JP2018109424A - Vacuum heat insulation material - Google Patents
Vacuum heat insulation material Download PDFInfo
- Publication number
- JP2018109424A JP2018109424A JP2016256452A JP2016256452A JP2018109424A JP 2018109424 A JP2018109424 A JP 2018109424A JP 2016256452 A JP2016256452 A JP 2016256452A JP 2016256452 A JP2016256452 A JP 2016256452A JP 2018109424 A JP2018109424 A JP 2018109424A
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- heat insulating
- storage material
- layer
- insulating material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012774 insulation material Substances 0.000 title claims abstract description 10
- 238000005338 heat storage Methods 0.000 claims abstract description 184
- 239000011232 storage material Substances 0.000 claims abstract description 178
- 239000011162 core material Substances 0.000 claims abstract description 54
- 239000011810 insulating material Substances 0.000 claims description 131
- 230000004888 barrier function Effects 0.000 claims description 52
- 238000009413 insulation Methods 0.000 claims description 40
- 239000002775 capsule Substances 0.000 claims description 32
- 229920005989 resin Polymers 0.000 claims description 25
- 239000011347 resin Substances 0.000 claims description 25
- 239000003463 adsorbent Substances 0.000 claims description 19
- 239000011230 binding agent Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 239000011888 foil Substances 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 9
- 238000007740 vapor deposition Methods 0.000 claims description 8
- 239000012188 paraffin wax Substances 0.000 claims description 7
- 229920000877 Melamine resin Polymers 0.000 claims description 5
- 150000002484 inorganic compounds Chemical class 0.000 claims description 4
- 229910010272 inorganic material Inorganic materials 0.000 claims description 4
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 4
- WMFHUUKYIUOHRA-UHFFFAOYSA-N (3-phenoxyphenyl)methanamine;hydrochloride Chemical compound Cl.NCC1=CC=CC(OC=2C=CC=CC=2)=C1 WMFHUUKYIUOHRA-UHFFFAOYSA-N 0.000 claims description 3
- 239000004386 Erythritol Substances 0.000 claims description 3
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 claims description 3
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims description 3
- MCYYJHPHBOPLMH-UHFFFAOYSA-L disodium;dioxido-oxo-sulfanylidene-$l^{6}-sulfane;hydrate Chemical compound O.[Na+].[Na+].[O-]S([O-])(=O)=S MCYYJHPHBOPLMH-UHFFFAOYSA-L 0.000 claims description 3
- HFCSXCKLARAMIQ-UHFFFAOYSA-L disodium;sulfate;hydrate Chemical compound O.[Na+].[Na+].[O-]S([O-])(=O)=O HFCSXCKLARAMIQ-UHFFFAOYSA-L 0.000 claims description 3
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 claims description 3
- 229940009714 erythritol Drugs 0.000 claims description 3
- 235000019414 erythritol Nutrition 0.000 claims description 3
- DGPIGKCOQYBCJH-UHFFFAOYSA-M sodium;acetic acid;hydroxide Chemical compound O.[Na+].CC([O-])=O DGPIGKCOQYBCJH-UHFFFAOYSA-M 0.000 claims description 3
- 229910001935 vanadium oxide Inorganic materials 0.000 claims description 3
- 230000002745 absorbent Effects 0.000 abstract 1
- 239000002250 absorbent Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 116
- 239000007789 gas Substances 0.000 description 57
- -1 or the like Chemical compound 0.000 description 23
- 239000000835 fiber Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000004743 Polypropylene Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 229920001155 polypropylene Polymers 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 8
- 239000004698 Polyethylene Substances 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 5
- 239000003365 glass fiber Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 4
- 239000000292 calcium oxide Substances 0.000 description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 229920001707 polybutylene terephthalate Polymers 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229920002292 Nylon 6 Polymers 0.000 description 3
- 229920002302 Nylon 6,6 Polymers 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 229920001807 Urea-formaldehyde Polymers 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- 229920005606 polypropylene copolymer Polymers 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 229920002978 Vinylon Polymers 0.000 description 2
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 2
- 125000005396 acrylic acid ester group Chemical group 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 239000012784 inorganic fiber Substances 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920001890 Novodur Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- YSZKOFNTXPLTCU-UHFFFAOYSA-N barium lithium Chemical compound [Li].[Ba] YSZKOFNTXPLTCU-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000013259 porous coordination polymer Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Landscapes
- Cookers (AREA)
- Separation Of Gases By Adsorption (AREA)
- Laminated Bodies (AREA)
- Thermal Insulation (AREA)
- Refrigerator Housings (AREA)
Abstract
Description
本発明は、真空断熱材に関する。 The present invention relates to a vacuum heat insulating material.
近年、地球温暖化防止等の観点から省エネルギー化、省資源化が強く望まれている。特に、冷蔵庫、冷凍庫、断熱ボックス、ジャー炊飯器、給湯器、自動販売機等の家庭用、業務用電化製品、自動車、複写機、床暖房、住宅等の分野では、熱エネルギーを効率的に利用するという観点から、真空断熱材が用いられるようになっている。 In recent years, energy saving and resource saving are strongly desired from the viewpoint of global warming prevention and the like. In particular, efficient use of thermal energy in the fields of household, commercial appliances such as refrigerators, freezers, heat insulation boxes, jar rice cookers, water heaters, vending machines, automobiles, photocopiers, floor heating, and houses. From the viewpoint of doing, a vacuum heat insulating material is used.
断熱ボックスや住宅の屋内の保温性能を一定に保つために、従来、断熱材と組み合わせて蓄熱材が用いられている。特許文献1は、蓄熱体と断熱体とを積層した蓄熱断熱体に関し、蓄熱断熱体を断熱ボックスの内側に配置することを開示している。特許文献2は、真空断熱材と、真空断熱材の所定箇所を覆った潜熱蓄熱材と、潜熱蓄熱材及び真空断熱材を覆った断熱材とを備えた建築物用断熱パネルを開示している。特許文献2においては、真空断熱材の所定箇所を蓄熱材で覆うことにより、真空断熱材における熱漏れ量を蓄熱材の潜熱量によって緩和している。
Conventionally, a heat storage material is used in combination with a heat insulating material in order to keep the heat insulation performance of the heat insulating box or house indoors constant.
特許文献1の断熱ボックスにおいて、蓄熱断熱体をボックス内に入れると、ボックス内のスペースが狭くなるという問題が生じる。また、特許文献2の建築物用断熱パネルにおいて、潜熱蓄熱材は真空断熱材の外側の所定箇所を覆っているため、パネルの外側から伝わる熱によって、蓄熱材の潜熱量がすぐに飽和してしまうという問題がある。
In the heat insulation box of
これらの問題を解決するために、蓄熱材を真空断熱材内部に含めることを試みた。しかしながら、蓄熱材は、単体で取り扱うと、潜熱温度以上で固体から液体、液体から気体への相変化が引き起こされ、ガス化する。従って、蓄熱材をそのまま真空断熱材内部に含めると、蓄熱材のガス化により真空断熱材の真空度が低下するという問題が生じた。 In order to solve these problems, an attempt was made to include a heat storage material inside the vacuum heat insulating material. However, when the heat storage material is handled alone, a phase change from a solid to a liquid or from a liquid to a gas is caused at a temperature equal to or higher than the latent heat temperature, and gasifies. Therefore, when the heat storage material is included in the vacuum heat insulating material as it is, a problem arises that the degree of vacuum of the vacuum heat insulating material is reduced due to gasification of the heat storage material.
本発明の課題は、簡易に製造できる、改善された取扱い性及び蓄熱能力を備えた真空断熱材を提供することである。 The subject of this invention is providing the vacuum heat insulating material provided with the improved handling property and heat storage capacity which can be manufactured simply.
上記課題は、密封した蓄熱材を芯材及び吸着剤と共にガスバリア性フィルム内に減圧密封して、真空断熱材内部に蓄熱材を含めることにより解決できることが見出された。すなわち、本発明は下記〔1〕〜〔18〕に関するものである。 It has been found that the above problem can be solved by sealing the sealed heat storage material together with the core material and the adsorbent in a gas barrier film under reduced pressure and including the heat storage material inside the vacuum heat insulating material. That is, the present invention relates to the following [1] to [18].
〔1〕芯材、吸着剤、蓄熱材及びガスバリア性フィルムを含む真空断熱材であって、
前記蓄熱材が、密封されており、
前記芯材、前記吸着剤及び前記密封された蓄熱材が、前記ガスバリア性フィルム内に減圧密封されている、
ことを特徴とする、真空断熱材。
[1] A vacuum heat insulating material including a core material, an adsorbent, a heat storage material, and a gas barrier film,
The heat storage material is sealed,
The core material, the adsorbent and the sealed heat storage material are sealed under reduced pressure in the gas barrier film,
A vacuum insulation material characterized by that.
〔2〕前記蓄熱材が、カプセル、フィルム又はバインダーによって密封されている、前記〔1〕に記載の真空断熱材。 [2] The vacuum heat insulating material according to [1], wherein the heat storage material is sealed with a capsule, a film, or a binder.
〔3〕前記蓄熱材が、カプセルによって密封されており、前記カプセルが、無機カプセル又はメラミンカプセルからなる、前記〔2〕に記載の真空断熱材。 [3] The vacuum heat insulating material according to [2], wherein the heat storage material is sealed with a capsule, and the capsule is made of an inorganic capsule or a melamine capsule.
〔4〕前記蓄熱材が、フィルムによって密封されており、前記フィルムが、金属箔層を含むフィルム又は金属蒸着層を含むフィルムからなる、前記〔2〕に記載の真空断熱材。 [4] The vacuum heat insulating material according to [2], wherein the heat storage material is sealed with a film, and the film includes a film including a metal foil layer or a film including a metal vapor deposition layer.
〔5〕前記蓄熱材が、バインダーによって密封されており、前記バインダーが、樹脂又は無機化合物からなる、前記〔2〕に記載の真空断熱材。 [5] The vacuum heat insulating material according to [2], wherein the heat storage material is sealed with a binder, and the binder is made of a resin or an inorganic compound.
〔6〕前記ガスバリア性フィルム内において、前記芯材と前記蓄熱材とがそれぞれ層状であり、前記芯材の層と前記蓄熱材の層とが積層されている、前記〔1〕〜〔5〕のいずれか1項に記載の真空断熱材。 [6] In the gas barrier film, the core material and the heat storage material are each layered, and the core material layer and the heat storage material layer are laminated, [1] to [5] The vacuum heat insulating material of any one of these.
〔7〕前記ガスバリア性フィルム内において、前記芯材の層と、前記蓄熱材の層とからなる二層構造を有する、前記〔6〕に記載の真空断熱材。 [7] The vacuum heat insulating material according to [6], wherein the gas barrier film has a two-layer structure including the core material layer and the heat storage material layer.
〔8〕前記ガスバリア性フィルム内において、2つの前記芯材の層と、前記2つの芯材の層の間に挟まれた前記蓄熱材の層とからなる三層構造を有する、前記〔6〕に記載の真空断熱材。 [8] The gas barrier film has a three-layer structure including two layers of the core material and the heat storage material layer sandwiched between the two core material layers. The vacuum heat insulating material described in 1.
〔9〕前記芯材が層を形成しており、前記蓄熱材が前記芯材の層の一方の面の面積の70%以上を被覆している、前記〔1〕〜〔5〕のいずれか1項に記載の真空断熱材。
[9] The above [1] to [5], wherein the core material forms a layer, and the heat storage material covers 70% or more of the area of one surface of the core material layer. The vacuum heat insulating material according to
〔10〕真空断熱材の総質量に対して、80質量%未満の前記蓄熱材を含む、前記〔1〕〜〔9〕のいずれか1項に記載の真空断熱材。 [10] The vacuum heat insulating material according to any one of [1] to [9], including the heat storage material of less than 80% by mass with respect to the total mass of the vacuum heat insulating material.
〔11〕前記蓄熱材の潜熱温度が、−60〜100℃である、前記〔1〕〜〔10〕のいずれか1項に記載の真空断熱材。 [11] The vacuum heat insulating material according to any one of [1] to [10], wherein a latent heat temperature of the heat storage material is −60 to 100 ° C.
〔12〕前記蓄熱材の潜熱量が、60〜350J/gである、前記〔1〕〜〔11〕のいずれか1項に記載の真空断熱材。 [12] The vacuum heat insulating material according to any one of [1] to [11], wherein a latent heat amount of the heat storage material is 60 to 350 J / g.
〔13〕前記蓄熱材が、塩化カルシウム水和物、硫酸ナトリウム水和物、チオ硫酸ナトリウム水和物、酢酸ナトリウム水和物、酸化バナジウム、パラフィン、エリスリトール及びこれらの混合物からなる群から選択される、前記〔1〕〜〔12〕のいずれか1項に記載の真空断熱材。 [13] The heat storage material is selected from the group consisting of calcium chloride hydrate, sodium sulfate hydrate, sodium thiosulfate hydrate, sodium acetate hydrate, vanadium oxide, paraffin, erythritol, and mixtures thereof. The vacuum heat insulating material according to any one of [1] to [12].
〔14〕前記〔1〕〜〔13〕のいずれか1項に記載の真空断熱材を含む、断熱ボックス。 [14] A heat insulating box including the vacuum heat insulating material according to any one of [1] to [13].
〔15〕ボックス内部を外部よりも低温に保つための、前記〔7〕に記載の真空断熱材を含む断熱ボックスであって、前記蓄熱材の層が、ボックス内部側に配置されている、前記断熱ボックス。 [15] A heat insulating box including the vacuum heat insulating material according to [7] for keeping the inside of the box at a lower temperature than the outside, wherein the heat storage material layer is disposed on the inside of the box, Insulated box.
〔16〕ボックス内部を外部よりも低温に保つための、前記〔8〕に記載の真空断熱材を含む断熱ボックスであって、前記蓄熱材の層が、前記真空断熱材の厚み方向の中心に配置されているか、又は中心よりもボックス内部側に配置されている、前記断熱ボックス。 [16] A heat insulating box including the vacuum heat insulating material according to [8] for keeping the inside of the box at a lower temperature than the outside, wherein the layer of the heat storage material is at the center in the thickness direction of the vacuum heat insulating material. The said heat insulation box arrange | positioned or arrange | positioned inside the box rather than the center.
〔17〕ボックス内部を外部よりも高温に保つための、前記〔7〕に記載の真空断熱材を含む断熱ボックスであって、前記蓄熱材の層が、ボックス外部側に配置されている、前記断熱ボックス。 [17] A heat insulating box including the vacuum heat insulating material according to [7] for keeping the inside of the box at a higher temperature than the outside, wherein the heat storage material layer is disposed on the outside of the box, Insulated box.
〔18〕ボックス内部を外部よりも高温に保つための、前記〔8〕に記載の真空断熱材を含む断熱ボックスであって、前記蓄熱材の層が、前記真空断熱材の厚み方向の中心に配置されているか、又は中心よりもボックス外部側に配置されている、前記断熱ボックス。 [18] A heat insulation box including the vacuum heat insulating material according to [8] for keeping the inside of the box at a higher temperature than the outside, wherein the layer of the heat storage material is at the center in the thickness direction of the vacuum heat insulating material. The said heat insulation box arrange | positioned or arrange | positioned in the box outer side rather than the center.
本発明により、簡易に製造できる、改善された取扱い性及び蓄熱能力を備えた真空断熱材が提供される。 By this invention, the vacuum heat insulating material provided with the improved handleability and heat storage capability which can be manufactured simply is provided.
本発明は、芯材、吸着剤、蓄熱材及びガスバリア性フィルムを含む真空断熱材であって、前記蓄熱材が、密封されており、前記芯材、前記吸着剤及び前記密封された蓄熱材が、前記ガスバリア性フィルム内に減圧密封されていることを特徴とする、真空断熱材である。 The present invention is a vacuum heat insulating material including a core material, an adsorbent, a heat storage material, and a gas barrier film, wherein the heat storage material is sealed, and the core material, the adsorbent, and the sealed heat storage material are A vacuum heat insulating material characterized by being sealed under reduced pressure in the gas barrier film.
本発明に用いられる芯材としては、真空断熱材分野で用いられているものを特に制限なく用いることができる。例えば、無機繊維、無機繊維と有機繊維が混合された繊維、シリカ粒子を主成分とする粉末芯材、発泡断熱材等を芯材として使用することができる。芯材の主成分は、SiO2を含むガラス繊維若しくはシリカ粒子であることが好ましい。
芯材は公知であり、市場において容易に入手できるか、又は調製可能である。
本発明の真空断熱材は、芯材を、真空断熱材の総質量に対して、好ましくは20〜95質量%、より好ましくは40〜80質量%含む。芯材の量が上記範囲内であれば、断熱材としての機能を損なう事なく蓄熱効果を効果的に発揮する事ができるである。
As a core material used for this invention, what is used in the vacuum heat insulating material field | area can be especially used without a restriction | limiting. For example, inorganic fibers, fibers in which inorganic fibers and organic fibers are mixed, powder core materials mainly composed of silica particles, foam heat insulating materials, and the like can be used as the core materials. The main component of the core material is preferably glass fibers or silica particles containing SiO 2 .
Core materials are known and are readily available in the market or can be prepared.
The vacuum heat insulating material of the present invention preferably contains the core material in an amount of 20 to 95% by mass, more preferably 40 to 80% by mass, based on the total mass of the vacuum heat insulating material. When the amount of the core material is within the above range, the heat storage effect can be effectively exhibited without impairing the function as the heat insulating material.
本発明に用いられるガスバリア性フィルムは、ガスバリア性を有するフィルムであれば特に制限はないが、シール層及びガスバリア層を積層したものが好ましく、芯材に接する側から順にシール層、ガスバリア層及び樹脂フィルム層を積層したものがより好ましい。ガスバリア性フィルムの厚さは、特に制限はないが、通常5〜60μmであり、好ましくは6〜30μmである。ガスバリア層は、ガスを透過しない層であり、真空断熱材の真空度の低下を防ぐ観点から用いられる。 The gas barrier film used in the present invention is not particularly limited as long as it is a film having a gas barrier property, but is preferably a laminate of a seal layer and a gas barrier layer. The seal layer, the gas barrier layer, and the resin are sequentially formed from the side in contact with the core material. What laminated | stacked the film layer is more preferable. The thickness of the gas barrier film is not particularly limited, but is usually 5 to 60 μm, and preferably 6 to 30 μm. A gas barrier layer is a layer which does not permeate | transmit gas, and is used from a viewpoint which prevents the fall of the vacuum degree of a vacuum heat insulating material.
ガスバリア層としては、金属箔や、樹脂フィルム上に蒸着を行った積層フィルム(蒸着膜フィルム)等が挙げられる。金属箔の金属としては、アルミニウム、銅、ステンレス、鉄等が挙げられる。好ましくは、アルミニウムが用いられる。蒸着膜は、蒸着法、スパッタ法等により、アルミニウム、ステンレス、コバルト、ニッケル等の金属等又はシリカ、アルミナ、若しくはこれらの組み合わせを蒸着させて形成する。蒸着膜フィルムの基材となる樹脂フィルムとしては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等の芳香族ポリエステル系樹脂;ポリエチレン、ポリプロピレン、オレフィン共重合体等のポリオレフィン系樹脂;ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂;ナイロン6、ナイロン66、メタキシリレンジアミン・アジピン酸縮合体等のポリアミド樹脂;ポリビニルアルコール、アクリロニトリル・ブタジエン・スチレン共重合体、アクリロニトリル・スチレン共重合体等のスチレン系樹脂;ポリメチルメタクリレート、アクリル酸エステルとメチルメタクリル酸エステル共重合体等のアクリル系樹脂、エチレン−ビニルアルコール共重合体、ポリビニルアルコール及びこれを部分ケン化した物等の熱可塑性樹脂、フェノール樹脂、ユリア樹脂等の熱硬化性樹脂から製造されるフィルムが用いられる。ガスバリア層は、好ましくはアルミ箔である。ガスバリア層の厚さは特に制限はないが、通常5〜60μmであり、好ましくは6〜30μmである。ガスバリア層に用いられる金属箔や蒸着膜フィルムは公知であり、市場において容易に入手することができるか、又は調製可能である。 Examples of the gas barrier layer include metal foil and a laminated film (deposited film) obtained by vapor deposition on a resin film. Examples of the metal of the metal foil include aluminum, copper, stainless steel, and iron. Preferably, aluminum is used. The vapor deposition film is formed by vapor deposition of a metal such as aluminum, stainless steel, cobalt, nickel, or the like, silica, alumina, or a combination thereof by a vapor deposition method, a sputtering method, or the like. Examples of the resin film used as the base material for the deposited film include aromatic polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT); polyolefin resins such as polyethylene, polypropylene and olefin copolymers; polyvinyl chloride , Vinyl chloride resins such as vinyl chloride copolymer; polyamide resins such as nylon 6, nylon 66, metaxylylenediamine / adipic acid condensate; polyvinyl alcohol, acrylonitrile / butadiene / styrene copolymer, acrylonitrile / styrene copolymer Styrenic resin such as coalescence; acrylic resin such as polymethyl methacrylate, acrylic acid ester and methyl methacrylate copolymer, ethylene-vinyl alcohol copolymer, polyvinyl alcohol and this The object such as a thermoplastic resin, a phenol resin, a film made from a thermosetting resin of urea resin, etc. are used. The gas barrier layer is preferably an aluminum foil. Although the thickness of a gas barrier layer does not have a restriction | limiting in particular, Usually, it is 5-60 micrometers, Preferably it is 6-30 micrometers. The metal foil and vapor deposition film used for the gas barrier layer are known and can be easily obtained or prepared in the market.
シール層は、加熱により融着可能な樹脂である。熱融着可能な樹脂であれば、特に制限はない。具体的には、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリアクリロニトリル、PET、エチレン−ビニルアルコール共重合体、又はそれらの混合体からなるフィルム等を用いることができる。好ましくはポリエチレン、ポリプロピレン、エチレン−ビニルアルコール共重合体が用いられる。ポリエチレンは、0.90〜0.98g/cm3の密度のものが好ましい。ポリプロピレンは、0.85〜0.95g/cm3の密度のものが好ましい。シール層の厚さは特に制限はないが、通常10〜100μmであり、好ましくは25〜60μmである。シール層に用いられる樹脂は公知であり、市場において容易に入手することができるか、又は調製可能である。 The seal layer is a resin that can be fused by heating. There is no particular limitation as long as the resin can be heat-sealed. Specifically, a film made of a polyolefin resin such as polyethylene or polypropylene, polyacrylonitrile, PET, an ethylene-vinyl alcohol copolymer, or a mixture thereof can be used. Preferably, polyethylene, polypropylene, and ethylene-vinyl alcohol copolymer are used. The polyethylene preferably has a density of 0.90 to 0.98 g / cm 3 . The polypropylene preferably has a density of 0.85 to 0.95 g / cm 3 . Although there is no restriction | limiting in particular in the thickness of a sealing layer, Usually, it is 10-100 micrometers, Preferably it is 25-60 micrometers. Resins used for the sealing layer are known and can be easily obtained in the market or can be prepared.
樹脂フィルム層は、ガスバリア層を保護する目的で、ガスバリア層上に任意に設けられる層である。樹脂フィルム層としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等の芳香族ポリエステル系樹脂;ポリエチレン、ポリプロピレン、オレフィン共重合体等のポリオレフィン系樹脂;ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂;ナイロン6、ナイロン66、メタキシリレンジアミン・アジピン酸縮合体等のポリアミド樹脂;ポリビニルアルコール、アクリロニトリル・ブタジエン・スチレン共重合体、アクリロニトリル・スチレン共重合体等のスチレン系樹脂;ポリメチルメタクリレート、アクリル酸エステルとメチルメタクリル酸エステル共重合体等のアクリル系樹脂等の熱可塑性樹脂、フェノール樹脂、ユリア樹脂等の熱硬化性樹脂から製造されるフィルムが用いられる。好ましくは、PET、ナイロン6又はナイロン66である。これらの樹脂フィルムには、有機質、無機質のフィラーを添加することもできる。これらの樹脂は単独で又は2種以上を混合して用いることができる。樹脂フィルム層には、ガスバリア性フィルムのガスバリア性能を更に向上させるために、塩化ビニリデン、アクリロニトリル、ビニルアルコール等のビニルモノマーを重合、共重合させて得られるガスバリア性樹脂を塗布したり、積層したり、それらの粒子を樹脂フィルム層中に混合分散させることもできる。樹脂フィルム層の厚さは特に制限はないが、通常5〜40μmであり、好ましくは10〜30μmである。樹脂フィルム層に用いられる樹脂は公知であり、市場において容易に入手することができるか、又は調製可能である。 The resin film layer is a layer arbitrarily provided on the gas barrier layer for the purpose of protecting the gas barrier layer. As the resin film layer, aromatic polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT); polyolefin resins such as polyethylene, polypropylene and olefin copolymers; polyvinyl chloride, vinyl chloride copolymers and the like Polyvinyl resins such as nylon 6, nylon 66, metaxylylenediamine / adipic acid condensates, etc .; styrene resins such as polyvinyl alcohol, acrylonitrile / butadiene / styrene copolymers, acrylonitrile / styrene copolymers; Films made from thermoplastic resins such as acrylic resins such as polymethyl methacrylate, acrylic acid ester and methyl methacrylate copolymer, and thermosetting resins such as phenol resin and urea resin are used. Preferably, PET, nylon 6 or nylon 66 is used. Organic and inorganic fillers can also be added to these resin films. These resins can be used alone or in admixture of two or more. In order to further improve the gas barrier performance of the gas barrier film, a gas barrier resin obtained by polymerizing and copolymerizing vinyl monomers such as vinylidene chloride, acrylonitrile, and vinyl alcohol is applied to the resin film layer or laminated. These particles can be mixed and dispersed in the resin film layer. Although there is no restriction | limiting in particular in the thickness of a resin film layer, Usually, it is 5-40 micrometers, Preferably it is 10-30 micrometers. Resins used for the resin film layer are known and can be easily obtained in the market or can be prepared.
本発明に用いられる吸着剤は、ガスを吸着する物質であれば特に制限はないが、例えば、窒素、酸素、二酸化炭素等のガス、及び/又は水分を吸着する物質である。吸着剤としては、酸化カルシウム、シリカゲル、ゼオライト、活性炭、酸化バリウム、バリウム−リチウム合金、多孔性配位高分子、金属有機構造体又はこれらの混合物等が挙げられる。ガス吸着性能及び生産性の観点から、酸化カルシウムが好ましい。吸着剤は公知であり、市場において容易に入手することができるか、又は調製可能である。 The adsorbent used in the present invention is not particularly limited as long as it is a substance that adsorbs gas. For example, it is a substance that adsorbs gas such as nitrogen, oxygen, carbon dioxide, and / or moisture. Examples of the adsorbent include calcium oxide, silica gel, zeolite, activated carbon, barium oxide, barium-lithium alloy, porous coordination polymer, metal organic structure, or a mixture thereof. From the viewpoint of gas adsorption performance and productivity, calcium oxide is preferable. Adsorbents are known and can be readily obtained in the market or can be prepared.
本発明の真空断熱材は、蓄熱材を含む。「蓄熱材」とは、熱容量の大きな材料、若しくは潜熱蓄熱材を表す。潜熱蓄熱材とは、相変化する際に消費若しくは蓄えられる熱エネルギーをもって蓄熱効果を発揮する物質である。
蓄熱材としては、例えば、塩化カルシウム水和物、硫酸ナトリウム水和物、チオ硫酸ナトリウム水和物、酢酸ナトリウム水和物、酸化バナジウム、パラフィン、エリスリトール等が挙げられる。これらの蓄熱材は単独で使用してもよく、2種以上を混合して使用してもよい。
The vacuum heat insulating material of the present invention includes a heat storage material. The “heat storage material” represents a material having a large heat capacity or a latent heat storage material. A latent heat storage material is a substance that exhibits a heat storage effect with thermal energy consumed or stored during phase change.
Examples of the heat storage material include calcium chloride hydrate, sodium sulfate hydrate, sodium thiosulfate hydrate, sodium acetate hydrate, vanadium oxide, paraffin, erythritol and the like. These heat storage materials may be used alone or in combination of two or more.
蓄熱材の種類は、真空断熱材の用途に応じて設定することができるが、潜熱温度が−60〜100℃であることが好ましく、0℃〜50℃であることがより好ましい。「潜熱温度」とは、蓄熱材が相変化する際の温度の事である。潜熱温度が上記範囲内であれば、目的に応じた蓄熱性能を発揮する事ができる。 Although the kind of heat storage material can be set according to the use of a vacuum heat insulating material, it is preferable that latent heat temperature is -60-100 degreeC, and it is more preferable that it is 0-50 degreeC. “Latent heat temperature” refers to the temperature at which the heat storage material undergoes a phase change. If the latent heat temperature is within the above range, the heat storage performance according to the purpose can be exhibited.
蓄熱材の潜熱量は、好ましくは60〜350J/g、より好ましくは80〜350J/gである。潜熱量が上記範囲内であれば、断熱材と組み合わせた際に高い保温効果が期待できる。「潜熱量」とは、潜熱蓄熱材が蓄熱できる熱量を表す。蓄熱材がカプセル等に密封されている場合には、「潜熱量」は、その中身の潜熱材自体の潜熱量を示す。
蓄熱材は公知であり、市場において容易に入手することができるか、又は調製可能である。
本発明の真空断熱材は、蓄熱材を、真空断熱材の総質量に対して、好ましくは80質量%未満、より好ましくは20〜60質量%含む。蓄熱材の量が上記範囲内であれば、断熱性能を維持しながら、真空断熱材に蓄熱性能を付与することができるである。
The amount of latent heat of the heat storage material is preferably 60 to 350 J / g, more preferably 80 to 350 J / g. When the amount of latent heat is within the above range, a high heat retention effect can be expected when combined with a heat insulating material. The “latent heat amount” represents the amount of heat that the latent heat storage material can store. When the heat storage material is sealed in a capsule or the like, the “latent heat amount” indicates the latent heat amount of the latent heat material itself.
Thermal storage materials are known and can be readily obtained or prepared on the market.
The vacuum heat insulating material of the present invention preferably contains a heat storage material with respect to the total mass of the vacuum heat insulating material, less than 80% by mass, and more preferably 20-60% by mass. If the amount of the heat storage material is within the above range, the heat storage performance can be imparted to the vacuum heat insulating material while maintaining the heat insulation performance.
本発明において、蓄熱材は密封されている。蓄熱材を密封することにより、蓄熱材のガス化を防止し、真空断熱材の真空度を高い状態に保つことができる。 In the present invention, the heat storage material is sealed. By sealing the heat storage material, gasification of the heat storage material can be prevented, and the vacuum degree of the vacuum heat insulating material can be kept high.
蓄熱材は、好ましくは、カプセル、フィルム、バインダー等によって密封されている。カプセルとしては、無機カプセル、メラミンカプセル、金属カプセル等が挙げられる。無機カプセルは、主にシリカ(SiO2)又はアルミナ(Al2O3)からなるカプセル等を含んでもよい。金属カプセルは、アルミニウム、銅、ステンレス等を含んでもよい。フィルムとしては、金属箔層を含むフィルム、金属蒸着層を含むフィルム等が挙げられる。金属箔層は、たとえばアルミニウム箔、銅箔、ニッケル箔、ステンレス箔等を含んでもよい。金属蒸着層は、たとえばアルミニウム蒸着層、酸化アルミニウム蒸着層、シリカ蒸着層等を含んでもよい。バインダーとしては、樹脂、無機化合物等が挙げられる。樹脂としては、例えば、フェノール樹脂、アクリル樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、ポリウレタン、ポリエステル、ABS樹脂、塩化ビニル樹脂、ポリプロピレン、ポリプロピレンポリスチレン等を用いることをできる。無機化合物としては、例えば、アルカリ金属ケイ酸塩系、リン酸塩系、シリカゾル系、アルミナ等を用いることができる。 The heat storage material is preferably sealed with a capsule, a film, a binder or the like. Examples of capsules include inorganic capsules, melamine capsules, and metal capsules. The inorganic capsule may include a capsule mainly made of silica (SiO 2 ) or alumina (Al 2 O 3 ). The metal capsule may include aluminum, copper, stainless steel, and the like. As a film, the film containing a metal foil layer, the film containing a metal vapor deposition layer, etc. are mentioned. The metal foil layer may include, for example, aluminum foil, copper foil, nickel foil, stainless steel foil, and the like. The metal deposition layer may include, for example, an aluminum deposition layer, an aluminum oxide deposition layer, a silica deposition layer, and the like. Examples of the binder include resins and inorganic compounds. As the resin, for example, phenol resin, acrylic resin, epoxy resin, urea resin, melamine resin, polyurethane, polyester, ABS resin, vinyl chloride resin, polypropylene, polypropylene polystyrene, and the like can be used. As the inorganic compound, for example, alkali metal silicate-based, phosphate-based, silica sol-based, alumina and the like can be used.
蓄熱材をカプセルにより密封する場合、蓄熱材を含む複数のカプセルを保持材に入れ、形状を整えても良い。保持材に入れる複数のカプセルは、同じ蓄熱材を含む1種類のカプセルであってもよく、互いに異なる蓄熱材を含む2種類以上のカプセルの混合物であってもよい。保持材としては、真空下でガスを発生する材料でなければ特に制限なく用いることができる。保持材は、不織布や織布等であってもよい。織布の材料となる繊維としては有機ガスを発生させるものでなければ特に制限なく用いる事が可能であり、植物繊維、動物繊維などの天然繊維や、アラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリオレフィン繊維、レーヨン繊維等といった合成繊維を用いることができる。不織布の材料となる繊維としては真空下で有機ガスを発生させるものでなければ特に制限なく用いる事が可能であり、例えばアラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリオレフィン繊維、レーヨン繊維等の合成繊維が挙げられる。 When the heat storage material is sealed with the capsule, a plurality of capsules including the heat storage material may be put in the holding material to adjust the shape. The plurality of capsules to be put in the holding material may be one type of capsule containing the same heat storage material, or may be a mixture of two or more types of capsules containing different heat storage materials. As the holding material, any material that does not generate gas under vacuum can be used without particular limitation. The holding material may be a nonwoven fabric or a woven fabric. The fiber used as the material of the woven fabric can be used without particular limitation as long as it does not generate organic gas. Natural fibers such as plant fibers and animal fibers, aramid fibers, glass fibers, cellulose fibers, and nylon fibers can be used. Synthetic fibers such as vinylon fiber, polyester fiber, polyethylene fiber, polypropylene fiber, polyolefin fiber, rayon fiber, and the like can be used. The fiber used as the material of the nonwoven fabric can be used without any limitation as long as it does not generate an organic gas under vacuum. For example, aramid fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, polyethylene Examples thereof include synthetic fibers such as fibers, polypropylene fibers, polyolefin fibers, and rayon fibers.
蓄熱材をバインダーにより密封する場合、蓄熱材をバインダーと混合して、例えば、板状に成形してもよい。成形方法によっては成形物の表面に蓄熱材の一部が露出する場合があるが、この場合には、表面に露出した蓄熱材を、真空断熱材の製造前にガス化させることで、最終製品としての真空断熱材に含まれる蓄熱材は、全てバインダーにより密封された状態となる。例えば、バインダーの硬化温度が100℃以上である場合、バインダーを硬化させるための加熱処理によって表面に露出している蓄熱材は揮発し、バインダー内部に取り込まれた蓄熱材は揮発しない。また、バインダーの硬化温度が100℃未満の場合は、真空断熱材製造の前処理として、好ましくは100℃以上、より好ましくは150℃以上で1時間程度加熱する事で、表面に露出している蓄熱材を揮発させ、真空断熱材内部での蓄熱材に由来するガスの発生を防ぐことができる。 When the heat storage material is sealed with a binder, the heat storage material may be mixed with the binder and formed into a plate shape, for example. Depending on the molding method, a part of the heat storage material may be exposed on the surface of the molded product. In this case, the heat storage material exposed on the surface is gasified before manufacturing the vacuum heat insulating material, so that the final product All the heat storage materials contained in the vacuum heat insulating material are sealed with a binder. For example, when the curing temperature of the binder is 100 ° C. or higher, the heat storage material exposed to the surface by the heat treatment for curing the binder volatilizes, and the heat storage material taken into the binder does not volatilize. Moreover, when the curing temperature of the binder is less than 100 ° C., it is exposed to the surface by heating for about 1 hour at 100 ° C. or higher, more preferably 150 ° C. or higher, as a pretreatment for manufacturing vacuum heat insulating material. The heat storage material is volatilized, and the generation of gas derived from the heat storage material inside the vacuum heat insulating material can be prevented.
本発明の真空断熱材において、芯材、吸着剤及び密封された蓄熱材は、ガスバリア性フィルム内に減圧密封されている。本発明の真空断熱材は蓄熱材と一体化されているため、取扱い性に優れている。真空断熱材の内部圧力は、例えば、0.5〜20Pa、好ましくは0.5〜10Paである。内部圧力が上記範囲内であれば、ガス熱伝導率をほぼ無視できる為、高い断熱性を確保できる。 In the vacuum heat insulating material of the present invention, the core material, the adsorbent and the sealed heat storage material are sealed under reduced pressure in the gas barrier film. Since the vacuum heat insulating material of the present invention is integrated with the heat storage material, it is excellent in handleability. The internal pressure of a vacuum heat insulating material is 0.5-20 Pa, for example, Preferably it is 0.5-10 Pa. If the internal pressure is within the above range, the gas thermal conductivity can be almost ignored, so that high heat insulation can be secured.
一態様では、芯材と蓄熱材とは、それぞれが層状であり、芯材の層と蓄熱材の層とが積層されていてもよい。真空断熱材は、ガスバリア性フィルム内において、芯材の層と蓄熱材の層とからなる二層構造を有してもよい。あるいは、真空断熱材は、ガスバリア性フィルム内において、2つの芯材の層と、2つの芯材の層の間に挟まれた蓄熱材の層とからなる三層構造を有してもよい。 In one aspect, the core material and the heat storage material each have a layered shape, and the core material layer and the heat storage material layer may be laminated. The vacuum heat insulating material may have a two-layer structure including a core material layer and a heat storage material layer in the gas barrier film. Alternatively, the vacuum heat insulating material may have a three-layer structure including two core material layers and a heat storage material layer sandwiched between the two core material layers in the gas barrier film.
別の態様では、芯材が層を形成しており、蓄熱材が芯材の層の一方の面の面積の好ましくは70%以上、より好ましくは80%以上を被覆していてもよい。蓄熱材による被覆割合が上記範囲内であれば、高温側からの熱を効果的に蓄熱する事ができる。蓄熱材による被覆部位には特に限定は無いが、蓄熱材が芯材の層の一方の面の縁を被覆するように配置されていると、ヒートブリッジにより漏れてくる熱を効率よく潜熱することができる。 In another aspect, the core material may form a layer, and the heat storage material may cover 70% or more, more preferably 80% or more of the area of one surface of the core material layer. If the covering ratio by the heat storage material is within the above range, the heat from the high temperature side can be stored effectively. There is no particular limitation on the area covered with the heat storage material, but if the heat storage material is placed so as to cover the edge of one side of the core material layer, the heat leaking from the heat bridge can be effectively latent heat. Can do.
本発明の真空断熱材は、断熱ボックスに好適に用いられる。本発明の真空断熱材は蓄熱材と一体化されているため、別途ボックス内に蓄熱材を配置する必要が無く、ボックス内のスペースを有効に利用することができる。断熱ボックスは、ボックス内部を外部よりも低温に保つためのものであってもよく、ボックス内部を外部よりも高温に保つためのものであってもよい。 The vacuum heat insulating material of this invention is used suitably for a heat insulation box. Since the vacuum heat insulating material of the present invention is integrated with the heat storage material, it is not necessary to separately arrange the heat storage material in the box, and the space in the box can be used effectively. The heat insulating box may be for keeping the inside of the box at a lower temperature than the outside, or may be for keeping the inside of the box at a higher temperature than the outside.
断熱ボックスに用いられる真空断熱材においては、蓄熱材の層が、低温側に配置されているのが好ましい。例えば、芯材の層と蓄熱材の層とからなる二層構造を有する真空断熱材を用いる断熱ボックスにおいて、ボックス内部を外部よりも低温に保つ場合には、蓄熱材の層をボックス内部側に配置することが好ましく、ボックス内部を外部よりも高温に保つ場合には、蓄熱材の層をボックス外部側に配置することが好ましい。また、2つの芯材の層と、2つの芯材の層の間に挟まれた蓄熱材の層とからなる三層構造を有する真空断熱材を用いる断熱ボックスにおいては、ボックス内部を外部よりも低温に保つ場合には、蓄熱材の層を、真空断熱材の厚み方向の中心か又は中心よりもボックス内部側に配置することが好ましく、ボックス内部を外部よりも高温に保つ場合には、蓄熱材の層を、真空断熱材の厚み方向の中心か又は中心よりもボックス外部側に配置することが好ましい。蓄熱材の位置は、蓄熱材の層の厚み方向の中心の位置により特定することができる。例えば、蓄熱材の層の厚み方向の中心の位置が真空断熱材の厚み方向の中心に一致する場合、蓄熱材の層は真空断熱材の厚み方向の中心に配置されている。 In the vacuum heat insulating material used for the heat insulating box, it is preferable that the layer of the heat storage material is disposed on the low temperature side. For example, in a heat insulation box using a vacuum heat insulating material having a two-layer structure consisting of a core material layer and a heat storage material layer, when keeping the inside of the box at a lower temperature than the outside, the heat storage material layer is placed on the inside of the box. It is preferable to arrange, and when the inside of the box is kept at a higher temperature than the outside, it is preferable to arrange the layer of the heat storage material on the outside of the box. In a heat insulation box using a vacuum heat insulating material having a three-layer structure composed of two core material layers and a heat storage material layer sandwiched between the two core material layers, the inside of the box is more external than the outside. When keeping at a low temperature, the layer of the heat storage material is preferably arranged at the center in the thickness direction of the vacuum heat insulating material or on the inner side of the box from the center. It is preferable to arrange the material layer at the center in the thickness direction of the vacuum heat insulating material or on the outside of the box from the center. The position of the heat storage material can be specified by the center position in the thickness direction of the layer of the heat storage material. For example, when the center position in the thickness direction of the heat storage material layer coincides with the center in the thickness direction of the vacuum heat insulating material, the heat storage material layer is disposed in the center in the thickness direction of the vacuum heat insulating material.
蓄熱材の種類は、断熱ボックスにおいて蓄熱材を配置する位置の温度に応じて設定してもよい。蓄熱材を配置する位置の温度Tは、以下の式(I)により表すことができる。
T=T1−{(T1−T2)/L}*d (I)
T:蓄熱材を配置する位置の温度
T1:高温側の温度
T2:低温側の温度
d:真空断熱材の高温側の面から蓄熱材を配置する位置までの距離
L:真空断熱材の厚さ
蓄熱材としては、蓄熱材を配置する位置の温度に近い潜熱温度を有する蓄熱材を用いることが好ましい。具体的には、蓄熱材の層を、真空断熱材の厚み方向の中心か又は中心よりも低温側に配置する場合には、蓄熱材の潜熱温度T’は、低温側の温度以上かつ中心温度+10℃以下(T2≦T’≦(T1+T2)/2+10℃)であることが好ましい。例えばディープフリーザーのような内部を−80℃に維持するための断熱容器の場合、外気温が20℃であれば、断熱材の中心温度は−30℃になるため、−80℃以上−20℃以下で潜熱するような蓄熱材を選定することが好ましい。また、例えば内部を0℃で保冷する断熱容器の場合、外気温が30℃であれば、断熱材の中心温度が15℃になるため、0℃以上25℃以下で潜熱できる蓄熱材を選定することが好ましい。潜熱温度が上記範囲内であれば、蓄熱材の潜熱効果がより効率的に発揮され、断熱ボックスの保温性能が向上する。
You may set the kind of heat storage material according to the temperature of the position which arrange | positions a heat storage material in a heat insulation box. The temperature T at the position where the heat storage material is arranged can be expressed by the following formula (I).
T = T1-{(T1-T2) / L} * d (I)
T: Temperature of the position where the heat storage material is disposed T1: Temperature on the high temperature side T2: Temperature on the low temperature side d: Distance from the surface on the high temperature side of the vacuum heat insulating material to the position where the heat storage material is disposed L: Thickness of the vacuum heat insulating material
As the heat storage material, it is preferable to use a heat storage material having a latent heat temperature close to the temperature at which the heat storage material is disposed. Specifically, when the layer of the heat storage material is disposed at the center in the thickness direction of the vacuum heat insulating material or on the lower temperature side than the center, the latent heat temperature T ′ of the heat storage material is equal to or higher than the temperature on the low temperature side and the center temperature. It is preferably + 10 ° C. or lower (T2 ≦ T ′ ≦ (T1 + T2) / 2 + 10 ° C.). For example, in the case of a heat-insulated container for maintaining the inside at −80 ° C. like a deep freezer, if the outside air temperature is 20 ° C., the center temperature of the heat insulating material is −30 ° C. It is preferable to select a heat storage material that causes latent heat below. For example, in the case of a heat insulating container that keeps the inside at 0 ° C., if the outside air temperature is 30 ° C., the center temperature of the heat insulating material is 15 ° C., so select a heat storage material that can latently heat at 0 ° C. to 25 ° C. It is preferable. When the latent heat temperature is within the above range, the latent heat effect of the heat storage material is more efficiently exhibited, and the heat retaining performance of the heat insulating box is improved.
本発明の真空断熱材の製造方法に特に制限はない。例えば、製造方法は、ガスバリア性フィルムを袋状に形成する工程、袋状のガスバリア性フィルム内に芯材、吸着剤及び蓄熱材を配置する工程、ガスバリア性フィルムで芯材、吸着剤及び蓄熱材を減圧密封する工程を含んでもよい。本発明の真空断熱材は、蓄熱材を含まない従来の真空断熱材の製造方法において、ガスバリア性フィルム内に芯材及び吸着剤を配置する際に、蓄熱材を共に配置することにより製造することができる。すなわち、本発明の真空断熱材は、従来の真空断熱材と同様に簡易に製造でき、製造コストを抑えることができる。 There is no restriction | limiting in particular in the manufacturing method of the vacuum heat insulating material of this invention. For example, the manufacturing method includes a step of forming a gas barrier film in a bag shape, a step of disposing a core material, an adsorbent and a heat storage material in the bag-shaped gas barrier film, a core material, an adsorbent and a heat storage material in the gas barrier film. A step of sealing under reduced pressure may be included. The vacuum heat insulating material of the present invention is manufactured by arranging the heat storage material together when the core material and the adsorbent are arranged in the gas barrier film in the conventional vacuum heat insulating material manufacturing method not including the heat storage material. Can do. That is, the vacuum heat insulating material of the present invention can be easily manufactured as in the conventional vacuum heat insulating material, and the manufacturing cost can be suppressed.
本発明の真空断熱材を用いて断熱ボックスを製造する方法には、特に制限はない。例えば、6枚の真空断熱材を、テープ等を用いて箱状に固定することにより断熱ボックスを製造することができる。或いは、外箱及び内箱を有する箱体において、外箱と内箱の間に本発明の真空断熱材を入れ、ウレタン注入発泡等によって保持する事で、断熱ボックスを製造する事ができる。 There is no restriction | limiting in particular in the method of manufacturing a heat insulation box using the vacuum heat insulating material of this invention. For example, a heat insulating box can be manufactured by fixing six vacuum heat insulating materials in a box shape using a tape or the like. Alternatively, in a box having an outer box and an inner box, the heat insulating box can be manufactured by inserting the vacuum heat insulating material of the present invention between the outer box and the inner box and holding it by urethane injection foaming or the like.
本発明の真空断熱材は、従来の真空断熱材と同様の用途、特に、内部温度を保持する製品への適用が可能である。例えば、断熱ボックス、冷蔵庫、冷凍庫、ジャー炊飯器、給湯器、自動販売機等の家庭用、業務用電化製品、自動車、複写機、床暖房、住宅、保冷コンテナ、冷凍倉庫等に用いることができる。 The vacuum heat insulating material of the present invention can be applied to the same use as that of a conventional vacuum heat insulating material, particularly to a product that maintains the internal temperature. For example, it can be used in household, commercial appliances such as heat insulation boxes, refrigerators, freezers, jar rice cookers, water heaters, vending machines, automobiles, copiers, floor heating, houses, cold containers, refrigerated warehouses, etc. .
実施例1
蓄熱材入り真空断熱材
(1)蓄熱材入り真空断熱材の製造
潜熱温度25℃のパラフィン(潜熱量242J/g)をメラミンカプセルに密封した。蓄熱材入りのカプセル100gをポリエステル繊維の不織布に入れて熱シールし、層状にした。蓄熱材の層をガラス繊維芯材の層の上に積層又は2つの芯材の層の間に挟み、水分吸着剤(酸化カルシウム)とともにガスバリア性フィルム(ガスバリア層としてアルミ箔を含む多層ラミネートフィルム)内に減圧密封して、ガスバリア性フィルム内において二層構造又は三層構造を有する、蓄熱材入り真空断熱材(長さ300mm、幅300mm、厚さ10mm)を製造した。
Example 1
Vacuum heat insulating material with heat storage material (1) Production of vacuum heat insulating material with heat storage material Paraffin (latent heat amount 242 J / g) having a latent heat temperature of 25 ° C. was sealed in a melamine capsule. A capsule containing 100 g of a heat storage material was put in a polyester fiber non-woven fabric and heat-sealed to form a layer. A heat storage material layer is laminated on a glass fiber core layer or sandwiched between two core material layers, and a gas barrier film (a multilayer laminate film including an aluminum foil as a gas barrier layer) together with a moisture adsorbent (calcium oxide) A vacuum heat insulating material containing a heat storage material (300 mm in length, 300 mm in width, 10 mm in thickness) having a two-layer structure or a three-layer structure in a gas barrier film was produced.
(2)熱伝導率測定装置の校正
蓄熱材を含まない1.22mW/mK、2.18mW/mK及び3.30mWの熱伝導率を有する真空断熱材において、英弘精機製熱伝導率チェッカー(HC−120)の出力値を測定した。結果を表1及び図1に示す。
(2) Calibration of the thermal conductivity measuring device In a vacuum heat insulating material having a thermal conductivity of 1.22 mW / mK, 2.18 mW / mK and 3.30 mW not including a heat storage material, a heat conductivity checker (HC) manufactured by Eihiro Seiki -120) was measured. The results are shown in Table 1 and FIG.
(3)蓄熱材入り真空断熱材の熱伝導率測定
図1において直線で示される熱伝導率と出力値との関係に基づき、ガスバリア性フィルム内において二層構造を有する蓄熱材入り真空断熱材(5サンプル)について、HC−120のセンサーヘッドを真空断熱材の芯材層側の面に接触させて、熱伝導率を測定した。熱伝導率が3mW/mK以下である場合に、良好な断熱性能を有する(○)と判定した。結果を表2に示す。
(3) Measurement of thermal conductivity of vacuum heat insulating material containing heat storage material Based on the relationship between the thermal conductivity indicated by a straight line in FIG. 1 and the output value, a vacuum heat insulating material containing a heat storage material having a two-layer structure in the gas barrier film ( About 5 samples), the sensor head of HC-120 was brought into contact with the surface of the vacuum heat insulating material on the core material layer side, and the thermal conductivity was measured. When the thermal conductivity was 3 mW / mK or less, it was determined that it had good heat insulation performance (◯). The results are shown in Table 2.
同様に、ガスバリア性フィルム内において三層構造を有する蓄熱材入り真空断熱材(5サンプル)について、HC−120のセンサーヘッドを真空断熱材の一方の面に接触させて、熱伝導率を測定した。結果を表3に示す。 Similarly, about the heat insulating material-containing vacuum heat insulating material (5 samples) having a three-layer structure in the gas barrier film, the thermal conductivity was measured by bringing the HC-120 sensor head into contact with one surface of the vacuum heat insulating material. . The results are shown in Table 3.
測定の結果、いずれの蓄熱材入り真空断熱材も、良好な断熱性能を有していることが確認された。従って、蓄熱材は真空断熱材内でガス化していないと考えられる。 As a result of the measurement, it was confirmed that any heat insulating material-containing vacuum heat insulating material has good heat insulating performance. Therefore, it is considered that the heat storage material is not gasified in the vacuum heat insulating material.
実施例2
蓄熱材入り真空断熱材からなる断熱ボックス
(1)蓄熱材の選択
外部温度60℃、内部温度20℃で使用される断熱ボックスを想定し、使用する潜熱材の種類を決定した。潜熱材の層を、真空断熱材の厚み方向の中心か又は中心よりも低温側配置する場合、潜熱材の潜熱温度T’は、低温側の温度以上かつ中心温度+10℃以下、すなわち20℃〜50℃であることが好ましい。従って、25℃の潜熱温度を有するパラフィン(蓄熱材25)(潜熱量242J/g)及び32℃の潜熱温度を有するパラフィン(蓄熱材32)(潜熱量247J/g)を、真空断熱材内部に含める蓄熱材として選択した。パラフィンは熱を吸収する際、液体又は気体へ相変化する為、SiO2を主成分とする無機カプセルで密封し、ガス化しないようにした。
Example 2
Heat insulation box made of vacuum heat insulating material containing heat storage material (1) Selection of heat storage material A heat insulating box used at an external temperature of 60 ° C and an internal temperature of 20 ° C was assumed, and the type of latent heat material to be used was determined. When the layer of the latent heat material is arranged at the center in the thickness direction of the vacuum heat insulating material or at a lower temperature side than the center, the latent heat temperature T ′ of the latent heat material is not less than the temperature on the low temperature side and not more than the center temperature + 10 ° C. It is preferable that it is 50 degreeC. Accordingly, paraffin having a latent heat temperature of 25 ° C. (heat storage material 25) (latent heat amount 242 J / g) and paraffin having a latent heat temperature of 32 ° C. (heat storage material 32) (latent heat amount 247 J / g) are contained in the vacuum heat insulating material. Selected as a heat storage material to include. Since paraffin changes its phase to liquid or gas when absorbing heat, it was sealed with an inorganic capsule mainly composed of SiO 2 so as not to be gasified.
(2)真空断熱材の製造
(1)の蓄熱材入りカプセルをポリエステル繊維の不織布に入れて熱シールし、蓄熱材層を作製した。蓄熱材層としては、蓄熱材25入りカプセルのみを含む層(蓄熱材25層)、蓄熱材32入りカプセルのみを含む層(蓄熱材32層)及び蓄熱材25入りカプセルと蓄熱材32入りカプセルとを質量比1:1で含む層(MIX層)の3種類の蓄熱材層を作製した。また、真空断熱材の材料として、芯材(ガラス繊維マット)、ガスバリア性フィルム(バリア層としてアルミ箔を含む多層ラミネートフィルム)及び吸着剤(酸化カルシウム)を用意した。
(a)蓄熱材を含まない真空断熱材(比較VIP)の製造
芯材を200℃で1時間乾燥し、表面に付着する水分を除いた。ガスバリア性フィルムについては、内側のシール層が溶融しないように80℃で2時間乾燥した。乾燥したガスバリア性フィルムの内側に芯材及び吸着剤を挿入し、真空チャンバーを用いて最終到達圧0.5Paにて減圧密封を行った。
(b)ガスバリア性フィルム内において二層構造を有する真空断熱材の製造
乾燥したガスバリア性フィルムの内側に芯材及び吸着剤を挿入する際に、蓄熱材25層、蓄熱材32層又はMIX層を芯材の上に積層した以外は比較VIPと同様にして、ガスバリア性フィルム内において二層構造を有する真空断熱材を製造した。得られた真空断熱材における蓄熱材の含有量は、40質量%であった。
(c)ガスバリア性フィルム内において三層構造を有する真空断熱材の製造
乾燥したガスバリア性フィルムの内側に芯材及び吸着剤を挿入する際に、2つの芯材の層の間に蓄熱材25層又は蓄熱材32層を、蓄熱材25層又は蓄熱材32層の厚み方向の中心が積層体の厚み方向の中心に位置するように挟んだ以外は比較VIPと同様にして、ガスバリア性フィルム内において三層構造を有する真空断熱材を製造した。得られた真空断熱材における蓄熱材の含有量は、40質量%であった。
(2) Manufacture of vacuum heat insulating material The heat storage material-containing capsule of (1) was put in a polyester fiber non-woven fabric and heat-sealed to prepare a heat storage material layer. As the heat storage material layer, a layer containing only the capsule containing the heat storage material 25 (heat storage material 25 layer), a layer containing only the capsule containing the heat storage material 32 (32 layers of heat storage material), a capsule containing the heat storage material 25 and a capsule containing the heat storage material 32 Three types of heat storage material layers, ie, a layer (MIX layer) containing a mass ratio of 1: 1 was prepared. Moreover, a core material (glass fiber mat), a gas barrier film (a multilayer laminate film including an aluminum foil as a barrier layer), and an adsorbent (calcium oxide) were prepared as materials for the vacuum heat insulating material.
(A) Manufacture of the vacuum heat insulating material (comparative VIP) which does not contain a thermal storage material The core material was dried at 200 degreeC for 1 hour, and the water | moisture content adhering to the surface was removed. The gas barrier film was dried at 80 ° C. for 2 hours so that the inner sealing layer did not melt. A core material and an adsorbent were inserted inside the dried gas barrier film, and sealed under reduced pressure at a final ultimate pressure of 0.5 Pa using a vacuum chamber.
(B) Manufacture of vacuum heat insulating material having a two-layer structure in a gas barrier film When inserting a core material and an adsorbent into the inside of a dried gas barrier film, 25 layers of heat storage material, 32 layers of heat storage material or MIX layer A vacuum heat insulating material having a two-layer structure in a gas barrier film was produced in the same manner as in Comparative VIP except that it was laminated on the core material. Content of the heat storage material in the obtained vacuum heat insulating material was 40 mass%.
(C) Manufacture of a vacuum heat insulating material having a three-layer structure in a gas barrier film When inserting a core material and an adsorbent inside a dried gas barrier film, 25 layers of heat storage material between two layers of the core material Alternatively, in the gas barrier film, in the same manner as the comparative VIP except that the heat storage material 32 layer is sandwiched so that the center in the thickness direction of the heat storage material 25 layer or the heat storage material 32 layer is positioned in the center in the thickness direction of the laminate. A vacuum heat insulating material having a three-layer structure was manufactured. Content of the heat storage material in the obtained vacuum heat insulating material was 40 mass%.
(3)断熱ボックスの製造
(2)(a)で製造した比較VIP6枚を、ポリプロピレンテープを用いて箱状に固定し、比較ボックスを製造した。
(2)(b)で製造したガスバリア性フィルム内において二層構造を有する各真空断熱材6枚を、ポリプロピレンテープを用いて箱状に固定し、蓄熱材25層が内部側に配置されている断熱ボックス(蓄熱材25内側)、蓄熱材32層が内部側に配置されている断熱ボックス(蓄熱材32内側)及びMIX層が内部側に配置されている断熱ボックス(MIX内側)を製造した。
(2)(c)で製造したガスバリア性フィルム内において三層構造を有する各真空断熱材6枚を、ポリプロピレンテープを用いて箱状に固定し、蓄熱材25層が真空断熱材の真ん中に配置されている断熱ボックス(蓄熱材25真ん中)及び蓄熱材32層が真空断熱材の真ん中に配置されている断熱ボックス(蓄熱材32真ん中)を製造した。
(3) Production of heat insulation box (2) Six comparative VIPs produced in (a) were fixed in a box shape using polypropylene tape to produce a comparison box.
(2) Six vacuum heat insulating materials each having a two-layer structure in the gas barrier film produced in (b) are fixed in a box shape using polypropylene tape, and 25 layers of heat storage material are arranged on the inner side. A heat insulation box (inside the heat storage material 25), a heat insulation box (inside the heat storage material 32) in which the heat storage material 32 layer is arranged on the inner side, and a heat insulation box (inside MIX) in which the MIX layer is arranged on the inner side were manufactured.
(2) Six vacuum insulation materials having a three-layer structure in the gas barrier film produced in (c) are fixed in a box shape using polypropylene tape, and 25 layers of heat storage material are arranged in the middle of the vacuum insulation material. The heat insulation box (heat storage material 25 middle) and the heat insulation material 32 layer in which the heat storage material 32 layer was arrange | positioned in the middle of the vacuum heat insulation material were manufactured.
(4)箱内部温度上昇テスト
下記試験条件において、(3)で製造した各断熱ボックスの内部温度上昇について測定を行った。GRAPHTEC社のGL240をデータロガーとして用いた。
(i)断熱ボックスを、蓋を開けた状態で20℃に余熱した。
(ii)ボックス内部(中央)及びボックス外側壁面の2か所に熱電対を取り付けて、蓋を閉めた。
(iii)20℃で1時間保温し、その後、20℃から60℃まで20分かけて昇温した。昇温開始時を、測定開始時(0分)とした。
(iv)60℃の温度を維持した。
結果を表4及び図2に示す。
(4) Box internal temperature rise test Under the following test conditions, the internal temperature rise of each heat insulation box manufactured in (3) was measured. GL240 from GRAPHTEC was used as a data logger.
(I) The heat insulation box was preheated to 20 ° C. with the lid opened.
(Ii) Thermocouples were attached at two locations inside the box (center) and outside the wall of the box, and the lid was closed.
(Iii) The temperature was kept at 20 ° C. for 1 hour, and then the temperature was raised from 20 ° C. to 60 ° C. over 20 minutes. The start of temperature increase was defined as the start of measurement (0 minutes).
(Iv) A temperature of 60 ° C. was maintained.
The results are shown in Table 4 and FIG.
比較ボックスの場合、内部温度は、外表面温度まで約1時間で到達した。蓄熱材25内側の場合、25℃付近で蓄熱の状態が確認された。約2時間後に温度上昇率が増加したが、比較ボックスよりも温度上昇は抑えられていた。蓄熱材32内側の場合、32℃付近より蓄熱の状態が確認された。4時間後の内部温度は蓄熱材25内側と同程度であった。一方、蓄熱材25真ん中及び蓄熱材32真ん中については、蓄熱材32真ん中の方が蓄熱材25真ん中よりも60分〜180分の間の温度上昇が緩やかであった。これは、内部温度20℃/外表面温度60℃の場合、中心温度は40℃であり、蓄熱材32真ん中の方が中心温度と蓄熱材の潜熱温度の差が小さいため、より効果的に潜熱できたためであると考えられる。 In the case of the comparison box, the internal temperature reached the external surface temperature in about 1 hour. In the case of the inside of the heat storage material 25, the state of heat storage was confirmed at around 25 ° C. Although the temperature increase rate increased after about 2 hours, the temperature increase was suppressed more than the comparison box. In the case of the inside of the heat storage material 32, the state of heat storage was confirmed from around 32 ° C. The internal temperature after 4 hours was almost the same as that inside the heat storage material 25. On the other hand, regarding the middle of the heat storage material 25 and the middle of the heat storage material 32, the temperature increase in the middle of the heat storage material 32 was slower between 60 minutes and 180 minutes than in the middle of the heat storage material 25. This is because when the internal temperature is 20 ° C./the outer surface temperature is 60 ° C., the center temperature is 40 ° C., and the difference between the center temperature and the latent heat temperature of the heat storage material is smaller in the middle of the heat storage material 32, so the latent heat is more effective. It is thought that it was because it was made.
本発明の真空断熱材は、保冷・保温を目的としたボックスに使用する事によってボックスの保温性能が向上するため、内部温度を維持する為に必要な電力・保冷剤・保温剤等の削減が可能となる。また、本発明の真空断熱材は、ボックス内に保存する対象物の品質を一定に保つ為の手段として有用である。 The vacuum heat insulating material of the present invention improves the heat insulation performance of the box by using it in a box intended for cold insulation and heat insulation, and therefore reduces the power, cold insulation, heat insulation agent, etc. necessary to maintain the internal temperature. It becomes possible. Moreover, the vacuum heat insulating material of this invention is useful as a means for keeping constant the quality of the target object preserve | saved in a box.
Claims (18)
前記蓄熱材が、密封されており、
前記芯材、前記吸着剤及び前記密封された蓄熱材が、前記ガスバリア性フィルム内に減圧密封されている、
ことを特徴とする、真空断熱材。 A vacuum heat insulating material including a core material, an adsorbent, a heat storage material and a gas barrier film,
The heat storage material is sealed,
The core material, the adsorbent and the sealed heat storage material are sealed under reduced pressure in the gas barrier film,
A vacuum insulation material characterized by that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016256452A JP6870985B2 (en) | 2016-12-28 | 2016-12-28 | Vacuum heat insulating material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016256452A JP6870985B2 (en) | 2016-12-28 | 2016-12-28 | Vacuum heat insulating material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018109424A true JP2018109424A (en) | 2018-07-12 |
JP6870985B2 JP6870985B2 (en) | 2021-05-12 |
Family
ID=62845040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016256452A Active JP6870985B2 (en) | 2016-12-28 | 2016-12-28 | Vacuum heat insulating material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6870985B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020110662A1 (en) * | 2018-11-26 | 2021-10-14 | 富士フイルム株式会社 | Heat storage sheet, heat storage member and electronic device |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01217135A (en) * | 1988-02-23 | 1989-08-30 | Matsushita Electric Works Ltd | Thermal accumulating and floor heating device |
JPH09182660A (en) * | 1995-12-28 | 1997-07-15 | Seiko Seisakusho:Kk | Heat insulating cooking pot and pot stand |
JP2001161553A (en) * | 1999-12-07 | 2001-06-19 | Tiger Vacuum Bottle Co Ltd | Rice cooker |
WO2003073030A1 (en) * | 2002-02-27 | 2003-09-04 | Energy Storage Technologies, Inc. | Temperature-controlled system including a thermal barrier |
US20070051734A1 (en) * | 2003-05-19 | 2007-03-08 | Va-Q-Tec Ag | Thermally insulated container |
CN201126087Y (en) * | 2007-11-27 | 2008-10-01 | 天津卡诺制冷设计研究院(普通合伙) | Heat preserving heat insulating slab |
JP2009123769A (en) * | 2007-11-12 | 2009-06-04 | Kitagawa Ind Co Ltd | Heat insulation sheet, and case |
JP2009299764A (en) * | 2008-06-12 | 2009-12-24 | Hitachi Appliances Inc | Vacuum heat insulation material and heat insulation vessel using the same |
JP2010043779A (en) * | 2008-08-12 | 2010-02-25 | Mitsubishi Electric Corp | Cooling storage panel and refrigerating plant equipped with the same |
WO2011104873A1 (en) * | 2010-02-26 | 2011-09-01 | 株式会社 日立製作所 | Heat-insulating panel for use in buildings |
JP2012242064A (en) * | 2011-05-24 | 2012-12-10 | Mitsubishi Electric Corp | Refrigerator |
JP2012242075A (en) * | 2011-05-24 | 2012-12-10 | Mitsubishi Electric Corp | Refrigerator |
CN103267206A (en) * | 2013-04-28 | 2013-08-28 | 上海海事大学 | Vacuum heat insulation panel of phase-change materials and glass fiber composite core materials and preparation method thereof |
WO2013176050A1 (en) * | 2012-05-23 | 2013-11-28 | シャープ株式会社 | Latent heat storage member and building material provided with same, microcapsules and thermal storage material using microcapsules |
JP2014030495A (en) * | 2012-08-01 | 2014-02-20 | Inoac Corp | Heat insulator, and packing material for the same |
JP2016145674A (en) * | 2015-02-06 | 2016-08-12 | イビデン株式会社 | Structure and manufacturing method of the same |
JP2016176013A (en) * | 2015-03-20 | 2016-10-06 | 三菱製紙株式会社 | Accumulation material microcapsule granule |
WO2016162451A1 (en) * | 2015-04-09 | 2016-10-13 | Pamgene Bv | A multi-layer cold specimen transport container without active cooling. |
JP2016210957A (en) * | 2015-05-13 | 2016-12-15 | アイシン化工株式会社 | Heat storage polymer molded body |
JP2017166612A (en) * | 2016-03-17 | 2017-09-21 | イビデン株式会社 | Heat insulating member |
-
2016
- 2016-12-28 JP JP2016256452A patent/JP6870985B2/en active Active
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01217135A (en) * | 1988-02-23 | 1989-08-30 | Matsushita Electric Works Ltd | Thermal accumulating and floor heating device |
JPH09182660A (en) * | 1995-12-28 | 1997-07-15 | Seiko Seisakusho:Kk | Heat insulating cooking pot and pot stand |
JP2001161553A (en) * | 1999-12-07 | 2001-06-19 | Tiger Vacuum Bottle Co Ltd | Rice cooker |
WO2003073030A1 (en) * | 2002-02-27 | 2003-09-04 | Energy Storage Technologies, Inc. | Temperature-controlled system including a thermal barrier |
US20070051734A1 (en) * | 2003-05-19 | 2007-03-08 | Va-Q-Tec Ag | Thermally insulated container |
JP2009123769A (en) * | 2007-11-12 | 2009-06-04 | Kitagawa Ind Co Ltd | Heat insulation sheet, and case |
CN201126087Y (en) * | 2007-11-27 | 2008-10-01 | 天津卡诺制冷设计研究院(普通合伙) | Heat preserving heat insulating slab |
JP2009299764A (en) * | 2008-06-12 | 2009-12-24 | Hitachi Appliances Inc | Vacuum heat insulation material and heat insulation vessel using the same |
JP2010043779A (en) * | 2008-08-12 | 2010-02-25 | Mitsubishi Electric Corp | Cooling storage panel and refrigerating plant equipped with the same |
WO2011104873A1 (en) * | 2010-02-26 | 2011-09-01 | 株式会社 日立製作所 | Heat-insulating panel for use in buildings |
JP2012242064A (en) * | 2011-05-24 | 2012-12-10 | Mitsubishi Electric Corp | Refrigerator |
JP2012242075A (en) * | 2011-05-24 | 2012-12-10 | Mitsubishi Electric Corp | Refrigerator |
WO2013176050A1 (en) * | 2012-05-23 | 2013-11-28 | シャープ株式会社 | Latent heat storage member and building material provided with same, microcapsules and thermal storage material using microcapsules |
JP2014030495A (en) * | 2012-08-01 | 2014-02-20 | Inoac Corp | Heat insulator, and packing material for the same |
CN103267206A (en) * | 2013-04-28 | 2013-08-28 | 上海海事大学 | Vacuum heat insulation panel of phase-change materials and glass fiber composite core materials and preparation method thereof |
JP2016145674A (en) * | 2015-02-06 | 2016-08-12 | イビデン株式会社 | Structure and manufacturing method of the same |
JP2016176013A (en) * | 2015-03-20 | 2016-10-06 | 三菱製紙株式会社 | Accumulation material microcapsule granule |
WO2016162451A1 (en) * | 2015-04-09 | 2016-10-13 | Pamgene Bv | A multi-layer cold specimen transport container without active cooling. |
JP2016210957A (en) * | 2015-05-13 | 2016-12-15 | アイシン化工株式会社 | Heat storage polymer molded body |
JP2017166612A (en) * | 2016-03-17 | 2017-09-21 | イビデン株式会社 | Heat insulating member |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020110662A1 (en) * | 2018-11-26 | 2021-10-14 | 富士フイルム株式会社 | Heat storage sheet, heat storage member and electronic device |
JP7080343B2 (en) | 2018-11-26 | 2022-06-03 | 富士フイルム株式会社 | Heat storage sheet, heat storage member and electronic device |
Also Published As
Publication number | Publication date |
---|---|
JP6870985B2 (en) | 2021-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1325864C (en) | Refrigerator | |
US7571582B2 (en) | Vacuum heat insulator, method of manufacturing the same, and refrigerator using the same | |
JP2017106526A (en) | Vacuum heat insulation body, heat insulation equipment including the same, and manufacturing method of vacuum heat insulation body | |
KR101368009B1 (en) | Vacuum heat insulation material and apparatus using the same | |
US20080237244A1 (en) | Heat-insulating container and method for manufacturing same | |
JP6286900B2 (en) | Insulation member and cold insulation box | |
CN205173861U (en) | High vacuum insulation spare and adiabatic case | |
JP3528846B1 (en) | Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using the vacuum insulation material | |
JP2014211221A (en) | Heat insulation member | |
JP5426445B2 (en) | Vacuum insulation panel | |
JP6870985B2 (en) | Vacuum heat insulating material | |
JP2004003534A (en) | Vacuum heat insulating material and refrigerator using vacuum heat insulating material | |
JP2008256125A (en) | Vacuum heat insulating material and refrigerator using the same | |
JP5106319B2 (en) | Vacuum insulation | |
JP2018017314A (en) | Vacuum heat insulation material and refrigerator using the same | |
JP2013040717A (en) | Vacuum heat insulation material, and refrigerator using the same | |
CN206449358U (en) | Vacuum heat insulator and using its heat-insulated container, thermal wall | |
JP5377451B2 (en) | Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material | |
JP5216510B2 (en) | Vacuum insulation material and equipment using the same | |
JP2007155087A (en) | Vacuum heat insulating material | |
JPH1122896A (en) | Vacuum heat insulating material | |
JP2694356B2 (en) | Insulation structure | |
JP2016107226A (en) | Adsorbent and vacuum heat insulation material using the same | |
JP2004011706A (en) | Vacuum heat insulating material, and equipment using it | |
JPH08152258A (en) | Vacuum heat insulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200827 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210316 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210415 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6870985 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |