JP2018107899A - Rotor - Google Patents

Rotor Download PDF

Info

Publication number
JP2018107899A
JP2018107899A JP2016251915A JP2016251915A JP2018107899A JP 2018107899 A JP2018107899 A JP 2018107899A JP 2016251915 A JP2016251915 A JP 2016251915A JP 2016251915 A JP2016251915 A JP 2016251915A JP 2018107899 A JP2018107899 A JP 2018107899A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
permanent magnets
permanent
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016251915A
Other languages
Japanese (ja)
Other versions
JP6851816B2 (en
Inventor
佑将 松岡
Yusuke Matsuoka
佑将 松岡
松原 正克
Masakatsu Matsubara
正克 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2016251915A priority Critical patent/JP6851816B2/en
Publication of JP2018107899A publication Critical patent/JP2018107899A/en
Application granted granted Critical
Publication of JP6851816B2 publication Critical patent/JP6851816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a rotor capable of suppressing decrease in demagnetization resistance performance of a permanent magnet when a skew structure is adopted.SOLUTION: A rotor includes: a shaft; a plurality of rotor iron cores; and a plurality of permanent magnets. The shaft rotates about a rotation axis. The plurality of rotor iron cores are fixed onto the shaft and laminated along the rotation axis. The plurality of permanent magnets are embedded for the plurality of respective rotor iron cores. At least two permanent magnets that line in a rotation axis direction among the plurality of permanent magnets are arranged in a peripheral direction while being shifted for a prescribed angle. On opposing end surfaces of the permanent magnet shifted for the prescribed angle, a film is formed that is subjected to high coercive-force processing having higher coercive-force compared with an inside of each permanent magnet.SELECTED DRAWING: Figure 4

Description

本発明の実施形態は、回転子に関する。   Embodiments described herein relate generally to a rotor.

従来から、回転子の回転子鉄心に永久磁石が埋設された、いわゆる磁石埋め込み型の回転電機が知られている。この種の回転電機の回転子では、駆動時の騒音や振動の要因となるトルクリップルを低減するために、複数の回転子鉄心を周方向にずらしながら回転軸線に沿って積層する、いわゆるスキュー構造を採用する場合があった。このような構造を採用する場合、回転子鉄心の表面に形成される磁気的凹凸が滑らかになるので、トルクリップルを低減できる。   Conventionally, a so-called magnet-embedded rotating electrical machine in which a permanent magnet is embedded in a rotor core of a rotor is known. In a rotor of this type of rotating electrical machine, a so-called skew structure in which a plurality of rotor cores are stacked along the rotation axis while being shifted in the circumferential direction in order to reduce torque ripple that causes noise and vibration during driving. May have been adopted. When such a structure is adopted, the magnetic unevenness formed on the surface of the rotor core becomes smooth, so that torque ripple can be reduced.

ここで、スキュー構造を採用することにより、永久磁石の軸方向端面が回転子鉄心に接触する。このような部位では見かけ上磁気抵抗が小さくなり、電気子反作用による反磁界がより永久磁石に加わることとなる。このような場合、耐減磁性能が弱いために、永久磁石の減磁を発生させる原因となる。この結果、回転子全体でみたときの永久磁石の耐減磁性能が、低下してしまう可能性があった。   Here, by adopting a skew structure, the axial end surface of the permanent magnet comes into contact with the rotor core. In such a part, the magnetic resistance is apparently reduced, and the demagnetizing field due to the electron reaction is more applied to the permanent magnet. In such a case, since the demagnetization resistance is weak, it causes demagnetization of the permanent magnet. As a result, there is a possibility that the demagnetization resistance performance of the permanent magnet when viewed with the entire rotor is lowered.

この永久磁石の耐減磁性能の低下を補うために、永久磁石の表面に重希土類を拡散させることにより、永久磁石の保磁力を向上させる方法も考えられる。しかしながら、例えば、回転子鉄心のスキュー構造に対応させて永久磁石を分断して使用する場合、スキューされた回転子鉄心同士の重ね合わせ面に永久磁石の内部が露出することになる。永久磁石の表面に重希土類を拡散させる場合、永久磁石の内部の保磁力は基材と同程度に留まる。このため、結局回転子鉄心の永久磁石同士が重ね合わさる箇所で耐減磁性能が低下し、回転子全体でみたときの永久磁石の耐減磁性能の低下も抑えられない可能性があった。   In order to compensate for the decrease in the demagnetization resistance of the permanent magnet, a method of improving the coercive force of the permanent magnet by diffusing heavy rare earths on the surface of the permanent magnet is also conceivable. However, for example, when the permanent magnet is divided and used corresponding to the skew structure of the rotor core, the interior of the permanent magnet is exposed on the overlapping surface of the skewed rotor cores. When heavy rare earth is diffused on the surface of the permanent magnet, the coercive force inside the permanent magnet remains at the same level as the base material. For this reason, after all, the demagnetization resistance performance deteriorates at the place where the permanent magnets of the rotor core overlap each other, and there is a possibility that the decrease in the demagnetization resistance performance of the permanent magnet when viewed from the whole rotor cannot be suppressed.

特開2009−136040号公報JP 2009-136040 A

本発明が解決しようとする課題は、スキュー構造を採用した場合の永久磁石の耐減磁性能の低下を抑制できる回転子を提供することである。   The problem to be solved by the present invention is to provide a rotor that can suppress a decrease in demagnetization resistance of a permanent magnet when a skew structure is employed.

実施形態の回転子は、シャフトと、複数の回転子鉄心と、複数の永久磁石と、を持つ。シャフトは、回転軸線回りに回転する。複数の回転子鉄心は、シャフトに固定され、回転軸線に沿って積層される。複数の永久磁石は、複数の回転子鉄心ごとに埋設される。また、複数の永久磁石のうち、回転軸線方向で並ぶ少なくとも2つの永久磁石を周方向に所定角度ずらして配置し、所定角度ずれた永久磁石の互いに対向する端面に、それぞれ永久磁石の内部と比較して保磁力の高い高保磁力処理を施してなる膜が形成されている。   The rotor of the embodiment has a shaft, a plurality of rotor cores, and a plurality of permanent magnets. The shaft rotates around the rotation axis. The plurality of rotor cores are fixed to the shaft and stacked along the rotation axis. The plurality of permanent magnets are embedded for each of the plurality of rotor cores. Further, among the plurality of permanent magnets, at least two permanent magnets arranged in the rotation axis direction are arranged with a predetermined angle shift in the circumferential direction, and compared with the inside of the permanent magnets on the opposing end surfaces of the permanent magnets shifted by a predetermined angle, respectively. Thus, a film is formed by performing a high coercive force high coercive force treatment.

第1の実施形態の回転電機を示す斜視図。The perspective view which shows the rotary electric machine of 1st Embodiment. 第1の実施形態の回転電機を中心軸方向に沿う断面でみたときの概略構成図。The schematic block diagram when the rotary electric machine of 1st Embodiment is seen in the cross section which follows a center axis direction. 第1の実施形態の永久磁石の端面同士の重なり状況を示す説明図。Explanatory drawing which shows the overlap condition of the end surfaces of the permanent magnet of 1st Embodiment. 第1の実施形態の同一軸線上の2つの永久磁石を示す模式図。The schematic diagram which shows the two permanent magnets on the same axis line of 1st Embodiment. 第2の実施形態の同一軸線上の2つの永久磁石を示す模式図。The schematic diagram which shows the two permanent magnets on the same axis line of 2nd Embodiment. 第2の実施形態の永久磁石の製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of the permanent magnet of 2nd Embodiment. 第3の実施形態の同一軸線上の2つの永久磁石を示す模式図。The schematic diagram which shows the two permanent magnets on the same axis line of 3rd Embodiment. 第4の実施形態の同一軸線上の4つの永久磁石を示す模式図。The schematic diagram which shows the four permanent magnets on the same axis line of 4th Embodiment.

以下、実施形態の回転子を、図面を参照して説明する。   Hereinafter, a rotor according to an embodiment will be described with reference to the drawings.

(第1の実施形態)
図1は、第1の実施形態の回転子3を備えた回転電機1の斜視図である。
同図に示すように、回転電機1は、略円筒状の固定子2(固定子鉄心4)と、固定子2よりも径方向内側に設けられ、固定子2に対して回転自在に設けられた回転子3と、を備えている。
なお、固定子2および回転子3は、それぞれの中心軸線が共通軸上に位置した状態で配置されている。以下、共通軸を中心軸(回転軸線)Oと称し、中心軸Oに直交する方向を径方向と称し、中心軸O回りに周回する方向を周方向と称する。
(First embodiment)
FIG. 1 is a perspective view of a rotating electrical machine 1 including a rotor 3 according to the first embodiment.
As shown in FIG. 1, the rotating electrical machine 1 is provided with a substantially cylindrical stator 2 (stator core 4) and a radially inner side of the stator 2, and is rotatably provided with respect to the stator 2. And a rotor 3.
In addition, the stator 2 and the rotor 3 are arrange | positioned in the state in which each center axis line was located on the common axis. Hereinafter, the common axis is referred to as a central axis (rotation axis) O, a direction orthogonal to the central axis O is referred to as a radial direction, and a direction around the central axis O is referred to as a circumferential direction.

固定子2は、略円筒状の固定子鉄心4を有している。固定子鉄心4は、電磁鋼板を複数枚積層したり、軟磁性粉を加圧成形したりして形成することが可能である。固定子鉄心4の内周面には、中心軸Oに向かって突出し、周方向に等間隔で配列された複数のティース5が一体成形されている。ティース5は、断面略矩形状に形成されている。そして、隣接する各ティース5間には、それぞれスロット6が形成されている。これらスロット6を介し、各ティース5に電機子巻線7が巻回されている。この電機子巻線7に給電することにより、固定子2に所定の磁束が形成される。   The stator 2 has a substantially cylindrical stator core 4. The stator iron core 4 can be formed by laminating a plurality of electromagnetic steel plates or press-molding soft magnetic powder. A plurality of teeth 5 projecting toward the central axis O and arranged at equal intervals in the circumferential direction are integrally formed on the inner peripheral surface of the stator core 4. The teeth 5 have a substantially rectangular cross section. A slot 6 is formed between adjacent teeth 5. An armature winding 7 is wound around each tooth 5 via these slots 6. By supplying power to the armature winding 7, a predetermined magnetic flux is formed in the stator 2.

回転子3は、固定子鉄心4よりも径方向内側に配置されている。回転子3は、中心軸Oに沿って延びるシャフト13と、シャフト13に外嵌固定された略円柱状の回転子鉄心8と、を備えている。
回転子鉄心8は、電磁鋼板を複数枚積層したり、軟磁性粉を加圧成形したりして形成することが可能である。回転子鉄心8の外径は、径方向で対向する各ティース5との間に、所定のエアギャップGが形成されるように設定されている。また、回転子鉄心8の径方向中央には、中心軸O方向に貫通する貫通孔9が形成されている。この貫通孔9に、シャフト13が圧入等され、シャフト13と回転子鉄心8とが一体となって回転する。
The rotor 3 is disposed radially inward of the stator core 4. The rotor 3 includes a shaft 13 that extends along the central axis O, and a substantially cylindrical rotor core 8 that is externally fitted and fixed to the shaft 13.
The rotor iron core 8 can be formed by laminating a plurality of electromagnetic steel plates or press-molding soft magnetic powder. The outer diameter of the rotor core 8 is set such that a predetermined air gap G is formed between each of the teeth 5 facing in the radial direction. In addition, a through hole 9 that penetrates in the direction of the central axis O is formed at the radial center of the rotor core 8. The shaft 13 is press-fitted into the through-hole 9, and the shaft 13 and the rotor core 8 rotate together.

さらに、回転子鉄心8には、1/8周の周角度領域のそれぞれに、2つの永久磁石収納孔10が形成されている。2つの永久磁石収納孔10は、それぞれ中心軸O方向からみて矩形状となるように形成されている。また、2つの永久磁石収納孔10は、中心軸O方向からみて径方向外側が開口するV字状となるように周方向に所定間隔をあけて並んで配置されている。   Further, two permanent magnet housing holes 10 are formed in the rotor core 8 in each of the circumferential angle regions of 1/8 round. The two permanent magnet storage holes 10 are each formed to have a rectangular shape when viewed from the direction of the central axis O. Further, the two permanent magnet housing holes 10 are arranged side by side with a predetermined interval in the circumferential direction so as to be V-shaped with the radially outer side opened as viewed from the central axis O direction.

このように形成された各永久磁石収納孔10に、それぞれ永久磁石11が挿入され、例えば接着剤等により固定される。永久磁石11は、永久磁石収納孔10の形状に対応するように直方体状に形成されており、永久磁石収納孔10を埋めている。これにより、回転子鉄心8の外周面に、8つの磁極が形成される。   The permanent magnets 11 are inserted into the permanent magnet housing holes 10 formed in this way, and are fixed by, for example, an adhesive. The permanent magnet 11 is formed in a rectangular parallelepiped shape so as to correspond to the shape of the permanent magnet storage hole 10 and fills the permanent magnet storage hole 10. Thereby, eight magnetic poles are formed on the outer peripheral surface of the rotor core 8.

ここで、1/8周の周角度領域のそれぞれに、2つの永久磁石11が中心軸O方向からみて径方向外側が開口するV字状に配置されているので、各永久磁石11により回転子鉄心8に形成される磁束を横切る固定子2による磁束を打ち消すように作用する。そして、各磁極の端部の漏れ磁界を抑制する。   Here, since the two permanent magnets 11 are arranged in a V shape in which the radially outer side is opened as viewed from the central axis O direction in each of the circumferential angle regions of 1/8 circumference, the rotor is caused by each permanent magnet 11. It acts to cancel the magnetic flux generated by the stator 2 that crosses the magnetic flux formed in the iron core 8. And the leakage magnetic field of the edge part of each magnetic pole is suppressed.

すなわち、1/8周の周角度領域のそれぞれに配置された2つの永久磁石11は、磁化方向が同一方向に沿っており、且つ磁化方向が同じとなる。
つまり、例えば、1/8周の周角度領域のそれぞれに配置された2つの永久磁石11は、それぞれ径方向外側の面がN極に着磁されている。この場合、周方向で隣り合う別の1/8周の周角度領域に配置された2つの永久磁石11は、それぞれ径方向外側の面がS極に着磁されている。なお、永久磁石11の保磁力についての詳細は、後述する。
That is, the two permanent magnets 11 disposed in each of the circumferential angle regions of 1/8 circumference have the same magnetization direction and the same magnetization direction.
In other words, for example, the two permanent magnets 11 disposed in each of the circumferential angle regions of 1/8 round have their radially outer surfaces magnetized with N poles. In this case, in the two permanent magnets 11 arranged in the circumferential angle region of another 周 circumference adjacent in the circumferential direction, the radially outer surface is magnetized to the S pole. Details of the coercive force of the permanent magnet 11 will be described later.

また、永久磁石収納孔10には、中心軸O方向からみて長手方向両端に、それぞれフラックスバリア12が形成されている。
フラックスバリア12は、永久磁石収納孔10に収納される永久磁石11の回転子鉄心8への磁束漏れを抑制するためのものである。すなわち、フラックスバリア12は、磁束が通りにくくなるように構成されていればよく、例えば、空洞部としたり、この空洞部に樹脂を充填させたりして構成することが可能である。
In addition, flux barriers 12 are formed in the permanent magnet housing holes 10 at both ends in the longitudinal direction as viewed from the central axis O direction.
The flux barrier 12 is for suppressing magnetic flux leakage to the rotor core 8 of the permanent magnet 11 housed in the permanent magnet housing hole 10. In other words, the flux barrier 12 only needs to be configured so that the magnetic flux does not easily pass through. For example, the flux barrier 12 can be configured as a hollow portion or filled with resin in the hollow portion.

図2は、回転電機1を中心軸O方向に沿う断面でみたときの概略構成図である。
同図に示すように、回転子3は回転子鉄心8を2つ備えており、これら2つの回転子鉄心8が中心軸O方向に沿って積層されている。また、2つの回転子鉄心8は、互いに周方向に所定角度ずれて配置されている。これにより、中心軸O方向で並ぶ永久磁石11が互いに周方向に所定角度ずれ、いわゆるスキュー構造になる。このため、2つの回転子鉄心8同士の重ね合わせ面8aに面する永久磁石11の端面11a同士(中心軸O方向で互いに対向する永久磁石11の端面11a同士)が接触している面積は、各永久磁石11の径方向に沿う断面積よりも小さくなる。
FIG. 2 is a schematic configuration diagram when the rotary electric machine 1 is viewed in a cross-section along the central axis O direction.
As shown in the figure, the rotor 3 includes two rotor cores 8, and these two rotor cores 8 are stacked along the direction of the central axis O. Further, the two rotor cores 8 are arranged so as to be shifted from each other by a predetermined angle in the circumferential direction. As a result, the permanent magnets 11 arranged in the direction of the central axis O have a so-called skew structure in which they are displaced from each other by a predetermined angle in the circumferential direction. For this reason, the area where the end surfaces 11a of the permanent magnets 11 facing the overlapping surface 8a of the two rotor cores 8 (the end surfaces 11a of the permanent magnets 11 facing each other in the central axis O direction) are in contact with each other. It becomes smaller than the cross-sectional area along the radial direction of each permanent magnet 11.

より詳しく、図3に基づいて説明する。
図3は、2つの回転子鉄心8に埋設されたそれぞれの永久磁石11の端面11a同士の重なり状況を説明するための図である。
同図の実線で示すように一方の回転子鉄心8に対し、図3中二点鎖線で示すように他方の回転子鉄心8を所定角度ずらすと、永久磁石11の端面11a同士が接触している面積Ar1は、永久磁石11の径方向に沿う断面積Ar2よりも小さくなる。
前述したように、永久磁石11の端面11a同士が接触している面積Ar1が減少すると、反磁界磁束が通り易くなり、この結果、回転子3全体(2つの回転子鉄心8)でみたときの永久磁石11の耐減磁性能が低下してしまう可能性があった。そこで、本第1の実施形態の永久磁石11では、以下のような構成を採用している。
This will be described in more detail with reference to FIG.
FIG. 3 is a diagram for explaining the overlapping state of the end faces 11a of the respective permanent magnets 11 embedded in the two rotor cores 8.
When the other rotor core 8 is shifted by a predetermined angle as shown by a two-dot chain line in FIG. 3 with respect to one rotor core 8 as shown by a solid line in FIG. 3, the end surfaces 11a of the permanent magnets 11 come into contact with each other. The area Ar1 is smaller than the cross-sectional area Ar2 along the radial direction of the permanent magnet 11.
As described above, when the area Ar1 where the end faces 11a of the permanent magnets 11 are in contact with each other decreases, the demagnetizing magnetic flux easily passes. As a result, when the entire rotor 3 (two rotor cores 8) is viewed. There was a possibility that the demagnetization resistance of the permanent magnet 11 would be lowered. Therefore, the permanent magnet 11 according to the first embodiment employs the following configuration.

図4は、2つの回転子鉄心8に埋設されている同一軸線上の2つの永久磁石11を模式的に示した図である。
同図に示すように、各回転子鉄心8の永久磁石11は、外周面全体に高保磁力処理部14(ハッチ部参照、以下の実施形態でも同様)が施されている。
FIG. 4 is a diagram schematically showing two permanent magnets 11 on the same axis line embedded in two rotor cores 8.
As shown in the figure, the permanent magnet 11 of each rotor core 8 is provided with a high coercive force processing portion 14 (see hatched portions, the same applies to the following embodiments) on the entire outer peripheral surface.

この高保磁力処理部14は、例えば、まず、ジスプロシウム(Dy)やテルビウム(Tb)等の重希土類を永久磁石11の外表面全体に塗布または蒸着させ、重希土類膜を形成する。そして、この重希土類膜を拡散することにより、永久磁石11の母材の表面に重希土類膜よりも厚い高保磁力処理部14が形成される。すなわち、高保磁力処理部14は、永久磁石11の母材の表面に形成された重希土類膜といえる。   For example, the high coercive force processing unit 14 first applies or deposits a heavy rare earth such as dysprosium (Dy) or terbium (Tb) on the entire outer surface of the permanent magnet 11 to form a heavy rare earth film. Then, by diffusing this heavy rare earth film, a high coercive force processing portion 14 thicker than the heavy rare earth film is formed on the surface of the base material of the permanent magnet 11. That is, the high coercive force processing portion 14 can be said to be a heavy rare earth film formed on the surface of the base material of the permanent magnet 11.

なお、高保磁力処理部14の厚みは、例えば1.5mm〜2.0mm程度である。また、塗布の方法としては、例えば処理液に永久磁石11を浸す、いわゆる浸漬方法などが挙げられる。さらに、永久磁石11の母材としては、例えばNd−Fe−B焼結磁石が用いられている。このNd−Fe−B焼結磁石は、ネオジム、鉄、およびボロンを主成分とする合金である。   In addition, the thickness of the high coercive force processing unit 14 is, for example, about 1.5 mm to 2.0 mm. Moreover, as a coating method, for example, a so-called dipping method in which the permanent magnet 11 is immersed in a processing solution can be used. Furthermore, as a base material of the permanent magnet 11, for example, a Nd—Fe—B sintered magnet is used. This Nd—Fe—B sintered magnet is an alloy mainly composed of neodymium, iron, and boron.

永久磁石11の外周面全体に高保磁力処理部14を施すことにより、回転子鉄心8同士の重ね合わせ面8aに面する永久磁石11の端面11aの保磁力を高めることができる。より具体的には、永久磁石11の角部で母材からの保磁力向上は、400kA/m〜500kA/m程度になる。このため、永久磁石11の端面11aの端面に反磁界が作用しても、永久磁石11の減磁を抑制できる。   By applying the high coercive force processing unit 14 to the entire outer peripheral surface of the permanent magnet 11, the coercive force of the end surface 11a of the permanent magnet 11 facing the overlapping surface 8a of the rotor cores 8 can be increased. More specifically, the improvement in coercive force from the base material at the corners of the permanent magnet 11 is about 400 kA / m to 500 kA / m. For this reason, even if a demagnetizing field acts on the end surface of the end surface 11a of the permanent magnet 11, demagnetization of the permanent magnet 11 can be suppressed.

したがって、上述の第1の実施形態によれば、回転子3にスキュー構造を採用した場合であっても、回転子3全体として永久磁石11の減磁を抑制できる。このため、所望のトルクを確保しつつ、トルクリップルを低減できる高性能な回転電機1を提供できる。   Therefore, according to the first embodiment described above, demagnetization of the permanent magnet 11 can be suppressed as a whole of the rotor 3 even when the skew structure is adopted for the rotor 3. For this reason, it is possible to provide a high-performance rotating electrical machine 1 that can reduce torque ripple while ensuring a desired torque.

(第2の実施形態)
次に、図2を援用し、図5、図6に基づいて、第2の実施形態について説明する。
図5は、同一軸線上の2つの永久磁石211を模式的に示した図であって、前述の図4に対応している。
ここで、前述の第1の実施形態と本第2の実施形態との相違点は、第1の実施形態の永久磁石11に施されている高保磁力処理部14の箇所と、第2の実施形態の永久磁石211に施されている高保磁力処理部14の箇所とが異なる点にある(以下の実施形態についても同様)。
(Second Embodiment)
Next, the second embodiment will be described based on FIGS. 5 and 6 with reference to FIG.
FIG. 5 is a diagram schematically showing two permanent magnets 211 on the same axis, and corresponds to FIG. 4 described above.
Here, the difference between the first embodiment and the second embodiment is that the location of the high coercive force processing unit 14 applied to the permanent magnet 11 of the first embodiment and the second embodiment. It is in the point from which the location of the high coercive-force process part 14 given to the permanent magnet 211 of a form differs (the same also about the following embodiment).

より具体的には、図5に示すように、第2の実施形態の永久磁石211には、回転子鉄心8同士の重ね合わせ面8a(図2参照)に面する永久磁石211の端面211aとは反対側の端面211bを除いた全ての外周面に、高保磁力処理部14が施されている。   More specifically, as shown in FIG. 5, the permanent magnet 211 of the second embodiment includes an end surface 211 a of the permanent magnet 211 facing the overlapping surface 8 a (see FIG. 2) of the rotor cores 8. The high coercive force processing unit 14 is applied to all outer peripheral surfaces except the end surface 211b on the opposite side.

このような永久磁石211の具体的な製造方法について説明する。
すなわち、まず、図6に示すように、回転子鉄心8を2つ積層した中心軸O方向の高さH1(図2参照)と同一長さH2の永久磁石211を用意し、この永久磁石211の外表面全体に高保磁力処理部14を施す。なお、高保磁力処理部14を施す工程については、前述の第1の実施形態と同様である。
A specific method for manufacturing such a permanent magnet 211 will be described.
That is, first, as shown in FIG. 6, a permanent magnet 211 having the same length H2 as the height H1 (see FIG. 2) in the central axis O direction in which two rotor cores 8 are stacked is prepared. The high coercive force processing unit 14 is applied to the entire outer surface of the substrate. The process of applying the high coercive force processing unit 14 is the same as that in the first embodiment.

続いて、永久磁石211を高さ方向H2で半分となるように切断して2分割する。そして、2分割された各々永久磁石211の切断面211cとは反対側の面が重ね合わさるように、それぞれ回転子鉄心8に組み付ける。すなわち、永久磁石211の端面211aとは反対側の高保磁力処理部14が施されていない端面211bは、切断面211cとされている。   Subsequently, the permanent magnet 211 is cut in half in the height direction H2 and divided into two. And it assembles | attaches to the rotor core 8 so that the surface on the opposite side to the cut surface 211c of each permanent magnet 211 divided into 2 may overlap. That is, the end surface 211b on the side opposite to the end surface 211a of the permanent magnet 211 and not subjected to the high coercive force processing unit 14 is a cut surface 211c.

したがって、上述の第2の実施形態によれば、前述の第1の実施形態と同様の効果を奏する。また、これに加え、1本の永久磁石211から、積層される各回転子鉄心8のそれぞれに組付け可能な2つの永久磁石211を製造することができるので、回転子3の製造コストを低減することができる。   Therefore, according to the second embodiment described above, the same effects as those of the first embodiment described above can be obtained. In addition, since the two permanent magnets 211 that can be assembled to each of the laminated rotor cores 8 can be manufactured from one permanent magnet 211, the manufacturing cost of the rotor 3 is reduced. can do.

(第3の実施形態)
次に、図2を援用し、図7に基づいて、第3の実施形態について説明する。
図7は、同一軸線上の2つの永久磁石311を模式的に示した図であって、前述の図4に対応している。
同図に示すように、第3の実施形態の永久磁石311には、回転子鉄心8同士の重ね合わせ面8a(図2参照)に面する永久磁石311の端面311aのみに、高保磁力処理部14が施されている。
(Third embodiment)
Next, the third embodiment will be described based on FIG. 7 with reference to FIG.
FIG. 7 is a diagram schematically showing two permanent magnets 311 on the same axis, and corresponds to FIG. 4 described above.
As shown in the figure, the permanent magnet 311 of the third embodiment has a high coercive force processing unit only on the end surface 311a of the permanent magnet 311 facing the overlapping surface 8a of the rotor cores 8 (see FIG. 2). 14 is given.

永久磁石311の端面311aのみに高保磁力処理部14を施す方法としては、例えば、以下のような方法が挙げられる。
まず、永久磁石311の端面311aを除いた全ての外表面にマスクを施す。そして、このマスクを施した状態で、永久磁石311の表面にジスプロシウム(Dy)やテルビウム(Tb)等の重希土類を塗布または蒸着させ、重希土類膜を形成する。この後、マスクを除去し、永久磁石311に重希土類膜を拡散させる。これにより、永久磁石311の端面311aのみに高保磁力処理部14を施すことができる。
Examples of the method of applying the high coercive force processing unit 14 only to the end surface 311a of the permanent magnet 311 include the following methods.
First, a mask is applied to all outer surfaces except the end surface 311 a of the permanent magnet 311. Then, with this mask applied, a heavy rare earth such as dysprosium (Dy) or terbium (Tb) is applied or deposited on the surface of the permanent magnet 311 to form a heavy rare earth film. Thereafter, the mask is removed, and the heavy rare earth film is diffused in the permanent magnet 311. Thereby, the high coercive force processing unit 14 can be applied only to the end surface 311 a of the permanent magnet 311.

したがって、上述の第3の実施形態によれば、前述の第1の実施形態と同様の効果を奏する。また、永久磁石311の高保磁力処理部14を施すにあたり、この高保磁力処理部14が最低限必要な箇所(永久磁石311の減磁易い箇所、つまり、回転子鉄心8同士の重ね合わせ面8a近傍)のみに高保磁力処理部14を施している。このため、永久磁石311の製造コストを、さらに低減することが可能になる。   Therefore, according to the third embodiment described above, the same effects as those of the first embodiment described above can be obtained. In addition, when the high coercive force processing unit 14 of the permanent magnet 311 is applied, the minimum necessary part of the high coercive force processing unit 14 (the location where the permanent magnet 311 is easily demagnetized, that is, the vicinity of the overlapping surface 8a of the rotor cores 8). Only) is provided with a high coercive force processing section 14. For this reason, the manufacturing cost of the permanent magnet 311 can be further reduced.

(第4の実施形態)
次に、図8に基づいて、第4の実施形態について説明する。
図8は、同一軸線上の4つの永久磁石411を模式的に示した図であって、前述の図4に対応している。
同図に示すように、本第4の実施形態では、回転子403は、回転子鉄心8を2つ備えており、これら4つの回転子鉄心8が中心軸O方向(図8において不図示)に沿って積層されている。また、4つの回転子鉄心8のうち、中心軸O方向中央の2つの回転子鉄心8は、周方向の相対位置がずれておらず、中心軸O方向で対向する2つの永久磁石411の端面411a同士が全て重なり合っている。
(Fourth embodiment)
Next, a fourth embodiment will be described based on FIG.
FIG. 8 is a diagram schematically showing four permanent magnets 411 on the same axis, and corresponds to FIG. 4 described above.
As shown in the figure, in the fourth embodiment, the rotor 403 is provided with two rotor cores 8, and these four rotor cores 8 are in the direction of the central axis O (not shown in FIG. 8). It is laminated along. Of the four rotor cores 8, the two rotor cores 8 at the center in the central axis O direction are not shifted in relative position in the circumferential direction, and are end faces of two permanent magnets 411 facing in the central axis O direction. All of 411a overlap.

これに対し、4つの回転子鉄心8のうち、中心軸O方向外側に配置されている2つの回転子鉄心8は、これら回転子鉄心8よりも中心軸O方向中央に配置されている2つの回転子鉄心8に対し、周方向に所定角度ずれて配置されている。これにより、回転子3全体として(永久磁石411が全体として)スキュー構造になっている。   On the other hand, of the four rotor cores 8, the two rotor cores 8 arranged on the outer side in the central axis O direction are the two rotor cores 8 arranged in the center axis O direction center of these rotor cores 8. The rotor core 8 is arranged with a predetermined angle shift in the circumferential direction. Accordingly, the rotor 3 as a whole (the permanent magnet 411 as a whole) has a skew structure.

このような場合、回転子鉄心8同士の重ね合わせ面8aが周方向にずれていない箇所の永久磁石411の端面411aには、高保磁力処理部14が施されていない。これは、永久磁石411の端面411a同士が接触している面積が、各永久磁石11の径方向に沿う断面積と同一になり、とりわけ固定子2による反磁界磁束が通り易くなるわけではない。   In such a case, the high coercive force processing unit 14 is not applied to the end surface 411a of the permanent magnet 411 where the overlapping surface 8a of the rotor cores 8 is not displaced in the circumferential direction. This is because the area where the end faces 411a of the permanent magnets 411 are in contact with each other is the same as the cross-sectional area along the radial direction of each permanent magnet 11, and the demagnetizing magnetic flux by the stator 2 is not particularly easy to pass.

このため、中心軸O方向中央の2つの回転子鉄心8に組み付ける永久磁石411は、例えば、以下の製造方法を採用できる。
すなわち、前述の第2の実施形態の図6で示したように、まず、回転子鉄心8を2つ積層した中心軸O方向の高さH1と同一長さH2の永久磁石211の外表面に高保磁力処理部14を施したものを2分割する。そして、そのまま向きを変更せずに、第4の実施形態の永久磁石411として、中心軸O方向中央の2つの回転子鉄心8に組み付ける。
For this reason, the following manufacturing method can be employ | adopted for the permanent magnet 411 assembled | attached to the two rotor cores 8 of the center axis | shaft O direction center, for example.
That is, as shown in FIG. 6 of the second embodiment described above, first, on the outer surface of the permanent magnet 211 having the same length H2 as the height H1 in the central axis O direction in which two rotor cores 8 are stacked. What gave the high coercive-force processing part 14 is divided into two. Then, without changing the orientation as it is, the permanent magnet 411 of the fourth embodiment is assembled to the two rotor cores 8 in the center of the central axis O direction.

これに対し、回転子鉄心8に対し、周方向に所定角度ずれて配置されている中心軸O方向外側の永久磁石411は、例えば、以下の製造方法を採用できる。
すなわち、前述の第2の実施形態の図6で示したように、まず、永久磁石211を2分割する。この後、それぞれ永久磁石211の切断面211cとは反対側の面が、他の回転子鉄心8の永久磁石411と重ね合わさるように向きを変更する。そして、第4の実施形態の永久磁石411として、中心軸O方向外側の2つの回転子鉄心8に組み付ける。
このように、中心軸O方向外側の永久磁石411は、回転子鉄心8同士の重ね合わせ面8aとは反対側の端面(高保磁力処理部14が施されていない端面、中心軸O方向外側に露出している端面)411bが、切断面411cとされる。
On the other hand, the following manufacturing method can be adopted for the permanent magnet 411 outside the central axis O direction arranged with a predetermined angle shift in the circumferential direction with respect to the rotor core 8, for example.
That is, as shown in FIG. 6 of the second embodiment described above, first, the permanent magnet 211 is divided into two. Thereafter, the direction of the permanent magnet 211 is changed so that the surface opposite to the cut surface 211 c of the permanent magnet 211 overlaps the permanent magnet 411 of the other rotor core 8. Then, the permanent magnets 411 of the fourth embodiment are assembled to the two rotor cores 8 on the outer side in the central axis O direction.
Thus, the permanent magnet 411 on the outer side in the central axis O direction is the end surface opposite to the overlapping surface 8a of the rotor cores 8 (the end surface on which the high coercive force processing unit 14 is not applied, the outer side in the central axis O direction). The exposed end surface 411b is a cut surface 411c.

したがって、上述の第4の実施形態によれば、前述の第2の実施形態と同様の効果を奏する。また、回転子鉄心8を4つ積層する分、回転電機1の回転トルクを向上させることができる。   Therefore, according to the above-described fourth embodiment, the same effects as those of the above-described second embodiment can be obtained. Further, the rotational torque of the rotating electrical machine 1 can be improved by the amount of the four rotor cores 8 stacked.

なお、上述の実施形態の回転子3,403は、回転子鉄心8が2つまたは4つ積層されている場合について説明した。しかしながら、これに限られるものではなく、3つまたは5つ以上積層されていてもよい。望ましくは、回転子鉄心8が偶数個積層されていることが望ましい。回転子鉄心8の積層個数を偶数個の設定することにより、上記第2の実施形態や第4の実施形態のような効果を奏することができる。
また、回転子鉄心8が複数個積層されている場合において、中心軸O方向で並び、且つ周方向に所定角度ずれた2つの永久磁石のうちの少なくとも1つが、互いに対向する端面同士とは反対側の端面(中心軸O方向外側に露出している端面)を切断面とすることが望ましい。
In addition, the rotor 3403 of the above-mentioned embodiment demonstrated the case where the rotor core 8 was laminated | stacked two or four. However, the present invention is not limited to this, and three or five or more may be stacked. Desirably, an even number of rotor cores 8 are laminated. By setting the number of laminated rotor cores 8 to an even number, the effects as in the second embodiment and the fourth embodiment can be obtained.
When a plurality of rotor cores 8 are stacked, at least one of two permanent magnets arranged in the direction of the central axis O and shifted by a predetermined angle in the circumferential direction is opposite to the end surfaces facing each other. It is desirable that the end surface on the side (end surface exposed to the outside in the central axis O direction) be a cut surface.

さらに、上述の実施形態では、回転子鉄心8は、8つの磁極の凸極を形成するように構成されている場合について説明した。さらに、回転子鉄心8は、1つの磁極を、2つの永久磁石11〜411を中心軸O方向からみて径方向外側が開口するV字状に並べて形成する場合について説明した。しかしながら、これに限られるものではなく、磁石埋め込み型のさまざまな回転電機に、上述の永久磁石11〜411の構成を採用することができる。   Furthermore, in the above-described embodiment, the case where the rotor core 8 is configured to form the convex poles of eight magnetic poles has been described. Further, the rotor iron core 8 has been described with respect to the case where one magnetic pole is formed by arranging two permanent magnets 11 to 411 in a V shape with the radially outer side viewed from the central axis O direction. However, the present invention is not limited to this, and the configuration of the permanent magnets 11 to 411 described above can be employed in various types of rotating electrical machines with a built-in magnet.

以上説明した少なくともひとつの実施形態によれば、回転子3,403にスキュー構造を採用した場合であっても、回転子3,403全体として永久磁石11〜411の耐減磁性能の低下を抑制できる。このため、所望のトルクを確保しつつ、トルクリップルを低減できる高性能な回転電機1を提供できる。   According to at least one embodiment described above, even if the skew structure is adopted for the rotor 3, 403, the deterioration of the demagnetization resistance performance of the permanent magnets 11 to 411 as a whole is suppressed. it can. For this reason, it is possible to provide a high-performance rotating electrical machine 1 that can reduce torque ripple while ensuring a desired torque.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1…回転電機、3,403…回転子、8…回転子鉄心、8a…重ね合わせ面、11,211,311,411…永久磁石、11a,211a,311a,411a…端面,211c,411c…切断面、13…シャフト、14…高保磁力処理部、O…中心軸(回転軸線) DESCRIPTION OF SYMBOLS 1 ... Rotary electric machine, 3,403 ... Rotor, 8 ... Rotor core, 8a ... Overlapping surface 11, 21, 211, 311, 411 ... Permanent magnet, 11a, 211a, 311a, 411a ... End face, 211c, 411c ... Cutting Surface, 13 ... shaft, 14 ... high coercive force processing section, O ... center axis (rotation axis)

Claims (3)

回転軸線回りに回転するシャフトと、
前記シャフトに固定され、前記回転軸線に沿って積層される複数の回転子鉄心と、
前記複数の回転子鉄心ごとに埋設される複数の永久磁石と、
を備え、
前記複数の永久磁石のうち、前記回転軸線方向で並ぶ少なくとも2つの前記永久磁石を周方向に所定角度ずらして配置し、
所定角度ずれた前記永久磁石の互いに対向する端面に、それぞれ前記永久磁石の内部と比較して保磁力の高い高保磁力処理を施してなる膜が形成されている
回転子。
A shaft that rotates about the axis of rotation;
A plurality of rotor cores fixed to the shaft and stacked along the rotation axis;
A plurality of permanent magnets embedded in each of the plurality of rotor cores;
With
Among the plurality of permanent magnets, at least two permanent magnets arranged in the rotation axis direction are arranged with a predetermined angle shifted in the circumferential direction,
A rotor in which a film formed by performing a high coercive force process having a higher coercive force than the inside of each of the permanent magnets is formed on end surfaces facing each other of the permanent magnets shifted by a predetermined angle.
前記回転軸線方向で並び、且つ周方向に所定角度ずれた2つの前記永久磁石のうちの少なくとも1つは、互いに対向する端面とは反対側の端面が、切断面である
請求項1に記載の回転子。
The at least one of the two permanent magnets arranged in the rotation axis direction and shifted by a predetermined angle in the circumferential direction has an end surface opposite to an end surface facing each other as a cut surface. Rotor.
前記複数の回転子鉄心の個数は偶数個に設定されており、
前記回転軸線方向外側に位置する前記永久磁石は、他の前記永久磁石と前記回転軸線方向で対向する端面とは反対側の端面が、前記切断面である
請求項2に記載の回転子。
The number of the plurality of rotor cores is set to an even number,
3. The rotor according to claim 2, wherein the permanent magnet located on the outer side in the rotational axis direction has an end surface opposite to an end surface facing the other permanent magnet in the rotational axis direction as the cut surface.
JP2016251915A 2016-12-26 2016-12-26 Rotor Active JP6851816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016251915A JP6851816B2 (en) 2016-12-26 2016-12-26 Rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016251915A JP6851816B2 (en) 2016-12-26 2016-12-26 Rotor

Publications (2)

Publication Number Publication Date
JP2018107899A true JP2018107899A (en) 2018-07-05
JP6851816B2 JP6851816B2 (en) 2021-03-31

Family

ID=62785759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016251915A Active JP6851816B2 (en) 2016-12-26 2016-12-26 Rotor

Country Status (1)

Country Link
JP (1) JP6851816B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176771A1 (en) * 2021-02-17 2022-08-25 株式会社デンソー Rotary electric machine and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119190A (en) * 2008-11-12 2010-05-27 Toyota Motor Corp Rotor for magnet-embedded motors and magnet-embedded motor
JP2010213516A (en) * 2009-03-12 2010-09-24 Nissan Motor Co Ltd Permanent magnet type rotating machine and method for manufacturing permanent magnet for rotor
US20110068651A1 (en) * 2009-09-18 2011-03-24 Shin-Etsu Chemical Co., Ltd. Rotor for permanent magnet rotating machine
JP2011135638A (en) * 2009-12-22 2011-07-07 Toshiba Industrial Products Manufacturing Corp Rotator of rotating electric machine, and rotating electric machine
JP2014064413A (en) * 2012-09-21 2014-04-10 Denso Corp Rotor and rotary electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119190A (en) * 2008-11-12 2010-05-27 Toyota Motor Corp Rotor for magnet-embedded motors and magnet-embedded motor
JP2010213516A (en) * 2009-03-12 2010-09-24 Nissan Motor Co Ltd Permanent magnet type rotating machine and method for manufacturing permanent magnet for rotor
US20110068651A1 (en) * 2009-09-18 2011-03-24 Shin-Etsu Chemical Co., Ltd. Rotor for permanent magnet rotating machine
JP2011135638A (en) * 2009-12-22 2011-07-07 Toshiba Industrial Products Manufacturing Corp Rotator of rotating electric machine, and rotating electric machine
JP2014064413A (en) * 2012-09-21 2014-04-10 Denso Corp Rotor and rotary electric machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176771A1 (en) * 2021-02-17 2022-08-25 株式会社デンソー Rotary electric machine and manufacturing method therefor

Also Published As

Publication number Publication date
JP6851816B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
EP3457534B1 (en) Rotating electric machine
US9172279B2 (en) Automotive embedded permanent magnet rotary electric machine
JP6781536B2 (en) Permanent magnet rotor and permanent magnet rotor
US20140210296A1 (en) Rotor for permanent magnet type motor, method of manufacturing rotor for permanent magnet type motor, and permanent magnet type motor
JP6407456B2 (en) Rotor, magnetizing method, electric motor and scroll compressor
JP2020025373A (en) Stator core for rotating electric machine and rotating electric machine
WO2016047078A1 (en) Permanent magnet type rotor and permanent magnet type synchronous rotary electric machine
JP6661939B2 (en) Rotor
WO2017061305A1 (en) Rotor and rotating electric machine
JP6748852B2 (en) Brushless motor
JP2016072995A (en) Embedded magnet type rotor and electric motor including the same
JPWO2019215853A1 (en) Rotor structure of rotating electric machine
JP2012217278A (en) Permanent magnet type rotary electric machine and manufacturing method therefor
JP2014155415A (en) Embedded magnet rotor and method of manufacturing embedded magnet rotor
KR100680201B1 (en) Permanent magnet type motor
WO2021065687A1 (en) Rotor and motor
CN114303302B (en) Permanent magnet embedded motor
JP5954279B2 (en) Rotating electric machine
JP6851816B2 (en) Rotor
JP6622776B2 (en) Rotor and electric motor
JP2018098936A (en) Magnet unit
JP5971142B2 (en) Magnet embedded rotor of rotating electrical machine and rotating electrical machine
JP7038527B2 (en) Manufacturing method of magnetic wedge for rotary electric machine, magnetic wedge for rotary electric machine, and rotary electric machine
JP2017046386A (en) Permanent magnet electric motor
JP2014161206A (en) Interior magnet type rotating electrical machine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170913

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210310

R150 Certificate of patent or registration of utility model

Ref document number: 6851816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150