JP2018110252A - Photoelectric conversion device using inclusion fullerene - Google Patents

Photoelectric conversion device using inclusion fullerene Download PDF

Info

Publication number
JP2018110252A
JP2018110252A JP2018026504A JP2018026504A JP2018110252A JP 2018110252 A JP2018110252 A JP 2018110252A JP 2018026504 A JP2018026504 A JP 2018026504A JP 2018026504 A JP2018026504 A JP 2018026504A JP 2018110252 A JP2018110252 A JP 2018110252A
Authority
JP
Japan
Prior art keywords
sno
ote
mtpps
zntpps
fullerene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018026504A
Other languages
Japanese (ja)
Inventor
敬 大久保
Takashi Okubo
敬 大久保
俊一 福住
Shunichi Fukuzumi
俊一 福住
雄樹 川島
Yuki Kawashima
雄樹 川島
卓 羽曾部
Taku Hasobe
卓 羽曾部
隼人 酒井
Hayato Sakai
隼人 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2018026504A priority Critical patent/JP2018110252A/en
Publication of JP2018110252A publication Critical patent/JP2018110252A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric conversion device using an inclusion fullerene using a nanocluster.SOLUTION: A photovoltaic device uses an inclusion fullerene including a composite body of supermolecules consisting of an alkali ion inclusion fullerene and an anionic dye. The alkali ion inclusion fullerene is preferentially Li@C. A molecule having the dye-sensitization action is preferentially MTPPS(M is Zn or H). An electrode is preferentially SnO.SELECTED DRAWING: Figure 1

Description

本発明は、内包フラーレンを用いた光電変換装置に関する。   The present invention relates to a photoelectric conversion device using an endohedral fullerene.

光電気化学セル(PECs)は構造が簡単なことから、次世代太陽電池として広く研究されて来た。電極と色素励起状態間の光誘導電荷分離はPEC性能の改良に重要な役割を果たす。自然光合成反応中心において、有効な光誘導電子移動が生じ、量子効率の高い長寿命の電荷分離(CS)状態を生み出す。電子ドナー・アクセプター結合分子を設計、合成してPECsに応用のため有効な光誘導電荷分離を実現しようとして、広範囲に亘る努力がこれまで為された。だが、共有結合ドナー・アクセプター分子の合成上の難しさが、光合成反応中心のかかるモデル化合物を用いた簡単な光起電力素子の開発を妨げていた。候補が多くある中、ポルフィリンとフラーレンはPECsを構成するための適切な組み合わせである。ポルフィリンは強い可視吸収バンドを有し、フラーレンは3次元π系が非局在化しているため再配置エネルギーが低い等、有効な電子移動性を示すからである。PECsを目的とする超分子的手法もまた研究されているが、中性ポルフィリンとフラーレン間に強い結合の有る超分子についての報告は何ら無かった。     Photoelectrochemical cells (PECs) have been widely studied as next-generation solar cells because of their simple structure. Photoinduced charge separation between the electrode and dye excited state plays an important role in improving PEC performance. In the natural photosynthetic reaction center, effective photoinduced electron transfer occurs, producing a long-life charge-separated (CS) state with high quantum efficiency. Extensive efforts have been made so far to design and synthesize electron donor-acceptor binding molecules to achieve effective photoinduced charge separation for application to PECs. However, the difficulty in synthesizing covalent donor-acceptor molecules has hindered the development of simple photovoltaic devices using such model compounds with photosynthetic reaction centers. Among the many candidates, porphyrins and fullerenes are a suitable combination for constituting PECs. This is because porphyrin has a strong visible absorption band, and fullerene exhibits effective electron mobility such as low relocation energy because the three-dimensional π system is delocalized. Supramolecular approaches aimed at PECs have also been studied, but there have been no reports of supramolecules with strong bonds between neutral porphyrins and fullerenes.

リチウムイオン内包フラーレン(Li@C60)とスルホン化メソテトラフェニルポルフィリン(MTPPS4−:M=Zn,H)から成る簡単な電子ドナー・アクセプター超分子複合体を我々は最近設計、合成した(非特許文献1)。それらは陽イオン―陰イオン及びπ―π相互作用(K=〜10−1)故に強い1:1超分子結合を有するものである。この超分子の光励起はベンゾニトリル(PhCN)においてCS状態の極めて遅い(τ=0.3ms)電荷再結合を示した。Li@C60はC60本来のものより有効な電子アクセプターとして作用するものと報告されている(非特許文献2)。Li@C60のMTPPS4−から三重励起状態への光誘導電子移動の駆動力は正極性に大きい(ZnTPPS4−では‐ΔGET=0.98eVであり、極性PhCNにおけるHTPPS4−では=0.67eV)もので、これはナノクラスターにおける非極性環境下でもCS状態を生ずるのに十分なものである。 We recently designed and synthesized a simple electron donor-acceptor supramolecular complex composed of lithium ion-encapsulated fullerene (Li + @C 60 ) and sulfonated mesotetraphenylporphyrin (MTPPS 4- : M = Zn, H 2 ). (Non-Patent Document 1). They have strong 1: 1 supramolecular bonds due to cation-anions and π-π interactions (K = −10 5 M −1 ). The photoexcitation of this supramolecule showed very slow (τ = 0.3 ms) charge recombination in the CS state in benzonitrile (PhCN). Li + @C 60 has been reported to act as an electron acceptor that is more effective than the original C 60 (Non-patent Document 2). The driving force of photoinduced electron transfer from MTPPS 4- to triple excited state of Li + @C 60 is large in positive polarity (ZnTPPS 4- has -ΔG ET = 0.98 eV, and H 2 TPPS 4- in polar PhCN = 0.67 eV), which is sufficient to produce a CS state even in non-polar environments in nanoclusters.

Chem. Commun., 2012,48, 4314-4316Chem. Commun., 2012,48, 4314-4316 J.Am.Chem.Soc.,2011,133,15938-15941J.Am.Chem.Soc., 2011,133,15938-15941 J.Phys. Chem.C,2009,113,19694J. Phys. Chem. C, 2009, 113, 19694

しかし、現在にいたるまで、リチウム内包フラーレンとスルホン化メソテトラフェニルポルフィリンの超分子ナノクラスターから成る電池をどのように構築すればいいかについての具体的手段については全く知られおりず、従って、そのような電池は存在しない。   However, until now, no specific means has been known about how to construct a battery composed of supramolecular nanoclusters of lithium-encapsulated fullerenes and sulfonated mesotetraphenylporphyrins. There is no such battery.

本発明は、内包フラーレンを用いた光電返還装置を提供することを目的とする。   An object of this invention is to provide the photoelectric return apparatus using the endohedral fullerene.

請求項1に係る発明は、アルカリイオン内包フラーレンとアニオン性色素とからなる超分子の複合体を含む内包フラーレンを用いた光起電力装置である。   The invention according to claim 1 is a photovoltaic device using an endohedral fullerene comprising a supramolecular complex composed of an alkali ion-encapsulating fullerene and an anionic dye.

請求項2に係る発明は、前記アルカリイオンはLiである請求項1記載の内包フラーレンを用いた光起電力装置である。   The invention according to claim 2 is the photovoltaic device using the endohedral fullerene according to claim 1, wherein the alkali ion is Li.

請求項3に係る発明は、前記アルカリイオン内包フラーレンはLi@C60である請求項1又は2記載の内包フラーレンを用いた光起電力装置である。 The invention according to claim 3, wherein the alkali ion containing fullerene is a photovoltaic device using the endohedral fullerenes as claimed in claim 1 or 2, wherein the Li + @C 60.

リチウム内包フラーレンとスルホン化メソテトラフェニルポルフィリンの超分子ナノクラスターからなる光電気化学太陽電池は、単一成分のみを含有する基準系と比較して有意に高い光電気化学的性能を示す。   Photoelectrochemical solar cells composed of supramolecular nanoclusters of lithium-encapsulated fullerene and sulfonated mesotetraphenylporphyrin show significantly higher photoelectrochemical performance compared to a reference system containing only a single component.

OTE/SnO−MTPPS4−−Li@C60)光電気化学セルの模式イメージである。 OTE / SnO 2 -MTPPS 4- -Li + @C 60) is a schematic image of a photoelectrochemical cell. MTPPS4−のPhCN溶液(黒)及びOTE/SnO−(MTPPS4−‐Li@C60電極(赤)の紫外可視吸収スペクトルを示す図である。M=(a)Zn、(b)H Is a diagram showing an ultraviolet-visible absorption spectrum of (MTPPS 4- -Li + @C 60) n electrode (red) - MTPPS 4- of PhCN solution (black) and OTE / SnO 2. M = (a) Zn, (b) H 2 (a)Li@C60−ZnTPPS4−及び(b)Li@C60−HTPPS4−ナノクラスターのTEM画像である。 (A) is a TEM image of Li + @C 60 -ZnTPPS 4- and (b) Li + @C 60 -H 2 TPPS 4- nanoclusters. (a)OTE/SnO−(ZnTPPS4−‐Li@C60(赤)、OTE/SnO−(MTPPS4−‐Li@C60(青)及びOTE/SnO−(Li@C60(黒)の光電流作用スペクトル、(b)OTE/SnO−(HTPPS4−‐Li@C60の光電流作用スペクトルである。電解液:MeCN−PhCN(3.1v/v)にて0.5M Lil及び0.01M l (A) OTE / SnO 2 — (ZnTPPS 4 —Li + @C 60 ) n (red), OTE / SnO 2 — (MTPPS 4 —Li + @C 60 ) n (blue) and OTE / SnO 2 − It is a photocurrent action spectrum of (Li + @C 60 ) n (black), and (b) a photocurrent action spectrum of OTE / SnO 2 — (H 2 TPPS 4 − -Li + @C 60 ) n . Electrolytic solution: MeCN-PhCN (3.1 v / v) 0.5 M Lil and 0.01 M l 2 (a)550nmのレーザ励起後30μs(黒)及び200μs(赤)における脱気MeCN−PhCN(3.1v/v)における(ZnTPPS4−‐Li@C60の過渡吸収スペクトル及び(b)1035nmにおける時間座標図である。(b)中の挿入図は一次分析図である。(A) (ZnTPPS 4- -Li + @C 60 ) n transient absorption spectrum in degassed MeCN-PhCN (3.1 v / v) at 30 μs (black) and 200 μs (red) after laser excitation at 550 nm and (b ) Time coordinate diagram at 1035 nm. The inset in (b) is a primary analysis diagram.

以下にMTPPS4−を例として実施例を示すが、もちろんこれに限られるものではない。 Examples will be described below by taking MTPPS 4- as an example, but the present invention is not limited thereto.

ナノ構造化SnOの光学的透過性電極(OTE)、即ち(OTE/SnO)上に組み立てられたLi@C60‐MTPPS4−ナノクラスターを用いた光起電力セルを我々はここに報告する。Li@C60とMTPPS4−間の超分子ナノクラスターのナノ構造化SnO膜(OTE/SnO−(MTPPS4−−Li@C60と表記)の光電気化学的挙動は、MTPPS4−又はLi@C60クラスターの単一成分膜(OTE/SnO−(MTPPS4−又はOTE/SnO−(Li@C60と表記)のものより有意に高い(図1)。 We have here a photovoltaic cell using a nanostructured SnO 2 optically transmissive electrode (OTE), ie Li + @C 60 -MTPPS 4- nanoclusters assembled on (OTE / SnO 2 ) Report. The photoelectrochemical behavior of the nanostructured SnO 2 film of supramolecular nanoclusters between Li + @C 60 and MTPPS 4- (denoted as OTE / SnO 2- (MTPPS 4- -Li + @C 60 ) n ) is , MTPPS 4- or Li + @C 60 cluster single component film (significantly expressed as OTE / SnO 2 − (MTPPS 4− ) n or OTE / SnO 2 − (Li + @C 60 ) n ) High (Figure 1).

Li@C60‐MTPPS4−超分子の溶液はPhCN中で、Li@C60PF(2.5x10−4M)と(BuMTPPS4−(2.5x10−4M)を混合して作成された。1mLのPhCN母液をアセトニトリル(MeCN)溶液(3mL)に注入して超分子ナノクラスター[(MTPPS4―−Li@C60]を含有する懸濁液を生成した。(MTPPS4―−Li@C60の懸濁液を、2電極OTE及びOTE/SnOが設置され、テフロンスペーサを用いて5mmの距離に保持された石英キュベット中に浸した。次いで、直流電場を印加すると、懸濁液から電極面に(MTPPS4―−Li@C60が付着し、懸濁液の変色及びOTE/SnO電極の同時着色により明らかになるようにOTE/SnO−(MTPPS4―−Li@C60の強固な薄膜が形成された。参考目的のため、OTE/SnO又はMTPPSのみから成る薄膜が電極面に同様に付着され、OTE/SnO‐(Li@C60又はOTE/SnO‐(MTPPS)を形成した。
定常状態UV可視吸収スペクトルを用いて、MTPPS4―−Li@C60超分子物質の電極面への付着を追跡した。OTE/SnO−(MTPPS4―−Li@C60のUV可視吸収スペクトルは図2に図示されているが、MTPPS4―-のPhCN溶液におけるものと比較して有意の広がりを示している。かかる挙動の広がりは、OTE/SnO面上にポルフィリン分子又は超分子がπスタッキングによって凝集していることを示している。従って、MTPPS4―−Li@C60はOTE/SnO上に成功裡に付着されている。図2に示す725nmにおける広吸収帯は既に報告のように、1:1超分子複合体におけるポルフィリン面とフラーレン球間の電荷移動帯に対応付けて良い。
Li + @C 60 -MTPPS 4 -Supramolecular solution is in PhCN, Li + @C 60 PF 6 (2.5 × 10 −4 M) and (Bu 4 N + ) 4 MTPPS 4− (2.5 × 10 −4 M). 1 mL of PhCN mother liquor was injected into acetonitrile (MeCN) solution (3 mL) to produce a suspension containing supramolecular nanoclusters [(MTPPS 4 − −Li + @C 60 ) n ]. (MTPPS 4 − −Li + @C 60 ) The n suspension was immersed in a quartz cuvette where two electrodes OTE and OTE / SnO 2 were installed and held at a distance of 5 mm using a Teflon spacer. Next, when a DC electric field is applied, (MTPPS 4 − −Li + @C 60 ) n adheres to the electrode surface from the suspension, and becomes clear by the discoloration of the suspension and the simultaneous coloring of the OTE / SnO 2 electrode. A strong thin film of OTE / SnO 2 — (MTPPS 4 ——Li + @C 60 ) n was formed. For reference purposes, a thin film consisting only of OTE / SnO 2 or MTPPS was similarly deposited on the electrode surface to form OTE / SnO 2- (Li + @C 60 ) n or OTE / SnO 2- (MTPPS) n .
Steady-state UV-visible absorption spectra were used to follow the adhesion of MTPPS 4 − —Li + @C 60 supramolecular material to the electrode surface. The UV visible absorption spectrum of OTE / SnO 2 − (MTPPS 4 − −Li + @C 60 ) n is illustrated in FIG. 2, but shows a significant spread compared to that in the PhCN solution of MTPPS 4− ing. This spread of behavior indicates that porphyrin molecules or supramolecules are aggregated on the OTE / SnO 2 surface by π stacking. Therefore, MTPPS 4-- Li + @C 60 has been successfully deposited on OTE / SnO 2 . As already reported, the broad absorption band at 725 nm shown in FIG. 2 may be associated with the charge transfer band between the porphyrin surface and the fullerene sphere in the 1: 1 supramolecular complex.

TEMを用いて、図3に示すようなOTE/SnO−(MTPPS4−‐Li@C60膜のトポグラフィーを計測した。(MTPPS4−‐Li+@C60)n膜は、膜にナノ多孔性モフォルジーを与える寸法約80nmの密充填MTPPS4―及びLi@C60の複合クラスターから成る。クラスターの寸法は動的光散乱(DLS)測定(ESIにおける図S1参照)によっても計測される。非特許文献3において既述のように、直流電場におけるポルフィリン及びフラーレン成分の帯電は成長及び付着工程において重要な役割を果たす。これ等の被膜は極めて強固であり、粗結合MTPPS4―及びLi@C60のナノ集成を全て除くため、有機溶媒での洗浄が可能である。 Using TEM, the topography of the OTE / SnO 2 − (MTPPS 4 − -Li + @C 60 ) n film as shown in FIG. 3 was measured. The (MTPPS 4- -Li + @ C 60 ) n membrane consists of a complex cluster of closely packed MTPPS 4- and Li + @C 60 with a size of about 80 nm that gives the membrane a nanoporous morphology. Cluster dimensions are also measured by dynamic light scattering (DLS) measurements (see Figure S1 in ESI). As already described in Non-Patent Document 3, the charging of porphyrin and fullerene components in a DC electric field plays an important role in the growth and adhesion process. These coatings are extremely strong and can be washed with an organic solvent to remove all of the coarsely assembled MTPPS 4− and Li + @C 60 nanoassembly.

0.5MのLiIと0.01MのIを含む空気飽和MeCNにおける作用電極とPtワイヤゲージ電極から成る標準的2電極システムを用いて、光電気化学的測定を行った(図1)。光電流発生直前の応答を計測するため、一連の光電流作用スペクトルを記録した。光電流値を入射光エネルギー及び強度に対して正規化し、方程式(1)を用いてIPCE(入射フォトンー光電流効率)値を計算した。
IPCE(%)=100x1240xisc(Iincxλ) (1)
ここで、iscは短絡光電流(Acm−2)、Iincは入射光強度(Wcm−2)、λは波長(nm)である。OTE/SnO‐(Li@C60(図4aの黒スペクトル)及びOTE/SnO‐(ZnTPPS4‐(青スペクトル)の最大IPCE値は夫々、僅か5%(425nm)及び22%(445nm)である。参考実験と比べて、OTE/SnO−(ZnTPPS4−‐Li@C60のIPCE値は、可視領域における個別系OTE/SnO−(ZnTPPS4−及びOTE/SnO−(Li@C60の2つの個別IPCE値の和よりずっと高い。これ等実験で得られた最大IPCE値は450nmで77%であった。Qバンド領域における高いIPCE値はまた、570nmにおいて50%であることが観測された。かかるIPCE値は光電流発生がZnTPPS4−とLi@C60間の超分子における光誘導電子移動、次いでOTE/SnO電極の集合面への電荷移送を介して開始される(図1)。ZnTPPS4−がHTPPS4−で置換されると、7%と有意に低いIPCE値がおそらくLi@C60と結合しない儘、HTPPS4−の自己凝集のため、440nmで観測された(図4b)。
Photoelectrochemical measurements were performed using a standard two-electrode system consisting of a working electrode and a Pt wire gauge electrode in air-saturated MeCN containing 0.5 M LiI and 0.01 M I 2 (FIG. 1). A series of photocurrent action spectra was recorded to measure the response immediately before photocurrent generation. Photocurrent values were normalized with respect to incident light energy and intensity, and IPCE (incident photon-photocurrent efficiency) values were calculated using equation (1).
IPCE (%) = 100 × 1240 xi sc (I inc xλ) (1)
Here, i sc is the short circuit photocurrent (Acm -2), the I inc incident light intensity (Wcm -2), λ is the wavelength (nm). The maximum IPCE values for OTE / SnO 2- (Li + @C 60 ) n (black spectrum in Fig. 4a) and OTE / SnO 2- (ZnTPPS 4- ) n (blue spectrum) are only 5% (425 nm) and 22% (445 nm). Compared to the reference experiment, the IPCE value of OTE / SnO 2 — (ZnTPPS 4 —Li + @C 60 ) n is the individual system OTE / SnO 2 — (ZnTPPS 4 —) n and OTE / SnO 2 − in the visible region. (Li + @C 60 ) Much higher than the sum of two individual IPCE values of n . The maximum IPCE value obtained in these experiments was 77% at 450 nm. The high IPCE value in the Q band region was also observed to be 50% at 570 nm. Such IPCE values are such that photocurrent generation is initiated through photoinduced electron transfer in supramolecules between ZnTPPS 4- and Li + @C 60 , and then charge transfer to the OTE / SnO 2 electrode assembly surface (FIG. 1). . When ZnTPPS 4- is replaced with H 2 TPPS 4- , a significantly lower IPCE value of 7% is probably not bound to Li + @C 60 , which is observed at 440 nm due to self-aggregation of H 2 TPPS 4- (FIG. 4b).

本発明者はまた、OTE/SnO−(ZnTPPS4−‐Li@C60電極の電力特性を計測した(ESIにおける図S2)。電力変換効率ηを、方程式:
η=FFxIscxVoc/Win (2)
を用いて計算する。ここで、充填率(FF)はFF=[IV]max/Iscocと定義され、Vocは開路光電圧であり、Iscは短絡光電流である。OTE/SnO−(ZnTPPS4−‐Li@C60は28mWcm−2の入力電力(Win)において2.1%の全η値を有し、OTE/SnO−(ZnTPPS4−‐Li@C60においてはFF=0.37、Voc=460mV、Isc=3.4mAcm−2である。このη値は、既報告の単純ポルフィリン及びC60複合系のもの(〜0.03%)より大きさが2桁大きいこと12に注目。そのようにη値が有意に高くなることは、ZnTPPS4−‐Li@C60におけるクラスター内の強い秩序化と有効な電荷分離が光エネルギー変換特性を改良したことを実証している。
The inventor also measured the power characteristics of the OTE / SnO 2 — (ZnTPPS 4 —Li + @C 60 ) n electrode (Figure S2 in ESI). Power conversion efficiency η, equation:
η = FFxI sc xV oc / W in (2)
Calculate using. Here, the filling factor (FF) is defined as FF = [IV] max / I sc V oc , where V oc is an open circuit photovoltage and I sc is a short circuit photocurrent. OTE / SnO 2 — (ZnTPPS 4 ——Li + @C 60 ) n has a total η value of 2.1% at an input power (W in ) of 28 mWcm −2 , and OTE / SnO 2 — (ZnTPPS 4 — -Li + @C 60) in n FF = 0.37, V oc = 460mV, it is I sc = 3.4mAcm -2. Note that this η value is 12 orders of magnitude larger than the reported simple porphyrin and C 60 composites (˜0.03%). The significantly higher η value demonstrates that strong ordering and effective charge separation within the cluster in ZnTPPS 4- -Li + @C 60 ) n has improved the light energy conversion properties. .

光電流発生機構を解明するため、我々はナノ秒レーザフラッシュ熱分解測定によるCS状態[(ZnTPPS4−‐Li@C60 ]の形成を調べた。脱気MeCN−PhCN溶液(3:1v/v)に分散する(ZnTPPS4−‐Li@C60の時間分解過渡吸収スペクトルが図5aに示され、同図は1035nm前後における広吸収帯を明瞭に示している。これは、レーザ照射直後におけるLi@C60ラジカルアニオンの形成に特徴的なものである。従って、光誘導電子移動が複合クラスターにおいてZnTPPS4−からLi@C60に起こり、CS状態[(ZnTPPS4−・+‐(Li@C60 ・−]を生成する。1035nmで記録された[(ZnTPPS4−・+‐(Li@C60 ・−]の吸収時間変化図を図5bに示す。一次プロット(図5bの挿入図)はLi@C60 ・−から(ZnTPPS4−・+への逆電子移動に対応し、逆電子移動の速度定数kBET=4.6x10−1を与える。このCS状態の寿命は220μsであり、これは電子を電荷再結合前にCS状態のLi@C60 からSnO電極に注入するには十分長い。かかる長寿命CS状態は、77Kにて(ZnTPPS4−‐Li@C60を含むMeCN−PhCN溶液(1:1v/v)の光照射下にEPRによって更に検出される。EPR信号は、ポルフィリンのラジカル陽イオン(g=2.002)14とLi@C60 (g=2.0014)の混合物に起因するg=2.0020で観測された(ESIの図S3a参照)15。ZnTPPS4−をHTPPS4−で置換すると、CS状態による過渡吸収帯はZnTPPS4−の場合より有意に狭まかった(ESIの図S4参照)。これが、OTE/SnO−(HTPPS4−‐Li@C60のIPCE値が図4bに示すように低かったことの理由である。 In order to elucidate the mechanism of photocurrent generation, we investigated the formation of the CS state [(ZnTPPS 4− ) * -Li + @C 60 ) n * ] by nanosecond laser flash pyrolysis measurement. The time-resolved transient absorption spectrum of (ZnTPPS 4- -Li + @C 60 ) n dispersed in a degassed MeCN-PhCN solution (3: 1 v / v) is shown in FIG. 5a, which shows a broad absorption band around 1035 nm. Is clearly shown. This is characteristic of the formation of Li + @C 60 radical anions immediately after laser irradiation. Therefore, photoinduced electron transfer occurs from ZnTPPS 4− to Li + @C 60 in the composite cluster, generating the CS state [(ZnTPPS 4− ) · + − (Li + @C 60 ) n · − ]. FIG. 5 b shows an absorption time variation diagram of [(ZnTPPS 4− ) · + − (Li + @C 60 ) n · − ] recorded at 1035 nm. The primary plot (inset of FIG. 5b) corresponds to the reverse electron transfer from Li + @C 60 • − to (ZnTPPS 4− ) +, and the reverse electron transfer rate constant k BET = 4.6 × 10 3 s −1. give. The lifetime of this CS state is 220 μs, which is long enough to inject electrons from the Li + @C 60 * in the CS state into the SnO 2 electrode before charge recombination. Such long life CS state, MeCN-PhCN solution containing (ZnTPPS 4- -Li + @C 60) n at 77K: is further detected by EPR under light irradiation (1 1v / v). The EPR signal was observed at g = 2.0020 due to a mixture of porphyrin radical cation (g = 2.002) 14 and Li + @C 60 * (g = 2.0014) (ESI diagram S3a Reference) 15 . When ZnTPPS 4− was replaced with H 2 TPPS 4− , the transient absorption band due to the CS state was significantly narrower than that of ZnTPPS 4− (see ESI in FIG. S4). This is the reason why the IPCE value of OTE / SnO 2 − (H 2 TPPS 4 —Li + @C 60 ) n was low as shown in FIG. 4b.

上記結果に基づいて、光電流発生がクラスターにおけるZnTPPS4−)からLi@C60への光誘導電子移動によって開始され、CS状態ZnTPPS4−・+‐(Li@C60 ・−を生成する。Li@C60が還元(Li@C60 ・−)され(E(Li@C60/Li@C60 ・−)=0.14V vs.SCEとなる)、電子がSnOの伝導帯に注入される(0.2v vs.SCE)一方、酸化ZnTPPS4−は(E(ZnTPPS4−/(ZnTPPS4−・+)=0.74V vs.SCEとなる)、電解質溶液内でヨウ化物にて電子移動還元を被る(I/I=0.7V vs.SCE)。 Based on the above results, initiated from ZnTPPS 4-) photocurrent generated in the cluster by photoinduced electron transfer to Li + @C 60, CS state ZnTPPS 4-) · + - (Li + @C 60) n · - to generate. Li + @C 60 is reduced (Li + @C 60 · − ) (E (Li + @C 60 / Li + @C 60 · − ) = 0.14V vs. SCE), and the electron is SnO 2 . Injected into the conduction band (0.2v vs. SCE), while ZnTPPS4- oxide is (E (ZnTPPS 4− / (ZnTPPS 4− ) + ) = 0.74V vs. SCE) 8 in the electrolyte solution To undergo electron transfer reduction with iodide (I 3 /I=0.7 V vs. SCE).

結論として、超分子クラスター内のZnTPPS4−からLi@C60への光誘導電子移動により、光電気化学セルの性能を高めることができる。斯くして、ZnTTPS4−をもつ超分子クラスターにおける電子アクセプターとしてLi@C60を用いることは高性能太陽電池の設計のため新たな道を開く。 In conclusion, the performance of the photoelectrochemical cell can be enhanced by photoinduced electron transfer from ZnTPPS 4- to Li + @C 60 in the supramolecular cluster. Thus, using Li + @C 60 as an electron acceptor in supramolecular clusters with ZnTTPS 4- opens a new path for the design of high performance solar cells.

Figure 2018110252
Figure 2018110252

Figure 2018110252
Figure 2018110252

Figure 2018110252
Figure 2018110252

Claims (3)

アルカリイオン内包フラーレンとアニオン性色素とからなる超分子複合体を含む内包フラーレンを用いた光起電力装置。 A photovoltaic device using an endohedral fullerene comprising a supramolecular complex composed of an alkali ion-encapsulating fullerene and an anionic dye. 前記アルカリイオンはLiである請求項1記載の内包フラーレンを用いた光起電力装置。 The photovoltaic device using the endohedral fullerene according to claim 1, wherein the alkali ion is Li. 前記アルカリイオン内包フラーレンはLi@C60である請求項1又は2記載の内包フラーレンを用いた光起電力装置。 The alkali ions endohedral photovoltaic device using the endohedral fullerenes as claimed in claim 1 or 2, wherein the Li + @C 60.
JP2018026504A 2018-02-16 2018-02-16 Photoelectric conversion device using inclusion fullerene Pending JP2018110252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018026504A JP2018110252A (en) 2018-02-16 2018-02-16 Photoelectric conversion device using inclusion fullerene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018026504A JP2018110252A (en) 2018-02-16 2018-02-16 Photoelectric conversion device using inclusion fullerene

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013200603A Division JP6303234B2 (en) 2013-09-26 2013-09-26 Photoelectric conversion device using endohedral fullerene

Publications (1)

Publication Number Publication Date
JP2018110252A true JP2018110252A (en) 2018-07-12

Family

ID=62844517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018026504A Pending JP2018110252A (en) 2018-02-16 2018-02-16 Photoelectric conversion device using inclusion fullerene

Country Status (1)

Country Link
JP (1) JP2018110252A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073201A (en) * 2004-08-31 2006-03-16 Ideal Star Inc Photoelectric conversion material, photoelectric conversion device and manufacturing method of photoelectric conversion material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073201A (en) * 2004-08-31 2006-03-16 Ideal Star Inc Photoelectric conversion material, photoelectric conversion device and manufacturing method of photoelectric conversion material

Similar Documents

Publication Publication Date Title
Li et al. Gold nanoparticles inlaid TiO 2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells
Adhikari et al. High efficiency, Pt-free photoelectrochemical cells for solar hydrogen generation based on “giant” quantum dots
Han et al. Shell-thickness dependent electron transfer and relaxation in type-II core–shell CdS/TiO 2 structures with optimized photoelectrochemical performance
Yang et al. CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media
Salam et al. Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized solar cells
D’Amario et al. Chemical and physical reduction of high valence Ni states in mesoporous NiO film for solar cell application
Shan et al. Modulating hole transport in multilayered photocathodes with derivatized p-type nickel oxide and molecular assemblies for solar-driven water splitting
Ohkubo et al. Enhanced photoelectrochemical performance of composite photovoltaic cells of Li+@ C 60–sulphonated porphyrin supramolecular nanoclusters
Kirner et al. Sensitization of nanocrystalline metal oxides with a phosphonate-functionalized perylene diimide for photoelectrochemical water oxidation with a CoO x catalyst
Yang et al. Influence of linker molecules on interfacial electron transfer and photovoltaic performance of quantum dot sensitized solar cells
Xu et al. Surface states engineering carbon dots as multi-band light active sensitizers for ZnO nanowire array photoanode to boost solar water splitting
JP2007311336A (en) Semiconductor electrode containing phosphate and solar battery using the same
Du et al. Mechanism of particle size effect on electron injection efficiency in ruthenium dye-sensitized TiO2 nanoparticle films
Yang et al. Constructing CsPbBr x I 3− x nanocrystal/carbon nanotube composites with improved charge transfer and light harvesting for enhanced photoelectrochemical activity
Bonomo et al. Adsorption Behavior of I3–and I–Ions at a Nanoporous NiO/Acetonitrile Interface Studied by X-ray Photoelectron Spectroscopy
Huang et al. Dirhodium (II, II)/NiO photocathode for photoelectrocatalytic hydrogen evolution with red light
Wang et al. Photoelectric behavior of nanocrystalline TiO2 electrode with a novel terpyridyl ruthenium complex
Mehmood et al. Improving the efficiency of dye sensitized solar cells by TiO2-graphene nanocomposite photoanode
Kwak et al. Design of a photochemical water electrolysis system based on a W-typed dye-sensitized serial solar module for high hydrogen production
Liu et al. Ethynyl-linked push–pull porphyrin hetero-dimers for near-IR dye-sensitized solar cells: photovoltaic performances versus excited-state dynamics
Li et al. Modulating the 0D/2D interface of hybrid semiconductors for enhanced photoelectrochemical performances
Li et al. Boosting the photoelectric conversion efficiency of DSSCs through graphene quantum dots: insights from theoretical study
JP6303234B2 (en) Photoelectric conversion device using endohedral fullerene
Wang et al. Highly efficient charge transfer from a trans-ruthenium bipyridine complex to nanocrystalline TiO 2 particles
Ooyama et al. Dye-sensitized solar cells based on novel donor–acceptor π-conjugated benzofuro [2, 3-c] oxazolo [4, 5-a] carbazole-type fluorescent dyes exhibiting solid-state fluorescence

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190313

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190918