JP2018107003A - All-solid battery - Google Patents

All-solid battery Download PDF

Info

Publication number
JP2018107003A
JP2018107003A JP2016253838A JP2016253838A JP2018107003A JP 2018107003 A JP2018107003 A JP 2018107003A JP 2016253838 A JP2016253838 A JP 2016253838A JP 2016253838 A JP2016253838 A JP 2016253838A JP 2018107003 A JP2018107003 A JP 2018107003A
Authority
JP
Japan
Prior art keywords
solid
surface portion
active material
solid battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016253838A
Other languages
Japanese (ja)
Inventor
泰正 小熊
Yasumasa Oguma
泰正 小熊
松浦 智浩
Tomohiro Matsuura
智浩 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016253838A priority Critical patent/JP2018107003A/en
Publication of JP2018107003A publication Critical patent/JP2018107003A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hermetic type all-solid battery in which an all-solid battery laminate is uniformity bound.SOLUTION: An all-solid battery 100 in which an all-solid battery laminate 15 is sealed and housed in an outer can 20, is an all-solid battery 100, in which the all-solid battery laminate 15 includes one or more of a battery element 10 in which a negative electrode collector layer 1, a negative activation layer 2, a solid electrolyte layer 3, a positive activation layer 4, and a positive electrode collector layer 5 are laminated in this order, the outer can 20 includes a bottom surface part 20a, a side surface part 20b, a curving surface part 20c connecting the bottom surface 20a and the side surface part 20b, and an upper surface part opposite to the bottom surface part 20a (not shown). The all-solid battery laminate 15 is housed in the outer can 20 so that the lamination direction is vertical to the bottom surface part 20a of the outer can 20, and the curving surface part 20c of the outer can 20 is positioned on a side surface part 20b side from an overlapping region A with the negative activation layer 2 and the positive activation layer 4 when the all-solid battery 100 is observed from the lamination direction of the all-solid battery laminate 15.SELECTED DRAWING: Figure 1

Description

本発明は、外装缶に全固体電池積層体が密閉収納された全固体電池に関する。   The present invention relates to an all-solid battery in which an all-solid battery stack is hermetically stored in an outer can.

固体状の全固体電池積層体を外装缶に密閉収納した全固体電池が知られている。   An all-solid battery in which a solid all-solid battery stack is hermetically stored in an outer can is known.

例えば特許文献1には、外装部材に正極、負極、セパレータ、及び非水電解液を有する発電要素を収納した電池が開示されており、更に、外装部材が金属製の外装缶であること、及び、電解液の代わりに全固体型高分子固体電解質でもよいことが記載されている。   For example, Patent Document 1 discloses a battery in which a power generation element having a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte is housed in an exterior member, and the exterior member is a metal exterior can; In addition, it is described that an all solid polymer solid electrolyte may be used instead of the electrolytic solution.

特開2004−139961号公報JP 2004-139916 A

全固体電池積層体を用いる全固体電池において電池反応を進行させるためには、積層体を拘束する必要がある。全固体電池積層体が外装缶に密閉収納された密閉型の全固体電池においても同様である。   In order to advance a battery reaction in an all-solid battery using an all-solid battery stack, it is necessary to restrain the stack. The same applies to a sealed all-solid battery in which the all-solid battery stack is hermetically housed in an outer can.

しかしながら、密閉型の全固体電池では、使用する外装缶の構造、形状等によっては、積層体の拘束が均一に行われずに、所期する充放電特性が発現されない場合がある。   However, in a sealed type all-solid-state battery, depending on the structure, shape, etc. of the outer can used, the laminate may not be uniformly restrained, and the desired charge / discharge characteristics may not be exhibited.

本発明は、上記の問題を改善しようとしてなされた。従って本発明の目的は、全固体電池積層体が均一に拘束された、密閉型の全固体電池を提供することである。   The present invention has been made to improve the above problems. Accordingly, an object of the present invention is to provide a sealed all-solid battery in which the all-solid battery stack is uniformly restrained.

本発明の上記目的は、
外装缶に全固体電池積層体が密閉収納された全固体電池であって、
前記全固体電池積層体は、負極集電体層、負極活物質層、固体電解質層、正極活物質層、及び正極集電体層がこの順に積層された電池素子の1つ以上を含み、
前記外装缶は、底面部、側面部、前記底面部と前記側面部とを繋ぐ曲面部、及び前記底面部と対向する上面部を有し、
前記全固体電池積層体は、その積層方向が前記外装缶の底面部と垂直となるように前記外装缶に収納されており、且つ
前記外装缶の前記曲面部が、前記全固体電池を前記全固体電池積層体の積層方向から観察したときの負極活物質層と正極活物質層との重複領域よりも前記側面部側に位置する、前記全固体電池
によって達成される。
The above object of the present invention is to
An all-solid battery in which an all-solid battery stack is hermetically stored in an outer can,
The all-solid battery laminate includes one or more battery elements in which a negative electrode current collector layer, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector layer are laminated in this order,
The outer can has a bottom surface portion, a side surface portion, a curved surface portion connecting the bottom surface portion and the side surface portion, and an upper surface portion facing the bottom surface portion,
The all-solid battery laminate is housed in the outer can so that its stacking direction is perpendicular to the bottom surface of the outer can, and the curved surface portion of the outer can is used to remove the all-solid battery from the entire can. This is achieved by the all solid state battery located on the side of the side surface with respect to the overlapping region of the negative electrode active material layer and the positive electrode active material layer when observed from the stacking direction of the solid battery laminate.

本発明の全固体電池は、外装缶に密閉収納された全固体電池積層体のうち、充放電に寄与する負極活物質層と正極活物質層との重複領域が均一に拘束されている。そのため、本発明の全固体電池は所期する充放電特性を不足なく発現することができる。   In the all solid state battery of the present invention, in the all solid state battery stack that is hermetically housed in the outer can, the overlapping region between the negative electrode active material layer and the positive electrode active material layer that contributes to charge / discharge is uniformly restricted. Therefore, the all-solid-state battery of the present invention can exhibit the desired charge / discharge characteristics without deficiency.

図1は、本発明の全固体電池の構造を説明するための概略断面図である。FIG. 1 is a schematic cross-sectional view for explaining the structure of the all solid state battery of the present invention. 図2は、図1の全固体電池における、外装缶曲面部近傍の拡大図である。FIG. 2 is an enlarged view of the vicinity of the curved surface of the outer can in the all solid state battery of FIG.

<全固体電池>
以下、本発明の好ましい実施形態について、図を参照しつつ説明する。
<All solid battery>
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1に、本発明の全固体電池の構造を説明するための概略断面図を示した。   FIG. 1 is a schematic cross-sectional view for explaining the structure of the all solid state battery of the present invention.

図1の全固体電池100は、全固体電池積層体15を有する。全固体電池積層体15は、負極集電体層1、負極活物質層2、固体電解質層3、正極活物質層4、及び正極集電体層5がこの順に積層された全固体電池素子10が、負極集電体層1及び正極集電体層5を共有し、積層順を逆方向として3個が積層されている。   The all solid state battery 100 in FIG. 1 has an all solid state battery stack 15. The all-solid battery stack 15 includes an all-solid battery element 10 in which a negative electrode current collector layer 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector layer 5 are laminated in this order. However, the negative electrode current collector layer 1 and the positive electrode current collector layer 5 are shared, and three layers are stacked with the stacking order being the reverse direction.

全固体電池積層体15は、積層方向から観察したときに、負極活物質層2及び正極活物質層4が重複している重複領域Aと、負極活物質層2及び正極活物質層4とが重複していない非重複領域Bと、を有する。   The all-solid-state battery laminate 15 has an overlapping region A where the negative electrode active material layer 2 and the positive electrode active material layer 4 overlap, and the negative electrode active material layer 2 and the positive electrode active material layer 4 when observed from the stacking direction. A non-overlapping non-overlapping region B.

全固体電池積層体15は、外装缶20に密閉収納されている。外装缶20は、底面部20a、側面部20b、底面部20aと側面部20bとを繋ぐ曲面部20c、及び底面部20aと対向する上面部(図示せず)を有する。   The all-solid battery stack 15 is hermetically housed in the outer can 20. The outer can 20 includes a bottom surface portion 20a, a side surface portion 20b, a curved surface portion 20c that connects the bottom surface portion 20a and the side surface portion 20b, and a top surface portion (not shown) that faces the bottom surface portion 20a.

外装缶20において、底面部20a、側面部20b、及び上面部は、それぞれ平面状であってよい。底面部20aと側面部20bとがなす角は、典型的には90度である。底面部20aと上面部(図示せず)とは、典型的には平行である。   In the outer can 20, the bottom surface portion 20 a, the side surface portion 20 b, and the top surface portion may be planar. The angle formed by the bottom surface portion 20a and the side surface portion 20b is typically 90 degrees. The bottom surface portion 20a and the top surface portion (not shown) are typically parallel.

全固体電池積層体15は、その積層方向が外装缶20の底面部20aと垂直となるように外装缶20に収納されている。そして、外装缶20の曲面部20cは、全固体電池100を全固体電池積層体15の積層方向から観察したときの、全固体電池積層体15における負極活物質層2と正極活物質層4との重複領域Aよりも側面部20b側に位置する。   The all-solid-state battery stack 15 is housed in the outer can 20 so that the stacking direction is perpendicular to the bottom surface portion 20 a of the outer can 20. The curved surface portion 20c of the outer can 20 has the negative electrode active material layer 2 and the positive electrode active material layer 4 in the all solid battery stack 15 when the all solid battery 100 is observed from the stacking direction of the all solid battery stack 15. It is located on the side surface portion 20b side of the overlapping region A.

本実施形態の全固体電池100は、外装缶20の曲面部20cを、全固体電池積層体15のうちの重複領域Aよりも側面部20b側に配置することにより、重複領域Aの全部にわたって均一に拘束することができる。そのため、全固体電池積層体15における各層間の電池反応が適切に進行するから、所期する充放電特性を発現することができる。   In the all solid state battery 100 of the present embodiment, the curved surface portion 20c of the outer can 20 is arranged on the side surface portion 20b side of the overlap region A of the all solid state battery stack 15 so that the entire overlap region A is uniform. Can be restrained. Therefore, since the battery reaction between the layers in the all-solid battery laminate 15 proceeds appropriately, the expected charge / discharge characteristics can be expressed.

一方で、本実施形態の全固体電池100における全固体電池積層体15のうちの非重複領域Bにおいては、層間の電池反応が行われず、従って全固体電池100の充放電に寄与しないから、拘束の均一性を要求すべき前提を欠く。従って、外装缶20の曲面部20cは、全固体電池積層体15の非重複領域Bよりも側面部20b側に位置していてもよいし、該領域Bと一部が重複していてもよい。   On the other hand, in the non-overlapping region B in the all-solid battery stack 15 in the all-solid battery 100 of the present embodiment, the inter-layer battery reaction is not performed, and thus does not contribute to charge / discharge of the all-solid battery 100. Lacks the premise to demand uniformity. Therefore, the curved surface portion 20c of the outer can 20 may be located on the side surface portion 20b side with respect to the non-overlapping region B of the all-solid battery stack 15, or may partially overlap with the region B. .

外装缶20の曲面部20cが重複領域Aよりも側面部20b側に位置するとは、外装缶20を全固体電池積層体15の積層方向に垂直な方向から観察したとき、曲面部20cの開始点が重複領域Aよりも側面部20b側に位置することをいう。上記「曲面部20cの開始点」とは、外装缶20を全固体電池積層体15の積層方向に垂直な方向から観察したときに、外装缶20の形状が、底面部20aによって規定される直線から立ち上がる点をいう。   The curved surface portion 20c of the outer can 20 is located on the side surface portion 20b side with respect to the overlapping region A. When the outer can 20 is observed from a direction perpendicular to the stacking direction of the all-solid battery stack 15, the starting point of the curved surface portion 20c. Is located on the side surface 20b side with respect to the overlapping region A. The “starting point of the curved surface portion 20 c” is a straight line in which the shape of the outer can 20 is defined by the bottom surface portion 20 a when the outer can 20 is observed from a direction perpendicular to the stacking direction of the all-solid battery stack 15. The point that stands up from.

図2に、本実施形態の全固体電池における、外装缶の曲面部近傍の拡大図を示した。   In FIG. 2, the enlarged view of the curved surface part vicinity of an exterior can in the all-solid-state battery of this embodiment was shown.

図2の全固体電池100中、外装缶20の曲面部20cの開始点としては、外装缶20の曲面部20cの外側における開始点20c1と、曲面部20cの内側における開始点20c2とが考えられる。   In the all-solid-state battery 100 of FIG. 2, as the starting point of the curved surface part 20c of the outer can 20, the starting point 20c1 outside the curved surface part 20c of the outer can 20 and the starting point 20c2 inside the curved surface part 20c are considered. .

本実施形態において、外装缶20の曲面部20cが重複領域Aよりも側面部側に位置するとは、曲面部20cの外側開始点20c1及び内側開始点20c2の双方が、重複領域Aよりも側面部20b側に位置することをいう。   In the present embodiment, the curved surface portion 20c of the outer can 20 is positioned on the side surface portion side with respect to the overlapping region A. Both the outer start point 20c1 and the inner start point 20c2 of the curved surface portion 20c are side surface portions with respect to the overlapping region A. It is located on the 20b side.

図2の全固体電池100では、外装缶20の曲面部20cの開始点のうちの外側開始点20c1は、重複領域Aよりも側面部20b側に位置している。このような配置とすることにより、全固体電池積層体15を外装缶20に密閉収納した後に、該積層体15を拘束する際に、負極活物質層2と正極活物質層4との重複領域Aの全体に拘束圧を均一に印加することができ、好ましい。   In the all solid state battery 100 of FIG. 2, the outer start point 20 c 1 among the start points of the curved surface portion 20 c of the outer can 20 is located on the side surface portion 20 b side with respect to the overlapping region A. With this arrangement, when the all-solid-state battery stack 15 is hermetically stored in the outer can 20 and then the stack 15 is constrained, the overlapping region of the negative electrode active material layer 2 and the positive electrode active material layer 4 is obtained. A confining pressure can be uniformly applied to the entirety of A, which is preferable.

図2の全固体電池100において、内側開始点20c2は、外側開始点20c1よりも側面部20b側に位置している。このような配置とすることにより、重複領域Aの側端部と、側面部20bとの間の距離を大きく設定することができる。従って、拘束時、充放電時等に、重複領域Aが膨張及び伸縮のうちの少なくとも一方の体積変化を生じた際でも、該体積変化を吸収し得る空隙が確保されることとなり、好ましい。   In the all-solid-state battery 100 of FIG. 2, the inner start point 20c2 is located closer to the side surface portion 20b than the outer start point 20c1. By setting it as such an arrangement | positioning, the distance between the side edge part of the duplication area | region A and the side part 20b can be set large. Therefore, even when the overlapping region A undergoes a volume change of at least one of expansion and expansion / contraction during restraint, charge / discharge, etc., a void capable of absorbing the volume change is secured, which is preferable.

特に、外装缶20における側面部20bと上面部との接合、及び全固体電池積層体15と外部端子との接合は、それぞれ例えば溶接によることが多く、強度に劣る。そのため、体積変化を生じ得る重複領域Aの側面部20b側端部の位置は、これらの溶接部からできるだけ離すことが好ましい。外装缶20の内側開始点20c2が外側開始点20c1よりも側面部20b側に位置する図2の実施形態は、このような観点からも、好ましい。   In particular, the bonding between the side surface portion 20b and the upper surface portion in the outer can 20 and the bonding between the all-solid battery laminate 15 and the external terminal are often performed by welding, for example, and have poor strength. Therefore, it is preferable that the position of the end portion on the side surface 20b side of the overlapping region A that may cause a volume change be as far as possible from these welds. The embodiment of FIG. 2 in which the inner start point 20c2 of the outer can 20 is located closer to the side surface portion 20b than the outer start point 20c1 is also preferable from this point of view.

図2の全固体電池100において、内側開始点20c2は、重複領域Aよりも側面部20b側に位置している。このような配置とすることにより、非重複領域Bを変形させなくても、外装缶20内に全固体電池積層体15を容易に収納することができ、好ましい。このような位置関係は、更に、外装缶20内に収納後の全固体電池積層体15に拘束圧を印加する際に、非重複領域Bの潰れを防止することができる観点からも好ましい。   In the all solid state battery 100 of FIG. 2, the inner start point 20 c 2 is located on the side surface 20 b side with respect to the overlapping region A. Such an arrangement is preferable because the all-solid battery stack 15 can be easily accommodated in the outer can 20 without deforming the non-overlapping region B. Such a positional relationship is also preferable from the viewpoint of preventing the non-overlapping region B from being crushed when a restraining pressure is applied to the all-solid-state battery stack 15 after being stored in the outer can 20.

<全固体電池の構成>
本実施形態の全固体電池は、上記の態様を具備する他は、公知の材料によって構成された公知の構造を有するものであってよい。
<Configuration of all-solid battery>
The all-solid-state battery of this embodiment may have a known structure made of known materials, except that the above-described aspect is provided.

[外装缶]
本実施形態の全固体電池における外装缶は、この外装缶は、底面部、側面部、及び底面部と側面部とを繋ぐ曲面部を有する外装缶本体と、上面部となる外装缶蓋部と、の2つの部品から構成されてよい。
[Exterior can]
The outer can in the all solid state battery of the present embodiment includes an outer can body having a bottom surface portion, a side surface portion, and a curved surface portion connecting the bottom surface portion and the side surface portion, and an outer can lid portion serving as an upper surface portion. , And two parts.

外装缶は、金属製の缶であってよく、例えばアルミニウム製であってよい。   The outer can may be a metal can, for example, aluminum.

[全固体電池積層体]
全固体電池積層体は、負極集電体層、負極活物質層、固体電解質層、正極活物質層、及び正極集電体層がこの順に積層された電池素子の1つ以上を含む積層体である。
[All-solid battery stack]
The all-solid-state battery laminate is a laminate including one or more battery elements in which a negative electrode current collector layer, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector layer are laminated in this order. is there.

全固体電池積層体が2個以上の全固体電池素子を含む場合、隣接する全固体電池素子における各層の積層順は、積層方向に向かって同じ順番であってもよいし、逆の順番であってもよい。また、全固体電池積層体が2個以上の全固体電池素子を含む場合、隣接する全固体電池素子は、正極電極体層又は負極電極体層を共有する構成であってよい。   When the all-solid battery stack includes two or more all-solid battery elements, the stacking order of the layers in the adjacent all-solid battery elements may be the same order in the stacking direction, or in the reverse order. May be. Moreover, when the all-solid battery stack includes two or more all-solid battery elements, adjacent all-solid battery elements may be configured to share the positive electrode body layer or the negative electrode body layer.

全固体電池積層体は、
例えば、負極集電体層、負極活物質層、固体電解質層、正極活物質層、正極集電体層、負極集電体層、負極活物質層、固体電解質層、正極活物質層、及び正極集電体層の積層順で、積層順を同じくする2個以上の全固体電池素子を有していてもよく、
例えば、負極集電体層、負極活物質層、固体電解質層、正極活物質層、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層の積層順で、正極集電体層を共有し、積層順が逆方向である2個以上の全固体電池素子を有していてもよい。
All-solid battery stack
For example, a negative electrode current collector layer, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, a positive electrode current collector layer, a negative electrode current collector layer, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode The current collector layer may have two or more all solid state battery elements having the same stacking order in the stacking order,
For example, lamination of a negative electrode current collector layer, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer In order, the positive electrode current collector layer may be shared, and two or more all solid state battery elements in which the stacking order is reverse may be included.

全固体電池積層体における全固体電池素子の数は、1個以上であれば足り、必ずしも整数である必要はない。例えば、負極集電体層、負極活物質層、固体電解質層、正極活物質層、正極集電体層、正極活物質層、固体電解質層、及び負極活物質層の積層順で、1個の全固体電池素子と、該電池素子以外の4層とが、正極集電体層を共有して積層されたものであってよい。   The number of all solid state battery elements in the all solid state battery stack is sufficient if it is one or more, and it is not necessarily an integer. For example, the negative electrode current collector layer, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, the positive electrode current collector layer, the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer are stacked in the order of one The all solid state battery element and the four layers other than the battery element may be laminated while sharing the positive electrode current collector layer.

(負極集電体層)
負極集電体層を構成する材料としては、例えば、SUS、Cu、Ni、Fe、Ti、Co、Zn等から成る箔を使用することができる。
(Negative electrode current collector layer)
As a material constituting the negative electrode current collector layer, for example, a foil made of SUS, Cu, Ni, Fe, Ti, Co, Zn, or the like can be used.

(負極活物質層)
負極活物質層は、少なくとも負極活物質を含み、例えば、グラファイト等の公知の負極活物質を適宜用いることができる。
(Negative electrode active material layer)
The negative electrode active material layer includes at least a negative electrode active material, and for example, a known negative electrode active material such as graphite can be appropriately used.

負極活物質層における固体電解質としては、硫化物系固体電解質を好適に使用することができ、具体的には例えば、LiSとPとの混合物(混合質量比LiS:P=50:50〜100:0、特に好ましくはLiS:P=70:30)を挙げることができる。 As the solid electrolyte in the negative electrode active material layer, a sulfide-based solid electrolyte can be preferably used. Specifically, for example, a mixture of Li 2 S and P 2 S 5 (mixing mass ratio Li 2 S: P 2 S 5 = 50: 50 to 100: 0, particularly preferably Li 2 S: P 2 S 5 = 70: 30).

負極活物質層におけるバインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)に代表されるフッ素原子含有樹脂等を使用することができる。   As the binder in the negative electrode active material layer, for example, a fluorine atom-containing resin typified by polyvinylidene fluoride (PVDF) can be used.

負極活物質層における導電材としては、カーボンナノファイバー(例えば昭和電工(株)製のVGCF等)、アセチレンブラック等の公知の導電材を挙げることができる。   Examples of the conductive material in the negative electrode active material layer include known conductive materials such as carbon nanofibers (for example, VGCF manufactured by Showa Denko KK) and acetylene black.

(固体電解質層)
固体電解質層は、少なくとも固体電解質を含み、好ましくは更にバインダーを含有する。
(Solid electrolyte layer)
The solid electrolyte layer contains at least a solid electrolyte, and preferably further contains a binder.

固体電解質層における固体電解質としては、負極活物質層に使用できるものとして上述した材料を用いることができる。   As the solid electrolyte in the solid electrolyte layer, the materials described above as being usable for the negative electrode active material layer can be used.

固体電解質層におけるバインダーとしてはブタジエンゴム(BR)が好適である。   Butadiene rubber (BR) is suitable as the binder in the solid electrolyte layer.

(正極活物質層)
正極活物質層は、少なくとも正極活物質を含み、好ましくは更に、固体電解質、バインダー、及び導電材を含有する。
(Positive electrode active material layer)
The positive electrode active material layer includes at least a positive electrode active material, and preferably further includes a solid electrolyte, a binder, and a conductive material.

上記正極活物質としては、例えば、コバルト酸リチウムなど公知の正極活物質を適宜用いることができる。   As said positive electrode active material, well-known positive electrode active materials, such as lithium cobaltate, can be used suitably, for example.

正極活物質層における固体電解質、バインダー及び導電材としては、それぞれ、負極活物質層に使用できるものとして上述した材料を適宜用いることができる。   As the solid electrolyte, the binder, and the conductive material in the positive electrode active material layer, the materials described above as being usable for the negative electrode active material layer can be used as appropriate.

(正極集電体層)
正極集電体層を構成する材料としては、例えば、ステンレス(SUS)、Ni、Cr、Au、Pt、Al、Fe、Ti、Zn等から成る箔を使用することができる。
(Positive electrode current collector layer)
As a material constituting the positive electrode current collector layer, for example, a foil made of stainless steel (SUS), Ni, Cr, Au, Pt, Al, Fe, Ti, Zn, or the like can be used.

<全固体電池の製造方法>
本実施形態の全固体電池は、任意の方法によって製造されてよい。例えば、
負極集電体層、負極活物質層、固体電解質層、正極活物質層、及び正極集電体層がこの順に積層された電池素子の1つ以上を含む全固体電池積層体を製造すること、
上記の全固体電池積層体を、底面部、側面部、及び底面部と側面部とを繋ぐ曲面部を有する外装缶本体内に、その積層方向が前記外装缶の底面部と垂直となるように収納すること、
上記の全固体電池積層体と、外部端子とを溶接すること、並びに
上記外装缶本体に外装缶蓋部を溶接すること
を含む方法によって製造されてよい。
<All-solid battery manufacturing method>
The all solid state battery of this embodiment may be manufactured by any method. For example,
Producing an all-solid battery laminate including one or more battery elements in which a negative electrode current collector layer, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector layer are laminated in this order;
The all-solid-state battery laminate is placed in the outer can body having the bottom surface, the side surface, and the curved surface portion connecting the bottom surface and the side surface so that the stacking direction is perpendicular to the bottom surface of the outer can. Storing,
It may be manufactured by a method including welding the all-solid battery laminate and an external terminal, and welding an outer can lid portion to the outer can body.

本実施形態の全固体電池の製造方法における各工程は、公知の方法に準じて、或いはこれに当業者による適宜の変更を加えたうえで、実施されてよい。   Each process in the manufacturing method of the all-solid-state battery of this embodiment may be implemented according to a well-known method or after adding an appropriate change by those skilled in the art to this.

1 負極集電体層
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体層
10 全固体電池素子
15 全固体電池積層体
20 外装缶
20a 底面部
20b 側面部
20c 曲面部
20c1 曲面部の外側開始点
20c2 曲面部の内側開始点
100 全固体電池
A 重複領域
B 非重複領域
DESCRIPTION OF SYMBOLS 1 Negative electrode collector layer 2 Negative electrode active material layer 3 Solid electrolyte layer 4 Positive electrode active material layer 5 Positive electrode collector layer 10 All-solid battery element 15 All-solid battery laminated body 20 Exterior can 20a Bottom part 20b Side part 20c Curved part 20c1 Outside start point of curved surface portion 20c2 Inside start point of curved surface portion 100 All-solid-state battery A Overlapping region B Non-overlapping region

Claims (1)

外装缶に全固体電池積層体が密閉収納された全固体電池であって、
前記全固体電池積層体は、負極集電体層、負極活物質層、固体電解質層、正極活物質層、及び正極集電体層がこの順に積層された電池素子の1つ以上を含み、
前記外装缶は、底面部、側面部、前記底面部と前記側面部とを繋ぐ曲面部、及び前記底面部と対向する上面部を有し、
前記全固体電池積層体は、その積層方向が前記外装缶の底面部と垂直となるように前記外装缶に収納されており、且つ
前記外装缶の前記曲面部が、前記全固体電池を前記全固体電池積層体の積層方向から観察したときの負極活物質層と正極活物質層との重複領域よりも前記側面部側に位置する、前記全固体電池。
An all-solid battery in which an all-solid battery stack is hermetically stored in an outer can,
The all-solid battery laminate includes one or more battery elements in which a negative electrode current collector layer, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector layer are laminated in this order,
The outer can has a bottom surface portion, a side surface portion, a curved surface portion connecting the bottom surface portion and the side surface portion, and an upper surface portion facing the bottom surface portion,
The all-solid battery laminate is housed in the outer can so that its stacking direction is perpendicular to the bottom surface of the outer can, and the curved surface portion of the outer can is used to remove the all-solid battery from the entire can. The said all-solid-state battery located in the said side part part rather than the duplication area | region of the negative electrode active material layer and positive electrode active material layer when it observes from the lamination direction of a solid battery laminated body.
JP2016253838A 2016-12-27 2016-12-27 All-solid battery Pending JP2018107003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016253838A JP2018107003A (en) 2016-12-27 2016-12-27 All-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016253838A JP2018107003A (en) 2016-12-27 2016-12-27 All-solid battery

Publications (1)

Publication Number Publication Date
JP2018107003A true JP2018107003A (en) 2018-07-05

Family

ID=62787516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016253838A Pending JP2018107003A (en) 2016-12-27 2016-12-27 All-solid battery

Country Status (1)

Country Link
JP (1) JP2018107003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112753121A (en) * 2019-08-29 2021-05-04 麦克赛尔控股株式会社 All-solid-state battery
US11695152B2 (en) 2019-03-22 2023-07-04 Toyota Jidosha Kabushiki Kaisha Case and method for manufacturing the same, method for inserting stacked body, and cell stack

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11695152B2 (en) 2019-03-22 2023-07-04 Toyota Jidosha Kabushiki Kaisha Case and method for manufacturing the same, method for inserting stacked body, and cell stack
CN112753121A (en) * 2019-08-29 2021-05-04 麦克赛尔控股株式会社 All-solid-state battery
CN112753121B (en) * 2019-08-29 2023-12-19 麦克赛尔株式会社 All-solid battery

Similar Documents

Publication Publication Date Title
JP6202347B2 (en) Non-aqueous electrolyte secondary battery
JP6859059B2 (en) Lithium-ion secondary battery and its manufacturing method
JP5834149B2 (en) Electrode assembly and secondary battery using the same
US20130177787A1 (en) Current collector and nonaqueous secondary battery
JP6102058B2 (en) Electricity storage element
JP6102057B2 (en) Electricity storage element
JP2014523629A (en) Electrode assembly having step, battery cell, battery pack and device including the same
KR20100099337A (en) Positive electrode material for lithium ion battery with nonaqueous electrolyte, and battery using the same
KR101590259B1 (en) Electrode assembly, battery and device comprising the same
JP2012113843A (en) Battery, method for manufacturing the same, battery unit, and battery module
JP2011108646A (en) Electrode assembly, and secondary battery
JP2014150050A (en) Electricity storage element, electricity storage system, and manufacturing method thereof
KR20120061354A (en) Electrochemical device having plural power characteristics
WO2019187941A1 (en) Current collector tab for solid-state batteries, current collector, and electrode sheet
JP2006202680A (en) Polymer battery
JP2005038612A (en) Lithium ion secondary battery and manufacturing method of the same
US20180159103A1 (en) Secondary battery, and method of manufacturing secondary battery
JP2018107003A (en) All-solid battery
JP2013084387A (en) Electrical device
JP2000268873A (en) Lithium secondary battery and battery device using it
KR101709391B1 (en) Nonaqueous electrolyte secondary battery
WO2020022111A1 (en) Positive electrode for solid-state battery, manufacturing method of positive electrode for solid-state battery, and solid-state battery
JP2018107008A (en) Manufacturing method of all-solid battery
KR102467809B1 (en) Lithium ion capacitor
JP2018060699A (en) Manufacturing method for laminated secondary battery