described above.

一方、基板Wに対するエッチング処理回数が進むにつれて、タンク21内のリン酸水溶液が消耗されたことが液面計24によって検出されると、制御部100Aは開閉弁27を開状態とし、消耗分を補う量のリン酸水溶液を、サブタンク25からタンク21に供給する。補われるリン酸水溶液は、サブタンク25内にて既に所定のシリカ濃度となっていて、タンク21に残存するリン酸水溶液と、サブタンク25から今回新たに供給されたリン酸水溶液とは、循環配管51を循環する間に十分に混合される。そして、制御部100Aは、吐出開始の指示を受けると、開閉弁52aが開状態となり、ノズル42からは、シリカ濃度が所定濃度に制御され、しかも所定温度に加熱されたリン酸水溶液が基板Wに供給される。   On the other hand, when the level gauge 24 detects that the phosphoric acid aqueous solution in the tank 21 has been consumed as the number of etching processes for the substrate W increases, the control unit 100A opens the on-off valve 27 to reduce the consumed amount. A supplementary amount of phosphoric acid aqueous solution is supplied from the sub tank 25 to the tank 21. The supplemented phosphoric acid aqueous solution already has a predetermined silica concentration in the sub-tank 25, and the phosphoric acid aqueous solution remaining in the tank 21 and the phosphoric acid aqueous solution newly supplied from the sub-tank 25 this time are the circulation pipe 51. Mix thoroughly while circulating. When the controller 100A receives an instruction to start discharging, the on-off valve 52a is opened, and the aqueous solution of phosphoric acid heated to a predetermined temperature is supplied from the nozzle 42 to the predetermined concentration and the silica concentration is controlled to the substrate W. To be supplied.

以上説明したように、本実施形態によれば、上述したウェットエッチング装置10と同様に、基板Wに供給されるリン酸水溶液中シリカの濃度を適切な値に調整することができるので、リン酸水溶液におけるシリカの適切な濃度管理がしやすくなる。また、リン酸水溶液とコロイダルシリカとを混合するためのサブタンク25を設けたことで、リン酸水溶液を用いた基板の処理時間を利用して、次に使用されるリン酸水溶液の生成を行なうことが可能となる。このため、リン酸水溶液の補充時間が短縮され、処理効率を向上させることができる。   As described above, according to the present embodiment, the concentration of silica in the phosphoric acid aqueous solution supplied to the substrate W can be adjusted to an appropriate value, similarly to the wet etching apparatus 10 described above. Appropriate concentration control of silica in the aqueous solution is facilitated. Further, by providing the sub tank 25 for mixing the phosphoric acid aqueous solution and the colloidal silica, the phosphoric acid aqueous solution to be used next is generated by using the processing time of the substrate using the phosphoric acid aqueous solution. Is possible. For this reason, the replenishment time of phosphoric acid aqueous solution is shortened, and processing efficiency can be improved.

なお、上記した各実施の形態において、基板に対するリン酸水溶液の供給条件を、リン酸水溶液中のシリカ濃度と、リン酸水溶液の温度としたが、シリカ濃度だけを条件としても良い。   In each of the above embodiments, the conditions for supplying the phosphoric acid aqueous solution to the substrate are the silica concentration in the phosphoric acid aqueous solution and the temperature of the phosphoric acid aqueous solution, but only the silica concentration may be used as the condition.

また、第2の実施の形態で、サブタンク25からタンク21へのリン酸水溶液の補充条件として、リン酸水溶液中のシリカ濃度と、リン酸水溶液の温度としたが、シリカ濃度だけを条件としても良い。サブタンクは、2つ以上設けるようにしても良い。   In the second embodiment, the replenishment conditions of the phosphoric acid aqueous solution from the sub tank 25 to the tank 21 are the silica concentration in the phosphoric acid aqueous solution and the temperature of the phosphoric acid aqueous solution. good. Two or more subtanks may be provided.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10…ウェットエッチング装置、20…貯留部、21…タンク、22,28…濃度検出部、25…サブタンク、30…添加剤貯留部、31…添加剤タンク、40…処理部、50…循環部、54…添加剤配管、100,100A…制御部。   DESCRIPTION OF SYMBOLS 10 ... Wet etching apparatus, 20 ... Storage part, 21 ... Tank, 22, 28 ... Concentration detection part, 25 ... Sub tank, 30 ... Additive storage part, 31 ... Additive tank, 40 ... Processing part, 50 ... Circulation part, 54 ... Additive piping, 100, 100A ... Control section.

Claims (7)

少なくとも窒化膜と酸化膜とが形成された基板を処理するウェットエッチング装置において、
リン酸水溶液を貯留する貯留部と、
シリカ添加剤を貯留する添加剤貯留部と、
前記貯留部に貯留されたリン酸水溶液のシリカ濃度を検出する濃度検出部と、
この濃度検出部により検出されたリン酸水溶液のシリカ濃度が所定値より低い場合に、前記添加剤貯留部から前記貯留部へシリカ添加剤を供給する添加剤供給部と、
前記貯留部に貯留されたリン酸水溶液により基板を処理する処理部とを備えることを特徴とするウェットエッチング装置。
In a wet etching apparatus for processing a substrate on which at least a nitride film and an oxide film are formed,
A reservoir for storing a phosphoric acid aqueous solution;
An additive reservoir for storing the silica additive;
A concentration detection unit for detecting the silica concentration of the phosphoric acid aqueous solution stored in the storage unit;
When the silica concentration of the phosphoric acid aqueous solution detected by the concentration detection unit is lower than a predetermined value, an additive supply unit that supplies a silica additive from the additive storage unit to the storage unit;
A wet etching apparatus comprising: a processing unit that processes a substrate with an aqueous phosphoric acid solution stored in the storage unit.
前記処理部から前記リン酸水溶液を回収して、前記貯留部へ戻す回収部をさらに備えることを特徴とする請求項1記載のウェットエッチング装置。   The wet etching apparatus according to claim 1, further comprising a recovery unit that recovers the phosphoric acid aqueous solution from the processing unit and returns it to the storage unit. 前記濃度検出部により検出された前記リン酸水溶液のシリカ濃度が予め設定した所定の濃度であることを条件に、前記貯留部から前記処理部に前記リン酸水溶液を供給することを特徴とする請求項1記載のウエットエッチング装置。   The phosphoric acid aqueous solution is supplied from the storage unit to the processing unit on condition that the silica concentration of the phosphoric acid aqueous solution detected by the concentration detection unit is a predetermined concentration set in advance. Item 2. The wet etching apparatus according to Item 1. 前記シリカ添加剤は、コロイダルシリカであることを特徴とする請求項1〜3のいずれかに記載のウエットエッチング装置。   The wet etching apparatus according to claim 1, wherein the silica additive is colloidal silica. 前記添加剤供給部は、前記添加剤貯留部と前記貯留部との間に副貯留部を有し、
前記副貯留部は、リン酸水溶液を収容するリン酸水溶液供給部からリン酸水溶液を供給されることを特徴とする請求項1に記載のウェットエッチング装置。
The additive supply unit has a sub-storage part between the additive storage part and the storage part,
The wet etching apparatus according to claim 1, wherein the secondary storage unit is supplied with a phosphoric acid aqueous solution from a phosphoric acid aqueous solution supply unit that stores the phosphoric acid aqueous solution.
前記貯留部に貯留された前記リン酸水溶液の温度を検出する温度検出部を有し、
この温度検出部により検出された前記リン酸水溶液の温度が予め設定した所定の温度であることを条件に、前記貯留部から前記処理部に前記リン酸水溶液を供給することを特徴とする請求項3に記載のウェットエッチング装置。
A temperature detection unit for detecting the temperature of the phosphoric acid aqueous solution stored in the storage unit;
The phosphoric acid aqueous solution is supplied from the storage unit to the processing unit on the condition that the temperature of the phosphoric acid aqueous solution detected by the temperature detection unit is a predetermined temperature set in advance. 3. The wet etching apparatus according to 3.
前記貯留部には、内部のリン酸水溶液を循環しつつ、加熱する循環部が設けられていることを特徴とする請求項2に記載のウェットエッチング装置。   The wet etching apparatus according to claim 2, wherein the storage portion is provided with a circulation portion that heats the internal phosphoric acid aqueous solution while circulating it.
JP2018038606A 2013-03-29 2018-03-05 Wet etching system Active JP6529625B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013073721 2013-03-29
JP2013073721 2013-03-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014045275A Division JP6302708B2 (en) 2013-03-29 2014-03-07 Wet etching equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019082656A Division JP6687784B2 (en) 2013-03-29 2019-04-24 Wet etching equipment

Publications (3)

Publication Number Publication Date
JP2018110261A true JP2018110261A (en) 2018-07-12
JP2018110261A5 JP2018110261A5 (en) 2019-02-14
JP6529625B2 JP6529625B2 (en) 2019-06-12

Family

ID=62844492

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018038606A Active JP6529625B2 (en) 2013-03-29 2018-03-05 Wet etching system
JP2019082656A Active JP6687784B2 (en) 2013-03-29 2019-04-24 Wet etching equipment

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019082656A Active JP6687784B2 (en) 2013-03-29 2019-04-24 Wet etching equipment

Country Status (1)

Country Link
JP (2) JP6529625B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275091A (en) * 1996-04-03 1997-10-21 Mitsubishi Electric Corp Etching device of semiconductor nitride film
JPH10335212A (en) * 1997-05-30 1998-12-18 Sony Corp Method for keeping water concn. of water soln. for peeling and peeling water soln. feeder
JP2000082691A (en) * 1998-07-07 2000-03-21 Tokyo Electron Ltd Processing system and method
JP2000096264A (en) * 1998-09-21 2000-04-04 Hitachi Ltd Etching device and method
JP2003158116A (en) * 2001-10-18 2003-05-30 Infineon Technologies Ag Device for evaluating content of silicon dioxide
JP2003185537A (en) * 2001-12-20 2003-07-03 Fujitsu Ltd Measuring apparatus for chemical liquid, chemical liquid- supplying method, and measuring method for concentration of chemical liquid
JP2003338488A (en) * 2002-05-21 2003-11-28 Seiko Epson Corp Treating device and manufacturing method of semiconductor device
JP2004247509A (en) * 2003-02-13 2004-09-02 Nec Kyushu Ltd Device and method for wet processing
JP2005079212A (en) * 2003-08-29 2005-03-24 Trecenti Technologies Inc Semiconductor manufacturing equipment, and method for manufacturing semiconductor device
JP2007165929A (en) * 2007-02-19 2007-06-28 Seiko Epson Corp Treatment device and method for manufacturing semiconductor device
JP2009206419A (en) * 2008-02-29 2009-09-10 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2012074601A (en) * 2010-09-29 2012-04-12 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
US20120247505A1 (en) * 2011-03-30 2012-10-04 Tokyo Electron Limited Etch system and method for single substrate processing
JP2012248633A (en) * 2011-05-26 2012-12-13 Mitsubishi Electric Corp Etching device, manufacturing method of solar cell, and solar cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4739142B2 (en) * 2006-07-28 2011-08-03 東京エレクトロン株式会社 Chemical processing apparatus, chemical supply method, and chemical supply program
JP5280473B2 (en) * 2011-03-03 2013-09-04 東京エレクトロン株式会社 Etching method, etching apparatus and storage medium

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275091A (en) * 1996-04-03 1997-10-21 Mitsubishi Electric Corp Etching device of semiconductor nitride film
JPH10335212A (en) * 1997-05-30 1998-12-18 Sony Corp Method for keeping water concn. of water soln. for peeling and peeling water soln. feeder
JP2000082691A (en) * 1998-07-07 2000-03-21 Tokyo Electron Ltd Processing system and method
JP2000096264A (en) * 1998-09-21 2000-04-04 Hitachi Ltd Etching device and method
JP2003158116A (en) * 2001-10-18 2003-05-30 Infineon Technologies Ag Device for evaluating content of silicon dioxide
JP2003185537A (en) * 2001-12-20 2003-07-03 Fujitsu Ltd Measuring apparatus for chemical liquid, chemical liquid- supplying method, and measuring method for concentration of chemical liquid
JP2003338488A (en) * 2002-05-21 2003-11-28 Seiko Epson Corp Treating device and manufacturing method of semiconductor device
JP2004247509A (en) * 2003-02-13 2004-09-02 Nec Kyushu Ltd Device and method for wet processing
JP2005079212A (en) * 2003-08-29 2005-03-24 Trecenti Technologies Inc Semiconductor manufacturing equipment, and method for manufacturing semiconductor device
JP2007165929A (en) * 2007-02-19 2007-06-28 Seiko Epson Corp Treatment device and method for manufacturing semiconductor device
JP2009206419A (en) * 2008-02-29 2009-09-10 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2012074601A (en) * 2010-09-29 2012-04-12 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
US20120247505A1 (en) * 2011-03-30 2012-10-04 Tokyo Electron Limited Etch system and method for single substrate processing
JP2012248633A (en) * 2011-05-26 2012-12-13 Mitsubishi Electric Corp Etching device, manufacturing method of solar cell, and solar cell

Also Published As

Publication number Publication date
JP2019117960A (en) 2019-07-18
JP6529625B2 (en) 2019-06-12
JP6687784B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
JP6302708B2 (en) Wet etching equipment
JP6320868B2 (en) Substrate processing apparatus and substrate processing method
JP6446003B2 (en) Substrate processing apparatus, substrate processing method and etching solution
JP6320869B2 (en) Substrate processing apparatus and substrate processing method
KR101671118B1 (en) Substrate processing apparatus and substrate processing method
TWI553888B (en) Substrate processing apparatus and substrate processing method
JP7098800B2 (en) Board processing equipment and board processing method
US11373886B2 (en) Substrate processing apparatus and substrate processing method
KR102006061B1 (en) Substrate treatment device and substrate treatment method
JP6454605B2 (en) Substrate processing method and substrate processing apparatus
JP2009260245A (en) Substrate treating apparatus and substrate treating method
JP6687784B2 (en) Wet etching equipment
JP6433730B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
WO2016042667A1 (en) Method for manufacturing semiconductor device
JP2004179310A (en) Etching solution and processing method, processing apparatus, and semiconductor device manufacturing method using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190514

R150 Certificate of patent or registration of utility model

Ref document number: 6529625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150